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Abstract Everyone lives his or her life instinctively. Does the instinct originate from the

natural world? If the instinct is a rational process, is the natural world rational? Unfortunately,

people have not found any rational principle behind the natural world. Because human activities

are realized directly through electromagnetic and nuclear forces, people are difficult to recognize

the principle. Compared to the large-scale structure of galaxies, human bodies and their imme-

diate environment are the “microscopic” world. The electromagnetic and nuclear forces which

rule the world, however, disappear in the formation of large-scale galaxy structures. Similarly

they disappear in the formation of the solar system. My previous papers found many evidences

that galaxies are rational. This paper shows that large-scale galaxy structure should originate

from an algebraic cubic equation.
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1 Instinct Equation: a Rational Necessary Condition

1.1 Rational structure

By taking spiral galaxy images with long-wavelength electromagnetic waves, we see that a spiral

galaxy is essentially a flat (two-dimensional) smooth structure. Therefore, the paper discusses

the function of two variables:

ρ(x, y) (1)

which is the density of material distribution on the Cartesian coordinate plane (x, y) (i. e., the

spiral galaxy disk plane). Since ancient times, humans have not known what kind of material

distribution is rational. Scientists generally study level curves of any density distribution (i.e.,

the contours of constant density). Level curves are everywhere perpendicular to the density

gradients. Since scientists have no basic principle, the level curves and correspondingly the

gradients are arbitrary. My study on galaxy structures shows that natural material distribution

is not arbitrary. On any spiral galaxy disk plane, there exists at least one net of orthogonal

curves. Along any curve of the net, the ratio of material densities on both sides of the curve
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is constant along the curve. That is, its left-side density divided by the immediate right-side

one is constant along the curve. These curves are, therefore, called proportion curves. At

any point on the plane cross two orthogonal curves (see the “cross” in Figures 1 and 2). The

“cross” divides the area around the point into four positions. For example, the positions are,

from left to right and top to bottom, A,B,C,D respectively. The corresponding densities are

ρ(A), ρ(B), ρ(C) and ρ(D). Rational structure means that ρ(A)/ρ(B) equals to ρ(C)/ρ(D).

Accordingly, ρ(A)/ρ(C) equals to ρ(B)/ρ(D). Unfortunately, ratio concept applies to discrete

density positions only. Galaxies, however, are continuous smooth structures. To generalize the

ratio concept to continuous structure, we take the logarithm of the ratio. The result is the

difference of two logarithmic densities at the two positions respectively. To be fair, whenever

we take a ratio, the distance between the two corresponding density positions is the same.

That is, any two positions involving a ratio are separated at the same scale. Now we divide

the above difference of two logarithmic densities by the scale. If the scale is small, the result

is approximately the variance rate of logarithmic density along the direction joining the two

density positions. In mathematical language, the variance rate is the directional derivative

along the direction of the two density positions. A proportion curve means that the values of

the directional derivatives along the perpendicular directions to the curve is constant along the

curve. Of course, the constant values from different proportion curves are generally different.

Since the ratio of the density (1) is approximately proportional to the directional derivative

of its logarithmic density, we from now on, study the logarithmic density f(x, y) instead of the

density ρ(x, y) itself:

f(x, y) = ln ρ(x, y). (2)

1.2 System of rational necessary equations

Now we introduce curvilinear coordinates to describe the above net of orthogonal curves. In fact,

galaxy structures depend only on the geometric curves, not the choice of coordinate parameters

(see [1]). In [1], I use the following equation{
x = x(p, q),

y = y(p, q)
(3)

to describe a net of curves where the letters p, q denote curvilinear coordinates. Originally in

[1], I used the letters λ, µ instead of the letters p, q to label the coordinates. The new letters

are consistent with the notations in my earlier paper [2]. In fact, the following discussion

before the formula (14) is mostly taken from [2]. Given two functions, x(p, q), y(p, q), you have

the transformation between the curvilinear coordinates (p, q) and the rectangular Cartesian

coordinates (x, y). It describe a net of curves. Letting the second parameter q be a constant,

you have a curve (called a row curve, i.e., the proportion row). That is, the above formula is a

curve with its parameter being p. For the different values of the constant q, you have a set of

“parallel” rows. Similarly, you have a set of “parallel” columns of parameter q. In this paper, I
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Figure 1: The OSUBGS H-band images NGC 3275, 4548 (left panel, see reference [5]) and the

closest solution of instinct equation to the directions of arms and ring (right panel).
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am interested in the inverse equation of (3):{
p = p(x, y),

q = q(x, y).
(4)

The row curves and the column curves, however, are not necessarily orthogonal to each other.

