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A single mathematical model encompassing both quark and lepton mixing is described. This
model exploits the fact that when a 3× 3 rotation matrix whose elements are squared is subtracted
from its transpose, a matrix is produced whose non-diagonal elements have a common absolute
value, where this value is an intrinsic property of the rotation matrix. For the traditional CKM
quark mixing matrix with its second and third rows interchanged (i.e., c – t interchange), this value
equals one-third the corresponding value for the leptonic matrix (roughly, 0.05 versus 0.15). By
imposing this and two additional related constraints on mixing, and letting leptonic ϕ23 equal 45◦,
a framework is defined possessing just two free parameters. A mixing model is then specified using
values for these two parameters that derive from an equation that reproduces the fine structure
constant. The resultant model, which possesses no constants adjusted to fit experiment, has mixing
angles of θ23 = 2.367445◦, θ13 = 0.190987◦, θ12 = 12.920966◦, ϕ23 = 45◦, ϕ13 = 0.013665◦, and
ϕ12 = 33.210911◦. A fourth, newly-introduced constraint of the type described above produces a
Jarlskog invariant for the quark matirx of 2.758 × 10−5. Collectively these achieve a good fit with
the experimental quark and lepton mixing data. The model predicts the following CKM matrix
elements: |Vus| =

√
0.05 = 2.236 × 10−1, |Vub| = 3.333 × 10−3, and |Vcb| = 4.131 × 10−2. For

leptonic mixing the model predicts sin2 ϕ12 = 0.3, sin2 ϕ23 = 0.5, and sin2 ϕ13 = 5.688 × 10−8.
At the time of its 2007 introduction the model’s values for |Vus| and |Vub| had disagreements with
experiment of an improbable 3.6σ and 7.0σ, respectively, but 2010 values from the same source now
produce disagreements of just 2.4σ and 1.1σ, the absolute error for |Vus| having been reduced by
53%, and that for |Vub| by 78%.

PACS numbers: 12.15.Ff, 14.60.Pq
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I. INTRODUCTION

The phenomenon of mixing [1–3] has been explored with the aid of a wide variety of physical models [4]. However,
an alternative approach to understanding mixing is available: the mathematics of rotation matrices, on the one hand,
and the quark and lepton mixing data, on the other, can be analyzed apart from the Standard Model to see what
they can reveal about each other. As this article will show, even this limited approach can produce results worthy
of note. Specifically, we will demonstrate that if a 3 × 3 rotation matrix whose elements are squared is subtracted
from its transpose, a matrix is produced whose non-diagonal elements possess a common absolute value; this value
is an intrinsic property of the rotation matrix. For the mixing matrices determined by experiment this value in the
leptonic sector measures three times its value in the quark sector in four independent ways.

Generally speaking, however, the above property has not been discussed in the mixing literature. Why should this
be so? It is perhaps because it is only if one builds the CKM quark mixing matrix with its c- and t-quarks interchanged
relative to convention that this distinguishing property for leptons (equaling roughly 0.15) [2] is readily seen as three
times that for quarks (equaling roughly 0.05) [3]. When the quark mixing matrix is built in the traditional manner no
such obvious relation presents itself. Of course, the above relation might be coincidental, but given that the traditional
assignment of the c-quark to the 2nd generation and the t-quark to the 3rd is arbitrary, there is no reason such an
exchange should not be made.

In this article a single mathematical model encompassing both quark and lepton mixing will be described. The
model is defined with the aid of, and distinguished by, four constraints that each exploit the property described above.
This will allow the model’s six angles and two phases to arise naturally within a common mathematical framework.
This article is an update to articles from 2007 [5] and 2009 [6], which made no attempt to model CP violating phases.
The purpose here is, in part, to incorporate phase into the mixing model, but also to see how well the model has
fared experimentally since 2007. As will be seen, a value close to experiment for the CKM mixing matrix’s Jarlskog
invariant arises naturally when a constraint of the above type is imposed on the quark and lepton phases (see Section
VIII). A comparison of the model’s 2007 predictions against the most recent quark mixing data is offered by Table I,
while Table II provides the corresponding comparison for leptonic data.

II. MIXING MATRICES AND THE PRIMARY COUPLING CONSTRAINT

The quark and lepton mixing matrices [2, 3] without their phases are each merely a 3× 3 rotation matrix. Let

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.1)

be such a matrix, so that squaring its elements gives r211 r212 r213
r221 r222 r223
r231 r232 r233

 .

