
Indeterminay in arithmeti, well-known tologiians, is missing from quantum theorySteve Faulkner159a, Weedon Road, Northampton, United Kingdom, NN5 5DA.Abstrat. This artile is one of a series explaining the nature of mathematialundeidability disovered within quantum theory. Signi�antly, a formula'sundeidability erti�es its indeterminay and vie versa. This paper desribes thealgebrai environment in whih the undeidability and indeterminay originate;provides proof of their existene; and demonstrates the role these play in a three-valued logi whih is free to permeate mathematial physis via this algebra.The radial idea applied in this researh is taken from very well-known resultsin mathematial logi. All salars engage in the arithmeti of salars by way ofa single algebra. But in terms of validity, these salars partition into sets whihare logially distint: those with valid existene with respet to this algebra, andthose with indeterminate existene. Failure of mathematial physis to notie thisdistintion is the reason why quantum theory is logially at odds with quantumexperiments.E-mail: StevieFaulkner�googlemail.om1. IntrodutionInherent within quantum measurement experiments is a deision proess whihurrent theory fails to express and does not explain. Eah at of measurementdeides on one value from a spetrum of de�nite options. Nature exeutes thisdeision aording to two in�uenes. One is the physial haratisti of theexperiment. The other is an indeterminate omponent not `aused' by any physialin�uene. Profoundly, this statement rules out any possibility of physial in�uenesof whih we may be in ignorane [1℄. Consequently, rules for this indeterminay maypossibly exist in Nature but are not to be found in Physis.This removal of physial in�uenes from the arena of explanations might diretus toward theories rooted in some non-lassial logi, or other. Suh notions havemotivated an extensive history of study srutinising quantum mathematis for lues.Nevertheless, the absene of referenes in the physis literature indiates that thissrutiny does not extend as far as the non-lassial logi inherent within arithmetibeneath quantum theory, upon whih the theory rests. Yet most uriously, personalexperiene of mathematial logiians reveals them to be aquainted with elementsof this logi, to the extent that they regard them as obvious and self-evident.The disrepany between experiment and theory is traeable to a logial detail ofarithmeti, not enoded in mathematial physis. The arithmeti in question is thatof salars. And the logi in question onerns distint qualities or modes of existene



Indeterminay in arithmeti is missing from quantum theory 2in whih salars our in the mathematis. This logi of salars is synonymous withthe 3-valued quantum logi postulated by Hans Reihenbah. Reihenbah showedin detail how implementation of his logi resolves the disrepanies [17℄.Salars are the mathematial objets whose rules of algebra are the FieldAxioms. See Table 1. Mathematial physis assumes the a priori existene of salars.In this artile, apriority is transferred to the Field Axioms themselves. This initiativepromotes mathematial physis from a semanti theory to a logial theory. Validityin the logial theory has greater omplexity. Well known theorems of model theory,a branh of mathematial logi, set the Field Axioms within a rigorous environmentthat naturally di�erentiates between salars that Axioms derive, distint from salarsthat satisfy them. Salars whih are not derivable exist independent of Axioms[9, 15, 18℄. They ontain information not present in Axioms.Model theory proves existene of suh independent salars are mathematiallyundeidable and logially indeterminate. Logial indeterminay and mathematialundeidability are omplementary aspets of a logial ondition present in ertainaxiomatised mathematial theories [4, 5, 15℄. In suh theories, indeterminaydesribes the state of validity of propositions that are neither valid nor invalid.Undeidability refers to the provability of these indeterminate propositions, beingneither provable nor disprovable.In 1944, Hans Reihenbah proposed a quantum logi onsisting of values: true,false and indeterminate. This was in response to `ausal anomalies' evident in theresults of quantum experiments. His logi is an adaptation of the 3-valued logi ofJan �ukasiewiz [8, 13℄, whih Reihenbah gives ertain truth tables, onjuntions,disjuntions, tautology et,. During its formation, Reihenbah arrived at thepartiular qualities of his indeterminate middle through detailed, reasoned analysisof results of quantum experiments.He found that his 3-valued logi `suppresses' the ausal anomalies [8, 16, 17℄.It furnishes a onsistent epistemology for prepared and measured states: typiallythe question of what we may know about the state of a photon immediately beforemeasurement. It derives omplimentary propositions: if statement A is either trueor false, statement B is indeterminate, and vie versa. Suh statements orrespondto measurements of omplimentary pairs suh as momentum and position. And hislogi also overomes the problem of ation at a distane, a paradox identi�ed byEinstein, Podolsky & Rosen [12℄.Though his results are ompelling, Reihenbah's logi is hypothetially basedand is not in simple agreement with mainstream quantum logis based on thequantum postulates, originating with Birkho� and von Neumann [2℄. Aeptaneof these would tend to imply the unaeptability of Reihenbah's logi. That said,Hardegree argues that these logis are not in opposition but desribe di�erent things[11℄. While the mainstream logis are based on Hilbert spae quantum theory,Reihenbah's logi is a framework for an alternative formulation. This presentpaper expounds foundation for Reihenbah's alternative.Gödel's First Inompleteness Theorem proves that mathematial undeidabilityneessarily exists in arithmeti [4, 6, 7, 19℄. This is not the kind of undeidabilityfored upon us through ignorane of information; the distintion is that information



