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Abstract. Inherent within quantum measurement experiments is a decision

process which current theory fails to express and does not explain. Each act

of measurement indeterminately decides on one outcome from a spectrum of

values. Nature executes this decision, but evidence indicates that the elected

outcome is not caused by any physical in�uence.

The discrepancy between experiment and theory is traceable to a logical

detail of arithmetic, not encoded in mathematical physics. Mathematical

physics deals in semantic theories. These disregard this logical detail. For

classical physics, no discrepancy is evident; in that domain, semantic truth and

logical validity coincide. Happily, a logical implementation of the arithmetic,

rather than a semantic one, does encode the indeterminate details .

The arithmetic in question is that of scalars. These are mathematical

objects whose rules of algebra are the Field Axioms. Mathematical physics

assumes the a priori existence of scalars. But in this article, apriority is

transferred to the Field Axioms themselves. This step elevates the semantic

theory to a logical one. Model Theory, a branch of mathematical logic, sets

the Field Axioms within a rigorous environment that naturally di�erentiates

between scalars they derive, distinct from scalars that satisfy them. A

theorem is proved which isolates scalars whose existence is neither provable nor

disprovable. These are the scalars which satisfy Axioms, but are not derivable;

they are mathematically undecidable and logically indeterminate. Examples are

worked through.

The scalars' modes of existence furnish the 3-valued logic which is

foundation for Hans Reichenbach's quantum logic.

E-mail: StevieFaulkner@googlemail.com

1. Introduction

This article is one of a series explaining the nature of mathematical undecidability

discovered present within quantum mechanics. The centrepiece of the project

is an axiomatised version of quantum theory, which derives indeterminacy

and furnishes a mechanism for measurement. Signi�cantly, this axiomatised

formulation also supports Hans Reichenbach's quantum logic which resolves

`causal anomalies' of the subject.

The task of this present paper is to describe the algebraic environment in

which the said undecidability originates; prove the existence of indeterminacy

that complements the undecidability; and demonstrate the part these play in a

3-valued logic which permeates mathematical physics via this algebra.
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In 1944, Hans Reichenbach proposed a quantum logic consisting of values:

true, false and indeterminate. This was in response to `causal anomalies' evident

in the results of quantum experiments . His logic is an adaptation of the 3-valued

logic of Jan �ukasiewicz [8, 12], which Reichenbach gives certain truth tables,

conjunctions, disjunctions, tautology etc,. During its formation, Reichenbach

arrived at the particular qualities of his indeterminate middle through detailed,

reasoned analysis of results of quantum experiments.

He found that his 3-valued logic `suppresses' the causal anomalies [8, 15, 16].

It furnishes a consistent epistemology for prepared and measured states: typically

the question of what we may know about the state of a photon immediately before

measurement. It derives complimentary propositions: if statement A is either

true or false, statement B is indeterminate, and vice versa. Such statements

correspond to measurements of complimentary pairs such as momentum and

position. And his logic also overcomes the problem of action at a distance, a

paradox identi�ed by Einstein, Podolsky & Rosen [11].

Though his results are compelling, Reichenbach's logic is hypothetically

based and is not in simple agreement with mainstream quantum logics based

on the quantum postulates, originating with Birkho� and von Neumann [1].

Acceptance of these would tend to imply the unacceptability of Reichenbach's

logic. That said, Hardegree argues that these logics are not in opposition but

describe di�erent things . While the mainstream logics are based on Hilbert space

quantum theory, Reichenbach's logic is a framework for an alternative formulation

[10]. This paper gives prominence to the logical cornerstone hidden within current

theory that is foundation for that Reichenbachian formulation.

Logical indeterminacy and mathematical undecidability are complementary

aspects of a logical condition present in certain axiomatised mathematical theories

[3, 4, 14]. In these theories, indeterminacy describes the state of validity

of propositions that are neither valid nor invalid. Undecidability refers to

the provability of these indeterminate propositions, being neither provable nor

disprovable.