Given that a rotation matrix with its elements squared has rows and columns that sum to one, the above matrix can
also be written  r211 1− r211 − r213 r213

1− r211 − r231 r211 + r213 + r231 + r233 − 1 1− r213 − r233
r231 1− r231 − r233 r233

 .

When this matrix is subtracted from its transpose it gives 0 r231 − r213 r213 − r231
r213 − r231 0 r231 − r213
r231 − r213 r213 − r231 0

 ,

a matrix whose non-diagonal elements all equal

±
(
r231 − r213

)
.

It follows that |r231 − r213| is an intrinsic property of the rotation matrix R.
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Now assume that R is produced by rotations through the angles ψ23, ψ13, and ψ12, so that

R =

 c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

 , (2.2)

where s12 ≡ sinψ12, c12 ≡ cosψ12, etc. For R define

∆Pψ23,ψ13,ψ12
= |r231 − r213| (2.3)

= | (s12s23 − c12c23s13)
2 − (s13)2|

= |(s12s23)2 + (−c12c23s13)2 − 2s12c23c12s23s13 − (s13)2| ,

its degree of coupling asymmetry. (Note that Eq. (8.2) will later deal with the changes in coupling asymmetry caused
by phase.)

Also define the quark mixing matrix

V =

 c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

 , (2.4)

where s12 ≡ sin θ12, c12 ≡ cos θ12, etc., and where θ23, θ13, and θ12 are the quark mixing angles.
And define the leptonic mixing matrix

U =

 c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

 , (2.5)

where s12 ≡ sinϕ12, c12 ≡ cosϕ12, etc., and where ϕ23, ϕ13, and ϕ12 are the leptonic mixing angles. Note that both
of these matrices are in the usual form, except that phase is omitted for both [2][3].

With the aid of the above definitions it is now possible to illustrate how ∆Pψ23,ψ13,ψ12
will be exploited in this

article. Note that in the remainder of this section the experimental values of all matrix elements will be approximate.
Consider first the mixing matrix that arises if the traditional CKM quark mixing matrix [3] with its elements

squared

d s b

u
c
t

 0.95 0.05 0
0.05 0.95 0

0 0 1.00


has its second and third rows (i.e., its c- and t-quarks) interchanged

d s b

u
t
c

 0.95 0.05 0
0 0 1.00

0.05 0.95 0


(equivalent to applying an π/2 offset to θ23). Subtracting this second matrix from its transpose gives 0.95 0.05 0

0 0 1.00
0.05 0.95 0

−
 0.95 0 0.05

0.05 0 0.95
0 1.00 0

 =

 0 +0.05 −0.05
−0.05 0 +0.05
+0.05 −0.05 0

 (2.6)

so that

∆Pπ
2 +θ23,θ13,θ12 = 0.05 . (2.7)

For the traditional leptonic mixing matrix [2] with its elements squared

ν1 ν2 ν3

νe
νµ
ντ

 0.70 0.30 0
0.15 0.35 0.50
0.15 0.35 0.50
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no equivalent interchange will be required. Subtracting it from its transpose gives 0.70 0.30 0
0.15 0.35 0.50
0.15 0.35 0.50

−
 0.70 0.15 0.15

0.30 0.35 0.35
0 0.50 0.50

 =

 0 +0.15 −0.15
−0.15 0 +0.15
+0.15 −0.15 0

 (2.8)

so that

∆Pϕ23−π
2 ,ϕ13,ϕ12

= 0.15 . (2.9)

Note that, for reasons of symmetry with Eq. (2.7) an offset of π/2 is also applied to ϕ23 in Eq. (2.9). In what follows
this will lead to ϕ23 equaling 135◦ rather than the usual 45◦ (see Eq. (7.6)).

In this way the calculation of experimental ∆P for quark and lepton mixing leads to Eqs. (2.7) and (2.9), which
are forms of what will be termed the primary coupling asymmetry for the mixing matrices. These equations, in turn,
combine to form

∆Pϕ23−π
2 ,ϕ13,ϕ12 = 3×∆Pπ

2 +θ23,θ13,θ12 , (2.10)

which this article will maintain constitutes a precise physical law.

III. THE MIXING MODEL: IMPOSING SIX CONSTRAINTS ON THE SIX MIXING ANGLES

It will now be shown how two mixing matrices and their six mixing angles can be specified by imposing on them
six independent constraints.

