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Abstract 
 

Starting from the infrared limit of Yang-Mills theory, we introduce here a Higgs-free model in which 
dynamical symmetry breaking arises from critical behavior near dimension four.  Gauge bosons develop 
mass as a result of condensation at the Wilson-Fisher point of Renormalization Group flow. We recover the 
family structure of Standard Model using the technique of “epsilon expansion”. Our approach also suggests 
a straightforward solution to the cosmological constant problem.  

 
1. Introduction 

The Standard Model of particle physics (SM) is a highly successful theory that has been 

in place for more than 35 years. It incorporates the (3) (2) (1)SU SU U⊗ ⊗ gauge model of 

strong and electroweak interactions along with the Higgs mechanism that spontaneously 

breaks the electroweak (2) (1)SU U⊗  group down to the (1)U  group of 

electromagnetism. Despite its outstanding reliability, SM is viewed as a low-energy 

framework that is likely to be amended by new phenomena in the Terascale region. The 

elementary Higgs boson picture of electroweak (EW) and flavor symmetry breaking 

suffers from several drawbacks. In particular [  ]: 

• Elementary Higgs models provide no dynamical explanation for electroweak 

symmetry breaking (EWSB). 

• Elementary Higgs models appear highly contrived, requiring fine tuning of 

parameters to enormous precision. 

• Elementary Higgs models with grand unification have a hierarchy problem of 

widely different energy scales. 

• Elementary Higgs models are trivial. 
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• Elementary Higgs models provide no insight to flavor physics. 

Similar or different drawbacks exist in supersymmetric extensions of Higgs theories 

(MSSM) and alternate models of EWSB such as Technicolor [  ]. 

2. Challenges of Yang-Mills theory 

In our view, there are a couple of key roadblocks that have slowed down progress on the 

theoretical side of high-energy physics for the past 35 years:  

• Because Yang-Mills field is self-interacting, it is inherently nonlinear and prone 

to undergo complex behavior [ ].  

• Dynamics of Yang-Mills field is strongly coupled in infrared (IR) where 

perturbation theory breaks down and traditional methods of QFT fail to apply. 

3. New tools: nonlinear dynamics and critical behavior  

To deal with these challenges, we start from a far less explored vantage point. 

Specifically, we exploit the fact that both mapping theorem [ ] and the Landau-Ginzburg-

Wilson (LGW) model of critical behavior [ ] enable understanding of the IR regime of 

gauge field theory using the principles of Renormalization Group program (RG). 

• The mapping theorem 

The electroweak group (2) (1)SU U⊗  is broken at a scale approximately given by 

1
2 293EW FM G

−
= =  GeV, in which FG  is the Fermi constant. Yang-Mills fields 

associated with (2)SU  are vectors denoted as ( )aA xµ , in which 0,1, 2,3µ =  is the 

Lorentz index and 1,2,3a =  is the group index. To manage the large number of equations 

derived from the Yang-Mills theory, it is desirable to devise a method whereby ( )aA xµ  

are reduced to analog fields having less complex structure. The mapping theorem allows 
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for such a reduction [ ]. Consider the action functional of classical scalar field theory 

defined in four-dimensional space-time: 

                                             4 2 2 41 1
[ ] [ ( ) ]

2 4!
S d x gΦ = ∂Φ − Φ∫                                          (1)       

An extremum of (1) is also an extremum of the (2)SU Yang-Mills action provided that: 

a) g  represents the coupling constant of the Yang-Mills field, 

b) some components of ( )aA xµ  are chosen to vanish and others to equal each other.  

In the most general case, the following approximate mapping between Yang-Mills fields 

and scalar ( )xΦ  holds: 

                                                    
1

( ) ( ) ( )
2

a aA x x O
g

µ µη= Φ +                                            (2)        

where a
µη  are properly chosen constants. The mapping becomes exact in the Lorenz 

gauge ( ) 0aA xµ
µ∂ =  and in the IR regime of strong coupling ( g →∞ ). 

• LGW theory near dimension four: a brief overview 

Consider the Euclidean space LGW action in D − dimensional space-time [  ] 

                                                  21
[ ] [ ( ) ( )]

2
DS d x VΦ = ∂Φ + Φ∫                                         (3)         

In particular, 

                                                 
2

2 4( )
2 4!
r g

V jΦ = Φ + Φ − Φ                                               (4)      

in which j  denotes the external current coupled to Φ . According to the RG program, 

rescaling the cutoff ' , 1b
b
Λ

Λ→Λ = >  and integrating out fast modes within 
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' kΛ < < Λ , turns the original action into an effective action. The effective theory 

represents a lower-energy image of the original theory as in 

                                                    [ ], [ ], 'effS S <Φ Λ → Φ Λ                                                 (5)      

Here, ( )x<Φ  are the slow modes of the field ( 'k < Λ ),  

                                            
'

