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1. Introduction 
 

 Smarandache notions which can be undoubtedly characterized as revolutionary 

mathematics, have the capacity of being utilized to analyze, study and introduce, 

naturally, the concepts of seven structures by means of extension or identification as a 

substructures.  A particular case of Smarandache notions, an excellent means to study 

local properties in rings, is Smarandache ring [11]. 

 

 The notion of semisimple ring is introduced in [7] and [8].  Semisimple rings have 

played prominent role in the development of structure theory of rings.  There are several 

open questions concerning semisimplicity and group algebra of any group over a field. 

 

 Group algebras were introduced by G.Frobenius and I.Schur[4] in connection 

with the study of group representations, since studying the representations of a group G 
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over a field K; is equivalent to studying modules over the group algebra KG.  Thus, 

Maschke’s theorem about semisimplicity (stated in this paper) is formulated in the 

language of group algebras.  In the early 1950s group algebras of infinite groups were 

studied in the context of integer group algebras in the algebraic topology and for 

investigation of structure groups.  This was also promoted by a number of problems on 

group algebras, the best known of which is Kaplansky’s problem. 

 

 The purpose of this paper is to show that a commutative semisimple ring is 

always a Smarandache ring.  Then the Theorem 3.9 in [10] which states that the ring R in 

which for every element x ∈  R there exists a (and hence the smallest) natural number 

n(x)>1 such that xn(x) = x is always a Smarandache ring, is a corollary of our result.  We 

will also give a necessary and sufficient condition for group algebra to be a Smarandache 

ring. 

 In section 2 we give basic concepts, definitions and theorems of structure theory 

of rings.  In section 3 we give our results.  In section 4 we give examples to justify our 

results.  For more details about fundamental concepts please refer [7],[8]and [9].  In this 

paper ring means ring with unit.  

 

2. Preliminaries 
 

 In this section we give some definitions and theorems of structure theory of rings. 

Definition 2.1.([5]):  The intersection of all prime ideals of a ring R is called a prime 

radical of R.   

 

Definition 2.2([5]).  An element r in the ring R is called nilpotent if r n = 0 , for some 

natural number n.   

 

Proposition 2.3([5]).  A prime radical of a commutative ring R consists of all nilpotent 

elements of R. 
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Definition 2.4([5]).  A ring R is said to be Semisimple if its prime radical is 0, that is ,  if 

it has no nonzero nilpotent element. 

 

 In other words, for every x ∈  R ,   x2 = 0 if and only if x = 0.  A commutative ring 

R which is semisimple is called Commutative semisimple ring. 

 

 The simple example of semisimple ring is the ring J of integers, Since, if p is a 

prime the principal ideal (p) is primitive in J and ∩ p(p)={0}.  More examples of 

commutative semisimple rings can be found in [5],[7]and [8]. 

 

Definition 2.5. Let G={gi / i ∈I} be any multiplicative group and let K be any field.  Let 

KG be the set of all formal sums ∑ aigi , where i ∈I  for ai ∈  K and gi ∈  G , where all but 

a finite number of the ai are 0.  Define the sum of two elements of KG by  

(∑ aigi ) + (∑ bigi ) = ∑ (ai+bi) gi , where i ∈I   ;  ai+bi = 0 except for a finite number of 

indices i.  Multiplication of two elements of KG is defined by the use of the 

multiplication in G and K as 

(∑ aigi )(∑ bigi ) = (∑ (∑ ajbk)gi , where i ∈I   ;  gj gk= gi , and  at most a finite number of 

the sums (∑ ajbk), where  gj gk= gi ,      are nonzero.  If KG is a ring then KG is called a 

group algebra of G over K. 

 

 From the definition, it follows that the additive identity element in KG is ∑ 0gi  , 

where i ∈I , and multiplicative identity in KG is 1eG   (see [9]) ) where 1 is the identity of 

K and e is the identity of G.  Clearly, the identity element of G is the unit of KG and KG 

is commutative if and only if G is an Abelian group.  In the group algebra KG the 

elements of G form a basis for this algebra as G ⊂ KG .  For examples of group algebras 

please see [6],[8] and [9]. 