The following equation is the necessary and sufficient condition for the net of curves to be

orthogonal:

∇p · ∇q = 0. (5)

If we imagine p and q were two “density distributions” then the above equation says that the two

density gradients are everywhere perpendicular to each other. Accordingly, their level curves

are everywhere perpendicular to each other. The angle between the direction of the gradient

∇p and the Cartesian x-axis is denoted by

α(x, y). (6)

The gradient is along the tangent direction of the row curves. The level curves of the quantity

p are exactly the column curves. This is true in reverse for the function q(x, y) with its gradient

direction β relative to the x-axis, being along the tangent direction of the column curves. In

fact, β is always equal to α+ π/2 because row and column curves are orthogonal to each other:

β(x, y) = α(x, y) + π/2, (7)

and
cosα = p′x/

√
p′2x + p′2y ,

sinα = p′y/
√
p′2x + p′2y ,

cosβ = − sinα = q′x/
√
q′2x + q′2y ,

sinβ = cosα = q′y/
√
q′2x + q′2y .

(8)

Now I use u(p, q) (which should be u(λ, µ) in [1]) to denote the directional derivative ∂f/∂lα,

where lα is the linear length along the direction of row curves whose tangent direction is α, and

use v(p, q) (which is v(λ, µ) in [1]) to denote the directional derivative along the direction of

column curves whose tangent direction is β. As the previous section 1.1 indicates, the values

of the directional derivatives along the perpendicular directions to any row curve are constant

along the curve, which means that the level curves of v(p, q) is the row curves. Therefore, v

depends only on q. Similarly, the values of the directional derivatives along the perpendicular

directions to any column curve are constant along the curve, and u depends only on p. These

consist of the rational structure condition (see [1]):{
u = u(p),

v = v(q).
(9)

Because we want to find the rational necessary equations of α in coordinates (x, y), we need the

derivatives ∂f/∂x and ∂f/∂y:

f ′
x = u(p) cosα+ v(q) cosβ = u cosα− v sinα,

f ′
y = u(p) sinα+ v(q) sinβ = u sinα+ v cosα.

(10)
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Now the rotation of the logarithmic-density gradient, f ′′
xy − f ′′

yx, must be zero. This gives us the

first of our two required equations involving α. To begin, we take the y-partial derivative to

the first equation in (10). Firstly, we consider the partial derivative to the first factor u(p) in

the first term. The corresponding results is u′(p)p′y cosα. Substitution of the first equation in

(8) into the result, we get the common factor p′xp
′
y/

√
p′2x + p′2y . Taking the partial derivatives to

other terms, we find out that all partial derivatives to the first factors in (10) give the similar

common factors, and the contribution of u(p) and v(q) to the rotation is zero. Therefore, we just

need to take the partial derivatives to the second factors: cosα, cosβ, sinα, and sinβ. That is,

f ′′
yx − f ′′

xy

= (u(p) cosαα′
x + v(q) cosββ′

x) + (u(p) sinαα′
y + v(q) sinββ′

y)

= (u(p) cosα+ v(q) cosβ)α′
x + (u(p) sinα+ v(q) sinβ)α′

y

= f ′
xα

′
x + f ′

yα
′
y = 0.

