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Abstract   In this paper, we show the internal relations among the elements of the circular sequence 

(1,12,21,123,231,312,1234,3412,…). We illustrate one method to minimize the number of the “candidate 

prime numbers” up to a given term of the sequence. So, having chosen a particular prime divisor, it is 

possible to analyze only a fixed number of the smallest terms belonging to a given range, thus providing the 

distribution of that prime factor in a larger set of elements. Finally, we combine these results with another 

one, also expanding the study to a few new integer sequences related to the circular one. 
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§1. Candidate primes in the canonical circular sequence 

 
We introduce a few notations to indicate (synthetically) some special groups of terms of the sequence 

A001292 of Sloane’s  On-line Encyclopedia [8]. First of all, we have to explain what the circular sequence is 

[9-12]. 

 
   The first terms of the Smarandanche circular sequence and a few of the consecutive one [7]. 

 

Definition 1.1.  Given the n-th term of the Smarandache consecutive sequence A007908, constructed 

through the juxtaposition of the first n integers, we define as “circular permutations” the n elements that 

constitute the subset of the permutations of the form: 

aj-i+1:=2_3_4_..._(n-1)_n_1 ⇒ p1=1,  

aj-i+2:= 3_4_..._(n-1)_n_1_2 ⇒ p2=2,  

… 

aj:= (i+1)_(i+2)_..._(n-1)_n_1_2_..._(i-1)_i ⇒ pi=i, 

… 

aj+n-i:=1_2_3_..._(n-1)_n ⇒ pn=n. 
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Now we have to clarify the two parameters necessary to isolate a given class of elements from the rest [7]. 

 

Definition 1.2.  Let r:=n be the n-th term of the consecutive sequence (1_2_3_..._(n-1)_n) and let M(r) 

denote the whole set of the circular permutations of that element (Definition 1.1). Given r, we single out one 

particular element of the circular sequence simply by assigning a value to the parameter p. 

For example, (r=n, p=i) denote aj:=(i+1)_(i+2)_..._n_1_2_..._(i-1)_i ∈ M(n). Obviously , n≥1 

[5], the generic element of the consecutive sequence, is characterized by p≡r=n. 

We know that only  of the terms are not divisible by 2, 3 or 5 (numbers that are relatively prime to 

30) and Ripà [7] has spelt out their form. 

It is possible to show that the terms divisible by a lot of larger prime factors outline well-defined patterns 

inside the sequence, and it is quite simple to detect their size. 

Theorem 1.3.  Given a specific prime factor 7≤pr< , where aj:=(r=n, p=i), within the whole set of 

numbers characterized by p and r formed by a fixed amount of digits, if aj | pr, aj’:=(r=n+q, p=i+k) | pr. In 

particular, if the length in digits of r and p is the same, q=k. 

Theorem 1.4.  Given aj and defining as “d(p)” the length in digits of p, if d(p) is (strictly) less than d(r) - the 

digit length of r -, the natural number q linked to each  such that 10
d(p)-1

≤  ≤10
d(p)

-1 is equal to k 
1
. 

Corollary 1.5.  Let d(r) and d(p) be fixed. , q and k (if these exist) are multiples of pr 

(q:=pr*t and k:=pr*s, where t,s ) 
2
. 

Using the results above, we can try to identify several patterns for given values of d(p) and d(r). 

For example, choosing pr=7 and d(r)=d(p)=2, we have 

 
                                                             
1
  Clearly, d(r) [1, +∞) and d(p) [1, d(r)]. 

2
 Since (by definition) d(r)≥d(p), it is possible that Corollary 1.5 is valid only for q (while there is not such a k 

related to the given pr). This occurrence implies d(r)>d(p), because we are able to identify k (empirically) only if 

it is less than . 



 

In this case, d(r)=d(p) ⇒ k=q=7*m, particularly m=3. 

