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Abstract. Sum of Power had gathered interest of many classical mathematicians more than
two thousand years ago. The quests of finding sum of power or discrete sum of numerical
power can be traced back from the time of Archimedes in third BC then to Faulhaber in the
sixteen century CE [1] & [2]. A new approach in deriving Sum of Power series using reverse
look up method, a ,method where a mathematical formulation is constructed from set of data.
Faulhaber [1] derived a general equation for Power sums and calculated the terms up to p=17

n
(i.e.inp ). However, these formulae only work for integers from x, =1 tox, =n. A depth
i=1
study on Power series revealed a systematic general equation which applicable for all numbers
with a condition that the series should be in an arithmetic progression without the power p

n
(i.e. Z X; ). The general formulation is given as follows
i=1

ne- (2j+1)

gl '

Where: p-(2j+1)>-1 _if p is even, p_—(2j+1)20 if pis odd,s=x_,—-X, @Iis a

p-i for _odd _p
coefficient and ¢y =1 and u = 2 [2]

— for even
5 _ _p

These equations show that when n=2, it reduces into x + x; indicating that the sum of two

powers could be expanded into a polynomial equation with variable (x, + x,) which is useful
for those who are familiar with Fermat Last Theorem. This formula shows that when p is odd,

n n
the summation of power series has a factor of arithmetic sum (i.e. {Z X; 91 =0 mod(z J).

i=1 i=1
For both odd and even p, Fermat’s last theorem could be expressed as follows

[ZX} 2 by x,)?
pr—xl +xJ = [{Zx,}nsJoerp—x1+xp L2/ 1 f((x, +x,)n,s8).  [3]
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1 Introduction.

Faulhaber [1] derived an equation for summation of power series for power sums of positive integers
up to first n; his formula is given as follows

n p 1 .
ka: 1 [p+ JBjnpﬂ—j [4]

k=1 p+1=\ )
p+1). . . . : . .
Where, | is a binomial coefficient, and B; is the j-th Bernoulli number.
J

The sums for p =1---6is given as follows

Sk==(n+n) [5]
a2

Zn:kz :1(2n3+3n2+n) [6]
a6

Zn:k3:£(n4+2n3+n2) [7]
a4

Zn:k“ :i(6n5+15n4+10n2—n) [8]
a 12

 'k® =L (6n” +21n° +21n° ~7n° +1) [9]
k=1 42

William et al [3] discovered the formulae for sums of odd powers by adopting classical Faulhaber’s
theorem. This was done by considering an arithmetic progression in this form:

(a+b),(a+2b)...(a+nb) [10]
By letting, a=x and b=1, the arithmetic progression can be written as follows:

(x+1),(x+2)...(x+n) [11]
Let A =n(n+2x+1)

be the sum of arithmetic series. The sum of power for this progression is gives as follows:

Spmy = (X+1)" (X + 2"+ (x+n)™ [12]
For some odd p (i.e. p=2m-1), the formulae for sum of power are given as follows:

S, = 1A + 1 (¢ + x)4] [13]
4 2
1l 1 2 2 1,4 3 2
Ss_g[ﬂ] +E(6X +6x+1ll] +E(3X +6x°% +2x —xl&] [14]

S, = %[/1]4 +%(3x2 +3x—1JAT +%(9x4 +18x° +3x% —6x+1A]

+%(3X6 +9x° +6x* —3x® - 2x* + x) [15]



Adopting Yoshinari Inaba’s matrix method [4] for computing the m-th sum of power for the first n
terms of arithmetic progression, N. Gauthier [5] derived a formula for computing the sum of m-th
power of n successive terms of an arithmetic sequence gives as follows:

S, =b"+(@a+b)" +(2a+b)" +--+((n-1)a+b)" [16]
His result for m=2 is given as follows:
S, _Llane +3a(1—1ajn2 +(3—3a+£a2jn [17]
3 2 2

The search of a simpler general formulation for sum of power for arithmetic progression had attracted
many mathematicians and different methods had been proposed to represent the summation for years
[2]-[5]. This paper is to present an elegant method for the sum of power of p-th for first n term of
arithmetic progression. The purpose of this method is to construct a simpler equation and use a non-
complicated derivation technique.

2 An Alternative Derivation and Formulation of the Sum of Power for p-th Arithmetic
Progression.

The idea of this paper is to expand the sum of power term into basic symmetric function [Z xi} with
i=1
repetitious coefficients. By expanding the general equation [1] for first p=10, yields

LDA=

fh T2

. DX

Zx?}%-iﬂT—wn [19]
Li=1 -

n ] in n

X =¢o-'j1]—2-+¢1{2xi} [20]

+¢on [21]

in} [22]

+¢3n [23]




n n n
n ] in ZX' in n
=1 i=1 i=1
in7 =do - 5 +d ! 2 + ¢ ! 5 +d3 in [24]
Li=1 | n n n i=1
rh 8 PR rh 74 fn 72
SO DX DX DX DX
:1 -:1 = :1
D |=do e e g D [25]
Li=1 | n n n n
Lk n 7 n P n 3 n
S DX DX DX DX PR
=1 =1 i=1 i=1 i=1
ing = o= 5 +h = 5 + ¢y = T + g = S+ ! [26]
Li=1 | n n n n n
n 10 n 8 n 6 n 4 n 2
. 2% 2% 2% 2% 2%
i=1 i=1 i=1 i=1 i—1
inlo = o= s th I ——+¢ : et I 3t : + ¢ [21]
i=1 n n n n n
2.1  Data Analysis Method.

This method is about data analysis and using the result to construct the equation needed for each of p-
th term.

Table 1 Data for n=2

X1 X Sum(x) | x,° X Sum(x)_n=2
1 2 3 1 4 5
2 3 5 4 9 13
3 4 7 9 16 25
4 5 9 16 25 41
5 6 11 25 36 61
6 7 13 36 49 85
7 8 15 49 64 113
8 9 17 64 81 145
9 10 19 81 100 181

10 11 21 100 121 221
11 12 23 121 144 265
12 13 25 144 169 313
13 14 27 169 196 365
14 15 29 196 225 421
15 16 31 225 256 481




Table 2 Data for n=3

X1 X2 X3 Sum(x;) X, Xo° Xa° Sum(xiz)_n:3
1 2 3 6 1 4 9 14
2 3 4 9 4 9 16 29
3 4 5 12 9 16 25 50
4 5 6 15 16 25 36 77
5 6 7 18 25 36 49 110
6 7 8 21 36 49 64 149
7 8 9 24 49 64 81 194
8 9 10 27 64 81 100 245
9 10 11 30 81 100 121 302

10 11 12 33 100 121 144 365
11 12 13 36 121 144 169 434
12 13 14 39 144 169 196 509
13 14 15 42 169 196 225 590
14 15 16 45 196 225 256 677
15 16 17 48 225 256 289 770

The plot of Sum(x) versus Sum(x?) for various values of “n” is given as follows:
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Figure 1.0 The curve for Sum(x"2) versus sum(x).

