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y in arithmeti
, well-known tologi
ians, is missing from quantum theorySteve Faulkner159a, Weedon Road, Northampton, United Kingdom, NN5 5DA.Abstra
t. This arti
le is one of a series explaining the nature of mathemati
alunde
idability dis
overed within quantum theory. Signi�
antly, a formula'sunde
idability 
erti�es its indetermina
y and vi
e versa. This paper des
ribes thealgebrai
 environment in whi
h the unde
idability and indetermina
y originate;provides proof of their existen
e; and demonstrates the role these play in a three-valued logi
 whi
h is free to permeate mathemati
al physi
s via this algebra.The radi
al idea applied in this resear
h is taken from very well-known resultsin mathemati
al logi
. All s
alars engage in the arithmeti
 of s
alars by way ofa single algebra. But in terms of validity, these s
alars partition into sets whi
hare logi
ally distin
t: those with valid existen
e with respe
t to this algebra, andthose with indeterminate existen
e. Failure of mathemati
al physi
s to noti
e thisdistin
tion is the reason why quantum theory is logi
ally at odds with quantumexperiments.E-mail: StevieFaulkner�googlemail.
om1. Introdu
tionInherent within quantum measurement experiments is a de
ision pro
ess whi
h
urrent theory fails to express and does not explain. Ea
h a
t of measurementde
ides on one value from a spe
trum of de�nite options. Nature exe
utes thisde
ision a

ording to two in�uen
es. One is the physi
al 
hara
tisti
 of theexperiment. The other is an indeterminate 
omponent not `
aused' by any physi
alin�uen
e. Profoundly, this statement rules out any possibility of physi
al in�uen
esof whi
h we may be in ignoran
e [1℄. Consequently, rules for this indetermina
y maypossibly exist in Nature but are not to be found in Physi
s.This removal of physi
al in�uen
es from the arena of explanations might dire
tus toward theories rooted in some non-
lassi
al logi
, or other. Su
h notions havemotivated an extensive history of study s
rutinising quantum mathemati
s for 
lues.Nevertheless, the absen
e of referen
es in the physi
s literature indi
ates that thiss
rutiny does not extend as far as the non-
lassi
al logi
 inherent within arithmeti
beneath quantum theory, upon whi
h the theory rests. Yet most 
uriously, personalexperien
e of mathemati
al logi
ians reveals them to be a
quainted with elementsof this logi
, to the extent that they regard them as obvious and self-evident.The dis
repan
y between experiment and theory is tra
eable to a logi
al detail ofarithmeti
, not en
oded in mathemati
al physi
s. The arithmeti
 in question is thatof s
alars. And the logi
 in question 
on
erns distin
t qualities or modes of existen
e
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h s
alars o

ur in the mathemati
s. This logi
 of s
alars is synonymous withthe 3-valued quantum logi
 postulated by Hans Rei
henba
h. Rei
henba
h showedin detail how implementation of his logi
 resolves the dis
repan
ies [17℄.S
alars are the mathemati
al obje
ts whose rules of algebra are the FieldAxioms. See Table 1. Mathemati
al physi
s assumes the a priori existen
e of s
alars.In this arti
le, apriority is transferred to the Field Axioms themselves. This initiativepromotes mathemati
al physi
s from a semanti
 theory to a logi
al theory. Validityin the logi
al theory has greater 
omplexity. Well known theorems of model theory,a bran
h of mathemati
al logi
, set the Field Axioms within a rigorous environmentthat naturally di�erentiates between s
alars that Axioms derive, distin
t from s
alarsthat satisfy them. S
alars whi
h are not derivable exist independent of Axioms[9, 15, 18℄. They 
ontain information not present in Axioms.Model theory proves existen
e of su
h independent s
alars are mathemati
allyunde
idable and logi
ally indeterminate. Logi
al indetermina
y and mathemati
alunde
idability are 
omplementary aspe
ts of a logi
al 
ondition present in 
ertainaxiomatised mathemati
al theories [4, 5, 15℄. In su
h theories, indetermina
ydes
ribes the state of validity of propositions that are neither valid nor invalid.Unde
idability refers to the provability of these indeterminate propositions, beingneither provable nor disprovable.In 1944, Hans Rei
henba
h proposed a quantum logi
 