Gödel's First Incompleteness Theorem proves that mathematical undecid-

ability necessarily exists in arithmetic [3, 5, 7, 17]. This is not the kind of un-

decidability forced upon us through ignorance of information; the distinction is

that information necessary for decision does not exist. Chaitin takes this infor-

mational approach to Gödel's Theorem . He argues: `if a theorem [proposition]

contains more information than a given set of axioms, then it is impossible for

the theorem [proposition] to be derived from the axioms' [5]. Svozil uses Turing's

proof of Gödel's Theorem to argue that undecidability exists in Physics [17].

The subject matter of this paper is the Field Axioms, the theory they derive,

and the indeterminacy inherent within. I call this the Theory of Fields to

distinguish from Field Theory in Physics, which is not under study. Interest in the

Theory of Fields is motivated in knowledge of the fundamental position occupied

by the arithmetic of the Field Axioms; and consideration of the non-classical logic

this theory must proliferate, most profoundly, throughout applied mathematics,

mathematical physics and quantum theory. The object of the investigation is to
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con�rm the existence of indeterminate propositions within the Theory of Fields

and establish distinct conditions that guarantee either determinacy, or otherwise,

indeterminacy. An inherent 3-valued logic consisting of values: valid, invalid and

indeterminate, will become apparent.

Propositions under consideration are mathematical statements written as

formulae in �rst-order logic [2, 3, 4]. Examples of interest are:

∃α (α× α = 4) ; (1)

∃α (α× α = 2) ; (2)

∃α (α× α = −1) ; (3)

∃α
(
α−1 = 0

)
. (4)

For the sake of accessibility, I have used a slightly relaxed form here. Strictly,

existence of the negative sign and the inverse should also to be proposed.

Naturally, certain propositions are valid and provable, while others are invalid

and disprovable. But of special interest is a further set which are neither of these.

Instead, these propositions are indeterminate and mathematically undecidable.

For instance: of the four propositions above, the Field Axioms prove only (1).

Each of propositions (2) and (3) is neither provable nor disprovable. In both

these cases, existence of α can neither be con�rmed nor denied. Even so, the

square roots of 2 and −1 are nevertheless objects that satisfy the Field Axioms

and therefore, they can engage in the arithmetic. Proposition (4) is disproved by

the Field Axioms. Together, (1), (2), (3) and (4) illustrate examples of provable,

undecidable and disprovable propositions.

The Field Axioms

Additive Group

FA0 ∀α∀β∃γ (γ = α + β) Closure

FA1 ∃0∀α (0 + α = α) Identity 0

FA2 ∀α∃β (α + β = 0) Inverses

FA3 ∀α∀β∀γ ((α + β) + γ = α + (β + γ)) Associativity

FA4 ∀α∀β (α + β = β + α) Commutativity

Multiplicative Group

FM0 ∀α∀β∃γ (γ = α× β) Closure

FM1 ∃1∀α (1α = α1 = α ∧ 0 6= 1) Identity 1

FM2 ∀α∃β (α× β = 1 ∧ α 6= 0) Inverses

FM3 ∀α∀β∀γ ((α× β)× γ = α× (β × γ)) Associativity

FM4 ∀α∀β (α× β = β × α) Commutativity

FAM ∀α∀β∀γ (α× (β + γ) = (α× β) + (α× γ)) Distributivity

Table 1. The Field Axioms written as sentences in �rst-order logic. The

variables: α, β, γ, 0, 1 represent mathematical objects complying with these

axioms. The semantic interpretations of these objects are known as scalars.
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These claims of provability and validity are explained in terms of Model

theory. This is a branch of Mathematical Logic that considers validity of

propositions in relation to associated mathematical structures. In the context of

the Field Axioms these associated structures are �elds : not to be confused with

�elds in quantum �eld theory. Normal interpretation of the + and × operators

restricts these to the in�nite �elds, of which there are at least three: the complex

plane C, the real line R and the smallest, the rational �eld Q. Each is a closed

structure; but jointly they form a �eld-sub�eld hierarchy where the smallest �eld

is special because it is a sub�eld of each. This fact has critical in�uence on which

propositions are valid and provable, and which are indeterminate and undecidable.

2. Algebraic and logical environment

The radical observation of this paper came while noticing the distinction between

necessary existence, entailing derivation from Axioms, and possible existence

that entails satisfying those Axioms. This distinction spurns two related logics.