Indeterminay in arithmeti is missing from quantum theory 3neessary for deision does not exist. Chaitin takes this informational approah toGödel's Theorem. He argues: `if a theorem [proposition℄ ontains more informationthan a given set of axioms, then it is impossible for the theorem [proposition℄ tobe derived from the axioms' [6℄. Svozil uses Turing's proof of Gödel's Theorem toargue that undeidability exists in Physis [19℄.The subjet matter of this paper is the Field Axioms, the theory they derive, andthe indeterminay inherent within. I all this the Theory of Fields to distinguishfrom Field Theory in Physis, whih is not under study. Interest in the Theoryof Fields is motivated in knowledge of the fundamental position oupied by thearithmeti of the Field Axioms; and in onsideration of the non-lassial logithis theory must proliferate, most profoundly, throughout applied mathematis,mathematial physis and quantum theory. The objet of the investigation is toon�rm the existene of indeterminate propositions within the Theory of Fieldsand establish distint onditions that guarantee either determinay, or otherwise,indeterminay. An inherent 3-valued logi onsisting of values: valid, invalid andindeterminate, will beome apparent.Propositions under onsideration are mathematial statements proposing theexistene of partiular salars, written as formulae in �rst-order logi [3, 4, 5℄.Examples of interest are:
∃α (α× α = 4) ; (1)
∃α (α× α = 2) ; (2)
∃α (α× α = −1) ; (3)
∃α

(

α−1 = 0
)

. (4)For the sake of aessibility, I have used a slightly relaxed form here. Stritly,existene of the negative sign and the inverse should also to be proposed.Naturally, ertain propositions are valid and provable, while others are invalidand disprovable. But of speial interest is a further set whih are neither of these.Instead, these propositions are in independent of Axioms; they are indeterminate andthey are mathematially undeidable. For instane: of the four propositions above,the Field Axioms prove only (1). Eah of propositions (2) and (3) is neither provablenor disprovable. In both these ases, existene of α an neither be on�rmed nordenied. Even so, the square roots of 2 and −1 are nevertheless objets that satisfythe Field Axioms and therefore, they do engage in the arithmeti. Proposition (4)is disproved by the Field Axioms. Together, (1), (2), (3) and (4) illustrate examplesof provable, undeidable and disprovable propositions.These laims of provability and validity are explained in terms of Model theory.This is a branh of Mathematial Logi that onsiders validity of propositions inrelation to assoiated mathematial strutures. In the ontext of the Field Axiomsthese assoiated strutures are �elds: not to be onfused with �elds in quantum�eld theory. Normal interpretation of the + and × operators restrits these to thein�nite �elds, of whih there are at least three: the omplex plane C, the real line
R and the smallest, the rational �eld Q. Eah is a losed struture; but jointly



