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Abstract

If a system is consisted of a large number of charged particles,

any one of the system’s particles would couple with its neighbors by

dissimilar strengths. Therefore, the system’s particles would produce

dissimilar potentials, which satisfy the probability distribution. To

make the potential induced by wave number k an exact differential,

we introduced the function λ. In this way, we defined the potential

function Φ and entropy function S of the system.
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1 Introduction

In a system that is consisted of a large number of charged particles, any one

of the system’s particles would couple with its neighbors to produce dissim-

ilar potential function Φ. Based on the dissimilar coupling strengths, those

particles would possess different potentials, which satisfy the probability dis-

tribution function f . To make energy exerted on wave number k by the

system’s particles an exact differential,we introduced the function λ. After

combining the two charged systems into a stable one, we defined the poten-

tial function Φ and entropy function S of the stable system. If the system’s

potential is moved from the curved surface Ci to Cj, the particles would take

ordered motions under the potential Φ.

2 The system’s potential function and entropy

function when charged particles couple with

one another

In ith particle, that carries charge q and couples with field Eki
in a system of

large amount particles, when this electric charge q is coupled with a system

in instable state. ith particle would produce potential [1]

ϕi =

∫ bi

ai

Eki
· dk, (1)

in (1), k is the field’s wave number of a carries charge q, at the coupling,

and the ith particle would have energy
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εi = qϕi. (2)

It is assumed that the system has N particles number. Owing to that

coupling between individual particles shows differences, those particles would

have dissimilar energy. Under the assumption that the energy of those par-

ticles satisfies the probability distribution function f, we get the following for

the phase space Ω and particles numbers in the system, based on (1) integral,

the potential function ϕi of a particle exist the upper limit bi and lower limit

ai.

When exist large numbers particles in a system, for coupling potential

function ϕ =
∫ b

a
E · dk, the integral both the upper limit b and lower limit

a satisfy same probability distribution function f , hence the upper limit

become 〈b〉 and lower limit is 〈a〉[2]. Every one of particles there is expected

potential function 〈ϕ〉 =
∫ 〈b〉
〈a〉 E · dk and expected energy 〈ε〉 = q〈ϕ〉. For (2),

when N particles exist in the system, we has energy

E =

∫ 〈b〉

〈a〉
Nq Ek · dk, (3)

if the system’s electric charge Q = Nq and potential Φ(r, k), the Φ(r, k)

is a potential function of spatial position r and wave number k.

We make electric field in instable state, Ek = ∂Φ/∂k and force Fk =

Q∂Φ/∂k = QEk, then the energy of the particle becomes

δE ′ = Q∂Φ/∂k · dk. (4)

For a potential function Φ in the stable state, there is field Er = ∂Φ/∂r,

the electric charge Q has energy [3]
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δE ′′ = Q∂Φ/∂r · dr, (5)

and force Fr = Q∂Φ/∂r = QEr, which is associated with the spatial

position of Q. It can be observed from (5) that energy of the charge Q.

Hence (4) and (5) the potential energy of Q against would be

δE = Q∂Φ/∂r · dr + Q∂Φ/∂k · dk = QEr · dr + QEk · dk, (6)

by calculating the closed curve integral calculus of (6), we have

E =

∮
δE =

∮
QEr · dr +

∮
QEk · dk, (7)

for conservation system because
∮

QEr · dr = 0 [4], we have

E ′ =
∮

QEk · dk, (8)

the equation that is related with the integral wave number k. Owing to

(8) is not equal to zero. For the integral path, do not make exact differential.