onsisting of values: true,false and indeterminate. This was in response to `
ausal anomalies' evident in theresults of quantum experiments. His logi
 is an adaptation of the 3-valued logi
 ofJan �ukasiewi
z [8, 13℄, whi
h Rei
henba
h gives 
ertain truth tables, 
onjun
tions,disjun
tions, tautology et
,. During its formation, Rei
henba
h arrived at theparti
ular qualities of his indeterminate middle through detailed, reasoned analysisof results of quantum experiments.He found that his 3-valued logi
 `suppresses' the 
ausal anomalies [8, 16, 17℄.It furnishes a 
onsistent epistemology for prepared and measured states: typi
allythe question of what we may know about the state of a photon immediately beforemeasurement. It derives 
omplimentary propositions: if statement A is either trueor false, statement B is indeterminate, and vi
e versa. Su
h statements 
orrespondto measurements of 
omplimentary pairs su
h as momentum and position. And hislogi
 also over
omes the problem of a
tion at a distan
e, a paradox identi�ed byEinstein, Podolsky & Rosen [12℄.Though his results are 
ompelling, Rei
henba
h's logi
 is hypotheti
ally basedand is not in simple agreement with mainstream quantum logi
s based on thequantum postulates, originating with Birkho� and von Neumann [2℄. A

eptan
eof these would tend to imply the una

eptability of Rei
henba
h's logi
. That said,Hardegree argues that these logi
s are not in opposition but des
ribe di�erent things[11℄. While the mainstream logi
s are based on Hilbert spa
e quantum theory,Rei
henba
h's logi
 is a framework for an alternative formulation. This presentpaper expounds foundation for Rei
henba
h's alternative.Gödel's First In
ompleteness Theorem proves that mathemati
al unde
idabilityne
essarily exists in arithmeti
 [4, 6, 7, 19℄. This is not the kind of unde
idabilityfor
ed upon us through ignoran
e of information; the distin
tion is that information
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essary for de
ision does not exist. Chaitin takes this informational approa
h toGödel's Theorem. He argues: `if a theorem [proposition℄ 
ontains more informationthan a given set of axioms, then it is impossible for the theorem [proposition℄ tobe derived from the axioms' [6℄. Svozil uses Turing's proof of Gödel's Theorem toargue that unde
idability exists in Physi
s [19℄.The subje
t matter of this paper is the Field Axioms, the theory they derive, andthe indetermina
y inherent within. I 
all this the Theory of Fields to distinguishfrom Field Theory in Physi
s, whi
h is not under study. Interest in the Theoryof Fields is motivated in knowledge of the fundamental position o

upied by thearithmeti
 of the Field Axioms; and in 
onsideration of the non-
lassi
al logi
this theory must proliferate, most profoundly, throughout applied mathemati
s,mathemati
al physi
s and quantum theory. The obje
t of the investigation is to
on�rm the existen
e of indeterminate propositions within the Theory of Fieldsand establish distin
t 
onditions that guarantee either determina
y, or otherwise,indetermina
y. An inherent 3-valued logi
 
onsisting of values: valid, invalid andindeterminate, will be
ome apparent.Propositions under 
onsideration are mathemati
al statements proposing theexisten
e of parti
ular s
alars, written as formulae in �rst-order logi
 [3, 4, 5℄.Examples of interest are:
∃α (α× α = 4) ; (1)
∃α (α× α = 2) ; (2)
∃α (α× α = −1) ; (3)
∃α

(

α−1 = 0
)

. (4)For the sake of a

essibility, I have used a slightly relaxed form here. Stri
tly,existen
e of the negative sign and the inverse should also to be proposed.Naturally, 
ertain propositions are valid and provable, while others are invalidand disprovable. But of spe
ial interest is a further set whi
h are neither of these.Instead, these propositions are in independent of Axioms; they are indeterminate andthey are mathemati
ally unde
idable. For instan
e: of the four propositions above,the Field Axioms prove only (1). Ea
h of propositions (2) and (3) is neither provablenor disprovable. In both these 
ases, existen
e of α 
an neither be 
on�rmed nordenied. Even so, the square roots of 2 and −1 are nevertheless obje
ts that satisfythe Field Axioms and therefore, they do engage in the arithmeti
. Proposition (4)is disproved by the Field Axioms. Together, (1), (2), (3) and (4) illustrate examplesof provable, unde
idable and disprovable propositions.These 
laims of provability and validity are explained in terms of Model theory.This is a bran
h of Mathemati
al Logi
 that 
onsiders validity of propositions inrelation to asso
iated mathemati
al stru
tures. In the 
ontext of the Field Axiomsthese asso
iated stru
tures are �elds: not to be 
onfused with �elds in quantum�eld theory. Normal interpretation of the + and × operators restri
ts these to thein�nite �elds, of whi
h there are at least three: the 
omplex plane C, the real line
R and the smallest, the rational �eld Q. Ea
h is a 
losed stru
ture; but jointly