One is notionally causal where necessary and possible, together with necessarily-

not constitute a modal logic [8]. The other is notionally existential, consisting

of logically valid, logically invalid and logically indeterminate; identi�able with

Reichenbach. The environment in which this second logic emerges from the Field

Axioms is now discussed.

From the perspective of applied mathematics, the Field Axioms are seen

as a selection of combination rules for addition and multiplication, applied ad

hoc, in our most familiar arithmetic. These rules of combination are regarded

as properties belonging to scalars and so signi�cance, meaning and `reality' is

placed on them, with Axioms taking an incidental, appended role. In this applied

mathematical scenario, scalars are the semantic interpretations of the objects:

α, β, γ, 0, 1, . . . in Table 1. This interpretation arises when the mathematician

designates α, β, γ, 0, 1, . . . to the real line or complex plane, whichever suits the

application. This interpretational approach deals in semantic information. And

the act of such designation irreversibly discards logical information imparted by

the Axioms.

In contrast to the emphasis of applied mathematics on the existence of

scalars, �rst-order theory places precedence on Axioms. The Theory of Fields

is the �rst-order theory under the Field Axioms. This poses a quite di�erent

scenario in which Axioms de�ne and generate the objects α, β, γ, 0, 1, . . . along

with their arithmetical behaviour. First-order theory is a stricter and stronger

system of derivation than applied mathematics. It takes full account of all logical

information imparted by Axioms, including information that is indeterminate.

That said, no indeterminate information can be proved to exist by the �rst-order

theory itself. Proof that (1) is a theorem may indeed be established by direct

derivation from the Axioms. But direct proof that (2) and (3) are, or are not

theorems is impossible because no information in the Axioms proves or negates

them.

In order to con�rm the existence of indeterminate information, theorems
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Figure 1. Validity under the Field Axioms. Due to theorems of Model Theory,

sentences (small circles) such as ∃α (αα = 4), whose semantic validities agree

are logically valid and are theorems. Sentences such as ∃α (αα = −1 ), whose
semantic validities disagree are logically indeterminate and are mathematically

undecidable. These exhaust all possibilities.

of Model Theory are applied to the �elds. Fields are mathematical structures

satisfying the Field Axioms [13]. Despite this trivial relationship linking �elds

and Field Axioms, their logical relationship is not straightforward. Note that:

satisfying the Field Axioms is a condition of possible existence and not a condition

of necessary existence. We shall see that the smallest �eld necessarily exists while

the other two possibly exist.

Model Theory demands that a given proposition is proved by the Field

Axioms, if and only if, it is true across all �elds. For existential propositions

such as (1), (2), or (3), this condition is satis�ed only for scalars in the rational

�eld. Therefore, only (1) is a theorem because it is the only case where α is

rational. Figure 1 gives a preview of how this works. A consequence is that

the Axioms prove the existence of all rational scalars; existence of other scalars

is undecidable. These are surprising facts considering nothing in the arithmetic

distinguishes the rational scalars.

The non-rational scalars are logically independent of the Axioms. That is to

say: scalars of the non-rational �elds express extraneous information, absent in

the Axioms. The rational scalars, whose existence can be proved, contain no such

extraneous information; they contain only information already in the Axioms. In

short, the Field Axioms are unable to prove or disprove the existence of logically

independent scalars. Logical independence is synonymous with mathematically

undecidability.

3. Concepts

True is a semantical reference, synonymous with semantically valid. A

proposition modelled by a given mathematical structure is true when

interpreted in that structure.

Valid is a logical reference. It is more fully referred to as logically valid.



Indeterminate scalars under the Field Axioms 6

A proposition is logically valid if: purely symbolically, independent of

interpretation, by following rules of inference, Axioms imply the proposition.

Connectives: ∧ = and; ¬ = negates; ` = derives; |= = models.

First-order theories comprise formulae written as propositions in �rst-order

logic. The term �rst-order refers to depth of recursion of logical operations;

it is not reference to approximation. Any �rst-order theory is speci�ed in a

set of axiom sentences, drawn up for the purpose. A crucial feature that

distinguishes �rst-order theories from applied mathematics is their strict

accounting of logical information. Variables satisfy all axiom sentences but

are attributed with nothing more. They are purely abstract and meaningless.

