Smarandache's Orthic Theorem

Edited by Prof. Ion Patrascu

Fratii Buzesti College
Craiova, Romania

Abstract.
We present the Smarandache's Orthic Theorem in the geometry of the triangle.

Smarandache's Orthic Theorem.

Given a triangle $A B C$ whose angles are all acute (acute triangle), we consider $A^{\prime} B^{\prime} C^{\prime}$, the triangle formed by the legs of its altitudes.

In which conditions the expression:

$$
\left\|A^{\prime} B^{\prime}\right\| \cdot\left\|B^{\prime} C^{\prime}\right\|+\left\|B^{\prime} C^{\prime}\right\| \cdot\left\|C^{\prime} A^{\prime}\right\|+\left\|C^{\prime} A^{\prime}\right\| \cdot\left\|A^{\prime} B^{\prime}\right\|
$$

is maximum?

Proof.

We have

$$
\begin{equation*}
\Delta A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime} \sim \triangle A B^{\prime} C \sim \Delta A^{\prime} B C^{\prime} \tag{1}
\end{equation*}
$$

We note

$$
\left\|B A^{\prime}\right\|=x,\left\|C B^{\prime}\right\|=y,\left\|A C^{\prime}\right\|=z
$$

It results that

$$
\left\|A^{\prime} C\right\|=a-x,\left\|B^{\prime} A\right\|=b-y,\left\|C^{\prime} B\right\|=c-z
$$

$$
\widehat{B A C}=B^{\prime} A^{\prime} C=\widehat{B A^{\prime} C^{\prime}} ; \widehat{A B C}=\widehat{A B^{\prime} C^{\prime}}=A^{\prime} B^{\prime} C^{\prime} ; B C A=B C^{\prime} A^{\prime}=B^{\prime} C^{\prime} A
$$

From these equalities it results the relation (1)

$$
\begin{equation*}
\Delta A^{\prime} B C^{\prime} \sim \Delta A^{\prime} B^{\prime} C \Rightarrow \frac{\left\|A^{\prime} C^{\prime}\right\|}{a-x}=\frac{x}{\left\|A^{\prime} B^{\prime}\right\|} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \Delta A^{\prime} B^{\prime} C \sim \Delta A B^{\prime} C^{\prime} \Rightarrow \frac{\left\|A^{\prime} C^{\prime}\right\|}{z}=\frac{c-z}{\left\|B^{\prime} C^{\prime}\right\|} \tag{3}\\
& \Delta A B^{\prime} C^{\prime} \sim \Delta A^{\prime} B^{\prime} C \Rightarrow \frac{\left\|B^{\prime} C^{\prime}\right\|}{y}=\frac{b-y}{\left\|A^{\prime} B^{\prime}\right\|} \tag{4}
\end{align*}
$$

From (2), (3) and (4) we observe that the sum of the products from the problem is equal to:

$$
x(a-x)+y(b-y)+z(c-z)=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)-\left(x-\frac{a}{2}\right)^{2}-\left(y-\frac{b}{2}\right)^{2}-\left(z-\frac{c}{2}\right)^{2}
$$

which will reach its maximum as long as $x=\frac{a}{2}, y=\frac{b}{2}, z=\frac{c}{2}$, that is when the altitudes' legs are in the middle of the sides, therefore when the $\triangle A B C$ is equilateral. The maximum of the expression is $\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right)$.

Conclusion (Smarandache's Orthic Theorem):

If we note the lengths of the sides of the triangle $\Delta \mathrm{ABC}$ by $\|\mathrm{AB}\|=c,\|\mathrm{BC}\|=a,\|\mathrm{CA}\|=b$, and the lengths of the sides of its orthic triangle $\Delta \mathrm{A}^{`} \mathrm{~B}^{`} \mathrm{C}^{`}$ by $\left\|\mathrm{A}^{`} \mathrm{~B}^{`}\right\|=c^{`},\left\|\mathrm{~B}^{`} \mathrm{C}^{`}\right\|=a^{\prime},\left\|\mathrm{C}^{`} \mathrm{~A}^{`}\right\|=b^{\prime}$, then we proved that:

$$
4\left(a^{`} b^{`}+b^{`} c^{`}+c^{`} a^{`}\right) \leq a^{2}+b^{2}+c^{2}
$$

Open Problems related to Smarandache's Orthic Theorem:

1. Generalize this problem to polygons. Let $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{m}}$ be a polygon and P a point inside it. From P we draw perpendiculars on each side $A_{i} A_{i+1}$ of the polygon and we note by $A i$ ' the intersection between the perpendicular and the side $\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}+1}$. A podaire polygon $\mathrm{A}_{1}{ }^{\prime} \mathrm{A}_{2}{ }^{\prime} \ldots \mathrm{A}_{\mathrm{m}}$ ' is formed. What properties does this podaire polygon have?
2. Generalize this problem to polyhedrons. Let $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}$ be a poliyhedron and P a point inside it. From P we draw perpendiculars on each polyhedron face F_{i} and we note by $A i$ ' the intersection between the perpendicular and the side F_{i}. A podaire polyhedron $\mathrm{A}_{1}{ }^{\prime} \mathrm{A}_{2}{ }^{\prime} \ldots \mathrm{A}_{\mathrm{p}}{ }^{\prime}$ is formed, where p is the number of polyhedron's faces. What properties does this podaire polyhedron have?

References:

[1] Cătălin Barbu, Teorema lui Smarandache, in his book "Teoreme fundamentale din geometria triunghiului", Chapter II (Teoreme fundamentale din geometria triunghiului), Section II.57, p. 337, Editura Unique, Bacău, 2008.
[2] József Sándor, Geometric Theorems, Diophantine Equations, and Arithmetic Functions, AR Press, pp. 9-10, Rehoboth 2002.
[3] F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org.
[4] F. Smarandache, Problèmes avec et sans... problèmes!, pp. 49 \& 54-60, Somipress, Fés, Morocoo, 1983.