The curve coefficients for each “n” is tabulated as in the Table 3.




Table 3 Coefficient for a and b at various n
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Figure 3.0 Curve for b versus n.

Therefore, for sum of power for p=2 it is given as follows:

2
+n(n -1
n 12

[27]

This equation applicable only for the integers. The equation for sum of power for arbitrary arithmetic

progression for p=2 can be obtained by tabulating the data of the arithmetic progression x, with

difference s. The tabulated data are given as in Table 4 to Table 6 as follows:



Table 4 Tabulated data for s=1.

X1 X5 Sum(x) | xi2 X,” Sum(x?)_n=2_s=1
1 2 3 1 4 5
2 3 5 4 9 13
3 4 7 9 16 25
4 5 9 16 25 41
5 6 11 25 36 61
6 7 13 36 49 85
7 8 15 49 64 113
8 9 17 64 81 145
9 10 19 81 100 181
10 11 21 100 121 221
11 12 23 121 144 265
12 13 25 144 169 313
13 14 27 169 196 365
14 15 29 196 225 421
15 16 31 225 256 481
Table 5 Tabulated data with s=10
X1 X, sum(x) | x;° X, Sum(x’)_n=2_s=11
1 12 13 1 144 145
2 13 15 4 169 173
3 14 17 9 196 205
4 15 19 16 225 241
5 16 21 25 256 281
6 17 23 36 289 325
7 18 25 49 324 373
8 19 27 64 361 425
9 20 29 81 400 481
10 21 31 100 441 541
11 22 33 121 484 605
12 23 35 144 529 673
13 24 37 169 576 745
14 25 39 196 625 821
15 26 41 225 676 901
Table 6 Tabulated data with s=26
X, X, sum(x) | xi® X,” Sum(x?)_n=2_s=26
1 27 28 1 729 730
2 28 30 4 784 788
3 29 32 9 841 850
4 30 34 16 900 916
5 31 36 25 961 986
6 32 38 36 1024 1060
7 33 40 49 1089 1138
8 34 42 64 1156 1220
9 35 44 81 1225 1306
10 36 46 100 1296 1396
11 37 48 121 1369 1490
12 38 50 144 1444 1588
13 39 52 169 1521 1690
14 40 54 196 1600 1796
15 41 56 225 1681 1906




The plot for various values of s is given as follows:
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Figure 4.0 The curve for Sum( x?) versus Sum(x) for various values of s and n=2.

Table 7 Coefficients “a” and “b” at various value of “s” with n=2.

2
s a b c:—n(n -1 b 9:52

12 C C
1 0.5 0.5 0.5 1 1
2 0.5 2 0.5 4 4
3 0.5 4.5 0.5 9 9
4 0.5 8 0.5 16 16
5 0.5 12.5 0.5 25 25
6 0.5 18 0.5 36 36
7 0.5 24.5 0.5 49 49
11 0.5 60.5 0.5 121 121
26 0.5 338 0.5 676 676
56 0.5 1568 0.5 3136 3136

Calculating and analyzing for some values of “n” and “s” yields

{Zn: Xi :| 2 2
S oo L n(n“ -1)s
25" T

i-1 n

[28]




The data analysis method can be expressed in a matrix form given as follows:
-1

n p-2 n p—4
(inj s? (inj st ... sP > %P
a, n p r: p-2 n p-4 :
2 4 p
a, | = (mej ( . Xi+1j S (Z Xi+lj S 2% | for even p [29]

a R p-2 N ) n
a | = (ZXMJ [ ij s* [ ij s' e [ 26 7| 24 | forodd p [30]

: N
54 Zn:)(i Sp—l ;Xizm

The conclusion is that the method can be used to generate arithmetic p-th terms for any value of p.
However, the larger the value of p the more tedious the calculation would be. Since Microsoft Excel
having maximum precision of 15 digits, the error in calculation will occurs for numbers more than 15
digits. In order to overcome this problem an addon should be installed on the Microsoft Excel, this
research was done using Xnumbers [6] which leads to precession of up to 200 digits.

2 Algebraic Manipulation Method.

For small p the sum of power can be derived using simple algebraic manipulation of arithmetic terms.
The formulation for some small p can be obtained as follows:

For p=2 and n=2

Let (X, +X,)° =X + X2 +2X,X, [31]
and (X, — %)% =X + X2 —2X,X, [32]
Since the series is an arithmetic progression, thus

(X, = %) =5 [33]
Substituting [32] into [31], yields

2X,X, = X2 + X2 —s° [34]
Substituting [34] into [31] yields

(X, +X,)" =2(x7 +x2)—s° [35]

Rearranging [35], yields
(x+%)° s

(¢ 4ty =2t S

[36]



or

2
W2 L5 37
El i > > [37]
Now consider p=2 and n=3,
(X, + X, +X5)% = (X7 + X2+ X5) + 2%, X, + 2X5X, + 2X,X, [38]

Since s =(X; —X,) =(X, — X,)
repeating for term (x; — X, ), yields

(Xs - X2)2 = Xs2 + Xz2 - 2X3X2 [39]
Therefore, — 2X,X, = X +x; —s° [40]
Since s =(X; —X,) = (X, —x,) then

(X; —X,)=s and [41]
adding [41] and [33], yields

(X — %) =25 [42]
squaring both sides [42] and rearranging it, yields

2X,X, = X2 + X7 —4s? [43]
Substituting [43], [40] and [34] into [38], yields

(X, + X, +%5)? =3(X7 + X5 +xZ) — 687 [44]

rearranging [44], yields
(X, + X, +X5)°

(X2 + x> +x2) = 3 +2s? [45]
or
s 2
3 [Z . }
> x? =%+252 [46]

repeating the same procedure for terms from 2 to n, and by considering a general formulation for
p =2 of this form

n

2
xi] +bs? [47]
1

and then calculating for some n and tabulating the data in a table, the table can be seen as table [8].
The curves constructed from the tabulated data can be seen as in figure [5] and figure [6].



