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issue 03/2011 - ISSN: 1555-5534 (print) and ISSN: 1555-5615 (online). We solve the general rela-
tivity (GR) field equations under the cosmological scope via one extra postulate. The plausibility
of the postulate resides within the Heisenberg indeterminacy principle, being heuristically analysed
throughout the appendix. Under this approach, a negative energy density may provide the pos-
itive energy content of the universe via fluctuation, since the question of conservation of energy
in cosmology is weakened, supported by the known lack of scope of the Noether’s theorem in cos-
mology. The initial condition of the primordial universe turns out to have a natural cutoff such
that the temperature of the cosmological substratum converges to the absolute zero, instead of the
stablished divergence at the very beginning. The adopted postulate provides an explanation for
the cosmological dark energy open question. The solution agrees with cosmological observations,
including a 2.7K CMBT prediction.

GR THEORETICAL ASSUMPTIONS

[1–3] The study of the dynamics of the entire universe
is known as Cosmology. The inherent simplicity in the
mathematical treatment of the Cosmology, although the
entire universe must be under analysis, should be rec-
ognized as being due to Copernicus. Indeed, since the
primordial idea permeating the principle upon which the
simplicity arises is just an extension of the copernican
revolution [4]: the cosmological principle. This exten-
sion, the cosmological principle, just asseverates we are
not in any sense at a privileged position in our universe,
implying that the average large enough scale [5] spatial
properties of the physical universe are the same from
point to point at a given cosmological instant. Putting
these in a mathematical jargon, one says that the large
enough scale spatial geometry at a given cosmological in-
stant t is exactly the same in spite of the position of the
observer at some point belonging to this t-sliced tridi-
mensional universe or, equivalently, that the spatial part
of the line element of the entire universe is the same for
all observers. Hence, the simplicity referred above arises
from the very two principal aspects logically encrusted in
the manner one states the cosmological principle:

• The lack of a privileged physical description of the
universe at a t-sliced large enough scale ⇒ large
enough scale⇒ one neglects all kind of known phys-
ical interactions that are unimportant on the large
enough scales ⇒ remains gravity;

• The lack of a privileged physical description of the
universe at a t-sliced large enough scale ⇒ large
enough scale⇒ one neglects local irregularities of a
global t-sliced substratum representing the t-sliced

universe ∀ cosmological instants t ⇒ substratum
modeled as a fluid without t-sliced spatially local-
ized irregularities ⇒ homogeneous and isotropic t-
sliced [6] fluid.

One shall verify the t-local characteristic of the the cos-
mological principle, i.e., that non-privileged description
does not necessarily hold on the global time evolution of
that t-sliced spacelike hypersurfaces. In other words, two
of such t-sliced hypersurfaces at diferent instants would
not preserve the same aspect, as experimentally assever-
ated by the expansion of the universe. Hence, some fur-
ther assumption must be made regarding the time evo-
lution of the points belonging to the t-sliced spacelike
hypersurfaces:

• The particles of the cosmological fluid are encrusted
in spacetime on a congruence of timelike geodesics
from a point in the past, i.e., the substratum is
modeled as a perfect fluid.

Hence, the following theoretical ingredients are avail-
able regarding the above way in which one mathemati-
cally construct a cosmological model:

Gravity modeled by Einstein’s General Relativity field
equations (in natural units):

Gµν − Λgµν = 8πTµν . (1)

Homogeneity is mathematically translated
by means of a geometry (metric) that is the same from
point to point, spatially speaking. Isotropy is mathe-
matically translated by means of a lack of privileged di-
rections, also spatially speaking. These two character-
istics easily allow one to consider spaces equipped with
constant curvature K. From a differential geometry theo-
rem, Schur’s, a n-dimensional space Rn, n ≥ 3, in which a
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η-neighborhood has isotropy ∀ points belonging to it, has
constant curvature K throughout η. Since we are con-
sidereing, spatially, global isotropy, then K is constant
everywhere. Hence, one defines the Riemann tensor:

Rabcd = K (gacgbd − gadgbc) , (2)

spatially speaking.
As indicated before, homogeneity and isotropy are spa-

tial properties of the geometry. Time evolution, e.g.: ex-
pansion, can be conformally agreed with these two spa-
tial properties logically emerging from the cosmological
principle in terms of gaussian normal coordinates. Math-
ematically, the spacetime cosmological metric has the
form:

ds2 = dt2 − [a(t)]2 dσ2. (3)

Since spatial coordinates for a spatially fixed observer do
not change, ds2 = dt2 ⇒ gtt = 1.