Indetermina
y in arithmeti
 is missing from quantum theory 4they form a �eld-sub�eld hierar
hy where the smallest �eld is spe
ial be
ause it is asub�eld of ea
h. This fa
t has 
riti
al in�uen
e on whi
h propositions are valid andprovable, and whi
h are indeterminate and unde
idable.2. Algebrai
 and logi
al environmentThe radi
al observation of this paper 
ame while noti
ing the distin
tion betweenne
essary existen
e, entailing derivation from Axioms, and possible existen
e thatentails satisfying those Axioms. This distin
tion spurns two related logi
s. Oneis notionally 
ausal where ne
essary and possible, together with ne
essarily-not
onstitute a modal logi
 [8℄. The other is notionally existential, 
onsisting of logi
allyvalid, logi
ally invalid and logi
ally indeterminate; identi�able with Rei
henba
h.The environment in whi
h this se
ond logi
 emerges from the Field Axioms is nowdis
ussed.From the perspe
tive of applied mathemati
s, the Field Axioms are seen asa sele
tion of 
ombination rules for addition and multipli
ation, applied ad ho
,in our most familiar arithmeti
. These rules of 
ombination are regarded asproperties belonging to s
alars and so signi�
an
e, meaning and `reality' is pla
edon s
alars, with Axioms taking an in
idental, appended role. In this appliedmathemati
al s
enario, s
alars are the semanti
 interpretations of the obje
ts:
α, β, γ, 0, 1, . . . in Table 1. This interpretation arises when the mathemati
iandesignates α, β, γ, 0, 1, . . . to the real line or 
omplex plane, whi
hever suits theappli
ation. This interpretational approa
h deals in semanti
 information. Andthe a
t of su
h designation irreversibly dis
ards logi
al information imparted by theThe Field AxiomsAdditive GroupFA0 ∀α∀β∃γ (γ = α+ β) ClosureFA1 ∃0∀α (0 + α = α) Identity 0FA2 ∀α∃β (α + β = 0) InversesFA3 ∀α∀β∀γ ((α + β) + γ = α + (β + γ)) Asso
iativityFA4 ∀α∀β (α + β = β + α) CommutativityMultipli
ative GroupFM0 ∀α∀β∃γ (γ = α× β) ClosureFM1 ∃1∀α (1α = α1 = α ∧ 0 6= 1) Identity 1FM2 ∀α∃β (α× β = 1 ∧ α 6= 0) InversesFM3 ∀α∀β∀γ ((α× β)× γ = α× (β × γ)) Asso
iativityFM4 ∀α∀β (α× β = β × α) CommutativityFAM ∀α∀β∀γ (α× (β + γ) = (α× β) + (α× γ)) DistributivityTable 1. The Field Axioms written as senten
es in �rst-order logi
. The variables:

α, β, γ, 0, 1 represent mathemati
al obje
ts 
omplying with these axioms. Thesemanti
 interpretations of these obje
ts are known as s
alars.
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ontrast to the emphasis of applied mathemati
s on the existen
e of s
alars,�rst-order theory pla
es pre
eden
e on Axioms. The Theory of Fields is the �rst-order theory under the Field Axioms. This poses a quite di�erent s
enario in whi
hAxioms de�ne and generate the obje
ts α, β, γ, 0, 1, . . . along with their arithmeti
albehaviour. First-order theory is a stri
ter and stronger system of derivation thanapplied mathemati
s. It takes full a