Firstly, let

ϕ23 =
π

4
+
π

2
. (3.1)

Secondly, following Eq. (2.10), let

∆Pϕ23−π
2 ,ϕ13,ϕ12

= 3×∆Pπ
2 +θ23,θ13,θ12 (3.2)

the primary coupling constraint. (Ultimately, a total of four such constraints with be imposed on the quark and lepton
mixing matrices: the remaining three being the two secondary coupling constraints of Eqs. (4.1) and (4.2)—implied
by the four equations immediately below—and the phase constraint of Eq. (8.3), introduced in Section VIII.)

And, finally, generate four mixing angles with the aid of g12 and g13, model parameters whose possible values will
be examined in detail later. These subscripts are chosen because g12 helps define the mixing angles ϕ12 and θ12,
whereas g13 helps define the mixing angles ϕ13 and θ13:

sinϕ12 =
√

3g12 , (3.3)

sin θ13 =
√
g13/3 , (3.4)

sin θ12/ sinϕ23 =
√
g12 , (3.5)

sinϕ13/ sin θ23 =
√
g13 . (3.6)

Equations (3.1)–(3.6) together supply the six constraints needed to determine the six quark and lepton mixing
angles and comprise the mixing model specification. Given that ϕ23 has its value explicitly assigned by Eq. (3.1)
it is easy to calculate the three angles specified by Eqs. (3.3)–(3.5); in contrast, because Eq. (3.6) must be solved
simultaneously with Eq. (3.2) the angles ϕ13 and θ23 are not so easily computed.

Also make note that the expressions whose square roots occupy the right sides of Eqs. (3.3)–(3.6)

3g12 ,

g13/3 ,

g12 ,

g13

will be seen later in Eq. (6.17) in connection with the fine structure constant.
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IV. THE TWO SECONDARY COUPLING CONSTRAINTS

It is important to recognize that Eqs. (3.3)–(3.6) were chosen only because they automatically impose the following
additional two constraints on what will be termed secondary coupling asymmetry

∆Pϕ23,0,ϕ12
= 3×∆Pπ

2 ,0,θ12
, (4.1)

∆P−π
2 ,ϕ13,0 = 3×∆Pθ23,θ13,0 . (4.2)

It is these secondary coupling constraints in combination with the primary coupling constraint of Eq. (3.2) that
constitute the conceptual key to the parameterization described by this article. Below, these three constraints are
expressed in a list that makes it easier to compare the angles they employ. Observe, particularly, that the angles of
the first row equal the sum of the angles of the second and third rows:

∆P

(((
ϕ23 −

π

2
, ϕ13 , ϕ12

)))
= 3 × ∆P

(((
π

2
+ θ23 , θ13 , θ12

)))
, (4.3)

∆P

(((
ϕ23 , 0 , ϕ12

)))
= 3 × ∆P

(((
π

2
, 0 , θ12

)))
, (4.4)

∆P

(((
− π

2
, ϕ13 , 0

)))
= 3 × ∆P

(((
θ23 , θ13 , 0

)))
. (4.5)

(See Eqs. (10.1)–(10.4) for these constraints summarized along with the phase constraint, mentioned above.)
Finally, consider that the net electric charge of the leptonic sector equals three times that of the quark sector

− 1 + 0 = 3×
(

1

3
+ −2

3

)
, (4.6)

where three is the number of quark colors. Considering that in the above list the value for ∆P in the leptonic sector
consistently equals three times ∆P in the quark sector it is reasonable to conjecture that the number of quark colors
may fulfill an equivalent role for coupling asymmetry: that is to say, they may balance the net amount of coupling
asymmetry possessed by the leptonic sector against that possessed by the quark sector.

V. DERIVATION OF THE SECONDARY COUPLING CONSTRAINTS

To see how Eqs. (4.1) and (4.2) derive from Eqs. (3.3)–(3.6), consider that according to Eq. (2.3)

∆Pψ23,ψ13,ψ12
= (sinψ12 sinψ23 − cosψ12 cosψ23 sinψ13)

2 − sin2 ψ13 . (5.1)

Substitution reveals that

∆Pϕ23,0,ϕ12 = sin2 ϕ12 sin2 ϕ23 , (5.2)

so that Eqs. (3.3) and (5.2) give

∆Pϕ23,0,ϕ12
= 3g12 sin2 ϕ23 ; (5.3)

and substitution reveals that

∆Pπ
2 ,0,θ12

= sin2 θ12 , (5.4)

(5.5)

so that Eqs. 3.5) and (5.4) give

3×∆Pπ
2 ,0,θ12

= 3g12 sin2 ϕ23 . (5.6)

Combining Eqs. (5.3) and (5.6) recovers Eq. (4.1).
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Substitution reveals that