 

Definition 2.6([1]).  A Smarandache ring (in short S-ring) is defined to be a ring A such 

that a proper subset of A is a field with respect to the operations induced.  By a proper 
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subset we understand a set included in A different from empty set, from the unit element , 

if any, and from A.  For examples of Smarandache rings please see[11]. 

 

Theorem 2.7(Maschke[ 8 ]) .  Let G be a finite group of order n and let K be a field 

whose Characteristic does not divide n, then the group algebra KG is semisimple. 

 

Theorem 2.8.  If R is a finite ring and has no nonzero nilpotent element then R is 

commutative.  

 

3. Proofs of the Theorems. 

 

 In this section we show that a commutative semisimple ring R is always a 

Smarandache ring.  We will also give a necessary and sufficient condition for a group 

algebra to be a Smarandache ring.  For completeness, we write some definitions and 

lemmas from [2]. 

 

Lemma 3.1.  Let R be a commutative semisimple ring.  The ring R is partially ordered by 

≤  where for every element x and y of  R , 

x ≤  y if and only if xy = x2 ……..(i) 

Proof : Since xx = x2 , it follows from (i) that x ≤  x.  Thus , ≤  is reflexive  

 

 Moreover, if x ≤  y and y ≤  x then xy=x2 and yx = y2  so that x2 – xy – yx + y2 = 

(x – y )2 = 0.  But, then x – y = 0 as R has no nonzero nilpotent element.  Thus, x = y and 

therefore , ≤  is antisymmetric . 

 

 Further more, if x ≤  y and   y ≤  z then  

 

               xy = x 2  and yz = y2  so that x2 z = xyz = xy2 = x2y = x3 .  Thus  , x2z2=x3z and 

x3z = x4  so that x2z2  -  x3 z -  x3z + x4 = 0 or (xz – x2) 2 = 0 .  But, then  xz - x2  = 0 or xz = 

x2 as R has no nonzero nilpotent element.  Hence, x ≤  z by (i) and therefore, ≤   is 

transitive.  Thus, ≤  is a partial order and further (R , ≤  ) is a partially ordered (p.o ) set. 
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 Let us observe that from (i) it follows immediately that for every element x, y of a 

commutative semisimple ring R     x ≤  y implies  xz ≤  yz ….(ii) 

and x2  = x implies xy ≤ y ……(iii) 

 

Definition 3.2:  A nonzero element a of a commutative semisimple ring R is called a 

hyperatom of R if and only if                                                                                                

for every element  x of R   x ≤  a        implies x = 0 or x = a …..(iv) and  

ax ≠ 0       implies     a x s = a for some element s  of  R  ……..(v )  

Next , we prove 

 

Lemma 3.3: Let ‘a’ be a hyperatom of a commutative semisimple ring R.  For every 

element r of R if  

ar ≠  0 then ar is a hyperatom of R. 

 

Proof : Let ar ≠  0.  We show that ar is a hyperatom according to the Definition 3.2 . 

 Since ar ≠  0 , by (v) we have ars = a   for some element s of R.  Now, let x ≤  ar 

then from (ii) it follows that xs ≤  ars.  Hence, xs ≤ a and in view of (iv) we have xs = 0 

or xs = a 

 

However , x ≤  ar so that arx =  x2 and therefore       rsx2  = rs (arx) = (rsa) rx = arx = x2.  

Consequently, (rsx – x )2 = (rs)2x2 – 2rsx2+ x2 =0.  Thus, rsx = x     as R has no nilpotent 

element and in view of the above implies that x = 0 or x = ar.  Hence, ar satisfies (iv). 

 

 On the other hand, if arx ≠  0 then there exists an element t of R such that arxt = a.  

Thus,  (arx) tr = ar , so that ar satisfies (v).  In view of the above two cases, we see that ar 

is a hyperatom of R as desired.  

 

Lemma 3.4 .  Let ‘a’ be a hyperatom of commutative semisimple ring R, then there 

exists an element s of R such that as is an idempotent hyperatom of R. 
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Proof  :  Since a ≠  0 , it follows that a2 ≠  0 as  R has no nilpotent element.  Thus, by (v) 

there exists an element s of R such that a2s = a .  Clearly , as ≠  0 and therefore as is an 

hyperatom by Lemma 3.3.  But , also, ( as )2=(a2s)s = as.  Thus, as is an idempotent 

hyperatom of R. 