ount of all logi
al information imparted byAxioms, in
luding information that is indeterminate. That said, no indeterminateinformation, independent of Axioms, 
an be proved to exist by the �rst-order theoryitself. Proof that (1) is a theorem may indeed be established by dire
t derivationfrom the Axioms. But dire
t proof that (2) and (3) are, or are not theorems isimpossible be
ause no information in the Axioms proves or negates them.In order to 
on�rm the existen
e of indeterminate information, theorems ofModel Theory are applied to the �elds. Fields are mathemati
al stru
tures satisfyingthe Field Axioms [14℄. Despite this trivial relationship linking �elds and FieldAxioms, their logi
al relationship is not straightforward. Note that: satisfying theField Axioms is a 
ondition of possible existen
e and not a 
ondition of ne
essaryexisten
e. We shall see that the smallest �eld ne
essarily exists while others possiblyexist.Model Theory demands that any given proposition is proved by the FieldAxioms, if and only if, it is true a
ross all �elds. All indeterminate propositions,independent of Axioms always have mixed true/ false values, disagreeing betweensome �eld and another. For existential propositions su
h as (1), (2), or (3),the 
ondition of agreeing truths is satis�ed only for s
alars in the rational �eld.Therefore, only (1) is a theorem be
ause it is the only 
ase where α is rational.Figure 1 gives a preview of how this works. A 
onsequen
e is that Axioms provethe existen
e of all rational s
alars; existen
e of other s
alars is unde
idable. These

Figure 1. Validity under the Field Axioms. Due to theorems of Model Theory,senten
es (small 
ir
les) su
h as ∃α (αα = 4), whose semanti
 validities agree arelogi
ally valid and are theorems. Senten
es su
h as ∃α (αα = −1 ), whose semanti
validities disagree are logi
ally indeterminate and are mathemati
ally unde
idable.These exhaust all possibilities.
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ts 
onsidering nothing in the arithmeti
 distinguishes the rationals
alars.The non-rational s
alars are logi
ally independent of the Axioms. That is tosay: s
alars of the non-rational �elds express extraneous information, absent inthe Axioms. The rational s
alars, whose existen
e 
an be proved, 
ontain no su
hextraneous information; they 
ontain only information already in the Axioms. Inshort, the Field Axioms are unable to prove or disprove the existen
e of logi
allyindependent s
alars. Logi
al independen
e is synonymous with mathemati
allyunde
idability.3. Con
eptsTrue is a semanti
al referen
e, synonymous with semanti
ally valid. Apropositionmodelled by a given mathemati
al stru
ture is true when interpretedin that stru
ture.Valid is a logi
al referen
e. It is more fully referred to as logi
ally valid.A proposition is logi
ally valid if: purely symboli
ally, independent ofinterpretation, by following rules of inferen
e, Axioms imply the proposition.Conne
tives: ∧ = and; ¬ = negates; ⊢ = derives; |= = models.First-order theories 
omprise formulae written as propositions in �rst-order logi
.The term �rst-order refers to depth of re
ursion of logi
al operations; it isnot referen
e to approximation. Any �rst-order theory is spe
i�ed in a set ofaxiom senten
es, drawn up for the purpose. A 
ru
ial feature that distinguishes�rst-order theories from applied mathemati
s is their stri
t a

ounting oflogi
al information. Variables satisfy all axiom senten
es but are attributedwith nothing more. They are purely abstra
t and meaningless. If this ismisunderstood, the integrity of any derivation is at risk. In parti
ular, themathemati
ian may not introdu
e new information, logi
ally independent ofAxioms, without re
ording the fa
t in an a

ount of assumed dependen
ies.She may not, for example, assign a variable to the real line, simply by sayingso, as is done in applied mathemati
s. E�e
tively, a �rst-order theory is a
omputational ma
hine that runs a

ording to a programme of axiom senten
es.Output from this ma
hine exhibits ri
her 
on
eptualisations of theorem andvalidity than does applied mathemati
s. In absen
e of any logi
ally independentinput, output of the ma
hine 
onsists solely of theorems. In 
ases when thereis logi
ally independent input, output relying on that independen
y is alwaysunde
idable and indeterminate.Bound variable: when we write the equation:
α + β = β + α , (5)this is an informal use of bound variables. Noti
e this relation spe
i�essomething about the algebrai
 behaviour of the obje
ts α and β rather thansuggesting the performan
e of some arithmeti
. Bound variables o

ur wherethere is spe
i�
ation. When writing the formal version of (5), quanti�ers ∀ are
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itly state the logi
 but also do the job of highlighting thefa
t that spe
i�
ation is intended rather than arithmeti
. Thus:
∀α∀β (α + β = β + α) . (6)The format of parenthesisation is typi
al of formulae in �rst-order logi
.Quanti�ers ∀α and ∀β apply to every o