The grid shows that each column and each row contains three black squares, but this is not a general law. It 

is possible to deduce that the total number of the terms of the sequence, divisible by a given “pr” related to a 

pattern that recurs more than once in the chosen d(r)=constant interval, is at least   . Under the previous 

restriction on pr, the non-strict inequality above includes all the possible combinations of d(r) and d(p). So 

we could exploit this relation to synthesize a probabilistic formula that tries to estimate the ratio of 

“candidate prime terms” (the elements that are not divisible by the prime factors taken into account in the 

pattern analysis) in comparison with the numerousness of the elements belonging to the d(r)=constant subset 

of the circular sequence: 

    (1) 

The index h refers to the h-th element of the prime number sequence A000040 prj:=2,3,5,7,11,13,17…, for 

j=1,2,3,4,5,6,7,…, so the first term of the summation above is pr5:=11, whereas the products start from 

pr4:=7.  

Specifically referring to the patterns’ repetitiveness, the concrete constraint is that prh is forced to be less 

than   
3
. 

Moreover, excluding from the previous formula the prj for which the corresponding pattern does not repeat at 

least once, for the given value of d(r), we get a probabilistic overestimation of the candidate primes ratio 
4
 (in 

such a case, we have to consider only the multiplication factors linked to the primes that could be used in the 

pattern analysis, while the remaining subset of A000040 must be deleted from the estimation formula (1)). 

To show an example of a pattern that does not respect the previous prediction, we can take pr=11 and 

d(r)=d(p)=2: 

 

We could also think of the implicit result [7] related to pr=37 and r=3. In that case m=1, but there are 37*2 

terms divisible by 37 for each 37x37 grid of elements. In fact, there are two different values of 100≤r<137 

such that, for each possible value of p≤r, the factorization of aj:=(p+1)_..._(r-1)_r_1_2_3_..._(p-1)_p 

includes the prime factor 37.  

Section 4 contains a random collection of other patterns of the same kind, for pr {7,11,13,37} and d(r)≤4. 

An obvious consequence is that, once we have detected the value of q:=q(pr, d(r), d(p)) for a given          

(pr*, d(r≤r*)), we automatically know what is the value of k:=k(pr*, d(r), d(p)) for the whole set of terms 

                                                             
3
 In Section 2, this result will be combined with another one to further reduce the candidate prime numbers set. 

4
 Due to the inequality stated a few lines before. 



 

identified by d(r)≤d(r)* (reminder: d(p)≤d(r), ∀pr). The final result is that, under the previous conditions we 

have stated, k is implicit in q. Another way to formalize the same result is to postulate that, for a given      

pair (pr, d(p)), the value of k is constant at the variation of the parameter r. This is graphically shown in the 

figure below: 

 

    In this graph, sectors of the same color represents sets of elements characterized by an identical value of k. 

There is another outcome (quite easy to demonstrate). Let pr=pr* (i.e., any prime number). Taking two 

generic terms of the consecutive sequence, say a’:=(p=n’, r=n’) M(n’)  and a”:=(p=n”, r=n”) M(n”)  – 

where n’>n” -,  which are both divisible by pr*, the following element of the circular sequence is also 

divisible by pr*:  

a’’’:=(n”+1)_(n”+2)_…_(n’-1)_n’_1_2_3_…_(n”-1)_n” M(n’).  In fact, the number (n”+1)_…_(n’-1)_n’ is 

divisible by pr* as well. 

Clearly we can be sure that pr* divides the terms  

(n”+1)_(n”+2)_…_(n’-1)_n’_…_(n’+q-1)_(n’+q)_1_2_3_…_(n”-1)_n” M(n’+q),  

(n”-k+1)_…_(n’-1)_n’_1_2_3_…_(n”-k-1)_(n-k)” M(n’)  and  

(n”-k+1)_…_n’_(n’+1)_…_(n’+q)_1_2_3_…_(n”-k-1)_(n”-k) M(n’+q) iff d(p) and d(r) will remain 

unchanged. In this way, knowing the distribution of a small prime factor inside a portion of the consecutive 

sequence, we are able to exclude another subset of non prime elements from the circular one. These data 

allow us to rule out some terms of the circular sequence characterized by d(p)=d(r), because the known 

period of the consecutive sequence is q and, in those sectors, q=k (Theorem 1.3). 