( ) ( )exp( )
(2 )

D

Dk

d k
x k ikx

π< <Λ
Φ = Φ∫                                         (6)      

and 

                                          [ ]exp( [ ]) exp( [ ])effD S SΛ <Φ − Φ = − Φ∫                                     (7)                                            

with 

                                          21
[ ] [ ( ) ( )]

2
D

eff effS d x V< < <Φ = ∂Φ + Φ∫                                      (8)       

Invoking the limit of infinitesimal scaling 1b ds= + , ds <<1 along with the local 

potential approximation leads to [  ],  

                                 
2

2
2

[ ]
[ ] [ ] log[ ]

2
D

eff

Q V
S S d x <

< <
<

∂ Φ
Φ = Φ + Λ +

∂Φ∫                                (9)       

where 

                                                       
22

(2 ) ( )2

DD

D

ds
Q

D
π

π
Λ

=
Γ

                                                   (10)       

When applied to (4), the logarithmic correction on the right hand side of (9) may be 

expanded as  

                            
2 2 4

2 4
2log[1 ] log[1 ] ...

2(1 ) 8(1 )
V g g

r
r r< <

<

∂
+ = + + Φ − Φ +
∂Φ + +

                      (11)        
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where we set 1Λ = . Thus, for sufficiently small deviations from criticality ( r <<1) and 

sufficiently small couplings obtained after a large number of scaling iterations ( 2g << 1), 

the following approximations hold 

                                         [ ]effS <Φ ~ [ ]S Φ ,        [ ]effV <Φ  ~ [ ]V Φ                                   (12)       

A side-by-side comparison between parameters of LGW and Yang-Mills theories is 

shown below: 

 

Landau –Ginzburg -Wilson theory Yang-Mills theory 

Dimensional parameter ( 4 Dε = − ) Dimensional regulator ( 4 Dε = − ) 

Normalized momentum cutoff ( 1Λ = ) Normalized Planck scale ( 1PlΛ = ) 

Temperature (T ) Energy scale ( EW Plµ µ< << Λ ) 

Critical temperature ( cT ) EW scale ( EWµ ) 

Temperature parameter ( r ) 
Deviation from the EW scale 

( EWδµ µ µ= − ) 

Coupling parameter (u ) Coupling constant ( 2g ) 

External field (h ) Fermion current ( j ) 

Renormalization Group scale ( l )  Renormalization Group scale ( s ) 

                                    

Tab. 1: Comparison between LGW and Yang-Mills theories 

Under these circumstances, RG flow equations for r δµ= , 2u g=  and fermion current 

fj j=  read, respectively [  ] 

 2 2( )
( )(2 )bg ag

s
δµ

δµ
∂

= + +
∂

      

                                                      
2

2 2 23 ( )
g

g b g
s

ε∂
= −

∂
                                                 (13)       
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(3 )
2

f
f

j
j

s
ε∂

= −
∂

 

Here, 

                                      2
43 Pla K= Λ ,      43b K= ,      2 1

4 (8 )K π −=                                 (14)       

and the cutoff  PlΛ  has been explicitly shown to highlight its contribution as a variable 

parameter under the sliding scale s , where   

                                                        2log( )Pl

EW
s µ

Λ=                                                     (15)      

The Wilson-Fisher (WF) fixed point of (13) is defined by the pair 

                                              ( )* ,
6
a
b

δµ ε= −       2( )*
3

g
b
ε

=                                           (16)      

(16) acts as a non-trivial attractor of the RG flow. Because it resides on the critical line 

EWµ µ= , it describes by definition a massless field theory ( 0r δµ= = ) [  ]. The vacuum 

state of Φ  corresponding to the WF point results from minimization of (4), that is,  

                                            
1
2

42

6(- )
v = 3( )

( ) PlK
g
δµ ∗

∗
∗± = ± Λ                                          (17)       

The above formula shows how Φ  and its gauge boson counterpart (2) gains mass at the 

WF point without any additional breaking mechanism or external fields. Let 

v =M∗ denote the mass acquired by the gauge boson. Combining (14), (16) and (17) 

yields   

2 * 2 2( ) .EWg M constµ= =  
                                                                                                                                         (18)                                                          

* 2( )g ~ fm∗ ~ε  
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in which * ( )f fm O j=  stands for the normalized fermion mass [ ]. It is apparent now that, 

as PlΛ  flows towards  EWµ  under RG transformation ( Pl EWµΛ → ), so does the 

dimensional parameter 4 Dε = − . As a result, the WF attractor (16) turns from a single 

isolated point to a distribution of points.  Our next step is to explore the link between the 

structure of the WF attractor and the parameters of SM. 