urren
e of α and β within the bra
kets.Senten
e: formulae su
h as (6), where every variable is bound, are known assenten
es. (6) happens to be the senten
e adopted as axiom FA4 in Table1. An example of a formula whi
h is not a senten
e is the formula:
∀β∃α (α = β + ϑ) . (7)In this ϑ is not bound.Free variable: In (7), ϑ is a free variable as opposed to a bound variable. It is freeto be substituted by a parti
ular value; thus inviting the performan
e of somearithmeti
 rather than spe
i�
ation.The Field Axioms are listed in Table 1. They 
omprise a set of axiom senten
esformed by the union of axioms for the Additive Group and the Multipli
ativeGroup. In addition to these, there is one axiom for distributivity. In theseAxioms, di�erent possibilities of interpretation exist for the symbols + and

×. For example, modulo arithmeti
s are options, but these are not under
onsideration here. In this paper, + and × are interpreted in the usual way, assymbols of an unbounded (in�nite) arithmeti
.Model: This is a mathemati
al stru
ture that satis�es a senten
e. It is usual tosay that su
h a stru
ture models the senten
e. As an illustration, 
onsider theaxiom senten
e FA4 from Table 1, spe
ifying additive 
ommutativity. This ismodelled by any of the sets: N, Z, Q, R, C, {1}, {1,−1}, {1, 2, 3}, {all 4 × 3matri
es}, et
.. As well as individual senten
es, sets of senten
es also havemodels. To illustrate, take two senten
es. As before, take axiom FA4 fromTable 1, but now model axiom FM4 also. Together these two senten
es spe
ifyboth additive and multipli
ative 
ommutativity. The addition of this se
ondsenten
e eliminates the former in
lusion of 4×3 matri
es from the set of models.Semanti
 interpretation: Bound variables, su
h as the obje
ts α, β, γ, 0, 1, . . .
omplying with Axioms in Table 1, 
onvey no more meaning than the propertiesbestowed upon them by those Axioms. That said, they may be interpreted aselements of a parti
ular model of the Axioms. For instan
e, these obje
tsmight be interpreted as members of the real line R. This would be a semanti
interpretation of α, β, γ, 0, 1, . . ., and would involve an inje
tion of informationoriginating not from the Axioms but from elsewhere.Field: This is the general name for mathemati
al stru
tures that model the FieldAxioms. There are at least three in�nite �elds. These are the 
omplex plane C,the real line R and the rational �eld Q. The term �eld is likely to 
ause
onfusion. In quantum �eld theory, �elds are entities asso
iated with theme
hani
s of elementary parti
les. This meaning is not intended here. In thispaper, de�nition is taken from Linear Algebra.
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alar: An element of a �eld. Semanti
 interpretation of the obje
ts α, β, γ, 0, 1, . . .in Table 1 are s
alars: either 
omplex s
alars, real s
alars or rational s
alars,depending on the �eld ele
ted. The term s
alar is likely to 
ause 
onfusion.In relativity, a s
alar is a zero rank tensor: under 
hange of inertial referen
eframe, an obje
t that transforms as a 
onstant number. In this paper, de�nitionis taken from Linear Algebra.4. Model TheoryOur spe
i�
 interest in Model Theory is the Soundness Theorem and its 
onverse,the Completeness Theorem. These are two standard theorems in model theorywhi
h apply to all �rst-order theories [4, 5℄. We shall see that jointly, they isolate anex
luded middle of mathemati
ally unde
idable senten
es, from the set of all othersenten
es whi
h are theorems.4.1. Standard theoremsThe Soundness Theorem:
Σ ⊢ S ⇒ ∀MΣ

(

MΣ |= S
)

. (8)If stru
ture MΣ models axiom-set Σ, and Σ derives senten
e S, then everystru
ture MΣmodels S.Alternatively: If a senten
e is a theorem, provable under an axiom-set, thenthat senten
e is true for every model of that axiom-set.The Completeness Theorem:
Σ ⊢ S ⇐ ∀MΣ

(

MΣ |= S
)