If this is misunderstood, the integrity of any derivation is at risk. In

particular, the mathematician may not introduce new information, logically

independent of Axioms, without recording the fact in an account of assumed

dependencies. She may not, for example, assign a variable to the real

line, simply by saying so, as is done in applied mathematics. E�ectively,

a �rst-order theory is a computational machine that runs according to a

programme of axiom sentences. Output from this machine exhibits richer

conceptualisations of theorem and validity than does applied mathematics.

In absence of any logically independent input, output of the machine consists

solely of theorems. In cases when there is logically independent input, output

relying on that independency is always undecidable and indeterminate.

Bound variable: when we write the equation:

α + β = β + α , (5)

this is an informal use of bound variables. Notice this relation speci�es

something about the algebraic behaviour of the objects α and β rather than

suggesting the performance of some arithmetic. Bound variables occur where

there is speci�cation. When writing the formal version of (5), quanti�ers ∀
are shown. These explicitly state the logic but also do the job of highlighting

the fact that speci�cation is intended rather than arithmetic. Thus:

∀α∀β (α + β = β + α) . (6)

The format of parenthesisation is typical of formulae in �rst-order logic.

Quanti�ers ∀α and ∀β apply to every occurrence of α and β within the

brackets.

Sentence: formulae such as (6), where every variable is bound, are known as

sentences. (6) happens to be the sentence adopted as axiom FA4 in Table

1. An example of a formula which is not a sentence is the formula:

∀β∃α (α = β + ϑ) . (7)

In this ϑ is not bound.

Free variable: In (7), ϑ is a free variable as opposed to a bound variable. It is

free to be substituted by a particular value; thus inviting the performance of

some arithmetic rather than speci�cation.
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The Field Axioms are listed in Table 1. They comprise a set of axiom sentences

formed by the union of axioms for the Additive Group and the Multiplicative

Group. In addition to these, there is one axiom for distributivity. In these

Axioms, di�erent possibilities of interpretation exist for the symbols + and

×. For example, modulo arithmetics are options, but these are not under

consideration here. In this paper, + and × are interpreted in the usual way,

as symbols of an unbounded (in�nite) arithmetic.

Model: This is a mathematical structure that satis�es a sentence. It is usual to

say that such a structuremodels the sentence. As an illustration, consider the

axiom sentence FA4 from Table 1, specifying additive commutativity. This

is modelled by any of the sets: N, Z, Q, R, C, {1}, {1,−1}, {1, 2, 3}, {all
4 × 3 matrices}, etc.. As well as individual sentences, sets of sentences also

have models. To illustrate, take two sentences. As before, take axiom FA4

from Table 1, but now model axiom FM4 also. Together these two sentences

specify both additive and multiplicative commutativity. The addition of this

second sentence eliminates the former inclusion of 4 × 3 matrices from the

set of models.

Semantic interpretation: Bound variables, such as the objects α, β, γ, 0, 1, . . .

complying with Axioms in Table 1, convey no more meaning than the

properties bestowed upon them by those Axioms. That said, they may be

interpreted as elements of a particular model of the Axioms. For instance,

these objects might be interpreted as members of the real line R. This would
be a semantic interpretation of α, β, γ, 0, 1, . . ., and would involve an injection

of information originating not from the Axioms but from elsewhere.

Field: This is the general name for mathematical structures that model the Field

Axioms. There are at least three in�nite �elds. These are the complex plane

C, the real line R and the rational �eld Q. The term �eld is likely to cause

confusion. In quantum �eld theory, �elds are entities associated with the

mechanics of elementary particles. This meaning is not intended here. In

this paper, de�nition is taken from Linear Algebra.

Scalar: An element of a �eld. Semantic interpretation of the objects

α, β, γ, 0, 1, . . . in Table 1 are scalars : either complex scalars, real scalars

or rational scalars, depending on the �eld elected. The term scalar is likely

to cause confusion. In relativity, a scalar is a zero rank tensor: under change

of inertial reference frame, an object that transforms as a constant number.

