
 

 

1 

 

A short algebraic proof of Fermat’s Last Theorem 
 

Morgan D. Rosenberg 
3001 Park Center Drive, #509 

Alexandria, VA 22302 
United States of America 

morgan@darkbuddhism.com 
 

Presented herein is a proof of Fermat’s Last Theorem, which is not only short 

(relative to Wiles’ 109 page proof), but is also performed using relatively 

elementary mathematics.  Particularly, the binomial theorem is utilized, which 

was known in the time of Fermat (as opposed to the elliptic curves of Wiles’ 

proof, which belong to modern mathematics).  Using the common integer 

expression nnn cba =+  for Fermat’s Last Theorem, the substitutions ibc +=  

and  jab +=  are made, where i and j are integers.  Using a Taylor expansion 

(i.e., in the form of the binomial theorem), Fermat’s Last Theorem reduces to 

1−= n
n

b
nji  and what remains to be proven, from this equation, is that 1−n n  only 

has rational solutions for n=1 and n=2.  This proof is presented herein, thus 

proving that  nnn cba =+  only has integer solutions for a, b and c for integer 

values of the exponent n=1 or n=2. 
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1.  Introduction 

Fermat’s Last Theorem famously states that if an integer n is greater than 2, then 

nnn cba =+  has no solutions for non-zero integers a, b and c.  In 1637, Fermat wrote in 

the margin of his copy of Claude-Gaspar Bachet’s translation of Diophantus’ 

Arithmetica:  “I have a truly marvelous proof of this proposition which this margin is too 

narrow to contain.”  (translated from the original Latin) [1] 

 After countless failed attempts to prove the theorem, Andrew Wiles finally 

provided a proof in 1995. [2]  Wiles’ 109 page paper offers a proper proof, however, it is 

unquestionable that this is not the proof Fermat had in mind when he made his marginal 

comment, as Frey curves and the like were unknown in the 1600’s.  Though it is 

unknown if Fermat actually had a proof or not, presented below is a short and 

“marvelous” proof using mathematics which would have been known to Fermat. 

 The following proof is based upon the substitutions ibc +=  and jab += , 

where i and j are integers.  Using a Taylor expansion (i.e., the binomial theorem, which 

was known in the time of Fermat), Fermat’s Last Theorem reduces to 1−= n
n

b
nji  and 

what remains to be proven, from this equation, is that 1−n n  only has rational solutions for 

n=1 and n=2.  In other words, Fermat’s Last Theorem is reduced to the theorem that 1−n n  

only has rational solutions for n=1 and n=2, which is shown below.  Binomial 

factorization has been attempted throughout the centuries to prove Fermat’s Last 

Theorem, with varying degrees of success, by Euler [4], Lagrange [5], Legendre [6] and 

Kummer [7], amongst others.  More recently, Ellman was able to derive the expression 
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1−n n , but was unable to prove any conditions on the value of the expression [8].  What 

follows is a proof that Fermat’s Last Theorem reduces to the problem of rational values 

of n in the expression 1−n n , and also the proof that only values of n=1 and n=2 provide 

such rational values for the expression, thus proving that nnn cba =+  has no solutions 

for non-zero integers a, b and c for n > 2. 

 

2.  Taylor expansions 

Since a, b and c are each integers, we can easily substitute ibc +=  and 

jab += , where i and j are also integers.  Substituting the first expression into 

nnn cba =+  yields 

( )nnn ibba +=+   (2) 

( ) nnn biba −+=   (3) 

which can now be expanded, using a Taylor expansion (i.e., the binomial theorem), as 

nnnn iibnninba ++
−

+= −− ...
!2

)1( 221 .  (4) 

 We have defined jab += , thus jba −=  and ( )nn jba −= .  Expanding this 

expression, once again using the Taylor expansion, yields 

nnnnn jjbnnjnbba ±−
−

+−= −− ...
!2

)1( 221 .  (5) 

In order to equate the coefficients of the powers of b for the two expressions for na , we 

rewrite equation (4) as: 





 ++

−
+= −−− 121 1...

