Using gravitation to emulate electromagnetism.

S. Halayka*

July 28, 2010

Abstract

The possibility of Universe-scale black holes living in closed 3D space of constant positive curvature was briefly considered in previous work. Further consideration of this possibility is given here. A possible link between gravitation and electromagnetism is discussed.

1 Introduction

Consider a Universe-scale black hole living in closed 3D space of constant positive curvature [1,2].

Where R_U is the Euclidean 4-radius of the Universe, an equatorial-sized black hole (e.g., $A = 4\pi R_U^2$) has a rest energy E_0 of

$$E_0 = E_{\text{eq}} = \frac{\sqrt{E_p^2 R_U^2}}{2\ell_p}.$$
 (1)

The maximum rest energy of any black hole is

$$E_0 = E_{\text{max}} = 2E_{\text{eq}}.\tag{2}$$

The black hole event horizon colatitude $\Phi = (0, \pi)$ is

$$\Phi = \begin{cases}
E_{0} < E_{\text{eq}}, & \arccos\left[\sqrt{\frac{E_{p}^{2}R_{U}^{2} - 4(E_{0}^{2}\ell_{p}^{2})}{E_{p}^{2}R_{U}^{2}}}\right], \\
E_{0} = E_{\text{eq}}, & \frac{1}{2}\pi, \\
E_{0} > E_{\text{eq}}, & 1 - \arccos\left[\sqrt{\frac{E_{p}^{2}R_{U}^{2} - 4([2E_{\text{eq}} - E_{0}]^{2}\ell_{p}^{2})}{E_{p}^{2}R_{U}^{2}}}\right],
\end{cases} (3)$$

and the black hole event horizon area is

$$A = 4\pi (R_U^2 - R_U^2 \cos^2(\Phi)). \tag{4}$$

^{*}shalayka@gmail.com

The black hole's entropy is

$$S = 4\pi \frac{E_0^2}{E_p^2}. (5)$$

Where $E_0 \le E_{eq}$, the entropy to area ratio is constant

$$\frac{S}{A} \equiv \frac{1}{4\ell_p^2} \approx 9.57 \times 10^{68}.$$
 (6)

Else, where $2E_{eq} > E_0 > E_{eq}$, the entropy to area ratio is variable

$$\frac{S}{A} = \left(\frac{1}{4\ell_p^2}, \infty\right). \tag{7}$$

The increase in entropy to area ratio is equivalent to an increase in interaction strength

$$G' = \frac{4SG^2\hbar}{Ac^3}. (8)$$

For instance, by manually setting $G' = G \times 10^{40} \approx 6.67 \times 10^{29}$ in an attempt to emulate the electromagnetic interaction, the result is that $S/A \approx 9.57 \times 10^{108}$, and that the corresponding length scale

$$\ell' = \sqrt{\frac{\hbar G'}{c^3}} \tag{9}$$

is $\ell' \approx 1.6 \times 10^{-15}$.

Do these results imply that electromagnetically interacting fundamental particles are Universe-scale black holes (e.g., $\Phi \approx \pi$, $E_0 \approx 1.2 \times 10^{69}$ Joules where $R_U \approx 1 \times 10^{25}$ metres)? If so, then it can be seen why the Heisenberg uncertainty principle implies that a fundamental particle is everywhere at once. This is because a fundamental particle (e.g., a Universe-scale black hole) literally envelops everything else within the Universe. As well, it seems likely that a fundamental particle's large surplus of hidden energy (e.g., $(E_0 - 8 \times 10^{-14}) \approx E_0$ Joules for an electron) would serve as the source of its "virtual" energy.

References

- [1] Halayka S. Can the Edges of a Complete Graph Form a Radially Symmetric Field in Closed Space of Constant Positive Curvature? (2010) viXra:1007.0039
- [2] Halayka S. Closed space fitness test C++ code v1.1. (2010) http://code.google.com/p/completegraphcurved/downloads/list