 

Definition 3.5 :  A subset S of a commutative semisimple ring R is called orthogonal if 

and only if xy = 0 for every two distinct elements x and y of S. 

 

Lemma 3.6 :  The set (ei) , i ∈I  of all idempotent hyperatoms of a commutative 

semisimple ring R is an orthogonal set.  

  

Proof : Let ei and ej be idempotent hyperatoms of a commutative semisimple ring R.  

From (iii) it follows that eiej ≤  ei and eiej ≤  ej so that eiej= ei=ej or eiej = 0 . 

 

Lemma 3.7 Let (ei) , i∈I , be the set of all idempotent hyperatoms of a commutative 

semisimple ring R.  Then for every i of I  the ideal Fi ={rei / r ∈R} is a subfield of R 

Proof :  Since ei
2 = ei , it follows that ei is an element of Fi and for every element  r of R , 

we have (rei)ei=rei so that ei is the unit of Fi.  Further , if rei ≠ 0 , then since ei  is a 

hyperatom there exists an element s of R such that (sei) (rei) = srei = ei.  Thus, each non 

zero element of Fi has an inverse in Fi so that Fi is a field. 

Now, we are ready to prove our result. 

Theorem 3.8. A commutative semisimple ring R is always a Smarandache ring. 

Proof : Let ( ei) , i ∈I  be the set of all idempotent hyperatoms of R.  Then, in view of the 

preceding Lemma 3.7, for every i of I , the ideal Fi ={rei / r ∈R} is a field of R .  Hence, 

the ring R is a Smarandache ring. 
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Corollary 3.9 (Theorem 3.9 in [ 10 ] ) .  The ring R is which for every element x ∈  R 

there exists a ( and hence the smallest ) natural number n ( x ) > 1 such that    x n ( x ) = x is 

always a Smarandache ring. 

Proof : In [ 7 ] , it is known that the ring R in which for every element x ∈R there exists 

a ( and hence the smallest ) natural number n(x ) > 1 such that x n ( x ) = x is commutative 

and has no nonzero nilpotent element.  Hence, this ring R is a commutative semisimple 

ring.  Thus, in view of Theorem 3.8 we get that this ring R is a Smarandache ring as 

desired.  

Corollary 3.10. If R is a finite ring with no nonzero nilpotent element then R is a 

Smarandache ring. 

Proof :  In structure  theory of rings we have an elegant Theorem  2.8 which states  that if 

R is a finite ring with no nonzero nilpotent element then R is commutative.  Hence, R is a 

commutative semisimple ring.  Thus, in view of the Theorem 3.8 , we get that ring R is 

Smarandache ring. 

 Next , we give a necessary and sufficient condition for a group algebra to be a 

Smarandache ring.   

Theorem 3.11 .  Let KG be a group algebra, where K is a field with multiplicative 

identity 1 and G is a multiplicative group with identity e.  Then, KG is a Smarandache 

ring if and only if | K | ≥  3 , where | K | denotes the cardinality of the field K. 

Proof .  If KG is a Smarandache ring then there exists a proper subset F = { 0 , 1e } of 

KG such that F is a field under the operations defined on the group algebra KG.  In view 

of Definition 2.5 , F must contain an element a1e , where a1 ∈K , other than 0 and 1e.  so 

that F is a field of KG .  Thus , | K | ≥  3 . 
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 On the other hand, since | K | ≥  3 , let K = { 0,1,a1, … }be the field.                                        

Then, take F = { 0e, 1e, a1e , . . . } = { 0,1e,a1, . . . } , clearly , F is a proper subset of KG 

and F is field under the operations of the group algebra KG.  Hence, the group algebra 

KG is a Smarandache ring.  

Observation 3.12.  In view the Theorem 3.11 it is evident that the statement and proof of  

Theorem 3.1.7 , the proof of Theorem 3.1.9 in [ 11 ] should be revised.  We will also 

provide an example for justification in the following section.  