Table 8 Coefficient for a and b at various n.

Coefficiant "a" versus "n"
n a b
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Figure 6.0 Curve for b versus n.
Consequently,
2
n [Z Xi } 2 _q
3 xf == LN =D 2 [48]
—y n 12
Now consider p=3 and n=2, thus:
(Xl +X2)3 :(X13 +X3)+3X1X2(X1+X2) [49]
since (y—x)=s, then
2%, X, = X2 + X2 —s° [50]

multiplying both sides [50] with (x, +x,) , yields,



2X1X2 (Xl + Xz) = (X12 + Xzz)(xl + Xz) - 52(X1 + Xz)

multiplying both sides [49] with 2 and substituting [51] into the equation, yields
2(%, +%,)% =5(x7 + X3) +3x,X, (X, + X,) —3s%(X, + X,)

subtracting equation [52] with equation [49], yields
(Xl + X2)3 = 4(X13 + X;) _352()(1 + Xz)

rearranging [53], yields

(X +%,)° 3% (¥ +X,)

4 " 4

4

(X +%) =

For p=3 and n—3,
(X + X, +X;)° = (X + X5 + X3+ 3%, (X2 +X5) + 3%, (X5 + X2) +3X5 (X + X5 ) + 6X,X, Xs
Since, Xg —X, =8

X, =X, =§
Adding [57] to [58], yields:
Xy — X, =28

Squaring both sides of equations [57] to [59] and rearrange their terms, yields:
(xg2 + xzz): $% +2X;X,
(x22 + xf): $% +2X, X,
(x32 + xf): 4s% + 22X, X,
Substituting equations [60] to [62] into [56] and simplifying it, yields
(X, + X, +X3)% = (X2 + X3+ X3) + 357 (4%, + X, + X5) + 24X, X, X,
Manipulating equation [63], yields
(X, + X, +%5)% = (X + X5 +X5) +357 (3%, + (X, + X, + X3)) + 24X, X, X,
Since,
_ (Xl + X, + Xa)
2 3
Substituting equation [65] into [64] and simplifying it, yields:
(X, + X, +X3)% = (X0 + X3+ X3) + 65 (X, + X, + X5) + 24X, X, X,

Now consider Product Identity for arithmetic progression for n=3 and it is given as follows:
3
1
ljl[xi = X, X, Xy = 3—3(xl + X, + X3 (X, + X, + %, ) =38 )(X, + X, + X, )+38)
Substituting equation [67] into [66] and rearranging the terms, yields
(X, + X, +X5)°

9 +28% (X, + X, + X,)

(X0 + %5 +%3) =

or Zslx {ZX} +2322x

[51]
[52]

[53]

[54]

[55]

[56]
[57]
[58]
[59]

[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]



repeating the same procedure for terms from 2 to n, and by considering a general formulation for
p =3 of this form

and then calculating for some n terms yields:
Table 9 Coefficient for a and b at various n

Coefficient "a” versus "n”
n a b
0.3 - 3
1
0.25 2 4 4
0.2 4 1
3 — 2
= 015 - 9
0.1 4 1 15
4 6 | 4
0.05 16
1
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0 25
" s | L | 3
Figure 7.0 Curve for a versus n. 36 4
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Figure 8.0 Curve for b versus n.

As a result,

S0 {ZX } R [in } -



For p=4 and n=2,
(%, + %, ) =X +4x,x7 +6X2X2 + 4X, X3 + X5
and rearranging [72] into symmetric function form, yields:

Let

From equation [48] when n=2, it gives

Using product identity for arithmetic progression yields:

=5 [0+

Simplifying and rearra

>
Li=1 _

b

i=1

Calculating the other terms and simplifying for term n, yields:

B

|

>

i=1

Xj

:

n

3

+(n2 —1)s2 [

Calculating the coefficients for the rest of the equations yields

|

>

i=1

Xj

T {
—+5(n2 —1)52

+5(n2 —1)s2 [

+7(n? —1)s2

[72]
(x, +x,) = (xf +X; )+ 4%, X, (xf +X2 )+ 6(x,x, )’ [73]
3]
le} 2
i-1 S
= > 74
J= [74]
[75]
Substituting equation [75] into [73] and expressing them in a summation notations yields:
74 2 1(ra 2 2 2 3([&2 2 ?
. =|:le4j|+— [in} —s? {in} +5° |+= [in} —s? [76]
i i=1 2|3 i=L 8=
nging the equation [76], yields:
oesrfa TP st
X |+ Y x| +— 7
|+ o]+ w
N 12
in 2 2 o4
i=1 N n(3n“< -7)(n“ -1s [78]
on 240
K
2% 2 2 ned[n ]
i=1 > . (Bn“ =7)(n“ =Ds in [79]
6n 48 li=1 ]
Zn: -4 - Zn: -2
Xj Xi
: : 4 2 2 1.6
i=1 = +(3n2 —7)(n2 _1)84 _|:116 N n@Bn™ -18n“ +3)(n“ -1)s [80]
an n 1344
no P no 1° n
2% % %
i=1 | 2 _yn2 _pye4 Li=l 4 o2 2 _4.6Li=1
] +7(3Bn“ =-7)(n“ -1s 48n2 +(3n™ -18n“ +31)(n“ -1)s .