∆Pθ23,θ13,0 = (− cos θ23 sin θ13)
2 − sin2 θ13 (5.7)

= cos2 θ23 sin2 θ13 − sin2 θ13

= (cos2 θ23 − 1) sin2 θ13

= − sin2 θ23 sin2 θ13 ,

(5.8)

so that (3.4) and (5.7) give

3×∆Pθ23,θ13,0 = −g13 sin2 θ23 ; (5.9)

and substitution reveals that

∆P−π
2 ,ϕ13,0 = − sin2 ϕ13 , (5.10)

so that Eqs. (3.6) and (5.10) give

∆P−π
2 ,ϕ13,0 = −g13 sin2 θ23 . (5.11)

Combining Eqs. (5.9) and (5.11) recovers Eq. (4.2). In this way Eqs. (3.3)–(3.6) assure that various g12 and g13
produce mixing angles that fulfill the secondary coupling constraints described by Eqs. (4.1) and (4.2).

VI. MIXING MODEL PARAMETERS g12 AND g13 AND THE MIXING MODEL “NEXUS”

Of course the values for g12 and g13 can simply be adjusted in an attempt to fit the five mixing angles that are
not explicitly assigned a value in the model. In and of itself, such a fit, if successful, would be no small achievement,
given that just two values must be adjusted to fit five.

However, it is more interesting—and predictive—to derive the values for g12 and g13 from the following nearly-
symmetric equation

(M − g13)
3

N3
+ (M − g13)

2
=

(
M3 − g312

)
N3

+
(
M2 − g312

)
(6.1)

=
1

α
.

Here the constants M and N are the smallest positive integers that solve Eq. (6.1), where g12 and g13 are variables
fulfilling

dg13
dg12

≈ g312 (6.2)

at

g12 =
1

M
. (6.3)

The reasons for employing Eqs. (6.1)–(6.3) are purely pragmatic. They define values for g12 and g13 that:

• Reproduce the six mixing angles within their limits of experimental error.

• Reproduce the fine structure constant α to within a few parts per billion (ppb).

To see how, observe that if some higher-order terms are ignored Eq. (6.1) can be solved for g13 as follows:

3M2g13
N3

+ 2Mg13 ≈
g312
N3

+ g312 (6.4)

3M2g13 + 2N3Mg13 ≈ g312 +N3g312 (6.5)

Mg13(3M + 2N3) ≈ g312(1 +N3) (6.6)

g13 ≈
g312
M
× 1 +N3

3M + 2N3
(6.7)

g13 ≈
g312
3M
× 1 +N3

M + 2
3N

3
. (6.8)



8

Now, if

M =
N3

3
+ 1 , (6.9)

then Eq. (6.8) simplifies to

g13 ≈
g312
3M

. (6.10)

Taking the derivative of each side yields

dg13
dg12

≈ g212
M

, (6.11)

and substituting from Eq. (6.3) gives

dg13
dg12

≈ g212
1/g12

≈ g312 , (6.12)

which recovers Eq. (6.2). The smallest positive integers that solve Eq. (6.9) are

M = 10 (6.13)

and

N = 3 . (6.14)

It follows that:

Equations (6.1), (6.3), (6.13), and (6.14) determine that

g13 =
1

29999.932116
. (6.15)

Equations (6.3), (6.13), and (6.14) determine that the right side of Eq. (6.1) equals

103 − 10−3

33
+ 102 − 10−3 =

1

α
= 137.036 . (6.16)

And Eqs. (6.13)–(6.15) determine that the left side of Eq. (6.1) equals[
10

3
− 1

3× 29999.932116

]3
+

[
10 − 1

29999.932116

]2
= (6.17)[

1

3g12
− g13

3

]3
+

[
1

g12
− g13

]2
=

1

α
= 137.036 .

In this way, as claimed earlier, Eq. (6.1) reproduces the precisely-known fine structure constant α to within a few
ppb. Specifically, the 2006 CODATA value for the fine structure constant inverse 1/α equals 137.035 999 679 [7],
which is within just 2.3 ppb of 137.036.

More important for the issue of mixing, however, is that the four expressions

3g12 = 3/10 , (6.18)

g13/3 = 1/(3× 29999.932116) , (6.19)

g12 = 1/10 , (6.20)

g13 = 1/29999.932116 (6.21)

that appear in Eq. (6.17) reappear in the square roots that occupy the right sides of Eqs. (3.3)–(3.6). All this suggests
a common mathematical substructure shared by the mixing model angles and the fine structure constant, however
obscure its physical origin. The above four expressions and their values will be termed the mixing model nexus, as they
tie the fine structure constant to the mixing model. It only remains to demonstrate that the above values for g12 and
g13 “accurately reproduce,” as also claimed earlier, the experimental quark and lepton mixing angles. Accordingly,
the model’s closeness of fit will be assessed in the next section.