Now we apply the Method of Caratheodory to a system of charged par-

ticles [5, 6], to showed that the concepts of potential and entropy

function. By rewriting (4) into its component form, we get

δE = δE ′ =
n∑
j

QEkj
· dkj. (9)

Equation (9) must be multiplied by a function 1/λ to make it an exact

differential, let (8) becomes a exact differential. Hence (9) we obtain

1

λ
δE =

1

λ

n∑
j

QEkj
· dkj, (10)
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in (10), we get following solution

F = A (A is constant), (11)

make dF = 0, from (10) and (11) then become

dF =
1

λ
δE =

1

λ

n∑
j=1

QEkj
· dkj. (12)

Take n = 3 for the spatial component, made dF = 0, and (10) and (12)

becomes

dF =
1

λ
(QEk1 · dk1 + QEk2 · dk2 + QEk3 · dk3) = 0, (13)

dF = ∂F/∂k1 · dk1 + ∂F/∂k2 · dk2 + ∂F/∂k3 · dk3 = 0, (14)

the dF is a exact differential, from (13) and (14), we have

(∂F/∂k1)/QEk1 = (∂F/∂k2)/QEk2 = (∂F/∂k3)/QEk3 = 1/λ, (15)

the (13) is an exact differential. In the case of 2 systems respectively of

system 1 and system 2, we get the following from (13)

dF1 =
1

λ1

δE1, dF2 =
1

λ2

δE2. (16)

Let the two systems merge into one, their potentials should be equal when

the two systems reach the equilibrium point. In the new system formed by

the

afore-listed two we have
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dF =
1

λ
δE . (17)

let τ be the potential of systems 1 and 2 in the equilibrium process, we

get the following from (12), (16) and (17) from energy conservation:

dF =
δE
λ

=
δE1 + δE2

λ
=

λ1

λ
dF1 +

λ2

λ
dF2, (18)

dF = ∂F/∂F1dF1 + ∂F/∂F2dF2 + ∂F/∂τdτ, (19)

comparing (18) with (19), we get

∂F/∂F1 = λ1/λ, ∂F/∂F2 = λ2/λ and ∂F/∂τ = 0. (20)

It would not be difficult to see from (20) that F is irrelevant with τ

potential, by taking ∂F/∂τ = 0 and ∂Fl/∂τ = 0 (l = 1, 2), namely,

∂(λ1/λ)/∂τ = ∂(λ2/λ)/∂τ = 0, (21)

from (21) we have

∂(ln λ1)/∂τ = ∂(ln λ2)/∂τ = ∂(ln λ)/∂τ = L(τ), (22)

L(τ) is a common function that is irrelevant with the system. consider

(22) , we draw into a function M(Fl) of the variable Fl, from (20), by taking

∂F/∂τ = 0 and ∂Fl/∂τ = 0 (l = 1, 2) becomes

ln λl =

∫
L(τ)dτ + ln M(Fl), (23)
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or

λl = M(Fl) exp(

∫
L(τ)dτ) (l = 1, 2). (24)

Now we may define the electric system’s potential function Φ(τ)

Φ(τ) = C exp(

∫
L(τ)dτ) (C is constant), (25)

and entropy function S[7]

Sl =
1

C

∫
M(Fl)dFl (l = 1, 2), (26)

from the energy relation δE = δE1 + δE2 = λ1dF1 + λ2dF2, formulas (16),

(24), (25) and (26), we have

δE =
[ 2∑

l=1

1

C
M(Fl)dFl

][
C exp(

∫
L(τ)dτ)

]
=

2∑

l=1

Φ(τ)dSl. (27)

When the system’s energy shifts from the curved surface F = C1 to F =

C2, factor 1/Φ is introduced into (27) to make the entropy differential, dS =

δE/Φ are an exact differential. By now, we may illustrate the order motion of

the charged particles by using potential Φ , or by using the system’s entropy

S. In statistical mechanics, the thermodynamical motion of particles should

satisfy the Boltzmann equation, the disorder motions of particles could be

represented by using entropy S ′ = k ln W [8], where k is Boltzmann constant,

W is probability. If temperature T and potential Φ simultaneously exist in

the same system, these particles would move in both states respectively of

disorder thermodynamical motion and order potential motion.
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