(11)

This is exactly the first of our two required equations involving α:

∇f · ∇α = 0. (12)

Note that we have got rid of the directional derivatives u(p) and v(q). However, the derivatives

are related to the proportion curves (3) which define the corresponding rational structure. In-

stead what we have in (12) is the tangent direction of the proportion rows, α(x, y). However,

a scalar angle α(x, y) may not define a vectorial net of orthogonal curves. Therefore, (12) is

a necessary equation for rational structure. We can have other necessary equations too. For

example, u depends only on p means that the level curves of the “density” u(p) is the column

curves, and its gradient (u′x, u
′
y) is perpendicular to the tangent direction of the column curves:

−u′x sinα+ u′y cosα = 0. (13)

Once again we want to get rid of u(p). To do so, we get the inverse equation of (10):

u = f ′
x cosα+ f ′

y sinα,

v = −f ′
x sinα+ f ′

y cosα.
(14)

Taking both x- and y-partial derivatives to the first equation of (14) and substituting the results

into the equation (13), we get, by using the equation (12),

2(f ′
yα

′
y + f ′′

xy) cos 2α+ (f ′′
yy − f ′′

xx − f ′2
y α′

x/f
′
x − f ′

xα
′
y) sin 2α = 0. (15)

The reader may wonder what is the resulting equation if we deal with v(q) instead of u(p) .

The resulting equation is the same one (15). The set of equations (12) and (15) is our system

of rational necessary equations. Surprisingly, the equation system has analytic solution which is

implicitly given by an algebraic cubic equation called instinct equation, as shown in the following

section.
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1.3 Instinct equation: a rational necessary condition

Solving α′
x and α′

y from the system of rational necessary equations ((12) and (15)), we get

α′
x = f ′

y((f
′′
yy − f ′′

xx) sin 2α+ 2f ′′
xy cos 2α)/(2f

′
xf

′
y cos 2α+ (f ′2

y − f ′2
x ) sin 2α),

α′
y = −f ′

x((f
′′
yy − f ′′

xx) sin 2α+ 2f ′′
xy cos 2α)/(2f

′
xf

′
y cos 2α+ (f ′2

y − f ′2
x ) sin 2α).

(16)

Differentiating the above expressions to get α′′
xy, α

′′
yx respectively, and using the above expressions

themselves in the final results, we finally get the required solution of rational structure by setting:

α′′
xy−α′′

yx = 0. The corresponding calculation is complicated but straightforward, and the result

is the following algebraic cubic equation in tan 2α,

a(x, y)γ3 + b(x, y)γ2 + c(x, y)γ + d(x, y) = 0 (17)

where

γ = tan 2α, (18)

a = (f ′4
y − f ′4

x )(f ′′
yy − f ′′

xx)
2

+(f ′2
y − f ′2

x )2(f ′
xf

′′′
xxx − f ′

xf
′′′
xyy + f ′

yf
′′′
xxy − f ′

yf
′′′
yyy),

(19)

b = 2f ′
xf

′
y(f

′2
x + f ′2

y )(f ′′
yy − f ′′

xx)
2

+4f ′
xf

′
y(f

′2
y − f ′2

x )(f ′
xf

′′′
xxx − f ′

xf
′′′
xyy + f ′

yf
′′′
xxy − f ′

yf
′′′
yyy)

−2(f ′2
y − f ′2

x )2(f ′
xf

′′′
xxy + f ′

yf
′′′
xyy) + 4(f ′4

y − f ′4
x )f ′′

xy(f
′′
yy − f ′′

xx),

(20)

c = 4f ′2
x f ′2

y (f ′
xf

′′′
xxx − f ′

xf
′′′
xyy + f ′

yf
′′′
xxy − f ′

yf
′′′
yyy)

+8f ′
xf

′
y(f

′2
x + f ′2

y )f ′′
xy(f

′′
yy − f ′′

xx)

−8f ′
xf

′
y(f

′2
y − f ′2

x )(f ′
xf

′′′
xxy + f ′

yf
′′′
xyy) + 4f ′′2

xy (f
′4
y − f ′4

x ),

(21)

and

d = −8f ′2
x f ′2

y (f ′
xf

′′′
xxy + f ′

yf
′′′
xyy) + 8f ′

xf
′
yf

′′2
xy (f

′2
x + f ′2

y ). (22)

The equation (17) is called the primitive instinct equation beyond electromagnetic and nu-

clear world, or simply called instinct equation. A primitive form of the equation was obtained

in the year of 2002. Its study should have been resumed after I successfully modeled galaxy

structures in 2005. However, I have stopped my galaxy study since 2005 for the apparent reason.