[81]



n' 3n 24n 48n

n 8 n 6 n 4 n 2
[z x?] _L+7(n2 —1)s2 %+7(3n2 —7)(n2 —1)s4 ':l—3+(3n4 —18n% +31)(n2 —1)s6 b=t J

N n(5n6 _55n% 4 239n2 —381)(n2 —1)s8

11520
[82]
n 9 n 7 n 5 n 3
R > > >
> :%H(nz—1)s2%+21(3n2—7)(n2—1)s4':1—4+(3n4—18n2+31)(n2—1)56 =1 .
i—1 n n 40n 16n
n
2%
+(5n® —55n% + 23902 —381)(n2 —1)sB LIEL_J
1280
[83]
n 10 n 8 n 6 n 4
iU bl by
{Z xim:lz = +15(n° —1)s® ===+ 7(3n? ~ 7)(n* —1)s* L=+ 5(3n" ~18n° + 31)(n? ~1)s° =L
=Y n’ 4n’ 8n® 32n
2]
D x
10 8 6 4 2 10
4 (5n° 550 + 239n% _ 381)(n? —1)s® LT | N(3n™—55n" +462n° — 2046n" + 4191n” — 2555)s
256n 33792
[84]
3 Product of Arithmetic Terms in Form of the Basic Elementary Symmetric Function (i.e.
%)
i=1
Theorem 1.0
n-2
n 1 2 n
Let P =X XX =]|[X :—nH [in] ( (1+2t) sj for even n. [85]
i=1 n" o\ i
n-1
n n 1 2 n
and Po=x %X =[x =2x—=]1] ( x, | —(nts)* | for odd n. [86]
i=1 i N |\

n(2x, + (n—1)s))

Proof: By considering an arithmetic summation of n terms (i.e Z X, = 5 ), and by
i=1
rearranging it yields:
Z Xi 1
Y = (n-1)s [87]

n 2



Since X, = (x, —(n=1)s)

Substituting [87] into [88] yields:
X
le ' +(n—1)s

X, = +—
n 2
Also,
DX %
X =|H (n-Ds P r=uR (n-3)s
n 2 n 2

By taking product of x to x, for even n yields:

(2 s |25 @oas| |2

A=l

. ZX (n -Ds

n 2 n 2

i=l

Simplifying [92], yields:

(3038

P, =X, =—H[(ij —( (1+2t)s jzjforeven n.

n" o

and product of x, to x, for odd n yields:

i=1

ZX‘ _(n-Ds 2% (=35 _._izl“xi

) X = - 5 . - 5

2 L(0-3s | 2 L (0-Ds

P =X X, X, =n_1n(ixi _n(n;l)sj(ixi n(n-3s)

i=1

Simplifying [95], yields:

i=1

n-1

P, =X, X+ X, _Zn:x,inﬁ

(lel (nts)* | for odd n.
i=1 t=1 i



4 Elementary Symmetric Function for Alternating Permutation of Arithmetic Terms
Through Quantitative Method.

Since Sum of Power is the basic building blocks for symmetric polynomials, therefore it can always be
expressed as product and sum of symmetric functions with rational coefficients. Consider a set of
symmetric functions of arbitrary arithmetic terms as follows:

(Xl’xz""’x X)

n-1'n
n
The elementary symmetric polynomials of n variables in form of n and symmetric function in are
i=1
given as follows:

1st Order

O, (X, Xy, X, 4, X )=xl+x2+~~-+xn_l+xn:Zn:xi [97]

n-1'"*n
i=1

The second order can be calculated using quantitative method as follows:

Let the second order be

n
0, (Xys Xpr oy Xy g Xy ) = Xy X, + X X Fook XX = XX
i<j

Consider an arithmetic term with s=1 and n=2, the tabulated data is given as follows:

2
Table 10 The values of inxj when n=2

1<i<j

2 2
Xy X, z X; z XiX; _n=2
i=1 1<i<j

1 2 3 2
2 3 5 6
3 4 7 12
4 5 9 20
5 6 11 30
6 7 13 42
7 8 15 56
8 9 17 72
9 10 19 90
10 11 21 110
11 12 23 132
12 13 25 156
13 14 27 182
14 15 29 210
15 16 31 240
16 17 33 272
17 18 35 306
18 19 37 342
19 20 39 380

Plotting the data for some values of n yields graph as in Figure 9.



3000 -
2500 -
2000 “symxixj)_n=4 = 0.375Sum(xi)? - 2.5
< + Sum(xixj)_n=4
\E/ 1500 - A Sum(xixj)_n=3
Sum(xixj)_n=2
U:) m Sum(Xixj)_
1000 -
um(xixj)_n=3 = 0.3333Sum(xi)? - 1
500 -
Sum(xixj)_n=2 = 0.25Sum(xi)? - 0.25
0 1 T T T T 1
0 20 40 60 80 100
Sum(xi)

Figure 9 Graph of Z xixjversusz X, for some values of n
i<j i=1
Let the 2"Order be as follows:

Oz(xl'xz""’xn—l’xn):anxixj :¢1(ixij —,

i<j i=1

Collecting the coefficients of Z x;x; for some values of n yields Table 11.

i<j

Table 11 The values of ¢ and ¢, at various values of n.

n ¢1 ¢2
, 1 1
4 4
1 1
3 —_ —_
9 3
4 1 2
16 12
; 1 1
25 2
: 1 7
36 12
; 1 2
49 3
1 (n+1)
n -
n 12

Therefore the 2" Order for s=1 can be written as follows:



n
OZ(Xl’X21""Xn_1:Xn):ZXin =

i<j

1

n2

3

Repeating the same process for various “s” yields:

_(n+1)
12

Table 12 The value of coefficient ¢, with various value of “s”.

n ¢ (s=1) ¢ (5=2) ¢ (s=3) ¢, (s=4)
1 1 1 1
2 — — — —
4 4 4 4
1 1 1 1
3 — — — —
9 9 9 9
4 S L L L
16 16 16 16
: 1 1 1 1
25 25 25 25
: 1 1 1 1
36 36 36 36
; 1 1 1 1
49 49 49 49
1 1 1 1
" n? n? n? n?
Table 13 The value of coefficient ¢, with various values of “s”.
n ¢, (s=1) 4, (s=2) , (s=3) 4, (s=4)
1 9
2 — 1 — 4
4 4
3 3 3
. 5 5 15 20
12 3 4 3
1 9
5 - 2 - 8
2 2
: 7 7 21 28
12 3 4 3
; 2 8 6 3
3 3 3
] (n+1) (n+1)2° (n+1)32 (n+1)4?
12 12 12 12

From the Table 13, it can be deduced that¢, can be written as follows

¢, =

~(n+1)s?