. (9)If stru
ture MΣ models axiom-set Σ, and every stru
ture MΣ models senten
e
S, then Σ derives senten
e S.Alternatively: If a senten
e is true for every model of an axiom-set, then thatsenten
e is a theorem, provable under that axiom-set.4.2. ProofsWe now pro
eed to prove further theorems of model theory. Jointly, (8) and (9)result in the 2-way impli
ation:Validity Theorem:

Σ ⊢ S ⇔ ∀MΣ
(

MΣ |= S
)

. (10)If stru
ture MΣ models axiom-set Σ, then axiom-set Σ derives senten
e S , ifand only if all stru
tures MΣ model senten
e S.Alternatively: A senten
e is provable under an axiom-set, if and only if, thatsenten
e is true for all models of that axiom-set.Furthermore, for every senten
e S there is a senten
e ¬S; hen
e, jointly, (8) and(9) also guarantee a se
ond 2-way impli
ation:
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Σ ⊢ ¬S ⇔ ∀MΣ

(

MΣ |= ¬S
)

. (11)If stru
ture MΣ models axiom-set Σ, then axiom-set Σ derives the negation ofsenten
e S, if and only if all stru
tures MΣ model the negation of S.Alternatively: A senten
e is disprovable under an axiom-set, if and only if, thatsenten
e is false for all models of that axiom-set.Ea
h of (10) and (11) ex
ludes the senten
es of the other. And moreover, togetherthey isolate senten
es ex
luded by both. In the left hand sides of (10) and (11), thereis no indi
ation of other senten
es existing whi
h satisfy neither, that is: senten
esthat are neither provable nor disprovable. And so, it is of parti
ular interest thatthe right hand sides of (10) and (11) do indeed imply the existen
e of senten
es that
orrespond pre
isely to this 
ondition. These are the senten
es ex
luded by the righthand sides of (10) and (11) and so satisfy the following 
ondition on modelling:
¬∀MΣ

(

MΣ |= S
)

∧ ¬∀MΣ
(

MΣ |= ¬S
)

. (12)The aim now is to �nd the status of provability for senten
es ex
luded by (12). We�rstly dedu
e (13) and (14), the negations of (10) and (11):
¬ (Σ ⊢ S) ⇔ ¬∀MΣ

(

MΣ |= S
)

; (13)
¬ (Σ ⊢ ¬S) ⇔ ¬∀MΣ

(

MΣ |= ¬S
)

; (14)and 
ombine these, so as to 
onstru
t:
¬ (Σ ⊢ S) ∧ ¬ (Σ ⊢ ¬S) ⇔ ¬∀MΣ

(

MΣ |= S
)

∧ ¬∀MΣ
(

MΣ |= ¬S
)

. (15)This limits senten
es that are neither provable nor negatable, to those that areneither true nor false a
ross all stru
tures that model the Axioms. For theorieswhose axioms are modelled by more than one single stru
ture, where MΣ

1
and MΣ

2are distin
t, we 
an assert (16):Indetermina
y Theorem:
¬ (Σ ⊢ S) ∧ ¬ (Σ ⊢ ¬S) ⇔ ∃MΣ

1

(

MΣ

1
|= S

)

∧ ∃MΣ

2

(

MΣ

2
|= ¬S

)

. (16)Axiom-set Σ derives neither S nor its negation, if and only if there existstru
tures MΣ