Indeterminay in arithmeti is missing from quantum theory 4they form a �eld-sub�eld hierarhy where the smallest �eld is speial beause it is asub�eld of eah. This fat has ritial in�uene on whih propositions are valid andprovable, and whih are indeterminate and undeidable.2. Algebrai and logial environmentThe radial observation of this paper ame while notiing the distintion betweenneessary existene, entailing derivation from Axioms, and possible existene thatentails satisfying those Axioms. This distintion spurns two related logis. Oneis notionally ausal where neessary and possible, together with neessarily-notonstitute a modal logi [8℄. The other is notionally existential, onsisting of logiallyvalid, logially invalid and logially indeterminate; identi�able with Reihenbah.The environment in whih this seond logi emerges from the Field Axioms is nowdisussed.From the perspetive of applied mathematis, the Field Axioms are seen asa seletion of ombination rules for addition and multipliation, applied ad ho,in our most familiar arithmeti. These rules of ombination are regarded asproperties belonging to salars and so signi�ane, meaning and `reality' is plaedon salars, with Axioms taking an inidental, appended role. In this appliedmathematial senario, salars are the semanti interpretations of the objets:
α, β, γ, 0, 1, . . . in Table 1. This interpretation arises when the mathematiiandesignates α, β, γ, 0, 1, . . . to the real line or omplex plane, whihever suits theappliation. This interpretational approah deals in semanti information. Andthe at of suh designation irreversibly disards logial information imparted by theThe Field AxiomsAdditive GroupFA0 ∀α∀β∃γ (γ = α+ β) ClosureFA1 ∃0∀α (0 + α = α) Identity 0FA2 ∀α∃β (α + β = 0) InversesFA3 ∀α∀β∀γ ((α + β) + γ = α + (β + γ)) AssoiativityFA4 ∀α∀β (α + β = β + α) CommutativityMultipliative GroupFM0 ∀α∀β∃γ (γ = α× β) ClosureFM1 ∃1∀α (1α = α1 = α ∧ 0 6= 1) Identity 1FM2 ∀α∃β (α× β = 1 ∧ α 6= 0) InversesFM3 ∀α∀β∀γ ((α× β)× γ = α× (β × γ)) AssoiativityFM4 ∀α∀β (α× β = β × α) CommutativityFAM ∀α∀β∀γ (α× (β + γ) = (α× β) + (α× γ)) DistributivityTable 1. The Field Axioms written as sentenes in �rst-order logi. The variables:

α, β, γ, 0, 1 represent mathematial objets omplying with these axioms. Thesemanti interpretations of these objets are known as salars.



Indeterminay in arithmeti is missing from quantum theory 5Axioms.In ontrast to the emphasis of applied mathematis on the existene of salars,�rst-order theory plaes preedene on Axioms. The Theory of Fields is the �rst-order theory under the Field Axioms. This poses a quite di�erent senario in whihAxioms de�ne and generate the objets α, β, γ, 0, 1, . . . along with their arithmetialbehaviour. First-order theory is a striter and stronger system of derivation thanapplied mathematis. It takes full aount of all logial information imparted byAxioms, inluding information that is indeterminate. That said, no indeterminateinformation, independent of Axioms, an be proved to exist by the �rst-order theoryitself. Proof that (1) is a theorem may indeed be established by diret derivationfrom the Axioms. But diret proof that (2) and (3) are, or are not theorems isimpossible beause no information in the Axioms proves or negates them.In order to on�rm the existene of indeterminate information, theorems ofModel Theory are applied to the �elds. Fields are mathematial strutures satisfyingthe Field Axioms [14℄. Despite this trivial relationship linking �elds and FieldAxioms, their logial relationship is not straightforward. Note that: satisfying theField Axioms is a ondition of possible existene and not a ondition of neessaryexistene. We shall see that the smallest �eld neessarily exists while others possiblyexist.Model Theory demands that any given proposition is proved by the FieldAxioms, if and only if, it is true aross all �elds. All indeterminate propositions,independent of Axioms always have mixed true/ false values, disagreeing betweensome �eld and another. For existential propositions suh as (1), (2), or (3),the ondition of agreeing truths is satis�ed only for salars in the rational �eld.Therefore, only (1) is a theorem beause it is the only ase where α is rational.Figure 1 gives a preview of how this works. A onsequene is that Axioms provethe existene of all rational salars; existene of other salars is undeidable. These