It is important to recognize that the above values for g12 and g13 have not been chosen to fit either the mixing angles
or the fine structure constant: instead they arise independently in connection with the study of nearly-symmetric Eq.
(6.1), an issue that has already been examined in four distinct ways:
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• See [8] for a more general analysis of equations taking the form of Eq. (6.1).

• See [9] for a brute-force computer search for compact approximations of the fine structure constant, one that
independently arrives at Eq. (6.16).

• See [10] for equations tying Eq. (6.17) to the muon-, neutron-, and proton-electron mass ratios.

• Also relevant is [11], which argues that the constants 3, 10, and 41/10 relate to the quark and lepton mass
ratios.

VII. MIXING MODEL PREDICTIONS WITHOUT PHASE

Equations (3.1)–(3.6) in combination with the assignments of the previous section

g12 =
1

10
, (7.1)

g13 =
1

29999.932116
(7.2)

produce the following mixing angles

θ23 = 2.367445◦ , (7.3)

θ13 = 0.190987◦ , (7.4)

θ12 = 12.920966◦ , (7.5)

ϕ23 = 135◦ , (7.6)

ϕ13 = 0.013665◦ , (7.7)

ϕ12 = 33.210911◦ . (7.8)

(Note that, although g13 = 1/29999.932116 is used above, whereas g13 = 1/30000 was used in 2007 [5], this change is
too small to affect the assessment of the model’s fit of experiment presented in Tables I and II.)

The above angles, in turn, produce mixing matrices without phase that are close to those determined by experiment.
Specifically, the calculated quark mixing matrix equals

d s b

Vg12=1/10, g13=1/29999.932116 =

 0.974674 0.223606 0.003333
0.005991 0.041007 0.999141
0.223550 0.973817 0.041308

 u
t
c

, (7.9)

whereas the corresponding leptonic matrix equals

ν1 ν2 ν3

Ug12=1/10, g13=1/29999.932116 =

 0.836660 0.547723 0.000238
0.387439 0.591516 0.707107
0.387157 0.591700 0.707107

 νe
νµ
ντ

. (7.10)

(See Eqs. (9.1) and (9.3), respectively, for the calculated quark and lepton mixing matrices with phase.)
For quark mixing the model predicts the following sines squared

sin2 θ12 = 1/20 = g12 × sin2 ϕ23 ,

sin2 θ23 = 1.706346× 10−3 ,

sin2 θ13 = 1/(3× 29999.932116) = g13/3 ,

while also predicting these CKM matrix elements
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TABLE I: Quark mixing data compared against 2007 predictions.

Year |Vus| |Vub| |Vcb| JQ

2007 Prediction 0.2236 0.003333 0.04131 2.758× 10−5d

2010 a 0.2253+0.0007
−0.0007 0.00347+0.00016

−0.00012 0.0410+0.0011
−0.0007 2.91+0.19

−0.11 × 10−5

Error in SD 2.4 1.1 0.3 1.4

2008 b 0.2257+0.0010
−0.0010 0.00359+0.00016

−0.00016 0.0415+0.0010
−0.0011 3.05+0.19

−0.20 × 10−5

Error in SD 2.1 1.6 0.2 1.5

2006 c 0.2272+0.0010
−0.0010 0.00396+0.00009

−0.00009 0.04221+0.0001
−0.0008 3.08+0.16

−0.18 × 10−5

Error in SD 3.6 7.0 1.1 1.8

aRef. [3]. Particle Data Group 1σ global fit.
bRef. [14]. Particle Data Group 1σ global fit.
cRef. [13]. Particle Data Group 1σ global fit.
dAlthough this value for the Jarlskog invariant was unambiguously implied by the model angles of 2007, it was not explicitly introduced

until this article (see Eq. (8.6) in Section VIII).