12




Therefore, the second order can be written as follows:

2" Order
n 2
O, (X0, Xp 1 Xy gy X ) = X Xg + X Xg o0+ XX, = D XX, = n iz:l:Xi (n+1)s
S e e DTSN 2)| 12
3" Order
n 3 n
n in 1
Oy (X, Xg1 7, X X ) = X X Xy XXXy 400 X X, X ZX ( j 5| _(n+Ds’ | S
i<j<k n 4 n
4™ Order
i n 4 n 2
X
n\|l< (n+Ds*| < (n+1)(Bn+7)s*
O X !X "y ] X X X = =1 i=1 +
4( v e ” |<j<zk<l « ( n 2 n 240
5" Order )
[ n 5 M n 13 n
Z X Zx.
N < "' | 5n+Ds Z‘ "I (n+D)En+7)st | S
Oxvxl"! y X X, X = i= i=1l + i=1
5( 1172 n—1 n |<J<k§<m KM m ( n 6 N 48 0
6" Order
S . n
X X: X
g‘ "I S(n+D)s’ g‘ ' L(”+1)(5”+7)S4 g‘ '
n T
O, (%, X177 % 11X Zx XXX ( n 4 n 16 n
i<j<k<l<m<n 6 L ]
(n+)B5n*+112n+93s°
4032
7" Order
K n 7 n 5 n 3
%"Xi 7(n+Ds? ;ﬁ +7(n+])(5n+7)34 ;Xi
n 4 n 48 n
n
O (X X0+ X, 4 X, ) = Zxx XX XX, X, —[
i<j<k<<m<n<p nz .
("+D@5n° +112n+93s° | & %

576

[98]

[99]

[100]

[101]

[102]

[103]



8" Order

n 6

le" 7(n+Ds° Zl)‘ I(n+)En+7)s’ Zl)‘

n 3 nT 24 n

n 2

ny (n+)@B5n*+112n+93s° Z)‘
QX X X%) = D HKXIX KKK, = ( (n+¢ 114 93 =~k [104]

i<j<k<l<m<n<o<p

(n+)Bn+9)(35 * +126n+127s°
34560

9™ Order can be calculated by using the sam_e coefficients used in Order 8th, it is given as foilows:
K n n i n ]
2% DX ¥
B | -QU+9s] 2 | +Q+)En+ s
n n

X
QXX+ 5%, 1, X) = Zxanmmq ( ~Q+)E5 +112n+9351 L | + [105]

i<j<k<l<m<n<o<p<q

”Zx
Q+)En+9E5 P +126n+127 -

Coefficients [Q--Q] can be calculated by using product identity of an arithmetic progression when
n=9, the calculation is given as follows:

P =X1.X2...X9=9i9(@xj _(98)2M@Xij2 I[ij (275) I(ZXJ 3&)2]ixi [106]

i (iznl‘,xijg _1O[iznl:xij7sz+9 iznl:xij s* SZO(ZH“XJ §6

P =X X, - = v64 Sx |5 o7
° Tt TP 79387420489 1594323 19683 729 (21: j L107]
Comparing the coefficients yields:
Q, =3.Q é Q —iandQ -1
27407 48 7 3840

The last coefficient for each order can be found by solving the matrix of least square method as
follows:



The 10" Order can be calculated as follows:
I 0

_nZ‘ HZ& an
2 —Q(n+Ds 12— | +Q(+D)BEn+7)s’| 2 —
n n n
: S
QX X1 X, 5, %) = Z)ng S XX :(n -Q(n+)@5n° +112n+93s° = — | + [108]

i<j<k<l<m<n<o<p<g<r 10 n

n 2
DX

Qa(n+1)(5”+9)(35-n2+126n+12 s % T

The Generalised Equation can be written as follows:

(m-2v)

n n k v o z)q
0% X0+ X0, %) = Z&xj-%{m (-2'QTs e [109]
v=0

i<j<-<z

m—_11‘or_odd_m

Where coefficient Q,=1and k = n% [110]
E) for _even_m

The last coefficient T, can be calculated by performing least square method analysis on various values

Of “nH.
Let the last coefficient in this form:

k .
T, =Y an"’ [111]

The value of T, at various values of n can be calculated as follows:

5 Zn: X
Z (_ 1)V QvTv S 2| = -

N

T, = for even m 112
k Qk32k [ ]

(m-2v)




forodd m

Where Q, is a coefficient and is given as follows:

o3l )l

[113]

Where a and C, are the coefficients. The coefficient C, is the coefficient of first term of equation P,
as given in the equation [173]. While a is found to be 3 for 3<k >5, further study needed to be done
in order to find the value of a for k >5. For simplicity in calculation it is advisable to use the value
ofO,, = P,. In which the elementary symmetric function of m-th order reduces to product identity of

order n-th.

For some value of n, we can construct the matrix to solve the equation
T = (aonk +an“t+a,n**...a_n+ ak)

Let the equations at various value of n as a matrix in this form,

k k-1

TI ni I"Ii nl 0
k k-1

TJ nJ ni nl 1
k k-1

T, nG n n, a,

T) o, 1) (e

Or
T=N-a=a=N"'.T

[114]

[115]

[116]

These orders are useful to construct sums of power of the arithmetic progression, as the sums of power

of the arithmetic progression can always be expressed into elementary symmetric polynomials.



4 Using Multinomial Theorem and Product Arithmetic Terms in Generating Sums of
Power for an Arbitrary Arithmetic term.

The Multinomial Theorem states that if p is nonnegative integers then

(% + %, ot %, )P zz( P )Xlrlxzfz X [117]

(P O

In this research it is proposed that The Multinomial Theorem for arbitrary arithmetic progression can
be expressed as the power of arithmetic sum descending by 2 for each subsequent term (i.e p-2j). The

equation is given as follows:

(2j+1)

P oyt :
(X1+X2+W+Xk)p:Z(rl,rz...rijllxzzmx:jz—:? he n°" [118]

This relationship is actually the building block for sum of power of arbitrary arithmetic progression.
The sum of powers can be calculated directly from this relationship; however for larger p the

calculation would be tedious. Each monomial term in the multinomial can also be expressed as

follows:
_ n o2
n . [3]
oyt hh T2 i=
D XIXPxt =D s o= [119]
i<j<--<n j=0

Where: p—(2j+1)>-1 if piseven, p—(2j+1)>0 if p is odd,s=x,,, —X;, ¢, is a coefficient,
p-1 for _odd p n

k=1 2 and p=>_r, [120]
g for _even_p i=1

Therefore let’s consider the equation below for p=2,

n n 2
D oXX, :al(ZXi] +a,s’ [121]
i=1

i<j



Solving the coefficients yields,

o [ (5

h 2 n
(Z XHlJ S2 in+1xj+1
i=1

i<j

Whenn = 2, the solution is given as follows:

ixixj = [ZXJ __5

i<j
Calculating for some values of n and the tabulated data is given as follows:

Table 14 The values of ¢, and «, at various values of n.