To illustrate a practical application, we could adopt the same prime factors analyzed by Ripà [7] and study 

one particular square grid with 37x37 terms characterized by d(r)=d(p)=3. The pattern is as follows: 



 

 

The white squares plus the red ones represent the candidate prime numbers (the red squares are effectively 

prime numbers), the black squares describe terms that are divisible by (at least) one prime factor belonging 

to {2,3,5,37}, whereas the blue items represent the elements of the circular sequence divisible by 7, 11 or 13. 

In this case, the candidate primes are 101 (with 3 prime numbers A181073) in a total of 1369 terms. 

In a given (d(r),d(p)) sector, overlapping the pattern of the terms divisible by prb+1 (for b≤h-1) on the pattern 

of the elements divisible by pr(j≤b), we are able to reduce the total of the candidate prime numbers to verify 

via a primality test [2], with the advantage of studying only a few of the “shortest” terms of the sequence in 

our (d(r),d(p)) quadrant, for some 7≤prj< .  

 

 

§2. The finite sequence of the circular digit permutations and others 

 
In this section we illustrate another important rule linked to the patterns of the circular sequence divisibility 

and then we present a few new sequences constructed starting from the result mentioned above. 

 

Definition 2.1.  Let f1_f2_f3_..._f(n-1)_fn be the n-tuple of consecutive digits resulting from the concatenation 

of the first n terms of the sequence A007376, where f1:=1 and f2:=f1+1. We define as “circular permutations 

of the digits” the n elements that compound the subset of the permutations of the form: 
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l+1:=f2_f3_f4_..._f(n-1)_fn_f1≡2_3_4_..._f(n-1)_fn_1,  

l+2:=f3_f4_..._f(n-1)_fn_f1_f2≡3_4_..._f(n-1)_fn_1_2,  

… 

l+i:=f(i+1)_f(i+2)_..._fn_f1_f2_..._fi-1_fi≡f(i+1)_f(i+2)_..._fn_1_2_..._fi-1_fi, 

…  

l+n:=f1_f2_f3_..._f(n-1)_fn≡1_2_3_..._f(n-1)_fn. 

 

Theorem 2.2.  For some pairs (j,r),  M(r) | prj. For these (j,r), all the circular permutations of the digits of 

M(r) are also divisible by prj. 

 

Let d(r)=constant, by Theorem 1.3, M(r) | prj ⇒ M(r+q) | prj, but there exist others pr>  which 

are in possession of the same property. Besides, from Theorem 2.2, it follows that all the possible circular 

permutations of the digits of M(r+q) are also divisible by prj.  

On the next pages, we analyze the sequence by Definition 2.1, related to every circular permutation of the 

digits of the canonical consecutive sequence A007908. Hence, we limit the number of the terms of the 

sequence fixing d(r) at 3, so r∈[100, 999]. Unbundling a chunk of the extended circular digit permutations 

sequence, there are a lot more new elements than in the canonical circular sequence. Thus: 

1:=12345…9899100 ∈ M(100),  

2:=23456…98991001 ∈ M(100), 

… 

11:=0111213…98991001234567891≡111213…98991001234567891 ∈ M(100), 

… 

1386450:=91234…99799899 ∈ M(999). 

The total of the elements of such a sequence is 192+195+198+…+2886+2889, that is 

     (2)  

This represents only the empirical evidence of the properties we have already seen in the first section: there 

are several prj (A180346) that divide the whole set of the digit permutations of M( ), for ∈[100, 999]. Let 

4≤j≤169 (which implies 7≤pr≤1009), the  values are the following (and under our assumption, they belong 

to the sequence A181373 of the OEIS [8]): 

M( ) | 7   ⇒ =100+14*v        (v=0,1,2,…,64) 

M( ) | 11 ⇒ =106+22*v        (v=0,1,2,…,40) 

M( ) | 13 ⇒ =120+26*v        (v=0,1,2,…,33) 

M( ) | 17 ⇒ =196+272*v      (v=0,1,2) 

M( ) | 19 ⇒  =102+114*v     (v=0,1,2,3,4,5,6,7) 

M( ) | 23 ⇒ =542 

M( ) | 29 ⇒ =400 

M( ) | 31 ⇒ =181+155*v      (v=0,1,2,3,4,5) 

http://oeis.org/A180346


 