Now I give some explanations to the equation.

Firstly, we discuss the angle α of the tangent direction of the row curves. Since either

directions of any proportion curve can be chosen as the positive direction, the variance domain

of α can be chosen to be [−π/2, π/2] for simplicity. Since the labeling of row or column curves

is arbitrary, we can not differentiate between α and α+ π/2. This is why our instinct equation

involves the angle 2α, not α. Both equations in (16) are the same if α is replaced by α + π/2.

Therefore, the variance domain of α can be further reduced to the following for simplicity

Domain of Angle α : [−π/4, π/4). (23)

6



But the real solution to rational structure is four angles: α, α + π/2, α + 2π/2, α + 3π/2. Ge-

ometrically speaking, instead of giving one angle, any root of the algebraic equation (17) gives

four angles which make a “cross” at each point on the (x, y) plane. That is, at any point on the

plane cross two orthogonal curves (if the global net of orthogonal curves does exist).

Secondly, note that all of my idea about galaxies has no other theoretical assumption except

the one of rational structure which is based on the simple concept of constant ratios or constant

values of directional derivatives. Therefore, our result is independent of any choice of coordinates.

It depends only on the shape of proportion curves. That is why the coefficients of equation (17)

are all homogeneous of the partial derivatives.

Thirdly, the algebraic equation (17) always has at least one root if the logarithmic density

is smooth enough and the coefficient a is not zero. That is, we generally have a solution of

angle α(x, y) for any smooth density ρ(x, y). However, a scalar angle may not define a vectorial

net of orthogonal curves. It resembles the situation that, given two functions, we may not find

the third function whose partial derivatives are the given functions. It is highly urgent that

mathematicians find the condition of f(x, y) at which a solution of (17) does correspond to a

global net of orthogonal curves.

2 Application to Spiral Galaxy Structure

Galaxies have been observed for over eighty years. Their profiles, e.g., exponential disks, log-

arithmic arms, R1/4 de Vaucouleaurs law for elliptical galaxies, are studied perfectly but not

explained. It resembles the situation that Kepler laws were not explained until Newton provided

universal gravity. There are only two types of galaxies, one being three dimensional ellipticals

and the other being flat spirals. Elliptical galaxies have little dust while spiral galaxies have a

lot. Independent spiral galaxies, i.e., the ones with little disturbance from other galaxies, have

very regular structure. They have bulges which are generally small and located at the galaxy

centers. The main structure of spiral galaxies is the exponential disks. Spiral galaxies are called

either normal spirals (no bar) or barred spirals (where bars are present). The name “spiral”

originates from the fact that spiral galaxies present more or less the linear structure of spiral

arms, which are clearly the disturbance to the main body.

My PhD thesis [3] and papers [1,4] suggest that both elliptical and spiral galaxies are rational

structures. That is, the material density varies proportionally along some particular net of

orthogonal curves (or surfaces in the case of three dimensional elliptical galaxies). The presence

of arms is the disturbance to the rational structure, and the disturbance produces cosmic dust.

The disturbing waves try to achieve the minimal disturbance and, as a result, they follow the

proportion curves of rational structures.
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2.1 Spiral galaxy disks

Spiral galaxy disks are observed to be exponential,

ρ(x, y) = d0e
ar (24)

where r =
√
x2 + y2, both d0 and a are constants. The corresponding logarithmic density is

f(x, y) = ar. (25)

Its gradient is always in the radial direction, and the value of the gradient is the constant

a. Therefore, any curve whose tangent direction always makes a constant angle to the radial

direction is a proportion curve. This kind of curve is called logarithmic spirals or equiangular

spirals or golden spirals, and all the spirals consist of many nets of orthogonal curves (see the

Fig. 1 of [1]). Surprisingly the arms of normal spiral galaxies follow the directions of equiangular

spirals. This proves in normal spiral galaxies that arms are the disturbance to rational disk

structure. The disturbing waves try to achieve the minimal disturbance and follow the proportion

curves.

