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J. S. Markovitch
P.O. Box 752

Batavia, IL 60510
(Dated: May 14, 2011)

The fine structure constant is shown to arise naturally in the course of altering the symmetry
of two algebraic identities. Specifically, the symmetry of the identity M2 = M2 is “broken” by
making the substitution M → y on its left side, and the substitution Mn → Mn − xp on its
right side, where p equals the order of the identity; these substitutions convert the above identity
into the equation (M − y)2 = M2 − x2. These same substitutions are also applied to the only
slightly more complicated identity (M/N)3 +M2 = (M/N)3 +M2 to produce this second equation
(M − y)3

/
N3+(M − y)2 =

(
M3 − x3

)/
N3+M2−x3. These two equations are then shown to share

a mathematical property relating to dy/dx, where, on the second equation’s right side this property
helps define the special case

(
M3 − x3

)/
N3 + M2 − x3 =

(
103 − 0.13

)/
33 + 102 − 0.13 = 137.036,

which incorporates a value close to the experimental fine structure constant inverse.

PACS numbers: 06.20.Jr

I. INTRODUCTION

The fine structure constant (FSC) is shown to arise
naturally in the course of an investigation of two simple
algebraic identities whose symmetry is altered. Specifi-
cally, the symmetry of the identities

M2 = M2

and (
M

N

)3

+ M2 =

(
M

N

)3

+ M2

will be “broken” by making the substitution

M → y

on their left sides, and the substitution

Mn →Mn − xp

on their right sides, where p equals the order of each
identity. The resultant equations will then be shown to
share a mathematical property relating to dy/dx, where
for the second equation this property gives rise to a value
that is close to the experimental FSC.

II. THE SECOND-ORDER IDENTITY

Begin with the symmetric second-order identity

M2 = M2

and break its symmetry by making the substitution

M → y

on its left side, and the substitution

Mn →Mn − xp

on its right side, where p = 2, the order of the identity.
This produces

(M − y)
2

= M2 − x2 (2.1)

where the constant M is a positive integer and x and y
variables.

III. THE FSC CONDITIONS

Now for Eq. (2.1) if

x =
1

M
, (3.1)

and if

M � 1 (3.2)

(by at least an order of magnitude) then the value for
dy/dx turns out to be simply

dy

dx
≈ xp (3.3)

with p = 2 (see Section V for proof). Because Eqs. (3.1)–
(3.3) are all that will be needed to generate the FSC in
the next example they will be termed The FSC Condi-
tions.

IV. THE THIRD-ORDER IDENTITY AND THE
FINE STRUCTURE CONSTANT

To generate the FSC, combine the constant M2 with
the constant (M/N)

3
to form the expression(
M

N

)3

+ M2 .



2

Set this expression equal to itself to form this symmetric
third-order identity(

M

N

)3

+ M2 =

(
M

N

)3

+ M2

and apply the earlier substitutions

M → y

Mn →Mn − xp

with p now equaling 3. This produces The FSC Equation(
M − y

N

)3

+ (M − y)
2

=
M3 − x3

N3
+ M2 − x3 .

(4.1)
Here the constants M and N are assumed to be positive,
and x and y are again variables.

Note that earlier Eq. (2.1) proved consistent with all
three FSC Conditions. But it is only for specific values of
M and N that Eq. (4.1) will likewise be consistent with
all three conditions. To be precise, if Eq. (4.1) fulfills
the first two FSC Conditions (Eqs. (3.1) and (3.2)) then
it will also fulfill the third FSC Condition (Eq. (3.3))
provided that

M =
N3

3
+ 1 (4.2)

(see Section VI for proof). Notably, inspection reveals
that the smallest positive integers fulfilling Eq. (4.2) are

M = 10

and

N = 3 ,

where substitution into the right side of Eq. (4.1) gives

103 − 0.13

33
+ 102 − 0.13 = 137.036 .

The above values, in turn, determine that the left side of
Eq. (4.1) gives(

10

3
− 1

3× 29999.932166 . . .