n o a,
1 1

3 1 -1
3

4 3 .
8 2
2

5 - -5
5)

a (n-1) _n(n*-1
2n 24

Therefore, for all n the equation is given as follows:

2 2
ZX _(h-) 1)(2)('} _nn’-1)
<] 2n \43 24
When p=3, consider the equation below,

i<j

[122]

[123]

[124]

[125]



Solving the coefficients yields,

(ﬂl
P

ZX

i<j

lz

L%xii (EnF
En) (Sl

Whenn = 2, the solution is given as follows:

i3

2

i=1

-4y

Zn:XiXJ?

i<j

A1 . i
in+lxj+l

i<j

Calculating for some values of n and the tabulated data is given as follows:

Table 15 The values of g and g, at various values of n.

n By B,
) 1 1
4 4
3 2 0
9
3
4 — 1.25
16
4
S5 — 4
25
-1 ( 2 _ ! —
" (nnz) n izn 2

Therefore, for all n the equation is given as follows:

ZXIXJ -

i<j

(n-

2

1)(

i=1

.

[126]

[127]

[128]



Applying the same procedures, we get equations as follows:

n 3 -1 n 4 2_1 -2 n ) 2_132_7 A
R SANLETETRRIUE )

i< n i-1

Syt - (19 (ij . W (ij o, _1)(32187)@—5) [ZX }4

i<j n i1 i=1

n, Y L 50°-DEn-3)(3 (0" =)@’ -7)(-3)
B R e b e

i=1 =1

Zx

i<j
n(n’ —1)(3n ~180° +3])
1344

Ty = (n G1) [inj Ui _i)rf?n_n (ij o, _1)(3228“_27)(3n—7) [ij oy

i<j =1 i=1 i=1

n(n? -1)(3n* —18n2+3])(n—7)[ix_jse

1344
Combining the results for all n yields

For odd q,
! n-D(& )" A (e S Y e, b (gt )
X X% = X: + n—-—— X | s+ n-—— X, | s
; toope izzl:' ne2 q-1 ;' n* q-3 Z
¢q—1 n 2
4ot —2 (n—q—ﬂj( xlj s —ng,, s
n 2 i1 E
q-1 _ _
n 2[g.s? (q+1) ](n jm(lZJ)
X x4 = - [n— _ X, —ng,,, s
2% z{ a-G-2) | s
Or
For even q,

N N g+l n q-1 n -3
ot SRS e[ el

i<j i1

+ +¢q(n (q+1){2x]sq

=1

R

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Where, ¢, is a function of Bernoulli numbers and (q +(1- 2j)) # 0 (i.e. the denominator of (q+1) is not

zero) and if denominator is zero, the expansion of the term takes the last forms of ng,,,s%* or
2

#q (n—(q +1){Z X qu for odd and even g respectively.

2 i=1



Consider when p=2,

ij (X 4% 44X, +X ) (xf+x22+--~+xn2_1+x§)+[121j(x1x2+x1x3+---+xn_lxn)

inj = (X Xy o X +X,) ixﬁ{l JZX,XJ [137]

i=1 i<j

Rearranging the equation [137], yields

S =30 [, F T

i=1 i i<j

Zn: X2 = (Zn: X | - ZZH: XiX; [138]

=1 i=1 i<j

Since, ixixj _ (=D (Zn:xij —%sz,then [139]

2 = + S [140]

Consider when p=3,

@Xij:ix?{ ij (1 . JZX [141]

i=1 i<j i<j<k

Since, ixixfz%[ix,] w(ix,js and Zx ;X Is the elementary

i<j i1 i i<j<k

symmetric function of 3" order, then



S D s

i=1

(Zn:xij :Zn:xi3+(n22_1)(zn:xij —(niT_l)sz(Zn:xij [142]

Rearranging equation [142], yields

(le X7 ] = (Zl:n): j L0 ;1)52 (Z X, ) [143]

i=1

The multinomial also can be expressed as follows:

] {Be)eal, 7 sl ¢ oo, Joot v

Rearranging equation [144], yields

n P = n p_ P X" P hyyf ... P iyl
[;Xi]_(;)(ij [Z(rl rszi g +z(r1 I rsJXi R +z(r1 rk}(i Xk} 1ol

The proposed conjecture reiterates that for all monomials for an arbitrary arithmetic progression can
always be expanded as follows:

n p n p-2 n
2[r pr inﬁxjrz :ao( Xij +a1(ZXij s? +"-+05p—1[zxijspl for odd p [146]
1 b i=1 i 2 N

-2
p nyr 3 ’ 3 ’ 2 p
XIX? =¢ X | +a X: S* +..-+ . sP for even 147
)y ‘ rj. , O(Z j {Z j » p [147]

n P n p-2
> P XEXEXE =Bl D% | B D x| SPH+ B (ijspl for odd p [148]
. : L=

r-1 I’2 r3 i=1 i=1 =1
p n P n p-2
> XPXPXE =Bl D% | + B D x| P +-+B,sP forevenp [149]
n n n i-1 i=1 B

n p n p-2
Z[r i . ]Xirl =X =7o(zxi] +71[ZXJ SPH Yy (Zx jsp ~ for odd p [150]
T : 1

=1



p-2

n p n
2 P Xit e Xy :70[inj +71(ZXJ $?+---+y,s" forevenp
o h i=1 i=1 B

Collecting the coefficients yields:
p-2

[zxj 1 (a0+180 +70) ZXJ 0{1+ﬂ1 t Zn:xi) s ...

for odd p
_(apl-i-ﬂp Y ot J(le}pl
2 2 o J\i=l
n n p-2
[lep] 1 (a0+/60 +}/O) ZXJ al-l-ﬂl “+y inJ g2 _...
| . for even p
—[ap +8, +-~-+;/pjsp
2 2 2
Where (L—(aty + B, +---+7,)) =
5 Reverse Look-up Method for Generating Sums of Power of Arithmetic terms.