Additionally, the radial lines and concentric circles at the galaxy center are the proportion

curves of any exponential disk. The angle α of the radial lines is: tanα = y/x. Substitution of

the angle and the logarithmic density (25) into the instinct equation (17) indicates that the set

of f and α are indeed its solution.

2.2 Dual-handle structure.

Papers [1,3] prove that a galaxy bar is a rational structure, and is composed of two or three dual

handle structures which are generally aligned with each other (but some galaxies, e.g., NGC

1365, are exceptional). The dual handle structure is determined by the orthogonal curves of

confocal ellipses and hyperbolas [1]. The corresponding logarithmic density is

f(x, y) = (b2/3)(g
2(x, y) + b21x

2/g2(x, y))3/2, (26)

where

g(x, y) =

√
1

2

(
r2 − b21 +

√
(r2 − b21)

2 + 4b21x
2

)
, (27)

both b1 and b2 are constants, and r2 = x2 + y2 (see[1]). The angle of the tangent direction of

the hyperbolas is

tanα =
y g2(x, y)/(g2(x, y) + b21)

x
. (28)

Substitution of the angle and the logarithmic density (26) into the instinct equation (17) indicates

that the set of f and α are indeed its solution.
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2.3 Is the summation of disk and dual-handle structures still rational?

For example, we take the summation of one disk and two dual-handle structures,

ρ(x, y) = d0 exp(ar)+

b0 exp((b2/3)(g
2(x, y) + b21x

2/g2(x, y))3/2)+

c0 exp((c2/3)(h
2(x, y) + c21x

2/h2(x, y))3/2)

(29)

where

h(x, y) =

√
1

2

(
r2 − c21 +

√
(r2 − c21)

2 + 4c21x
2

)
(30)

corresponds to the second dual-handle structure. To resolve the mystery, we calculate the

corresponding logarithmic density f(x, y) = ln ρ(x, y), i.e., the formula (2), and substitute it

into the instinct equation to get the angles of proportion curves.

I have nine barred galaxy images from Ohio State University (see [5,6]). We know that galaxy

centers correspond to the coordinates (x, y) = (0, 0). But what is the coordinates for other

points on galaxy images? In fact, rational structures depend only on the shapes of proportion

curves not on coordinates. I have chosen the special formulas to describe proportion curves

(see [1,6]), and the images accordingly have coordinates. The coordinates are called optimized

ones as explained in the following. I use the formulas (9) and (15) in my paper [1] to describe

the proportion curves of galaxy disks and bars respectively. I increase or decrease the unit of

the coordinates. When the corresponding theoretical density best fits galaxy bar image, the

coordinates are simultaneously determined. The unit of the coordinates is called Cn. The fitted

galaxy image lengths, disk and bar parameters are given in [6] and in the following Table.

The fitted side lengths which correspond to the square galaxy images are given in the second

column of the Table. We can not directly measure galaxy actual sizes but their angular diameters

as seen from Earth can easily be measured with telescopes. The third column of the Table is

the measured angular side lengths which correspond to the square galaxy images. The fifth and

sixth columns are the fitted values for galaxy disk parameters. All other columns are the fitted

values for galaxy bar parameters.

The above procedures determine galaxy structures, i.e., the logarithmic density f(x, y). After

having the density, we can substitute it into the instinct equation to get the angles α(x, y) of

proportion curves. I compare the angles with the real angles made by the tangent directions of

galaxy arms or rings. In my sample of galaxy images, only NGC 3275, 4548, 5850, and 5921

present arms or rings. I choose the angle α(x, y) from the three possible roots of the cubic

equation, which best fits the tangent direction of arms or rings. The result is shown in Figures

1 and 2.