!2
)1( nnnn i

n
ibnbnia   (6) 
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and, similarly, equation (5) becomes 





 ±−

−
+−= −−− nnnnn j

b
jbnnjnbbba 1...

!2
)1( 2321 .  (7) 

 Thus, by matching exponents, we now have the following condition: 

nn j
b

i
n

11 1 =− .  (8) 

 

3.  Restrictions on n 

Equation (8) can be rewritten as 1−= n
n

b
nji , or 

11 −− ⋅⋅= nn n
b
jji .  (9) 

Thus far, no restrictions have been placed on i, j, n or b, other than that they must be 

integers.  The expression 1−n
b
j  can have integer and/or rational values for an infinite 

number of selections of j, b and n.  i, though, must be an integer, thus the expression 1−n n   

must at least be rational, if not an integer, to be able to produce an integer value for i.  

However, as will be proven below 1−n n  only has rational values if n=1 or n=2.  As will 

be further shown below, the value of  1−n n  must have integer solutions to be rational, and 

values of n=1 or n=2 also produce the only integer values for the expression 1−n n . 

  

4.  1−n n  only has integer values if n=1 or n=2 

 The above theorem stating that 1−n n  only has integer values if n=1 or n=2 is 

proved easily by considering the transcendental equation xy yx = .  This equation only 
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has integer solutions if x=y or for values of (x,y)={(2,4), (4,2), (-2,-4),(-4,-2)}.  The proof 

of this is as follows: 

 Assuming that x and y are both positive, then switching the order of x and y 

allows us to also assume that xy ≥ .  Dividing both sides of xy yx =  by xx  yields 

x
xy

x
yx 





=− .  (10) 

For integer x and y, the left-hand side of equation (10) must be an integer.  If the left-hand 

side is an integer, then the right-hand side must also be an integer.  However, raising a 

rational non-integer to an integer power yields a non-integer, thus 
x
yk =  must be an 

integer.  Equation (10) can be rewritten as: 

xxkx kx =−   (11) 

which, when the x-th root is taken on both sides of the equation, yields 

kxk =−1 .  (12) 

 For 2≥x , equation (12) yields four solutions:  a) For k=1, x=y is a solution; b) 

for k=2, x=2 is a solution; c) k=3 implies that kxk >−1  ; and d) by induction for k, 3≥k  

implies that kkkxxxx kk >−≥−>⋅= −− 22)1(21 .  Thus, xy yx =  only has integer 

solutions if x=y or for values of (x,y)={(2,4), (4,2), (-2,-4),(-4,-2)}. 

 Returning to the transcendental equation xy yx = , where x and y are integers, x 

can be written as a multiple of prime factors (or as a single prime):  mxxxxx ⋅⋅⋅⋅= ...321 .  

The same is, of course, true for y.  According to the fundamental theorem of arithmetic, 

this factorization is unique and the expression yx  has the same factorization (simply 

raised to the y power).  Similarly, xy  has the same factors as y, but raised to the x power. 
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 If xy yx = , then the left-hand side of the equation must contain the same factors 

as the right-hand side of the equation, with both sides being raised to the same power.  

This, however, is only true if x=y (as we’ve already proven) or if mxy =  with mx=y.  

Simple substitution and reduction of these last two expressions yields: 

mxm =−1 ,  (13) 

or 

1−= m mx .  (14) 

 Equation (14), however, is the same expression from equation (9), and we have 

already proven that for integer x (and y), either x=y (which produces a value of m=1) or 

x=2, which produces a value of m=2.  There are no other values for m. 

The above is important, since 11 −− ⋅ nn
n

n
b
j  must form an integer value (namely, 

the integer i).  We have now proven that 1−n n  only has integer values for n=1 and n=2.  