 

4. Examples  

 

 In this section we give examples to justify our results and observation 3.12 

Example 4.1 . In view of the corollary 3.9 , the examples quoted in [ 10 ] to justify the 

Theorem 3.9 in [10] also justify our Theorem 3.8 

Next , we show by example that the condition Semisimplicity on ring R in Theorem 3.8 is 

sufficient condition but not a necessary condition.  In view of the following examples, it 

is, further , observed that , if R is a Commutative ring with nonzero nilpotent element 

then the ring R may or may not be a Smarandache  ring. 

Example 4.2 . Consider the ring Z12 = { 0,1,2,3,4,5,6,7,8,9,10,11}.  This ring Z12  is a 

Smarandache ring as the proper subset A = {0,4,8,} is a field with 4 acting as a unit 

element.  But, the ring Z12  has a nonzero nilpotent element 6 as 62 = 0. 

Example 4.3 .Let G =   { e,a} be a cyclic group of order 2 and let Z2 = { 0,1} be a field 

of characteristic 2.  Z2G ={0,a,e,e+a } is a group algebra with respect to the operations 

defined by table 1 and table 2  
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+ 0 a e e + a 

0 0 a e e + a 

a a 0 e + a e 

e e e + a 0 a 

e + a e + a e a 0 

Table 1 

 

. 0 a e  e + a 

0 0 0 0 0 

a 0 e e  e + a 

e 0 a e  e + a 

e + a 0 e + a e + a 0 

Table 2 

 

This example justifies our observation 3.12 as Z2 is not contained in Z2G , and also 

justifies our Theorem 3.11 as | Z2 | = 2 . Observe that the element e+a is nonzero nilpotent 

element in Z2G.  But , this group algebra Z2G is not a Smarandache ring as there is no 

proper subset of Z2G which is a field under the operations defined by Table1 and Table 2 

except the trivial field { 0,e} formed with identity elements  

Example 4.3. Let Z3={0,1,2 } be a prime field of characteristic 3 and let G={g: g2 = 1 } 

be a group .      Z3G = { 0,1,2,g,2g,1+g,1+2g,2+2g } is a group algebra with respect to the 

operations defined by table 3 and table 4. 
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+ 0 1 2 g 2g 1+g 2+g 1+2g 2+2g 

0 0 1 2 g 2g 1+g 2+g 1+2g 2+2g 

1 1 2 0 1+g 1+2g 2+g G 2+2g 2g 

2 2 0 1 2+g 2+2g g 1+g 2g 1+2g 

g g 1+g 2+g 2g 0 1+2g 2+2g 1 2 

2g 2g 1+2g 2+2g 0 g 1 2 1+g 2+g 

1+g 1+g 2+g g 1+2g 1 2+2g 2g 2 0 

2+g 2+g g 1+g 2+2g 2 2g 1+2g 0 1 

1+2g 1+2g 2+2g 2g 1 1+g 2 0 2+g g 

2+2g 2+2g 2g 1+2g 2 2+g 0 1 g 1+g 

Table 3  

 0 1 2 g 2g 1+g 2+g 1+2g 2+2g 

0 0 0 0 0 0 0 0 0 0 

1 0 1 2 g 2g 1+g 2+g 1+2g 2+2g 

2 0 2 1 2g g 2+2g 1+2g 2+g 1+g 

g 0 g 2g 1 2 1+g 1+2g 2+g 2+2g 

2g 0 2g g 2 1 2+2g 2+g 1+2g 1+g 

1+g 0 1+g 2+2g 1+g 2+2g 2+2g 0 0 1+g 

2+g 0 2+g 1+2g 1+2g 2+g 0 2+g 1+2g 0 

1+2g 0 1+2g 2+g 2+g 1+2g 0 1+2g 2+g 0 

2+2g 0 2+2g 1+g 2+2g 1+g 1+g 0 0 2+2g 

Table 4 
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Observe the following : 

(4.4.1) The group algebra Z3G is a commutative ring and has no nonzero nilpotent 

element. 

(4.4.2) In view of Theorem 2.7 due to Maschke , the group algebra Z3G is semisimple 

(4.4.3) The proper subset A = { 0,1e,2} is a field of Z3G under the operations of the 

group algebra by table 3 and table 4. 

Therefore, the group algebra Z3G is a Smarandache ring.  This example justifies Theorem 

3.9 , Theorem 3.11 and observation 3.12. 
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