Figure 1. Validity under the Field Axioms. Due to theorems of Model Theory,sentenes (small irles) suh as ∃α (αα = 4), whose semanti validities agree arelogially valid and are theorems. Sentenes suh as ∃α (αα = −1 ), whose semantivalidities disagree are logially indeterminate and are mathematially undeidable.These exhaust all possibilities.



Indeterminay in arithmeti is missing from quantum theory 6are surprising fats onsidering nothing in the arithmeti distinguishes the rationalsalars.The non-rational salars are logially independent of the Axioms. That is tosay: salars of the non-rational �elds express extraneous information, absent inthe Axioms. The rational salars, whose existene an be proved, ontain no suhextraneous information; they ontain only information already in the Axioms. Inshort, the Field Axioms are unable to prove or disprove the existene of logiallyindependent salars. Logial independene is synonymous with mathematiallyundeidability.3. ConeptsTrue is a semantial referene, synonymous with semantially valid. Apropositionmodelled by a given mathematial struture is true when interpretedin that struture.Valid is a logial referene. It is more fully referred to as logially valid.A proposition is logially valid if: purely symbolially, independent ofinterpretation, by following rules of inferene, Axioms imply the proposition.Connetives: ∧ = and; ¬ = negates; ⊢ = derives; |= = models.First-order theories omprise formulae written as propositions in �rst-order logi.The term �rst-order refers to depth of reursion of logial operations; it isnot referene to approximation. Any �rst-order theory is spei�ed in a set ofaxiom sentenes, drawn up for the purpose. A ruial feature that distinguishes�rst-order theories from applied mathematis is their strit aounting oflogial information. Variables satisfy all axiom sentenes but are attributedwith nothing more. They are purely abstrat and meaningless. If this ismisunderstood, the integrity of any derivation is at risk. In partiular, themathematiian may not introdue new information, logially independent ofAxioms, without reording the fat in an aount of assumed dependenies.She may not, for example, assign a variable to the real line, simply by sayingso, as is done in applied mathematis. E�etively, a �rst-order theory is aomputational mahine that runs aording to a programme of axiom sentenes.Output from this mahine exhibits riher oneptualisations of theorem andvalidity than does applied mathematis. In absene of any logially independentinput, output of the mahine onsists solely of theorems. In ases when thereis logially independent input, output relying on that independeny is alwaysundeidable and indeterminate.Bound variable: when we write the equation:
α + β = β + α , (5)this is an informal use of bound variables. Notie this relation spei�essomething about the algebrai behaviour of the objets α and β rather thansuggesting the performane of some arithmeti. Bound variables our wherethere is spei�ation. When writing the formal version of (5), quanti�ers ∀ are