In this paper, de�nition is taken from Linear Algebra.

4. Model Theory

Our speci�c interest in Model Theory is the Soundness Theorem and its converse,

the Completeness Theorem. These are two standard theorems in model theory

which apply to all �rst-order theories [3, 4]. We shall see that jointly, they isolate

an excluded middle of mathematically undecidable sentences, from the set of all

other sentences which are theorems.
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4.1. Standard theorems

The Soundness Theorem:

Σ ` S ⇒ ∀MΣ
(
MΣ |= S

)
. (8)

If structure MΣ models axiom-set Σ, and Σ derives sentence S, then every

structure MΣmodels S.
Alternatively: If a sentence is a theorem, provable under an axiom-set, then

that sentence is true for every model of that axiom-set.

The Completeness Theorem:

Σ ` S ⇐ ∀MΣ
(
MΣ |= S

)
. (9)

If structure MΣ models axiom-set Σ, and every structure MΣ models

sentence S, then Σ derives sentence S.
Alternatively: If a sentence is true for every model of an axiom-set, then

that sentence is a theorem, provable under that axiom-set.

4.2. Proofs

We now proceed to prove further theorems of model theory. Jointly, (8) and (9)

result in the 2-way implication:

Validity Theorem:

Σ ` S ⇔ ∀MΣ
(
MΣ |= S

)
. (10)

If structure MΣ models axiom-set Σ, then axiom-set Σ derives sentence S ,

if and only if all structures MΣ model sentence S.
Alternatively: A sentence is provable under an axiom-set, if and only if, that

sentence is true for all models of that axiom-set.

Furthermore, for every sentence S there is a sentence ¬S; hence, jointly, (8) and
(9) also guarantee a second 2-way implication:

Invalidity Theorem:

Σ ` ¬S ⇔ ∀MΣ
(
MΣ |= ¬S

)
. (11)

If structure MΣ models axiom-set Σ, then axiom-set Σ derives the negation

of sentence S, if and only if all structures MΣ model the negation of S.
Alternatively: A sentence is disprovable under an axiom-set, if and only if,

that sentence is false for all models of that axiom-set.

Each of (10) and (11) excludes the sentences of the other. And moreover, together

they isolate sentences excluded by both. In the left hand sides of (10) and (11),

there is no indication of other sentences existing which satisfy neither, that is:

sentences that are neither provable nor disprovable. And so, it is of particular

interest that the right hand sides of (10) and (11) do indeed imply the existence

of sentences that correspond precisely to this condition. These are the sentences

excluded by the right hand sides of (10) and (11) and so satisfy the following

condition on modelling:

¬∀MΣ
(
MΣ |= S

)
∧ ¬∀MΣ

(
MΣ |= ¬S

)
. (12)
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The aim now is to �nd the status of provability for sentences excluded by (12).

We �rstly deduce (13) and (14), the negations of (10) and (11):

¬ (Σ ` S)⇔ ¬∀MΣ
(
MΣ |= S

)
; (13)

¬ (Σ ` ¬S)⇔ ¬∀MΣ
(
MΣ |= ¬S

)
; (14)

and combine these, so as to construct:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S)⇔ ¬∀MΣ
(
MΣ |= S

)
∧ ¬∀MΣ

(
MΣ |= ¬S

)
. (15)

This limits sentences that are neither provable nor negatable, to those that are

neither true nor false across all structures that model the Axioms. For theories

whose axioms are modelled by more than one single structure, where MΣ
1 and

MΣ
2 are distinct, we can assert (16):

Indeterminacy Theorem:

¬ (Σ ` S)∧¬ (Σ ` ¬S)⇔ ∃MΣ
1

(
MΣ

1 |= S
)
∧ ∃MΣ

2

(
MΣ

2 |= ¬S
)
.(16)

Axiom-set Σ derives neither S nor its negation, if and only if there exist

structures MΣ
1 and MΣ

2 which model axiom-set Σ, such that MΣ
1 models

sentence S, andMΣ
2 models the negation of S.

Alternatively: A sentence is true for some but not all models of an axiom-set,

if and only if, that sentence is undecidable under that axiom-set.