What we still seek to prove is that 1−n n also only has rational values for n=1 and n=2 

(which will be proven in the following section).  If 1−n n  has a rational value, then we 

also require 1−n
n

b
j  to have a rational value in order for the two factors to form an integer.  

However, from the original equation 1−= n
n

b
nji ,  we see that 

1
1

−
− =

n
n

n

n
i

b
j  .  i is, of 

course, defined as an integer, and the only possible integer values of n (and n is defined 

as an integer in the original problem) are n=1 and n=2.  Thus, 1−n
n

b
j  can only have the 
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value of either i or i/2, both of which are rational.  Thus, with 1−n
n

b
j  proven to be 

rational, we must only prove the rationality of 1−n n . 

 

5.  1−n n  only has rational values if n=1 or n=2 

Now, we examine which values of x and y are rational in the transcendental 

equation xy yx = .  We have already seen that the only integer solutions are of the form 

(x,y)={(2,4), (4,2), (-2,-4),(-4,-2)}.  For rational x and y, then 
x
yr =  must also be rational.  

If we set 
d

r 11+= , then d must also be rational.  If d is rational, then 
d

d
x 






 +=

11 is 

rational if and only if d is an integer. 

Letting 
g
fd = , where f and g are relatively prime (i.e., d is a fraction in its lowest 

terms), then 
gfd

f
gf

d

/
)(11 






 +
=






 + , which is rational only if g = 1.  If g > 1, then, 

since f and g are relatively prime, (f + g) and f are also relatively prime.  Therefore, for  

gf

f
gf

/
)(







 + to be rational, both (f + g) and f must be perfect g-th powers of integers.  

However, this is impossible.  For example, if g = 2, then (f + 2) and f cannot both be 

perfect squares, because the difference between two positive perfect squares is at least 3. 

More generally, if u, v and w are positive integers, with w > 1, then using the 

binomial theorem, ( ) wvvwuuvu wwww >++=−+ − ...1 .  Thus, two distinct perfect g-th 
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powers cannot differ by g.  Therefore, 
gfd

f
gf

d

/
)(11 






 +
=






 + cannot be rational if g > 

1. 

Thus, 
d

d






 +

11  is rational if and only if d is a positive integer.  Therefore, all 

rational solutions are of the form 
d

d
x 






 +=

11 and 
111
+







 +=

d

d
y , where d = 1, 2, ... .  

Rational solutions are only within the bounds of 2  x < e < y 4.  

We have already seen that the only integer values for x and y occur either when 

x=y or for x=2 and y=4, and now we have shown that these are also the only rational 

integer values.  Since the only restriction on i is that it be an integer, 1−n n  must have a 

rational value (since 1−n
b
j , without restrictions on b, j or n, would produce only an 

irrational value if multiplied with an irrational number), and the only rational values 

allowed are n=1 or n=2. 

In the above, what we are obviously interested in is the expression 1−n n  being 

rational.  However, in general, p N  is irrational unless N is the p-th power of an integer z 

[3].  Thus, the only rational values for 1−n n  must also be integer values.  The only integer 

values for 1−n n  are n=1 and n=2, thus the only rational values for 1−n n  are also only 

found at n=1 and n=2. 

  

6.  Conclusion 
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 Section 4 above proves that 1−= m mx  only produces an integer value for x if m=1 

or m=2.  Section 5 goes on to show that these two solutions also provide the only rational 

values for x.  Equation (9) provided that 11 −− ⋅⋅= nn n
b
jji , with no restrictions being 

made on i, j, n or b, other than that they must be integers.  The expression 1−n n  must be a 

rational number (which also must be an integer, as described above in Section 5) in order 

to produce an integer value for i.  However, we have now proven that 1−n n  only has 

rational integer values if n=1 or n=2.  Thus, the equation nnn cba =+  only has integer 

solutions for a, b and c when the integer exponent n has a value of n=1 or n=2.   

 

Q.E.D.
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