4. Assumptions  

4.1) As previously indicated, the mapping theorem applies when comparing Yang-Mills 

fields with classical scalar fields. We extend this ansatz and assume that the theorem 

holds sufficiently well for quantum scalar field theory. This assumption may be 

motivated by considering the close analogy between quantum field theory (QFT) and 

statistical systems near criticality [ ]. On this basis, the Yang-Mills model may be 

approximated reasonably well by the LGW theory of equilibrium critical behavior. 

4.2) From (4.1) it follows that the Wilson-Fisher parameter and the dimensional regulator 

of Yang-Mills theory are identical entities. This identity is made explicit in the first row 

of Tab. 1. 

4.3) We analyze on the IR regime of Yang-Mills theory in which 
1
2

EW FGµ −
= stands for 

the electroweak scale and Pl EWµΛ = Λ >>  the cutoff scale. Thus [  ],  

                                                     2

2

1 1
0

log( )Pl

EW

s
ε

µ

= = >
Λ

                                                (19)                                             

Moreover, to simplify the derivation, it is convenient to take advantage of the large 

numerical difference between the two scales entering the logarithm and substitute (19) 

with  
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                                                             ε ~
2

2
EW

Pl

µ
Λ

                                                           (20a) 

Therefore,  

                                                      
22 EW

Pl
Pl

d d
µε = − Λ
Λ

                                                   (20b)  

On the other hand, an incremental change of scale 0 ds< <<1 yields a correspondingly 

small drop in the cutoff, that is, [  ] 

                                           ' (1 )Pl Pl Plds d dsΛ = Λ − → Λ = −Λ                                       (21)       

From (20b) and (21) we obtain 

                                           22 EW

d
ds
ε µ ε= → ~ 2( ) 2 EWO d dsε µ=                                      (22)                                            

As expected at leading order, dimensional parameter ε  grows linearly with ds .                                                       

5. Wilson-Fisher point as source of particle masses and gauge charges 

We are now ready to analyze the dynamics of (13) using the standard methods employed 

in the study of nonlinear systems [  ]. To this end, we first note that the last equation in 

(13) is uncoupled to the first two. This enables us to reduce the dimensionality of (13) to 

a planar system of differential equations. We next cast (13) in the form of a two-

dimensional map, namely 

                                 2 2 2
1( ) (1 )( ) 3 ( )n n ng s g b s gε+ = + ∆ − ∆                                             (23a)  

                                2 2
1( ) ( ) [1 2 ( ) ] ( )n n n ns b s g a s gδµ δµ+ = + ∆ + ∆ + ∆                             (23b)                                                        

where s∆  denotes the increment of (15). Linearizing (23) and computing its Jacobian J , 

leads to 

                                  21 (2 ) 1 1EWJ sε µ ε−= + + ∆ = + >                                                      (24) 
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on account of (22). It follows that map (23) is dissipative for 0ε ≠  and becomes 

asymptotically conservative in the physical limit 0ε = . Invoking universality arguments 

[ ] we conclude that, near criticality, (23) shares the same universality class with the 

quadratic map. Furthermore, in the neighborhood of Feigenbaum’s attractor, ε  

approaches 0ε∞ =  according to:  

                                                       
n

n naε ε δ
−

∞− ≈ ⋅                                                       (25)  

Here, 1n >>  is the index counting the number of cycles generated through the period 

doubling cascade, δ  is the rate of convergence (in general different from Feigenbaum’s 

constant for the quadratic map) and na  is a coefficient which becomes asymptotically 

independent of n , that is, a a∞ =  [  ]. Substitution of (25) in (18) yields 

                             2 2( ) ( ) ( )
n

j n n f nP n M g m δ
−− ∗ ∗ = ∝     if   1n >>                              (26) 

in which 1, 2,3j =  indexes the three entries of (26). Period-doubling cycles are 

characterized by 2 pn = , with 1p >> . The ratio of two consecutive terms in (26) is then 

given by 

                                                  
( 2 )( 1)

[ ]
( )

p
j

j

P p
O

P p
δ

−+
=                                                     (27) 

Numerical results derived from (27) are displayed in Tab. 3. This table contains a side-

by-side comparison of estimated versus actual mass ratios for charged leptons and quarks 

and a similar comparison of coupling ratios. Tab. 2 contains the set of known quark and 

gauge boson masses as well as the SM coupling strengths. All quark masses are reported 

at the energy scale given by the top quark mass and are averaged using reports issued by 

the Particle Data Group [ ]. Gauge boson masses are evaluated at the EW scale and the 
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coupling strengths at the scale set by the mass of the Z  boson. The best-fit rate of 

convergence is 3.9δ =  which falls close to the numerical value of the Feigenbaum 

constant corresponding to hydrodynamic flows [  ].  