The coefficients ¢y, involved in the polynomials up to p=12 can be simplified as follows

[151]

[152]

[153]

[154]
[155]

[156]
[157]

[158]

[159]

do =1
b = p(p 1)(n 1)
42 = p(p D(p-2)(p-3) (3n2 ~7)(n2 -1)
242 (10)
43 = p(P-D(p—-2)(p-3)(p—4)(p-5) (an? —18n2 +31)(n2 —1)
243(70)
b4 = p(p—l)(p—Z)(p—S)Elp—4)(p—5)(p—6)(p—7) (508 —55n4 +239n2 —381)(n2 —1)
24 (1400)
b = P(P-(p-2)(p-3)(P-A(P-5)(P-6)(P-7)(P-8)(P-9) (3n10 _55n8 + 4620 _ 204604 + 419102 — 2555) or
24° (15400)
g5 = PP=D(P=2)(P=3)(P=4)(P=5)(P=6)(P=")(P=8)(P=9) 3.6 _ 3714 , 25512 _511)(n2 —5)(n% -1
24° (15400)

g5 = PP=DC=A(P=I(P=H(P=5)P=6)(P=7)(P=8)(P=9(P-10(P=1D ;4512 573110 , 350358 _ 2650805

248400400

11144148 — 232505012 +1414477
orin binomial expansion forms

PE— [pj(nz—l)

4 (2m+1)\2m

1 1 2 2
2= (2m+1)(2mj(3n A

[160]

[161]

[162]



b3 = 1

¢41

gy =

3072 (2m +1)

R

192 (2m+1)

1280 (2m +1)

1

1

1

1

430080 (2m +1)

( j(3n4 ~18n2 +31)(n? -1)
2m

(ZmJ( 5n8 _55n% 1+ 23902 —381)(n? —1)

The generalize form of ¢ can be written as follows

1
P = 22m
Or
1
¢ —

]Pm

1 p
22" (2m+1){ 2m

[ j(Bn —37n* +225n° —511)(n* - 5)(n* —1)
2m

[163]
[164]

[165]

[2 j(105n1° 2625n° +32410n° — 233570n* +910573n% —1414477)(n? —1) [166]
m

[167]

[168]

where (m—t) > 0. The polynomials can be expressed as P, = > C,,n*™ " (-1)". In order to identify

t=0

how the coefficients are formed, each term in the polynomial is tabulated in a table. The tabulated data
IS gives as in the Table 15.

Table 15 The terms values for P, .

Pu 1tterm | 2"term | 3 term 4" term 51 term 6" term 7" term

P, n’ -1

P, 3n* -10n? 7

Ps 3n° -21n* 49n? -31

P, 5n® -60n° 294n* -620n° 381

Ps 3n* -55n° 462n° -2046n* 4191n? -2555

Ps 105n*2 | -2730n% | 35035n® | -265980n° | 1144143n* | -2325050n% | 1414477

Pm Clnm C2n2m-2 C3n2m-4 C4n2m-6 C5n2m-8 C6n2m-l9 C7n2m-12 Cm

By tabulating the value of ==

m

z t+1

t=0

, yields new data and it is given as in the Table 16.




Table 16 The terms normalized values forP,, .

Pu 1term | 2"term | 3™ term 4" term 5™ term 6" term 7" term
P: 1 1
10 7
P2 ! B 3
49 31
P, 1 7 = =
294 381
P, 1 12 = 124 -
P, 1 % 154 682 1397 @
1001 17732 54483 66430 1414477
Pe 1 26 3 7 5 3 3
5 . & | & Ce cs Ce [ Cn
m G G G G Cl G G

Plotting the P, curves for some m yields,

2nd termvws mm
2nd_term

80 5
70 4
BO 4
a0 4
40
30
20
10

I:I T T T T T 1
a 2 4 B g 10 12

2nd_term = 0.6667m? +0.3333m

Figure 10 Graph of 2™ term versus m.

From this curve we can deduce that

ond _term = 2(2m +1) [169]



3rd_term Jrd_termws m

3000 - 3rd_term = 0.3111m*- 0.3111m* - 0.0778m* + 0.0778m
2500
2000 +

1500

1000 +

500

I:I - ¢ .: T T T T 1 m
0 2 4 B & 10 12
Figure 11 Graph of 3" term versus m.
From this curve we can deduce that
m

3nd _term= 10 (m-)(2m+1)(2m-1) [170]

The term can be rewrittenas T, =y, - f(m)
where f(m) is a function of mand y . is a coefficient which depends on the Bernoulli number and

(22m—1 _1)
Analyzing y,, for some terms yields:

Table 17 The values of y, and B, at various values of m.

m Vm Bm Vm = é/(zzm_l _1)Bm
0 1 -1 —(2-1)-28,
1 1
1 = = 2'-1)-2B
3 6 ( ) 1
2 ’ _1 — (23 _1). i
90 30 3
3 L L (25 -1)-2
1890 42 45
4 381 1 _(27 _1). B,
113400 30 126
5 2555 5 (29 B 1)‘ B
3742200 66 56700
5 6 1414477 691 (22 -a). Be
3° - 35- 400400 2730 3742200
. 7 860055 7 (2% _1). B,
3" -35-400400 6 340540200
o 118518239 3617 (1) B,
37 -35-400400 - 680 510 40864824000




9 5749691557 43867 (217 _ 1)_ B,
3°.35.18088 - 400400 798 6252318072000
10 1922471824497 174611 (o 1) By,
3% .35. 400400 - 9948400 330 1187940433680000
11 8960213962315 854513 (221 B 1) B,
3 .35.400400 - 228813200 138 274414240180080000
19 1982765468311237 236364091 B (223 B 1) B,
31 .35.400400-19752096 - 12650 2730 75738330289702080000
From the Table 17, apparently P, can be formulated as follows:
t-1
i - [T2m-2j+1)
f(m)=-2>|(2t +1)[t an““-" = [171]
= (2t-2j+1)
j=0
Since 1% term is n?"then,
P =n°"+ f(m) [172]
Therefore, P, is given as follows:
t-1
i o [T@+2(m
P, =|n*"-2>"] (2t +1)2** —1)(thtn2<m R [173]
= (L+2(t- j))
j=0
Where, B, is the Bernoulli’s number and m>1.
When m=1
t-1
[T@+20-j)
P =|n’® 22 (2t +1)2*" 1)( jBtnz(l R
= (L+2(t-j))
j=0
0
[13B-2j)
2(1) (2(1) +1)(22(1) -1 1)( )Ban(l 1) JzO
(3-2j)
j=0
[16-2))
3-2j
= - _-n’-1 174



t-1
H(1+ 2(2-1j))
P, = n2@ 22 2t+1 22t—1 1)( ]Bth(Z—t) J=t0
- @+2(t-j))
L L
- O ]
) [T@+2(2-
_ 2(2(1) +]_)(22(1)—1 —1)(1]Bln2(2 1) 110
II@+2t—J
j=0
B 1
’ [T@+2(2- 7))
2(2(2) +1)(22(2)71 _l)(ZJ BZnZ(z 2) Jzo
H1+2 -1)
L - |
- . 1
(5-2) [16-2j
B ”4—12(% e Som— —70[—ijn°i=°—
. 6) ria_oi) 30) ¢ _
(6-2i) [16-2i)
L j=0 i-0
oo ® 7T O |0 100 T g g0 ) s
A0 3GQ0 3 373
Therefore,
1 1 P
= P
¢m 22m (2m+1) om m
I t-1
1 1 p H(1+ 2(m- j))
= > Il 2 22 2t+1 22t—1 1)( ]Bth(m_t) J:tO [176]
22" (2m +1)( 2m - )
L L