I find out that galaxy rings follow proportion curves exactly. The directions of arms, however,

always make an angle to the direction of proportion curves. That means arms do not follow the

orthogonal proportion curves. The curves followed by arms should still be proportion curves

but they can not compose a net of orthogonal curves. Therefore, the spiral curves of arms are

not the solution of instinct equation. Note that the series of “crosses” on the arms (see Figures
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Table 1: The Fitted Disk and Bar Parameter Values
Disk

NGC L0 Θ l0 (= L0/Θ) d0 a

[Cn] [arcsec] [Cn/arcsec] [Cn−1]

3275 22.0 110 0.20 2185 -1.86

4548 6.1 152.5 0.04 3804 -3.81

4643 9.2 115 0.08 4468 -1.59

4665 11.9 148.7 0.08 4714 -1.63

4930 19.5 108.3 0.18 2650 -1.53

5701 16.8 105 0.16 4340 -1.30

5850 27.6 153.3 0.18 3115 -2.59

5921 7.4 185 0.04 7253 -2.70

6782 30.4 117 0.26 3614 -1.36

1st Pair Handles 2nd Pair Handles

3rd Pair Handles

NGC b0 b1 b2 b0 b1 b2

c0 c1 c2

[Cn] [Cn−3] [Cn] [Cn−3]

3275 134 1.76 -0.2 72 3.25 -0.095

4548 45 1.14 -1.83 49 1.57 -1.627

4643 127 1.23 -1.95 111 1.81 -1.165

94 2.60 -0.62

4665 317 1.52 -0.84 172 2.76 -0.154

4930 55 3.0 -0.08 56 5.73 -0.023

5701 164 3.25 -0.07 64 5.13 -0.014

5850 41 5.08 -0.014 15 7.16 -0.027

34 7.23 -0.01

5921 144 0.31 -8.0 121 0.88 -6.0

6782 75 4.33 -0.02 32 6.15 -0.018
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Figure 2: The OSUBGS H-band images NGC 5850, 5921 (left panel, see reference [5]) and the

closest solution of instinct equation to the directions of arms and ring (right panel).
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Figure 3: The x-partial derivative, ∂f/∂x, of the fitted logarithmic density on the perpendicular

line to the bar, i.e., on the x-axis for NGC 4548, which clearly takes the maximum value at

x ≈ 2.1 [Cn] with the value ≈ 6.9.

1 and 2) look like a falling row of dominoes. This means that arms try to achieve the minimal

disturbance to rational structures and, as a result, they follow the (non-orthogonal) proportion

curves of the rational structures. The “dominoes” make very small angles to the arm direction

when approaching the center parts of bars and make larger angles to the arm direction when

approaching the end parts (handles) of bars because the radial components of the gradients of

the logarithmic density take larger values when approaching the end parts (see Figures 3 and

4).

In summary, galaxy structures are rational and, generally, bilaterally symmetric. Accord-

ingly the instinct equation admits bilaterally symmetric solutions for orthogonal proportion

curves. There exist at most three nets of orthogonal curves. Galaxy rings follow the orthogonal

proportion curves exactly but arms never follow the direction of the curves at any point because

arm patterns are not bilaterally symmetric.

3 Do-It-Yourself Notes for Layman

Rational structure is a simple concept and it admits a complete solution taking the form of

algebraic equation, i.e., the instinct equation (17). Every layman can try a galaxy image to

convince himself or herself that rational structure is true.

On the internet are many images of galaxies. Do not be fooled with color images. Color is

essentially the different frequencies or wavelengths of light. In fact, the shape of an object or

its image is the distribution of light arriving at your eyes from the surface of the object. That

is, it is the distribution of light frequency and density varying with the surface of the object.
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Figure 4: The y-partial derivative, ∂f/∂y, of the fitted logarithmic density on the bar central

line, i.e., on the y-axis for NGC 4548, which clearly takes the maximum value at y ≈ 3.2 [Cn]

with the value ≈ 13.5.

Light of longer wavelength that appears reddish has strong penetrating ability. In other words,

reddish light refuses to be absorbed by dust or gas. Elliptical galaxies are very clean, with little

observation of gas and dust. Therefore, it does not matter to catch which color for you to take

the images of elliptical galaxies. Images of the same elliptical galaxy of different colors are very

similar and smooth. They are the good demonstration of star distribution in the galaxy. But

elliptical galaxies are three-dimensional while their images are two-dimensional. The image of

an elliptical galaxy is the cumulative density of stars in the observing directions.