M( ) | 37 ⇒ =123+ ,       (where ds=0,12,25,12,25,12,25,…   for s=0,1,2,3,…,47) 

M( ) | 41 ⇒ =216+205*v      (v=0,1,2,3) 

M( ) | 43 ⇒ =372+301*v      (v=0,1,2) 

M( ) | 53 ⇒ =127+689*v      (v=0,1) 

M( ) | 61 ⇒ =616 

M( ) | 67 ⇒ =399 

M( ) | 73 ⇒ =196+584*v      (v=0,1) 

M( ) | 83 ⇒ =118 

M( ) | 97 ⇒ =516 

M( ) | 101 ⇒ =416+404*v    (v=0,1) 

M( ) | 107 ⇒ =884 

M( ) | 127 ⇒ =106 

M( ) | 163 ⇒ =576 

M( ) | 211 ⇒ =306 

M( ) | 271 ⇒ =936 

M( ) | 277 ⇒ =174 

M( ) | 1009 ⇒ =960 

Using these relations, we are able to reduce the percentage of candidate prime terms of the chart at the end 

of Section 1, since M(181) | 31 and the numerousness of candidate primes among our 1369 elements crashes 

at 90 (with a ratio of 0.06574). 

Lemma 2.3.  In the interval we have set, the “fixed factors” from Theorem 2.2 recur with regularity when  

grows: they are periodical and the period is a multiple of prj itself (as stated in Corollary 1.5). 

 

The inclusion of pr=1009 in the list, which is above the upper limit of , represents the proof of the existence 

of primes that divide all the possible circular digit permutations of a given M(r), for which the method 

presented in the first section cannot be applied. It is possible to combine this property with the method 

previously shown. The synergy of these two techniques would lead us to a very small percentage of 

candidate prime terms to test in the direct way 
5
. 

We should initially know for which pairs (pr, r) there is a full match. For this purpose, it is sufficient to apply 

Pascal’s method [3-4] to derive the divisibility criteria of the prime factors we want to consider. 

Under the restriction on r made at the beginning, we can find a lot of values of pr> =900 

characterized by the applicability of Lemma 2.3. For example, we can take pr2157:=18973 and r=903. 

Specifically referring to the fixed pr analysis (derived from Lemma 2.3), and considering the finite interval 

we are studying, we are able to synthesize the previous conditions (for all the given prj≤169 – implying the 

constraint ai(mod 10):≡{1,3,7,9} -) in the following relations: 

                                                             
5
 We are clearly referring to primality tests. 



 

   

So, there are only 233 M( ) in this finite sequence, that do not have (at least) a pr<1009 that divides all the 

elements of the set r=costant, and these are 

103,109,112,115,121,124,130,133,139,145,151,154,157,163,166,169,175,178,187,190,193,199,202,205,208,

211,214,217,220,223,229,232,235,241,244,247,256,259,262,265,274,277,280,283,286,289,292,295,298,301,

307,313,316,319,322,325,331,334,337,340,343,346,349,355,358,361,364,367,373,376,379,385,388,391,397,

403,409,412,415,418,424,427,430,433,439,442,445,448,451,454,457,460,463,466,469,472,475,481,487,490,

496,499,508,511,514,517,523,526,529,532,535,538,541,544,547,550,553,556,559,565,571,574,577,580,583,

586,589,592,595,598,601,607,610,613,619,622,625,628,631,637,643,649,652,655,658,661,664,667,670,676,

679,682,685,694,697,703,706,709,712,721,724,733,736,739,742,745,748,751,754,757,760,763,769,775,778,

781,784,787,790,793,799,802,805,808,811,817,823,829,835,841,844,847,850,853,859,862,865,868,871,877,

880,883,886,889,892,895,901,904,907,910,913,916,919,922,925,928,931,934,943,946,955,958,961,967,970,

973,976,979,985,988,991,994,997. 

Considering the canonical circular sequence bounded by d(r)=3, without using the pattern analysis on the 

smallest prj, we are able to exclude most of the elements of the sequence, limiting the candidate prime terms 

subset to under 11.1% of the total sum of the elements. In fact, we have:  and 

. This implies a percentage of candidate prime terms equal to 

0.4004189*0.2770478*100=11.0935%. 