 

 

Parameter Value Units 

um  2.12 MeV 

dm  4.22 MeV 

sm  80.90 MeV 

cm  630 MeV 

bm  2847 MeV 

tm  170,800 MeV 

WM  80.46 GeV 

ZM  91.19 GeV 

EMα  1/128 - 

Wα  0.0338 - 

QCDα  0.123 - 

                                            
Tab. 2: Actual values of selected SM parameters  
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Tab 3: Actual versus predicted ratios of SM parameters 

6. A natural solution for the hierarchy problem 

It is known that the technique of renormalization in perturbative QFT is conceived as a 

two-step program: regularization and subtraction. One first controls the divergence 

 
 

Parameter 
ratio 

 

 
 

Behavior 

 
 

Actual 

 
 

Predicted 

u

c

m
m  

 

4−
δ  33.365 10−×  34.323 10−×  

c

t

m
m  4−

δ  33.689 10−×  34.323 10−×  

d

s

m
m  2−

δ  0.052  0.066 

s

b

m
m  2−

δ  0.028  0.066 

em
mµ

 4−
δ  34.745 10−×  34.323 10−×  

m
m

µ

τ
 2−

δ  0.061  0.066 

W

Z

M
M  

1
21

(1 )−
δ  

0.8823 0.8623 

2EM

W
( )α

α  2−
δ  0.053  0.066 

2EM

s
( )α

α  4−
δ  34.034 10−×  34.323 10−×  
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present in momentum integrals by inserting a suitable “regulator”, and then brings in a set 

of “counter-terms” to cancel out the divergence.  Momentum integrals in QFT have the 

generic form 

                                                           4

0
( )I d qF q

∞
= ∫                                                      (28)        

Two regularization techniques are frequently employed to manage (28), namely 

“momentum cutoff” and “dimensional regularization”. When the momentum cutoff 

scheme is applied for regularization in the UV region, the upper limit of (28) is replaced 

by a finite cutoff Λ , 

                                                   4

0
( )I I d qF q

Λ

Λ→ = ∫                                                   (29)      

Explicit calculation of the convergent integral (29) amounts to a sum of three polynomial 

terms  

                                                 1( ) ( )I A B CΛ = Λ + + Λ                                                   (30)  

Dimensional regularization proceeds instead by shifting the momentum integral (28) 

from a four-dimensional space to a continuousD - dimensional space 

                                                    
0

( )D
DI I d qF q

∞
→ = ∫                                                   (31) 

Introducing the parameter 4 Dε = −  leads to 

                                            1'( ) ' '( )DI I A B Cε ε ε→ = + +                                             (32)     

In general, Λ  and ε  are not independent regulators and relate to each other via the 

approximate connection (19) 

                                                    2

2
0

1
4

log( )
Dε

µ

= − =
Λ

                                               (33)                                                       
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where 0µ < Λ  stands for an arbitrary but non-vanishing reference scale.  

A similar technique can be used to regularize field theory in the IR limit whereby Γ  is 

taken to represent the lowest bound scale. A strictly positive ε  on less than four 

dimensions ( 4D < ) requires taking the reciprocal of the logarithm in (33) to comply with 

0µ > Γ . The infrared version of (33) accordingly reads: 

                                                   2
0

2

1
' 4

log( )
Dε

µ
= − =

Γ

                                               (34)                                        

We next proceed with the following assumptions 

6.1) The deep IR cutoff of field theory is set by the cosmological constant scale  

                                                            
1
4( )ccΓ = Λ                                                          (35)      

where ccΛ  represents the cosmological constant. 

6.2) The deep UV cutoff of field theory is set by the Planck scale:    

                                                                PlΛ = Λ                                                             (36)                                                      

Combining 6.1) and 6.2) implies that, as the electroweak scale ( EWµ ) is approached from 

above or below, (33) and (34) naturally converge to each other. Taking 0 EWµ µ=  and 

substituting in (33) and (34) yields 

                                         
21

4( )EW Pl EW
cc

EW Pl

µ µ
µ
Λ

= → Λ =
Γ Λ

                                               (37)                                          

Several conclusions may be drawn from (37),       

a) Asymptotic approach to four-dimensional space-time explains the existence of the 

deep IR cutoff ( ccΛ ) and deep UV cutoff ( PlΛ ). Stated differently, fractal space-time 



 14

description supplied by the condition 0ε >  and ' 0ε >  appears to be linked to these 

natural bounds [  ].   

b) Fixing two out of the three scales involved in (37) automatically determines the third 

one.  

c) The gauge hierarchy problem, cosmological constant problem and the existence of the 

electroweak phase transition appear to be deeply interconnected. 

d) The derivation presented here stands in sharp contrast with sophisticated approaches to 

the hierarchy problem based on SUSY, Technicolor, extra-dimensions, anthropic 

arguments, fine-tuning or gauge unification near the Planck scale.  

8. Summary and conclusions 

(to follow) 

References 

(to follow) 
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