Spiral galaxies are just the opposite. They have a large amount of gas and dust. Although

their shapes are two-dimensional, they have a certain degree of thickness. Therefore, if we take

images of spiral galaxies at the shorter wavelength (i.e., bluish light) then the light from the stars

that are behind gas and dust are basically absorbed by the gas and dust. As a result, the image

is more or less the distribution of gas and dust. Because the distribution of gas and dust is not

smooth, the image looks ugly. Internet images of spiral galaxies are usually short-wavelength

ones, therefore, people are daunted by the mysterious look of gas and dust. Therefore, to get

an image of spiral galaxy which is mainly stellar density distribution, we take light of longer

wavelength from the galaxy, e.g., infrared image. The resulting image is reddish. Although gas

and dust have charming and bright colors, they have negligible mass.

Now you can ask for longer-wavelength images of barred galaxies from astronomers. Do not

be shy when asking for images because astronomers and physicists are supported by taxpayers.

The digital images should represent linearly the light density of galaxies. Most galaxies are

inclined to the sky plane, therefore, you ask for de-projected galaxy images so that the galaxies

look like face-on. What you ask for is, in fact, an array of real positive numbers which is
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proportional to the stellar density distribution, i.e., ρ(x, y) (see the formula (1)).

It is best to model galaxy bars visually. Therefore, you may need some graphic softwares like

Maple, Mathematica, etc. Otherwise you need to know some computer language with graphic

tools. My image analysis is made with C++ language and OpenGL tools. When you try to solve

the instinct equation (17) numerically, it would be troublesome if you naively follow the formulas

of cubic equation roots. The best way is to calculate one approximate root with some technique

like Newton-Raphson Method. Then the cubic equation reduces to a quadratic equation and

finally you use the accurate formula of quadratic roots. After you get double-examined result,

publish it for discussion with other people.

4 Conclusion

Both the electromagnetic-plus-nuclear world and the world beyond are living ones. But the

heaven world is much much simpler. Its instinct can be described by a cubic algebraic equation.

Its body texture (rational galaxy structure) admits at most three nets of orthogonal curves. Its

blood vessels (galaxy arms or rings) either follow the lines of the texture or cut through the lines

consistently.

The readers may wonder what is the sacred power (the real force) behind the living worlds!

The answer is very possibly the so-called universal gravity. Let me repeat my argument from

my previous paper [1]:

“1. The well-known fact can not be ignored that gravity is very very weak. For example, it

is 10−40 times weaker than the electricity between protons. Therefore, humans in the foreseeing

future can not design a physical precision experiment which can resolve the 10−40 strength of

the earth’s gravitational field. That means we have not had a full understanding of gravity. But

scientists assume they had it and applied the preliminary results of Newton and Einstein to the

whole universe. This resembles the situation of cycles and epicycles in the old geocentric model.

“2. It is a fact that the results of Newton and Einstein deal with the motion of two-bodies.

When applied to the free motion of many-bodies, the theories give chaotic results. However,

the universe has orderly motion. Whenever a problem involves free many bodies, Newton and

Einstein theories have no power. For example, the Bode law of planetary distribution in the

solar system has not been explained.

“3. Newton and Einstein theories have no power for the explanation of natural structures.

Galaxy structure is the simplest one in the observational world. Every one with common sense

must suggest that there exists a law on galaxy structure. Newton and Einstein theories can

not provide such law because they are the theories of two-bodies. The law is very possibly the

rationality explained in my article.

“4. The mainstream model of the universe (the Big Bang theory) which is based on Newton

and Einstein theories, is being declined. A new article [7] describes: Nearly every month new

observations arise that pose further challenges to the ΛCDM paradigm: Correlations in galaxy

structures [8]; absence of baryon acoustic oscillations in galaxy-galaxy correlations [9]; galaxies
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formed already when the universe was 4 to 5 billion years old [10]; dwarf satellites that swarm

our own galaxy just like its stars [11]. Observational data [12, 13] strongly suggest a paradigm

shift for cosmology.”
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