5. Application

The Theory of Fields is a �rst-order theory and so the above theorems apply.

The Validity Theorem, Invalidity Theorem and Indeterminacy Theorem will be

used. In practical terms, application of these to the Theory of Fields looks like

this:

Validity Test: when scalars of a given sentence are interpreted, in turn, as

members of the complex plane C, the real line R, the rational �eld Q; the

Field Axioms prove that sentence, if and only if, that sentence is true in

each case.

Invalidity Test: when scalars of a given sentence are interpreted, in turn, as

members of the complex plane C, the real line R, the rational �eld Q; the

Field Axioms disprove that sentence, if and only if, that sentence is false in

each case.

Indeterminacy Test: when scalars of a given sentence are interpreted, in turn,

as members of the complex plane C, the real line R, the rational �eld Q; the

Field Axioms neither prove nor disprove that sentence, if and only if, that

sentence is true in at least one case and false in at least one case.

These reduce to simple tests where we check for agreement or disagreement in

truth-tables indicating, either theorems, or undecidable sentences.
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5.1. Examples

Existence of scalars Formulae (1), (2), (3) and (4) on page 3, each proposes the
existence of a particular scalar. In the context of the Theory of Fields, each of
these propositions poses the question: do the Field Axioms derive this formula?
These questions are answered in the four truth-tables of Table 2. In the �rst,
proposition (1) is seen to be true for all three �elds, so by the Validity Test, (1)
is a theorem. The second two truth-tables show disagreeing truth values; hence,
by the Indeterminacy Test, (2) and (3) are undecidable. In the last of these truth
tables, all three truth values agree false; hence by the Invalidity Test, proposition
(4) is negated.

α ∈ C α ∈ R α ∈ Q

∃α (α× α = 4) T T T

α ∈ C α ∈ R α ∈ Q

∃α (α× α = 2) T T F

α ∈ C α ∈ R α ∈ Q

∃α (α× α = −1) T F F

α ∈ C α ∈ R α ∈ Q

∃α (α−1 = 0) F F F

Table 2. Truth-tables for propositions: ∃α (α× α = 4), ∃α (α× α = 2),

∃α (α× α = −1) and ∃α
(
α−1 = 0

)
. In these T and F denote true and false.

α ∈ C α ∈ R α ∈ Q

∃α
(
α = ξQ

)
T T T

α ∈ C α ∈ R α ∈ Q

∃α
(
α = ζR

)
T T F

α ∈ C α ∈ R α ∈ Q

∃α
(
α = ηC

)
T F F

Table 3. Truth-tables for propositions ∃α
(
α = ξQ

)
, ∃α

(
α = ζR

)
and

∃α
(
α = ηC

)
.

Existence of rational scalars The rational �eld is a sub�eld of all �elds.

Consequently, propositions of existence that are true in this smallest �eld are
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necessarily true in all �elds. See Figure 1. This means that rational scalars

exist by theorem. Table 3 illustrates the provability of the general rational scalar

ξQ, the undecidability of the general real scalar ζR and the undecidability of the

general complex scalar ηC.

Existence of functions A function in applied mathematics can spurn di�erent
�rst-order propositions; some of which might be theorems and some which might
be undecidable. Propositions: ∀x∃y (y = x2) and ∀y∃x (y = x2) have quanti�ers
reversed. This makes an important logical di�erence. Table 4 shows the �rst of
these two propositions is a theorem, yet the second is undecidable.

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T F F

Table 4. Truth-tables concerning the function y = x2.

Existence of �nite polynomials versus transcendental functions Table 5 compares

formulae proposing the existence of a �nite polynomial with an example of

transcendental function: the exponential. The �rst truth-table in Table 5 is

for the proposition: ∀x∃y (y = p (x)). In this, p is a �nite polynomial, so if x is

rational then so also is any �nite sum of terms p (x). Corresponding reasoning

applies to real or complex x. In contrast, in the proposition ∀x∃y (y = exp (x))

where

exp (x) ≡ lim
n→∞

[
1 + x+

x2

2
+ · · ·+ xn

n!
+ · · ·

]
,

rational x is not necessarily mapped to a rational point by the exponential
function. Hence, p (x) exists by theorem but exp (x) exists undecidably.