In the case of the extended circular sequence to 1386450 terms, the percentage is even lower than in the 

previous one (well below 11%) 
6
. 

At this point, we could modify our finite sequence a little, without altering its representative properties. We 

have to arrange, in ascending order, the 1386450 elements of (2). Cutting out the details, it is clear that, for a 

given r, the first terms of the corresponding sequence subset start with two zeros. In fact, they are composed 

by 2 digits fewer than most of the other “room-mates” (in short, for a given value of the parameter r). 

At the end of this operation, we know that the result does not vary, because the order of the subsets ri 

remains unchanged, due to the maximum spread (between one pair of the elements of this set) of 2 digits, 

since each unitary increase of r adds 3 new digits to the “standard term” linked to the preceding value of r. It 

is also superfluous to specify that the numerousness of the candidate primes does not change appreciably, as 

well as the considerations we have already made about the “fixed prime factors”. 

Remember that the criterion at the bottom of the previous relations is general: for example, taking r∈[1000, 

9999] it will only vary  the linear rules that describe the periodicity of the fixed factors, but the concept will 

survive the new d(r). The only constraint to adhere to is that d(r) must be constant. 

Now we could once again extend the sequence of the circular digits permutations mentioned before, defining 

another sequence with the same features as the previous one, but in which, after each set of permutations, 

only one new digit is added. Starting from the infinite extended consecutive sequence 

                                                             
6
 We have taken into account the constraint for the candidate primes that implies the congruence in (mod 10) to 

{1,3,7,9}. 



 

1,12,123,…1234556789,1234567891,12345678910,123456789101,… we consider the set of all the circular 

permutations of each one of these terms, as we have already done starting from the canonical circular 

sequence. We could also repeat the same process for a few other Smarandache sequences (e.g., the reverse 

one A000422 [1-10]). Referring to the expanded circular digit permutations sequence, we might transpose 

the same questions introduced by Ripà [7]: the results are pretty interesting. Without taking away the fun of 

the discovery, choosing as example the extended consecutive sequence that we have just described, we can 

only say that it contains some prime terms [11] (it does not even require deep analysis). In fact, the shortest 

primes are A176942 

Sm’_10:=1234567891, 

Sm’_14:=12345678910111, 

Sm’_24:=123456789101112131415161, 

Sm’_235:=12345…1101111121131141, 

Sm’_2804:=12345…96696796896997097, 

Sm’_4347:=12345…1359136013611362136313, 

Etc. (Note that Sm’_n is exactly n digits long). 

Referring to the circular sequence extended to include all the circular permutations of its digits, it is clear that 

the outcome stated in the first section still remains valid considering that, ∀n’>n”, if 1_2_3_..._f(n’-1)_fn’ is 

divisible by prj and that 1_2_3_..._f(n”-1)_fn” is also divisible by the same prime factor, then 

f(n”+1)_..._f(n’-1)_fn’_1_2_3_…_ f(n”-1)_fn” results in being divisible by prj (and obviously prj is a prime factor 

of f(n”+1)_..._f(n’-1)_fn’ as well). This is a general property of each number, not only for those belonging to the 

extended consecutive sequence set: taking T’ (a random sequence composed of t’ figures that is divisible by 

prj) and T” (another t” digit long sequence that is divisible by the same prj), T’_T” and T”_T’ are both 

divisible by prj. 

If we take a look at the sequence constructed  from the circular permutations of the digits of the extended 

consecutive sequence (1,12,123,…,123456789,1234567891,12345678910,1234456789101,…), we can 

easily find a lot of sets of circular arrangements that are entirely divisible by the same prj. So, 

1_2_3_…_1005_1006_1007_1 plus the remaining 2921 circular permutations of its digits are divisible by 

pr4=7 and pr5=11, whereas every circular permutation of the digits of 1_2_3_…_36_37_3 is divisible by 7, 

11 and 13. Section 3 contains further comments on the topic. 

 

 

§3. Concluding observations 

 
We could study what happens if we try to expand the set, giving the usual interval d(r)=3, of the circular 

digit permutations of the 900 terms belonging to the canonical consecutive sequence to the circular digit 

permutations of the 2698 elements that characterize the extended consecutive one (constructed - as already 

seen - adding only one figure of the canonical sequence at the end of the previous element). 