)3

+

(
10− 1

29999.932166 . . .

)2

= 137.036 ,

where the 2006 CODATA value for the FSC inverse
equals 137.035 999 679, a value differing by just 2.3 parts
per billion from 137.036 [1].

Hence, as was the case earlier for Eq. (2.1), the first
two FSC Conditions imply the third FSC Condition, but
for Eq. (4.1) this is true provided that M and N fulfill Eq.
(4.2), where, surprisingly, the smallest positive integers
that fulfill Eq. (4.2) generate the FSC inverse as a by-
product. Accordingly, the FSC inverse arises naturally
from the analysis of the “broken symmetry” of two simple
mathematical identities, making 137.036 of interest to
pure mathematicians independent of its important role
as a fundamental constant of physics.

V. PROOF INVOLVING THE SECOND-ORDER
IDENTITY AND EQUATION

Proof that for Eq. (2.1), if Eqs. (3.1) and (3.2) are
true so is Eq. (3.3).

Equation (2.1)

(M − y)
2

= M2 − x2

simplifies to

2My − y2 = x2

so that

(2M − 2y) dy = 2xdx

dy

dx
=

x

M − y
.

Equation (3.1) provides that x =
1

M
so that

dy

dx
=

x2

1− xy
.

Given Eqs. (3.1) and (3.2), the cross-terms on the left
side of Eq. (2.1) guarantee that y < x2, while Eqs. (3.1)
and (3.2) also determine that x� 1 . Accordingly,

dy

dx
≈ x2 .

In this way Eq. (3.3) is recovered for p = 2, confirming
that if Eqs. (3.1) and (3.2) (the first two FSC Conditions)
are true then so is Eq. (3.3) (the third FSC Condition).

VI. PROOF INVOLVING THE THIRD-ORDER
IDENTITY AND THE FSC EQUATION

Proof that for Eq. (4.1), if its values for M and N
fulfill Eq. (4.2), then if Eqs. (3.1) and (3.2) are true so
is Eq. (3.3).

If the higher-order powers of y in the FSC Equation
(Eq. (4.1))(

M − y

N

)3

+ (M − y)
2

=
M3 − x3

N3
+ M2 − x3

are ignored, then it can be simplified to

3M2y

N3
+ 2My ≈ x3

N3
+ x3

3M2y + 2N3My ≈ x3 + N3x3



3(
3M + 2N3

)
My ≈

(
N3 + 1

)
x3

and solved for y

y ≈ N3 + 1

3M + 2N3

x3

M

≈ N3 + 1

M + 2
3N

3

x3

3M
,

so that

dy ≈ N3 + 1

M + 2
3N

3

x2

M
dx

and

dy

dx
≈ N3 + 1

M + 2
3N

3

x2

M
. (6.1)

Although Eq. (6.1) is approximate, the terms it ignores
are small as y is small (which y will be, given the first
two FSC Conditions).

Now in order to assure that for Eq. (4.1), if the first two
FSC Conditions are met then the third FSC Condition
will also hold, combine Eqs. (6.1) and Eq. (3.3) to give

xp ≈ dy

dx
≈ N3 + 1

M + 2
3N

3

x2

M
.

For Eq. (4.1) p = 3, so

x3 ≈ N3 + 1

M + 2
3N

3

x2

M

and

x ≈ N3 + 1

M + 2
3N

3

1

M
.

Equation (3.1) provides that x =
1

M
so that by substi-

tution

1

M
≈ N3 + 1

M + 2
3N

3

1

M
.

This gives

1 ≈ N3 + 1

M + 2
3N

3

or

M +
2

3
N3 ≈ N3 + 1 ,

which gives

M ≈ N3

3
+ 1 .

Hence, Eq. (4.2) does constrain Eq. (4.1)’s values for M
and N in such a way that if Eqs. (3.1) and (3.2) (the first
two FSC Conditions) are true then so is Eq. (3.3) (the
third FSC Condition).
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