A PROPERTY OF THE CIRCUMSCRIBED OCTOGON

Prof. Ion Pătraşcu - "Fraţii Buzeşti" College, Craiova, Romania

Prof. Florentin Smarandache - University of New Mexico, USA

Abstract

In this article we'll obtain through the duality method a property in relation to the contact cords of the opposite sides of a circumscribable octagon.

In an inscribed hexagon the following theorem proved by Blaise Pascal in 1640 is true.
Theorem 1 (Blaise Pascal)
The opposite sides of a hexagon inscribed in a circle intersect in collinear points.
To prove the Pascal theorem one may use [1].
In [2] there is a discussion that the Pascal's theorem will be also true if two or more pairs of vertexes of the hexagon coincide. In this case, for example the side $A B$ for $B \rightarrow A$ must be substituted with the tangent in A. For example we suppose that two pairs of vertexes coincide. The hexagon $A A^{\prime} B C C^{\prime} D$ for $\mathrm{A}^{\prime} \rightarrow A, \mathrm{C}^{\prime} \rightarrow C$ becomes the inscribed quadrilateral $A B C D$. This quadrilateral viewed as a degenerated hexagon of sides $A B, B C, C C^{\prime} \rightarrow$ the tangent in $C, C^{\prime} D \rightarrow$ $C D, D^{\prime} A \rightarrow D A, A A^{\prime} \rightarrow$ the tangent in A and the Pascal theorem leads to:

Theorem 2

In an inscribed quadrilateral the opposite sides and the tangents in the opposite vertexes intersect in four collinear points.

Remark 1

In figure 1 is presented the corresponding configuration of theorem 2.

Fig. 1

For the tangents constructed in B and D the property is also true if we consider the $A B C D$ as a degenerated hexagon $A B B^{\prime} C D D^{\prime} A$.

Theorem 3

In an inscribed octagon the four cords determined by the contact points with the circle of the opposite sides are concurrent.

Proof

We'll transform through reciprocal polar the configuration from figure 1 . To point E will correspond, through this transformation the line determined by the tangent points with the circle of the tangents constructed from E (its polar). To point K corresponds the side $B D$.

Fig. 2

To point F corresponds the line determined by the contact points of the tangents constructed from F to the circle. To point L corresponds its polar $A C$. To point A corresponds, by duality, the tangent $A L$, also to points B, C, D correspond the tangents $B K, C L, D K$. These four tangents together with the tangents constructed from E and F (also four) will contain the sides of an octagon circumscribed to the given circle.

In this octagon $(A C)$ and $(B D)$ will connect the contact points of two pairs of opposite sides with the circle; the other two lines determined by the contact points of the opposite sides of the octagon with the circle will be the polar of the points E and F. Because the polar transformation through reciprocal polar leads to the fact that to collinear points correspond concurrent lines; the points' polar E, K, F, L are concurrent; these lines are the cords to which the theorem refers to.

Remark 2

In figure 2 we represented an octagon circumscribed $A B C D E F G H$. As it can be seen the cords $M R, N S, P T, Q U$ are concurrent in the point W.

References

[1] Roger A Johnson - Advanced Euclidean Geometry, Dover Publications, Inc. Mineola, New-York, 2007
[2] N. Mihăileanu - Lecţii complementare de geometrie, Editura Didactică şi Pedagogică, Bucureşti, 1976
[3] Florentin Smarandache - Multispace \& Multistructure, Neutrosophic Trandisciplinarity (100 Collected Papers of Sciences), Vol IV, 800 p., North-European Scientific Publishers, Hanko, Finland, 2010