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = p (x)) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = exp (x)) T T F

Table 5. Truth-table for �nite polynomial: ∀x∃y (y = p (x)) and the

transcendental function: ∀x∃y (y = exp (x)).

5.2. Theorems from undecidability

Arithmetical combination Scalars that exist undecidably can be combined
to yield scalars that exist by theorem. Consider the two propositions:
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∃α (α = 3 + 4i) and ∃α∗ (α∗ = 3− 4i). These are undecidable, but the product
of these scalars is the rational scalar: 25, which is logically valid and so exists by
theorem. See Table 6.

α ∈ C α ∈ R α ∈ Q

∃α (α = 3 + 4i) T F F

α∗ ∈ C α∗ ∈ R α∗ ∈ Q

∃α∗ (α∗ = 3− 4i) T F F

β ∈ C β ∈ R β ∈ Q

∃β (β = αα∗) T T T

Table 6. Truth-tables for the proposition ∃α (α = 3 + 4i), ∃α∗ (α∗ = 3− 4i)

and ∃β (β = αα∗).

Limiting Theorems The limit of an undecidable scalar can exist by theorem.
The proposition ∃y (y2 = −x2) is undecidable. Nevertheless, it has a limiting
case: ∃y (limx→0 [y2 = −x2]) which is a theorem. See Table 7.

y ∈ C y ∈ R y ∈ Q

∃y (y2 = −x2) T F F

y ∈ C y ∈ R y ∈ Q

∃y (limx→0 [y2 = −x2]) T T T

Table 7. Truth-table for proposition ∃y
(
y2 = −x2

)
and its limiting case:

∃y
(
limx→0

[
y2 = −x2

])
.

Conclusions

This paper documents a logical feature hidden in the everyday algebra with which

we are most familiar. We commonly understand formulae in algebra to be either

true or false, depending on whether they are derived correctly or erroneously and

we expect no alternative to these possibilities. But this paper shows there does

exist another alternative: that of indeterminate or mathematically undecidable.

This logical information is not picked up by the standard algebraic formalism

and perpetuates unnoticed throughout applied mathematics and into quantum

mechanics. Consequently, as it presently stands, physical theory is denied the

possibility of linking these theoretical indeterminacies with indeterminacies we

observe in Nature. This paper shows that the said logical information is exposed

in an existential version of the algebra.
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This research is a study in mathematical logic applied to the algebra of the

Field Axioms. These Axioms de�ne the algebra or arithmetic of scalars : objects

basic throughout mathematics. Scalars are realised to exist in two modes. By

de�nition, all scalars satisfy the Field Axioms and so all are possible. On top of

this, a subset of scalars necessarily exists because these derive directly from the

Axioms. Derivation and satisfaction are seen as causally distinct; a distinction

not noted in applied mathematics.

The central point on which the above claims rest is proof, given in this paper,

of a theorem in model theory that con�rms the existence of indeterminacy under

the Field Axioms: indeterminacy that cannot be derived directly. Application

of this and other closely related theorems furnish simple tests identifying

those formulae which Axioms render logically indeterminate and those they

render logically valid theorems. The said theorems strictly identify undecidable

propositions as those with truth values that do not concur across all semantic

interpretations, but disagree. That is: they are not consistently true, or false,

when interpreted in turn as members of the complex plane C, the real line R, and
the rational �eld Q. This result is used in various examples of interest, checking

truth-tables for agreement or disagreement. Rational scalars are shown to exist

by theorem while strictly imaginary or irrational scalars are undecidable. This

ultimately follows from the fact that only the rational �eld is a sub�eld of all

�elds.

Because disproof is equivalent to proof of negation, disproofs are actually a

subset of all proofs and propositions fall into just two categories: the set of all

provable theorems, or, the set of all undecidable formulae: propositions are either

deterministic or indeterministic.

An important �nding of this research is that performance of algebraic

operations on undecidable propositions can produce propositions that are

theorems. This has rami�cations for our understanding of the mechanism for

measurement in quantum mechanics and will be explored in greater detail in a

subsequent paper.
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