Indeterminay in arithmeti is missing from quantum theory 7shown. These expliitly state the logi but also do the job of highlighting thefat that spei�ation is intended rather than arithmeti. Thus:
∀α∀β (α + β = β + α) . (6)The format of parenthesisation is typial of formulae in �rst-order logi.Quanti�ers ∀α and ∀β apply to every ourrene of α and β within the brakets.Sentene: formulae suh as (6), where every variable is bound, are known assentenes. (6) happens to be the sentene adopted as axiom FA4 in Table1. An example of a formula whih is not a sentene is the formula:
∀β∃α (α = β + ϑ) . (7)In this ϑ is not bound.Free variable: In (7), ϑ is a free variable as opposed to a bound variable. It is freeto be substituted by a partiular value; thus inviting the performane of somearithmeti rather than spei�ation.The Field Axioms are listed in Table 1. They omprise a set of axiom sentenesformed by the union of axioms for the Additive Group and the MultipliativeGroup. In addition to these, there is one axiom for distributivity. In theseAxioms, di�erent possibilities of interpretation exist for the symbols + and

×. For example, modulo arithmetis are options, but these are not underonsideration here. In this paper, + and × are interpreted in the usual way, assymbols of an unbounded (in�nite) arithmeti.Model: This is a mathematial struture that satis�es a sentene. It is usual tosay that suh a struture models the sentene. As an illustration, onsider theaxiom sentene FA4 from Table 1, speifying additive ommutativity. This ismodelled by any of the sets: N, Z, Q, R, C, {1}, {1,−1}, {1, 2, 3}, {all 4 × 3matries}, et.. As well as individual sentenes, sets of sentenes also havemodels. To illustrate, take two sentenes. As before, take axiom FA4 fromTable 1, but now model axiom FM4 also. Together these two sentenes speifyboth additive and multipliative ommutativity. The addition of this seondsentene eliminates the former inlusion of 4×3 matries from the set of models.Semanti interpretation: Bound variables, suh as the objets α, β, γ, 0, 1, . . .omplying with Axioms in Table 1, onvey no more meaning than the propertiesbestowed upon them by those Axioms. That said, they may be interpreted aselements of a partiular model of the Axioms. For instane, these objetsmight be interpreted as members of the real line R. This would be a semantiinterpretation of α, β, γ, 0, 1, . . ., and would involve an injetion of informationoriginating not from the Axioms but from elsewhere.Field: This is the general name for mathematial strutures that model the FieldAxioms. There are at least three in�nite �elds. These are the omplex plane C,the real line R and the rational �eld Q. The term �eld is likely to auseonfusion. In quantum �eld theory, �elds are entities assoiated with themehanis of elementary partiles. This meaning is not intended here. In thispaper, de�nition is taken from Linear Algebra.



Indeterminay in arithmeti is missing from quantum theory 8Salar: An element of a �eld. Semanti interpretation of the objets α, β, γ, 0, 1, . . .in Table 1 are salars: either omplex salars, real salars or rational salars,depending on the �eld eleted. The term salar is likely to ause onfusion.In relativity, a salar is a zero rank tensor: under hange of inertial refereneframe, an objet that transforms as a onstant number. In this paper, de�nitionis taken from Linear Algebra.4. Model TheoryOur spei� interest in Model Theory is the Soundness Theorem and its onverse,the Completeness Theorem. These are two standard theorems in model theorywhih apply to all �rst-order theories [4, 5℄. We shall see that jointly, they isolate anexluded middle of mathematially undeidable sentenes, from the set of all othersentenes whih are theorems.4.1. Standard theoremsThe Soundness Theorem:
Σ ⊢ S ⇒ ∀MΣ

(

MΣ |= S
)

. (8)If struture MΣ models axiom-set Σ, and Σ derives sentene S, then everystruture MΣmodels S.Alternatively: If a sentene is a theorem, provable under an axiom-set, thenthat sentene is true for every model of that axiom-set.The Completeness Theorem:
Σ ⊢ S ⇐ ∀MΣ

(

MΣ |= S
)

. (9)If struture MΣ models axiom-set Σ, and every struture MΣ models sentene
S, then Σ derives sentene S.Alternatively: If a sentene is true for every model of an axiom-set, then thatsentene is a theorem, provable under that axiom-set.4.2. ProofsWe now proeed to prove further theorems of model theory. Jointly, (8) and (9)result in the 2-way impliation:Validity Theorem:

Σ ⊢ S ⇔ ∀MΣ
(

MΣ |= S
)

. (10)If struture MΣ models axiom-set Σ, then axiom-set Σ derives sentene S , ifand only if all strutures MΣ model sentene S.Alternatively: A sentene is provable under an axiom-set, if and only if, thatsentene is true for all models of that axiom-set.Furthermore, for every sentene S there is a sentene ¬S; hene, jointly, (8) and(9) also guarantee a seond 2-way impliation:



Indeterminay in arithmeti is missing from quantum theory 9Invalidity Theorem:
Σ ⊢ ¬S ⇔ ∀MΣ

(

MΣ |= ¬S
)

. (11)If struture MΣ models axiom-set Σ, then axiom-set Σ derives the negation ofsentene S, if and only if all strutures MΣ model the negation of S.Alternatively: A sentene is disprovable under an axiom-set, if and only if, thatsentene is false for all models of that axiom-set.Eah of (10) and (11) exludes the sentenes of the other. And moreover, togetherthey isolate sentenes exluded by both. In the left hand sides of (10) and (11), thereis no indiation of other sentenes existing whih satisfy neither, that is: sentenesthat are neither provable nor disprovable. And so, it is of partiular interest thatthe right hand sides of (10) and (11) do indeed imply the existene of sentenes thatorrespond preisely to this ondition. These are the sentenes exluded by the righthand sides of (10) and (11) and so satisfy the following ondition on modelling:
¬∀MΣ

(

MΣ |= S
)

∧ ¬∀MΣ
(

MΣ |= ¬S
)

. (12)The aim now is to �nd the status of provability for sentenes exluded by (12). We�rstly dedue (13) and (14), the negations of (10) and (11):
¬ (Σ ⊢ S) ⇔ ¬∀MΣ

(

MΣ |= S
)

; (13)
¬ (Σ ⊢ ¬S) ⇔ ¬∀MΣ

(

MΣ |= ¬S
)

; (14)and ombine these, so as to onstrut:
¬ (Σ ⊢ S) ∧ ¬ (Σ ⊢ ¬S) ⇔ ¬∀MΣ

(

MΣ |= S
)

∧ ¬∀MΣ
(

MΣ |= ¬S
)

. (15)This limits sentenes that are neither provable nor negatable, to those that areneither true nor false aross all strutures that model the Axioms. For theorieswhose axioms are modelled by more than one single struture, where MΣ

1
and MΣ

2are distint, we an assert (16):Indeterminay Theorem:
¬ (Σ ⊢ S) ∧ ¬ (Σ ⊢ ¬S) ⇔ ∃MΣ

1

(

MΣ

1
|= S

)

∧ ∃MΣ

2

(

MΣ

2
|= ¬S

)

. (16)Axiom-set Σ derives neither S nor its negation, if and only if there existstrutures MΣ

1
and MΣ

2
whih model axiom-set Σ, suh that MΣ

1
modelssentene S, and MΣ

2
models the negation of S.Alternatively: A sentene is true for some but not all models of an axiom-set,if and only if, that sentene is undeidable under that axiom-set.5. AppliationThe Theory of Fields is a �rst-order theory and so the above theorems apply. Ourinterest in deriving these theorems is the onstrution of pratial tests for thedetetion of indeterminay, and validity.