1
and MΣ

2
whi
h model axiom-set Σ, su
h that MΣ

1
modelssenten
e S, and MΣ

2
models the negation of S.Alternatively: A senten
e is true for some but not all models of an axiom-set,if and only if, that senten
e is unde
idable under that axiom-set.5. Appli
ationThe Theory of Fields is a �rst-order theory and so the above theorems apply. Ourinterest in deriving these theorems is the 
onstru
tion of pra
ti
al tests for thedete
tion of indetermina
y, and validity.
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y Test: when s
alars of a given senten
e are interpreted, in turn, asmembers of the 
omplex plane C, the real line R, the rational �eld Q; the FieldAxioms neither prove nor disprove that senten
e, if and only if, that senten
eis true in at least one 
ase and false in at least one 
ase.This redu
es to a simple 
he
k for disagreement within truth-tables.The Indetermina
y Test serves the purpose we require, but note that it is notexhaustively 
omprehensive be
ause it samples only three �elds. A Validity Test,
onstru
ted form the Validity Theorem is an impra
ti
al prospe
t sin
e it requiresthe sampling of every in�nite �eld, no matter how obs
ure. For a realisti
 test forvalidity we embra
e the model theory 
hara
terising dire
t derivation from Axioms.When a formula asserting existen
e of some parti
ular number is proved dire
tlyfrom the Field Axioms, that number will be rational. This follows be
ause s
opefor 
onstru
tion of su
h numbers is restri
ted to arithmeti
al 
ombinations of thenumbers 0 and 1, and are therefore limited in form to p/q, where p and q areintegers. Moreover, proof of existen
e for every rational derives from the FieldAxioms in this way. Hen
e, every formula asserting existen
e of a rational numberis provable; and therefore, by the Soundness Theorem, is true in every �eld. And so,any su
h formulae is true independent of interpretation, and 
onsequently, is validby de�nition. These arguments summarise simply as:Validity Test: A formula is valid if and only if it is true in the rational �eld Q.5.1. ExamplesExisten
e of s
alars Formulae (1), (2), (3) and (4) on page 3, ea
h proposes theexisten
e of a parti
ular s
alar. In the 
ontext of the Theory of Fields, ea
h of thesepropositions poses the question: do the Field Axioms derive this formula? These
α ∈ C α ∈ R α ∈ Q

∃α (α× α = 4) T T T

α ∈ C α ∈ R α ∈ Q

∃α (α× α = 2) T T F

α ∈ C α ∈ R α ∈ Q

∃α (α× α = −1) T F F

α ∈ C α ∈ R α ∈ Q

∃α (α−1 = 0) F F FTable 2. Truth-tables for propositions: ∃α (α× α = 4), ∃α (α× α = 2),
∃α (α× α = −1) and ∃α

(

α−1 = 0
). In these T and F denote true and false.
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 is missing from quantum theory 11questions are answered in the four truth-tables of Table 2. In the �rst, proposition(1) is seen to be true for all three �elds, so by the Validity Test, (1) is a theorem. These
ond two truth-tables show disagreeing truth values; hen
e, by the Indetermina
yTest, (2) and (3) are unde
idable. In the last of these truth tables, all three truthvalues agree false; hen
e by the Invalidity Test, proposition (4) is negated.
α ∈ C α ∈ R α ∈ Q

∃α
(

α = ξQ
)

T T T

α ∈ C α ∈ R α ∈ Q

∃α
(

α = ζR
)

T T F

α ∈ C α ∈ R α ∈ Q

∃α
(

α = ηC
)

T F FTable 3. Truth-tables for propositions ∃α
(

α = ξQ
), ∃α

(

α = ζR
) and

∃α
(

α = ηC
).Existen
e of rational s
alars The rational �eld is a sub�eld of all �elds.Consequently, propositions of existen
e that are true in this smallest �eld arene
essarily true in all �elds. See Figure 1. This means that rational s
alars existby theorem. Table 3 illustrates the provability of the general rational s
alar ξQ, theunde
idability of the general real s
alar ζR and the unde
idability of the general
omplex s
alar ηC.Existen
e of fun
tions A fun
tion in applied mathemati
s 
an spurn di�erent �rst-order propositions; some of whi
h might be theorems and some whi
h mightbe unde
idable. Propositions: ∀x∃y (y = x2) and ∀y∃x (y = x2) have quanti�ersreversed. This makes an important logi
al di�eren
e. Table 4 shows the �rst ofthese two propositions is a theorem, yet the se
ond is unde
idable.

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T F FTable 4. Truth-tables 
on
erning the fun
tion y = x2.
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e of �nite polynomials versus trans
endental fun
tions Table 5 
omparesformulae proposing the existen
e of a �nite polynomial with an example oftrans
endental fun
tion: the exponential. The �rst truth-table in Table 5 is forthe proposition: ∀x∃y (y = p (x)). In this, p is a �nite polynomial, so if x is rationalthen so also is any �nite sum of terms p (x). Corresponding reasoning applies toreal or 
omplex x. In 
ontrast, in the proposition ∀x∃y (y = exp (x)) where
exp (x) ≡ lim

n→∞

[

1 + x+
x2

2
+ · · ·+

xn

n!
+ · · ·

]

,rational x is not ne
essarily mapped to a rational point by the exponential fun
tion.Hen
e, p (x) exists by theorem but exp (x) exists unde
idably.
x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = p (x)) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = exp (x)) T T FTable 5. Truth-table for �nite polynomial: ∀x∃y (y = p (x)) and thetrans
endental fun
tion: ∀x∃y (y = exp (x)).5.2. Theorems from unde
idabilityArithmeti
al 
ombination S
alars that exist unde
idably 
an be 
ombined to yields
alars that exist by theorem. Consider the two propositions: ∃α (α = 3 + 4i) and
∃α∗ (α∗ = 3− 4i). These are unde
idable, but the produ
t of these s
alars is therational s
alar: 25, whi
h is logi
ally valid and so exists by theorem. See Table 6.