Thus, :=1234…9899100, :=234…98991001, :=0111213…98991001234567891, 

:=1234…997998999  and  :=91234…99799899: only approximately one third of the terms 

belonging to this sequence are part of the sequence formed by the circular permutations of the digits of the 

canonical consecutive one, even if Lemma 2.3 is satisfied as well. In this case, we will find new fixed factors 

not included in the “short version” of the sequence, e.g., pr17:=59 (resulting from the circular digit 

http://oeis.org/A000422
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permutations of 1234…1121131), mixed with other prime factors that we have already met, as pr5=11, which 

is a fixed factor for 1234…10710810. 

Nevertheless, one problem arises: we cannot arrange the terms in ascending order or we will lose the validity 

of Lemma 2.3. Moreover some  are coincident and their position inside the sequence could not be 

univocally identified, e.g., :=1234…1981992 is equal to :=01234…1981992 and 

:=001234…1981992. 

The prime factors ≥7 that divide all the terms of the general (unlimited) sequence, constructed from the 

circular permutations of the digits of the extended consecutive one, exist starting from 16 digit long numbers 

(all the circular digits permutations of 1234567891011121 are divisible by 17) without an upper limit. This is 

testified by the example we have already introduced: each one of the 2922 circular permutations of the string 

1234…1005100610071 is divisible by pr=11 and we can say the same for the circular permutations of the 

elements formed by 2922+44*v digits, for v=0,1,2,3,…,817. In this case, the period of pr=11 is identical to 

the one linked to the sequence derived by an integer value of r∈[1000, 9999], for d(p)=d(r)=4 and pr=11. 

The consideration above, leads us to the following observation involving all the subsequences constructed, as 

previously described, from the extended consecutive sequence. 

Starting from the sequence that includes every circular permutation of the extended consecutive one 

(1,12,123,…,123456789,1234567891,12345678910,1234456789101,…), given the value of d(r) plus the 

initial , we obtain exactly “d(r)” interrupted subsequences (one of which – the canonical circular sequence - 

is complete). For these subsequences, most of the properties already explained in Section 1, plus Theorem 

2.2, still remain valid. 

In conclusion, we might even give free rein to the imagination and transpose some of the questions [6-9] 

(totally or partially) answered by Ripà [7] to the new sequences designed “ex-novo” starting from the 

considerations we have made in these pages: thus we can define a new sequence obtained taking into account 

only the odd figures of the circular one (considering all the variations we have seen so far) plus a lot of 

others on the same line. 
 

 

§4. Several patterns belonging to the Smarandache circular sequence 

 
This is a small collection of the patterns of some prj that divides the corresponding terms of the canonical 

circular sequence (1,12,21,123,231,312,...).  

In the following charts, each dark square represents an element of the sequence that is divisible by the given 

pr  –  remember that the generic term can be written as (p+1)_(p+2)_..._(r-1)_r_1_2_3_..._(p-1)_p  -. 

Often these patterns show some intrinsic regularity, that depends, for the most part, on the chosen prj (a clear 

example is represented by pr6:=13). 

 

 

 

 



 

Pr4:=7 

 

d(r)=2, d(p)=1 

 

 

d(r)=3, d(p)=1 

d(r)=3, d(p)=2 

 

 



 

d(r)=3, d(p)=3                                                        d(r)=4, d(p)=1 

 

 

 

Pr5:=11 

 

d(r)=2, d(p)=1 

 

 

d(r)=3, d(p)=2 

 



 

 

d(r)=3, d(p)=3 

 

 

 

d(r)=4, d(p)=1 

 

 

d(r)=4, d(p)=2 

 



 

 

d(r)=4, d(p)=3 

 

 

d(r)=4, d(p)=4 

 

 

 



 

Pr6:=13 

 

d(r)=2, d(p)=2 

 

 



 

d(r)=3, d(p)=2 

 

 



 

d(r)=3, d(p)=3 

 

 

 



 

Pr12:=37 

 

d(r)=3, d(p)=3 
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