Indeterminay in arithmeti is missing from quantum theory 10Indeterminay Test: when salars of a given sentene are interpreted, in turn, asmembers of the omplex plane C, the real line R, the rational �eld Q; the FieldAxioms neither prove nor disprove that sentene, if and only if, that senteneis true in at least one ase and false in at least one ase.This redues to a simple hek for disagreement within truth-tables.The Indeterminay Test serves the purpose we require, but note that it is notexhaustively omprehensive beause it samples only three �elds. A Validity Test,onstruted form the Validity Theorem is an impratial prospet sine it requiresthe sampling of every in�nite �eld, no matter how obsure. For a realisti test forvalidity we embrae the model theory haraterising diret derivation from Axioms.When a formula asserting existene of some partiular number is proved diretlyfrom the Field Axioms, that number will be rational. This follows beause sopefor onstrution of suh numbers is restrited to arithmetial ombinations of thenumbers 0 and 1, and are therefore limited in form to p/q, where p and q areintegers. Moreover, proof of existene for every rational derives from the FieldAxioms in this way. Hene, every formula asserting existene of a rational numberis provable; and therefore, by the Soundness Theorem, is true in every �eld. And so,any suh formulae is true independent of interpretation, and onsequently, is validby de�nition. These arguments summarise simply as:Validity Test: A formula is valid if and only if it is true in the rational �eld Q.5.1. ExamplesExistene of salars Formulae (1), (2), (3) and (4) on page 3, eah proposes theexistene of a partiular salar. In the ontext of the Theory of Fields, eah of thesepropositions poses the question: do the Field Axioms derive this formula? These
α ∈ C α ∈ R α ∈ Q

∃α (α× α = 4) T T T

α ∈ C α ∈ R α ∈ Q

∃α (α× α = 2) T T F

α ∈ C α ∈ R α ∈ Q

∃α (α× α = −1) T F F

α ∈ C α ∈ R α ∈ Q

∃α (α−1 = 0) F F FTable 2. Truth-tables for propositions: ∃α (α× α = 4), ∃α (α× α = 2),
∃α (α× α = −1) and ∃α

(

α−1 = 0
). In these T and F denote true and false.



Indeterminay in arithmeti is missing from quantum theory 11questions are answered in the four truth-tables of Table 2. In the �rst, proposition(1) is seen to be true for all three �elds, so by the Validity Test, (1) is a theorem. Theseond two truth-tables show disagreeing truth values; hene, by the IndeterminayTest, (2) and (3) are undeidable. In the last of these truth tables, all three truthvalues agree false; hene by the Invalidity Test, proposition (4) is negated.
α ∈ C α ∈ R α ∈ Q

∃α
(

α = ξQ
)

T T T

α ∈ C α ∈ R α ∈ Q

∃α
(

α = ζR
)

T T F

α ∈ C α ∈ R α ∈ Q

∃α
(

α = ηC
)

T F FTable 3. Truth-tables for propositions ∃α
(

α = ξQ
), ∃α

(

α = ζR
) and

∃α
(

α = ηC
).Existene of rational salars The rational �eld is a sub�eld of all �elds.Consequently, propositions of existene that are true in this smallest �eld areneessarily true in all �elds. See Figure 1. This means that rational salars existby theorem. Table 3 illustrates the provability of the general rational salar ξQ, theundeidability of the general real salar ζR and the undeidability of the generalomplex salar ηC.Existene of funtions A funtion in applied mathematis an spurn di�erent �rst-order propositions; some of whih might be theorems and some whih mightbe undeidable. Propositions: ∀x∃y (y = x2) and ∀y∃x (y = x2) have quanti�ersreversed. This makes an important logial di�erene. Table 4 shows the �rst ofthese two propositions is a theorem, yet the seond is undeidable.

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T F FTable 4. Truth-tables onerning the funtion y = x2.