Setting x, =1 and s=1, this equation reduces into classical Faulhaber’s Sum of Power for integers.

Power sums for Integers generalize equation is given as follows:

n n m |:il:| _
inpzzipzz ¢’”W [177]

Since Zi = n(n2+ 1) , equation [177] becomes:



n n m 5
i=1 Xip B i=1|p - JZ:; ¢j nP-@i+)
S n+1)77 ]
:nz{qj{( ]
i=0 |
p—_lfor_odd p
Where, ¢y =1 and m = 2
gfor_even_p
For p=2,
\ . n+1) 2
sl
i=1 j=0
- (n+1Y
=n ¢O(Tj +¢2]
=n [n_+lj2+ n’-1
) 2 12
n’(n+1f"  n(n*-1) n(n+1)
- = 3(n+1)+(n-1
m 12 12 (B(n+1) +(n-1))
= n(n+1)(4”+2)=W=£(2n3+3n2+n)
12 6 5
or
n 2
i
i,z _ LZ; } n(n® -1)
i=1 n 12
Since Zn:iz (n+1)
i=1 2

Equation [179] reduces to:

n, n*(n+1)° n(n®*-1) n(n+1) _
;' =Tt~ B0+)+(n-D)

= n(n+1)(4n+2):—n(n+123(2n+1) :%(Zn3 +3n% +n)

[178]

[179]

[180]



6 Derivation of Bernoulli’s number from the Sums of Power generalized equation.

It is known that the generalized equation P, is zero when n=1. Therefore, the coefficients P, can be
used to find Bernoulli’s number. Few Bernoulli’s numbers calculation can be seen as follows:

Consider,
t-1

. . [T@+2(m- i)
P,=|n’"-2>" (2t+1)(22t‘1—1)(t]Btn2(m‘t) =
B [Ta+2(-1)

Since P, =0 when n=1.

t-1

i . [T@+2(m- j))
12m — 22 (2t +1)2** _1)[ t jBt @2 J:to =0

[[@+2- )

j=0

t-1

3

[T@+2(m
2> | (t+1)2 - 1)(tht 2 -0
= [T@+2@-j)

j=0

Rewritting the equation [181] yields

i 2t+1)(2°" - 1)@]& = L oforalmen
B Ta+2t- 1)
When m =1,
1 o Tler20-0)|
)=>|(2t+1)2* " - 1)( jBt = -2=0
B VoTTas2e-i)| 2
[Ta+20-7)
(2) +1)(2°7 1)( jBl = —==0
Yo TT0s20-5) 2
[16-2j)
3B, L° ~-==0
16-2))
3 1
SBlm—EZO

[181]

[182]



3B,-==0
2
1
Bﬁg [183]
When m=2,
, ) ) H1+22 i)
Z (2t +1)2%* - 1)( jBt = -==0
= t H1+2t i)
H(1+2(2 i) ) H(1+2(2 )
(2() + 1) 2% ~ 1)( JBl +(22) + )22 1)[ ]Bz ——=0
[10+20-j) ° [16+22- )
[16-2j) [16-2i)
6B, 12° +35B, 12 -5=0
[16-2i)  16-2j)
1.5 (6J3) _1_
{Slom = mew2°
§+35BZ—1=0
3 2
1
Bz}@ [184]

The Bernoulli’s number for when m >1can be calculated by rewriting the equation [182]. The
derivation is given as follows:

Expanding equation [182] yields:

. [10+2m=i) o TIe+2m-5)
f(m)=(2(1)+1)(22“"1—1)( JBl = (2(2)+1)(22(2)‘1—1)(2j81 =0
[Te+2®-1) [16+2@-)
I (R CR)) 1
'*“W%W+QQMH—DhJ&n$° N

[ 2(m-i) °

[185]



Rewritting equation [185] yields:

t-1 m-1

1+2
0

mi (2t +1)(2*" —1)[mJBt = +(2(m) +1)(2%™ —D(m]Bm =0 1.,
= t . m = N 2
- (L+2(t-j))

j=

o
i
o

ﬁ(1+ 2(m-j)) | o o ﬁ(1+ 2(m-j))
(2m+1)2*"* -1)B, = === (2t+1)(22t_1—1)[ )Bt =
@ram-j) * = YTl 2 )

Meeam-i) | o)
iz Crede 3|2 &)@ e

j=0 j=0

B J

m

EXNN

Since,

LN

m—.

(L+2(m- j))

_ (2m+1)2m-1)2m-3)---(3) _

(1+2(m_j))_(2m+1)(2m ~1)2m-3).-- (3)(1)

—

i

EAN
o

=0

Therefore,
t-1
L L o . 1+2
B = —-N (2t +1)2% -1 |B, =2 186
" (em+1)2mt -1)| 2 tzzl:( X )(J‘ ‘ [180]

(1+2(t- j))

j=0

Conclusion.

The general equation for Sum of Power presented in this paper can be extended on many other uses
due to its simplicity and elegant formulation. This formula includes Faulhaber’s sum of power and
most of other formulae derived for sum of power because of its expression in form of the most basic
elementary symmetric function of an arithmetic progression. Since integer is part of arithmetic
progression, it offers new form of sum of power as alternative to Faulhaber formulation. Apart from
that, this generalized equation can be extended to real number powers. This study would be given in
the Part 1l. It was found that, in the formulation of sum of powers the generalized equation uses
Bernoulli’s numbers in the formation of its coefficients. However, in the Part 111, the Euler or Secant
numbers involved in the formation of alternating Sum of Powers.
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