α ∈ C α ∈ R α ∈ Q

∃α (α = 3 + 4i) T F F

α∗ ∈ C α∗ ∈ R α∗ ∈ Q

∃α∗ (α∗ = 3− 4i) T F F

β ∈ C β ∈ R β ∈ Q

∃β (β = αα∗) T T TTable 6. Truth-tables for the proposition ∃α (α = 3 + 4i), ∃α∗ (α∗ = 3− 4i) and
∃β (β = αα∗).Limiting Theorems The limit of an unde
idable s
alar 
an exist by theorem. Theproposition ∃y (y2 = −x2) is unde
idable. Nevertheless, it has a limiting 
ase:
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∃y (lim

x→0 [y
2 = −x2]) whi
h is a theorem. See Table 7.

y ∈ C y ∈ R y ∈ Q

∃y (y2 = −x2) T F F

y ∈ C y ∈ R y ∈ Q

∃y (lim
x→0 [y

2 = −x2]) T T TTable 7. Truth-table for proposition ∃y
(

y2 = −x2
) and its limiting 
ase:

∃y
(

limx→0

[

y2 = −x2
]).Con
lusionsThis paper do
uments profound fa
ts well-known amongst mathemati
al logi
iansbut never taken on-board by quantum theorists. There is a logi
al feature hidden,inherent within the everyday arithmeti
 with whi
h we are most familiar. We
ommonly understand formulae in algebra to be either true or false, depending onwhether they are derived 
orre
tly or erroneously and we expe
t no alternative tothese possibilities. But this paper shows there does exist another alternative: that ofindeterminate or mathemati
ally unde
idable. This logi
al information is not pi
kedup by the standard algebrai
 formalism and perpetuates unnoti
ed throughoutapplied mathemati
s and into quantum me
hani
s where its absen
e is 
onspi
uous.Consequently, as it presently stands, physi
al theory is denied the possibility oflinking these theoreti
al indetermina
ies with indetermina
ies we observe in Nature.This paper shows that the said logi
al information is exposed in an existential versionof the algebra.This resear
h is a study in mathemati
al logi
 applied to the algebra of theField Axioms. These Axioms de�ne the algebra or arithmeti
 of s
alars: obje
tsbasi
 throughout mathemati
s. S
alars are realised to exist in two modes. Byde�nition, all s
alars satisfy the Field Axioms and so all are possible. On top ofthis, a subset of s
alars ne
essarily exists be
ause these derive dire
tly from theAxioms. Derivation and satisfa
tion are seen as 
ausally distin
t; a distin
tion notnoted in applied mathemati
s.The 
entral point on whi
h the above 
laims rest is proof, given in this paper,of a theorem in model theory that 
on�rms the existen
e of indetermina
y underthe Field Axioms: indetermina
y that 
annot be derived dire
tly. Appli
ation ofthis and other 
losely related theorems in model theory furnish two simple testsidentifying those formulae whi
h Axioms render logi
ally indeterminate and thosethey render logi
ally valid theorems in the Theory of Fields. The said theorems inmodel theory stri
tly identify unde
idable propositions as those with truth valuesthat do not 
on
ur a
ross all semanti
 interpretations, but disagree. That is: theyare not 
onsistently true, or false, when interpreted in turn as members of the
omplex plane C, the real line R, and the rational �eld Q. This result is used in
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he
king truth-tables for agreement or disagreement.Rational s
alars are shown to exist by theorem while stri
tly imaginary or irrationals
alars are unde
idable. This ultimately follows from the fa
t that only the rational�eld is a sub�eld of all �elds.An important �nding of this resear
h is that performan
e of algebrai
 operationson unde
idable propositions 
an produ
e propositions that are theorems. This hasrami�
ations for our understanding of the me
hanism for measurement in quantumme
hani
s and will be explored in greater detail in a subsequent paper.Referen
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