Indeterminay in arithmeti is missing from quantum theory 12Existene of �nite polynomials versus transendental funtions Table 5 omparesformulae proposing the existene of a �nite polynomial with an example oftransendental funtion: the exponential. The �rst truth-table in Table 5 is forthe proposition: ∀x∃y (y = p (x)). In this, p is a �nite polynomial, so if x is rationalthen so also is any �nite sum of terms p (x). Corresponding reasoning applies toreal or omplex x. In ontrast, in the proposition ∀x∃y (y = exp (x)) where
exp (x) ≡ lim

n→∞

[

1 + x+
x2

2
+ · · ·+

xn

n!
+ · · ·

]

,rational x is not neessarily mapped to a rational point by the exponential funtion.Hene, p (x) exists by theorem but exp (x) exists undeidably.
x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = p (x)) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = exp (x)) T T FTable 5. Truth-table for �nite polynomial: ∀x∃y (y = p (x)) and thetransendental funtion: ∀x∃y (y = exp (x)).5.2. Theorems from undeidabilityArithmetial ombination Salars that exist undeidably an be ombined to yieldsalars that exist by theorem. Consider the two propositions: ∃α (α = 3 + 4i) and
∃α∗ (α∗ = 3− 4i). These are undeidable, but the produt of these salars is therational salar: 25, whih is logially valid and so exists by theorem. See Table 6.

α ∈ C α ∈ R α ∈ Q

∃α (α = 3 + 4i) T F F

α∗ ∈ C α∗ ∈ R α∗ ∈ Q

∃α∗ (α∗ = 3− 4i) T F F

β ∈ C β ∈ R β ∈ Q

∃β (β = αα∗) T T TTable 6. Truth-tables for the proposition ∃α (α = 3 + 4i), ∃α∗ (α∗ = 3− 4i) and
∃β (β = αα∗).Limiting Theorems The limit of an undeidable salar an exist by theorem. Theproposition ∃y (y2 = −x2) is undeidable. Nevertheless, it has a limiting ase:
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∃y (lim

x→0 [y
2 = −x2]) whih is a theorem. See Table 7.

y ∈ C y ∈ R y ∈ Q

∃y (y2 = −x2) T F F

y ∈ C y ∈ R y ∈ Q

∃y (lim
x→0 [y

2 = −x2]) T T TTable 7. Truth-table for proposition ∃y
(

y2 = −x2
) and its limiting ase:

∃y
(

limx→0

[

y2 = −x2
]).ConlusionsThis paper douments profound fats well-known amongst mathematial logiiansbut never taken on-board by quantum theorists. There is a logial feature hidden,inherent within the everyday arithmeti with whih we are most familiar. Weommonly understand formulae in algebra to be either true or false, depending onwhether they are derived orretly or erroneously and we expet no alternative tothese possibilities. But this paper shows there does exist another alternative: that ofindeterminate or mathematially undeidable. This logial information is not pikedup by the standard algebrai formalism and perpetuates unnotied throughoutapplied mathematis and into quantum mehanis where its absene is onspiuous.Consequently, as it presently stands, physial theory is denied the possibility oflinking these theoretial indeterminaies with indeterminaies we observe in Nature.This paper shows that the said logial information is exposed in an existential versionof the algebra.This researh is a study in mathematial logi applied to the algebra of theField Axioms. These Axioms de�ne the algebra or arithmeti of salars: objetsbasi throughout mathematis. Salars are realised to exist in two modes. Byde�nition, all salars satisfy the Field Axioms and so all are possible. On top ofthis, a subset of salars neessarily exists beause these derive diretly from theAxioms. Derivation and satisfation are seen as ausally distint; a distintion notnoted in applied mathematis.The entral point on whih the above laims rest is proof, given in this paper,of a theorem in model theory that on�rms the existene of indeterminay underthe Field Axioms: indeterminay that annot be derived diretly. Appliation ofthis and other losely related theorems in model theory furnish two simple testsidentifying those formulae whih Axioms render logially indeterminate and thosethey render logially valid theorems in the Theory of Fields. The said theorems inmodel theory stritly identify undeidable propositions as those with truth valuesthat do not onur aross all semanti interpretations, but disagree. That is: theyare not onsistently true, or false, when interpreted in turn as members of theomplex plane C, the real line R, and the rational �eld Q. This result is used in
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