Smarandache's Orthic Theorem

Edited by Prof. Ion Patrascu Fratii Buzesti College Craiova, Romania

Abstract.

We present the Smarandache's Orthic Theorem in the geometry of the triangle.

Smarandache's Orthic Theorem.

Given a triangle ABC whose angles are all acute (acute triangle), we consider A'B'C', the triangle formed by the legs of its altitudes.

In which conditions the expression:

 $||A'B'|| \cdot ||B'C'|| + ||B'C'|| \cdot ||C'A'|| + ||C'A'|| \cdot ||A'B'||$

is maximum?

Proof.

We have

$$\Delta ABC \sim \Delta A'B'C' \sim \Delta AB'C \sim \Delta A'BC' \tag{1}$$

We note

$$|BA'|| = x, ||CB'|| = y, ||AC'|| = z.$$

It results that

$$\|A'C\| = a - x, \ \|B'A\| = b - y, \ \|C'B\| = c - z$$

$$A'C = B'A'C = BA'C'; \ ABC = AB'C' = A'B'C'; \ BCA = BC'A' = B'C'A$$

and a solution (1)

From these equalities it results the relation (1)

$$\Delta A'BC' \sim \Delta A'B'C \Longrightarrow \frac{\|A'C'\|}{a-x} = \frac{x}{\|A'B'\|}$$
(2)

$$\Delta A'B'C \sim \Delta AB'C' \Longrightarrow \frac{\|A'C'\|}{z} = \frac{c-z}{\|B'C'\|}$$
(3)

$$\Delta AB'C' \sim \Delta A'B'C \Longrightarrow \frac{\|B'C'\|}{y} = \frac{b-y}{\|A'B'\|}$$
(4)

From (2), (3) and (4) we observe that the sum of the products from the problem is equal to:

$$x(a-x) + y(b-y) + z(c-z) = \frac{1}{4}(a^{2} + b^{2} + c^{2}) - \left(x - \frac{a}{2}\right)^{2} - \left(y - \frac{b}{2}\right)^{2} - \left(z - \frac{c}{2}\right)^{2}$$

which will reach its maximum as long as $x = \frac{a}{2}$, $y = \frac{b}{2}$, $z = \frac{c}{2}$, that is when the altitudes' legs are in the middle of the sides, therefore when the ΔABC is equilateral. The maximum of the expression is $\frac{1}{4}(a^2 + b^2 + c^2)$.

Conclusion (Smarandache's Orthic Theorem):

If we note the lengths of the sides of the triangle $\triangle ABC$ by ||AB|| = c, ||BC|| = a, ||CA|| = b, and the lengths of the sides of its orthic triangle $\triangle A`B`C`$ by ||A`B`|| = c`, ||B`C`|| = a`, ||C`A`|| = b`, then we proved that:

$$4(a`b` + b`c` + c`a`) \le a^2 + b^2 + c^2.$$

Open Problems related to Smarandache's Orthic Theorem:

- Generalize this problem to polygons. Let A₁A₂...A_m be a polygon and P a point inside it. From P we draw perpendiculars on each side A_iA_{i+1} of the polygon and we note by Ai' the intersection between the perpendicular and the side A_iA_{i+1}. A podaire polygon A₁'A₂'...A_m' is formed. What properties does this podaire polygon have?
- 2. Generalize this problem to polyhedrons. Let A₁A₂...A_n be a poliyhedron and P a point inside it. From P we draw perpendiculars on each polyhedron face F_i and we note by Ai' the intersection between the perpendicular and the side F_i. A podaire polyhedron A₁'A₂'...A_p' is formed, where p is the number of polyhedron's faces. What properties does this podaire polyhedron have?

References:

[1] Cătălin Barbu, *Teorema lui Smarandache*, in his book "Teoreme fundamentale din geometria triunghiului", Chapter II (Teoreme fundamentale din geometria triunghiului), Section II.57, p. 337, Editura Unique, Bacău, 2008.

[2] József Sándor, *Geometric Theorems, Diophantine Equations, and Arithmetic Functions*, AR Press, pp. 9-10, Rehoboth 2002.

[3] F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org.

[4] F. Smarandache, *Problèmes avec et sans... problèmes!*, pp. 49 & 54-60, Somipress, Fés, Morocoo, 1983.