|Vus| = 2.236× 10−1 , |Vub| = 3.333× 10−3 , |Vcb| = 4.131× 10−2

each of which is unaffected by phase, and each of which derives primarily from a different mixing angle.
Given that the model described in this article was first introduced in 2007 [5] it is logical to begin by comparing
these predictions against 2006 CKM mixing data [13], which was then current. As it turns out, the model differs
from these 2006 data

|Vus| = 2.272+0.01
−0.01 × 10−1 , |Vub| = 3.96+0.09

−0.09 × 10−3 , |Vcb| = 4.221+0.010
−0.080 × 10−2

by 3.6, 7.0, and 1.1 standard deviations, respectively, a large discrepancy. However, this same source also of-
fers 2010 data [3]

|Vus| = 2.253+0.007
−0.007 × 10−1 , |Vub| = 3.47+0.16

−0.12 × 10−3 , |Vcb| = 4.10+0.11
−0.07 × 10−2

from which the model differs by just 2.4, 1.1, and 0.3 standard deviations, respectively. It is particularly
striking that the discrepancy regarding |Vus| is reduced from 3.6 to 2.4 standard deviations, and that for |Vub| from
7.0 to 1.1, though for this second case the reduction occurs in part because of a widening of its lower error bar from
−0.09 to −0.12. That the absolute error for |Vus| is reduced by 53%, and that for |Vub| by 78%, is also good evidence
for the correctness of the model (see summary in Table I).

The 2010 leptonic data is much less telling, as there has always been general agreement between the model and
experiment. The model’s leptonic sines squared equal

sin2 ϕ12 = 0.3 = 3g12 ,

sin2 ϕ23 = 0.5 ,

sin2 ϕ13 = 5.687834× 10−8 .

These can be compared against these 2010 experimental values [12]

sin2 ϕ12 = 0.318+0.019
−0.016 ,

sin2 ϕ23 = 0.50+0.07
−0.06 ,

sin2 ϕ13 = 0.013+0.013
−0.009 ,

from which they differ by 1.2, 0, and 1.4 standard deviations, respectively (see summary in Table II).
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TABLE II: Lepton mixing data compared against 2007 predictions.

Year sin2 ϕ12 sin2 ϕ23 sin2 ϕ13 JL

2007 Prediction 0.3 0.5 5.688× 10−8 5.465× 10−5e

2010 a 0.318+0.019
−0.016 0.50+0.07

−0.06 0.013+0.013
−0.009 no data

Error in SD 1.1 0 1.4

2008 b 0.304+0.022
−0.016 0.50+0.07

−0.06 0.010+0.016
−0.011 no data

Error in SD 0.25 0 0.9

2006 c 0.300+0.020
−0.030 0.50+0.08

−0.07 ≤ 0.025 d no data

Error in SD 0 0

aRef. [12]. A 1σ global fit. This source includes an update containing 2010 data.
bRef. [12]. A 1σ global fit.
cRef. [15]. A 1σ global fit.
dRef. [15]. A 2σ global fit.
eAlthough this value for the Jarlskog invariant was unambiguously implied by the model angles of 2007, it was not explicitly introduced

until this article (see Eq. (8.7) in Section VIII).

VIII. THE PHASE CONSTRAINT AND THE JARLSKOG INVARIANT

The following matrix

R =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 (8.1)

employs a phase δ in order to model mixing with CP violation [2, 3] (as earlier, s12 ≡ sinψ12, c12 ≡ cosψ12, etc.,
while now eiδ = cos δ + i sin δ).

How does phase affect the squares of the magnitudes of this matrix? The short answer is: by its effect on the
four complex matrix elements at its lower left. The key point is that when one of these elements is multiplied by its
complex conjugate to compute the square of its magnitude, imaginary cross-terms are produced that cancel, thereby
erasing some fraction of the expression

2s12c23c12s23s13 .

Accordingly, when the above four complex matrix elements each possess a zero phase the above expression contributes
its full value to the square of the elements’ magnitudes (as it does in Eq. (2.3)); e.g.,

(s12s23)2 + (−c12c23s13)2 − 2s12c23c12s23s13 cos 0◦ ;

whereas when these four elements each possess a non-zero phase δ the above expression contributes only a fraction of
its value to the square of the elements’ magnitudes; e.g.,

(s12s23)2 + (−c12c23s13)2 − 2s12c23c12s23s13 cos δ ;

whereas when these four elements each possess a 90◦ phase the above expression contributes nothing to the square of
the elements’ magnitudes; e.g.,

(s12s23)2 + (−c12c23s13)2 − 2s12c23c12s23s13 cos 90◦ .

It is particularly logical and instructive to explore the effect that such a 90◦ phase has on leptonic magnitudes,
given that it neatly equalizes the second and third rows of the model’s leptonic matrix (a consequence of ϕ23 = 135◦;
see Eq. (9.3)). With this is mind, let the earlier

∆Pψ23,ψ13,ψ12

notation, introduced with Eq. (2.3), be adapted for use with the matrix of Eq. (8.1), so that by definition

∆P δψ23,ψ13,ψ12
= | −2s12c23c12s23s13(1− cos δ) | . (8.2)
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(Here the expression 1 − cos δ reflects that fraction of −2s12c23c12s23s13 that is lost because of phase δ, so that
∆P δψ23,ψ13,ψ12

expresses the resultant change to a matrix element’s magnitude squared, caused by this phase.)
Now, with the aid of this notation, let

∆P 90◦

ϕ23−π
2 ,ϕ13,ϕ12

= 3×∆P δπ
2 +θ23,θ13,θ12 , (8.3)

the phase constraint promised in Section III, which constrains the quark and lepton phases in the same way that Eqs.
(3.2), (4.1), and (4.2) constrain the quark and lepton mixing angles. Equation (8.3) expands to

∆P 90◦

ϕ23−π
2 ,ϕ13,ϕ12

∆P δπ
2 +θ23,θ13,θ12

=
| sinϕ12 cos(ϕ23 − π/2) cosϕ12 sin(ϕ23 − π/2) sinϕ13(1− cos 90◦)|
| sin θ12 cos(π/2 + θ23) cos θ12 sin(π/2 + θ23) sin θ13(1− cos δ)|

= 3 , (8.4)

which, for the model angles of Eqs. (7.3)–(7.8), determines

δ = 66.889573◦ . (8.5)

This phase and the quark mixing angles of Eqs. (7.3)–(7.5) produce a Jarlskog invariant [16] of

JQ = | sin θ12 cos(π/2 + θ23) cos θ12 sin(π/2 + θ23) sin θ13 cos2 θ13 sin δ| (8.6)

= | −2.757743× 10−5|
= 2.757743× 10−5 ,

which compares well against its 2010 experimental value [3] of

JQ = 2.91+0.19
−0.11 × 10−5 . (8.7)

This calculated JQ differs from its experimental counterpart by just 1.4 standard deviations (see Table I). And finally,
a 90◦ leptonic phase and the leptonic mixing angles of Eqs. (7.6)–(7.8) produce a leptonic Jarlskog invariant of

JL = | sinϕ12 cos(ϕ23 − π/2) cosϕ12 sin(ϕ23 − π/2) sinϕ13 cos2 ϕ13 sin 90◦| (8.8)

= 5.464533× 10−5 ,

which is as yet unmeasured.

IX. MIXING MODEL PREDICTIONS WITH PHASE

Earlier the mixing matrices were calculated, but without the aid of phase. Here this defect will be remedied. Below,
the quark phase of 66.889573◦ from Eq. (8.5) helps generate this quark mixing matrix

d s b

Vg12=1/10, g13=1/29999.932116, δ=66.889573◦ =

 0.974674 0.223606 0.003333

0.008504 0.040560 0.999141

0.223469 0.973835 0.041308

 u

t

c

, (9.1)

whereas the 2010 best fit CKM matrix magnitudes [3] are as follows

d s b

VCKM =

 0.97428+0.00015
−0.00015 0.2253+0.0007

−0.0007 0.00347+0.00016
−0.00012

0.00862+0.0007
−0.0007 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

0.2252+0.00026
−0.00020 0.97345+0.00015

−0.00016 0.0410+0.0011
−0.0007

 u

t

c

. (9.2)

Similarly, a 90◦ leptonic phase helps generate this leptonic mixing matrix

ν1 ν2 ν3

Ug12=1/10, g13=1/29999.932116, δ=90◦ =

 0.836660 0.547723 0.000238

0.387298 0.591608 0.707107

0.387298 0.591608 0.707107

 νe
νµ
ντ

, (9.3)

where, notably, the 90◦ phase equalizes the matrix’s second and third rows. (See Eqs. (7.9) and (7.10), respectively,
for the quark and lepton mixing matrices without phase.)
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X. SUMMARY OF THE FOUR CONSTRAINTS ON COUPLING ASYMMETRY

The following four equations

∆P 90◦
(((

135◦ − π

2
, ϕ13 , ϕ12

)))
= 3 × ∆P δ

(((
π

2
+ θ23 , θ13 , θ12

)))
, (10.1)

∆P

(((
135◦ − π

2
, ϕ13 , ϕ12

)))
= 3 × ∆P

(((
π

2
+ θ23 , θ13 , θ12

)))
, (10.2)

∆P

(((
135◦ , 0 , ϕ12

)))
= 3 × ∆P

(((
π

2
, 0 , θ12

)))
, (10.3)

∆P

(((
− π

2
, ϕ13 , 0

)))
= 3 × ∆P

(((
θ23 , θ13 , 0

)))
, (10.4)

which assume a leptonic phase of 90◦ and a ϕ23 of 135◦, derive their unusual form from Eqs. (4.3)–(4.5). Together
they summarize the four constraints this article’s mixing model imposes on quark and lepton coupling asymmetry.
These equations map over to earlier equations as follows:

10.1 ←→ 8.3
10.2 ←→ 3.2
10.3 ←→ 4.1
10.4 ←→ 4.2

The CKM phase of Eq. (8.5) and the model angles of Eqs. (7.3)–(7.8) provide a good fit to experiment; they also
fulfill all four of the above constraints. The model’s angles, in turn, derive from g12, g13 and Eqs. (3.3)–(3.6), where
the values for g12 and g13 derive from a special solution to Eq. (6.1). Substituting the model angles of Eqs. (7.3)–(7.8)
and the CKM phase δ of Eq. (8.5) into Eqs. (10.1)–(10.4) gives

∆P 90◦
(((

45◦, 0.013665◦, 33.210911◦
)))

= 3 × ∆P 66.889573◦
(((

92.367445◦, 0.190987◦, 12.920966◦
)))

, (10.5)

∆P

(((
45◦, 0.013665◦, 33.210911◦

)))
= 3 × ∆P

(((
92.367445◦, 0.190987◦, 12.920966◦

)))
, (10.6)

∆P

(((
135◦, 0◦, 33.210911◦

)))
= 3 × ∆P

(((
90◦, 0◦, 12.920966◦

)))
, (10.7)

∆P

(((
−90◦, 0.013665◦, 0◦

)))
= 3 × ∆P

(((
2.367445◦, 0.190987◦, 0◦

)))
. (10.8)

XI. SUMMARY OF HOW THE MODEL HAS FARED AGAINST EXPERIMENT SINCE 2007

It is in its divergences from experiment that a model is most interesting:

• Will the model continue at odds with experiment indefinitely?

• Or will experiment accommodate the model?

At the time of its introduction in 2007 the model’s values for |Vus| and |Vub| had disagreements with experiment of
an improbable 3.6σ and 7.0σ, respectively. Because it lacked free parameters the model could not then be “adjusted
to fit experiment.” In any case, this has proven unnecessary: the 2010 values from the same source now produce
disagreements of just 2.4σ and 1.1σ, the absolute error for |Vus| having been reduced by 53%, and that for |Vub| by
78%. For |Vus| a narrowing of its error bars leaves its predicted value still in disagreement with experiment by an
uncomfortable 2.4σ (see Table I). This disagreement suggests a new prediction: The quark and lepton mixing angle
that should now undergo the greatest adjustment is the Cabibbo angle. This angle is associated with |Vus|, which
should shrink from its 2010 value of 0.2253, toward its predicted value of 0.2236.
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XII. CONCLUSION

Why has the 2007 mixing model proven so prescient?
Apparently, because it possesses no constants adjusted to fit experiment. Instead, its predictions arise from the

study of the intrinsic properties of pairs of rotation matrices. One would expect that this total lack of “wiggle room”
would make the model easy to refute experimentally. On the contrary, it has almost completely healed its earlier
serious conflict with experiment and, with the exception of the Cabibbo angle, finds itself in excellent accord with all
mixing data.

The mixing model described here exploits a non-traditional version of the CKM quark mixing matrix, a version in
which its second and third rows are interchanged. It also exploits the fact that when a 3 × 3 rotation matrix whose
elements are squared is subtracted from its transpose the matrix produced has non-diagonal elements that possess a
common absolute value. For the above non-traditional CKM matrix this value equals one-third the corresponding value
for the leptonic matrix. By a building a framework of four such constraints and assuming a leptonic CP violating
phase of 90◦ and a leptonic ϕ23 of 45◦, the quark and lepton mixing matrices with their phases can be specified
with just two free parameters. Using values for these two parameters that derive from an equation that precisely
reproduces the fine structure constant, a specific mixing model is then generated. The resultant model is, therefore,
purely mathematical in origin, but, importantly, it is also entirely devoid of free parameters. Given the model’s lack
of freely adjusted parameters, its excellent fit of the mixing data, and its correct prediction of the magnitude and
direction of the most recent changes to experimental |Vus| and |Vub|, its further study appears justified.
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