Regarding the spatial part of the line element, the
Scharzschild metric is spherically symmetric, a guide to
our purposes. From the Scharzschild metric (signature +
− − −):

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dθ2 − r2 sin2 θ dφ2, (4)

one easily writes down the spatial part of the spacetime
cosmological metric:

dσ2 = e2f(r)dr2 + r2dθ2 + r2 sin2 θ dφ2. (5)

One straightforwardly goes through the tedious calcula-
tion of the Christoffel symbols and the components of the
Ricci tensor, finding:

e2f(r) =
1

1−Kr2
. (6)

Absorbing constants [7] by the scale factor in eqn. (3),
one normalizes the curvature constant K, namely k ∈
{−1; 0; +1}. Hence, the cosmological spacetime metric
turns out to be in the canonical form:

ds2 = dt2 − [a(t)]2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dφ2

)
.

(7)
Now, regarding the fluid substratum, one sets in co-
moving coordinates (dt/dτ = 1, uµ = (1; 0; 0; 0)):

Tµν = 0, µ 6= ν; T 0
0 = ρ; Tµµ = −p for µ ∈ {1; 2; 3},

(8)
since the particles in the fluid are clusters of galaxies
falling together with small averaged relative velocities
compared
with the cosmological dynamics, where the substratum
turns out to be averaged discribed by an average sub-
stratum density ρ and by an average substratum pressure
p.

The Einstein tensor in eqn. (1), Gµν , is related to the
Ricci tensor Rµν = Rγµγν (the metric contraction of the
curvature tensor (Riemann tensor)), to the Ricci scalar
R = Rµµ (the metric contraction of the Ricci tensor) and
to the metric gµν itself:

Gµν = Rµν −
1
2
Rgµν . (9)

The curvature tensor Rαβγδ is obtained via a metric con-
nection, the Christoffel Γαβδ symbols in our case of non-
torsional manifold:

Rαβγδ = ∂γΓαβδ − ∂δΓαβγ + ΓεβδΓ
α
εγ − ΓεβγΓαεδ, (10)

where the metric connection is obtained, in the present
case, from the Robertson-Walker cosmological spacetime
geometry given by eqn. (7) (from which one straight-
forwardly obtains the metric coefficients of the diagonal
metric tensor in the desired covariant or contravariant
representations) via:

Γαβγ = gαδΓδβγ , (11)

being the metric connection (Christoffel symbols) of the
first kind Γδβγ given by:

Γδβγ =
1
2

(
∂gβγ
∂xδ

+
∂gγδ
∂xβ

− ∂gδβ
∂xγ

)
. (12)

These set of assumptions under such mathematical appa-
ratus lead one to the tedious, but straightforward, deriva-
tion, via eqn. (1), of the ordirary differential cosmolog-
ical equations emerging from the relation between the
Einstein’s tensor, Gµν , the Robertson-Walker spacetime
cosmological metric of the present case, gµν via eqn. (7),
and the stress-energy tensor, Tµν via metric contraction
of eqn. (8) (signature + − − −):

Ṙ2 + kc2

R2
=

8πG
3c2

(ρ+ ρ̃) ; (13)

2RR̈+ Ṙ2 + kc2

R2
= −8πG

c2
(p+ p̃) , (14)

where we are incorporating the cosmological constant Λ
through the energy density and the pressure of the vac-
uum: ρ̃ and p̃, respectively. One also must infer we are
no more working with natural units. The scale factor
becomes R(t), and one must interpret it as the magni-
fication lenght scale of the cosmological dynamics, since
R(t) turns out to be lenght. This measures how an uni-
tary lenght of the pervading cosmological substratum at
t0 becomes stretched as the universe goes through a time
evolution from t0 to t. One should not literally inter-
pret it as an increase of the distance between two points,
e.g., in a case of expansion, a stretched stationary wave-
lenght connecting two cosmological points at a t0-sliced
spacelike substratum would remain stationarily connect-
ing the very same two points after the stretched evolution
to the respective t-sliced spacelike substratum, but less
energetically.
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THE ALTERNATIVE SOLUTION

Applying the conservation of energy, given by:

∇µTµt = ∂µT
µ
t + ΓµµνT

ν
t − ΓνµtT

µ
ν = 0, (15)

one finds via the diagonal stress-energy tensor (see eqn.
(8)), the metric connection (see eqs. (11) and (12))
and the spacetime cosmological geometry of the present
case[8]:

∂

∂t
(ρ+ ρ̃) + 3

Ṙ

R
(ρ+ ρ̃+ p+ p̃) = 0. (16)

Eqn. (16) is the first law of thermodynamics ap-
plied to our substratum (including vacuum), since, de-
spite of geometry, a spatial slice of the substratum has
volume α(k) [R(t)]3, density (ρ(t) + ρ̃) [9] and energy
(ρ(t) + ρ̃)α(k) [R(t)]3, implying that dE+pdV = 0 turns
out to be eqn. (16). α(k) is the constant that depends
on geometry (open, k = −1; flat, k = 0; closed, k = 1)
to give the correct volume expression of the mentioned
spatial slice of the t-sliced cosmological substratum.

Now, we go further, considering the early universe as
being dominated by radiation. In the ultrarelativistic
limit, the equation of state is given by:

ρ− 3p = 0. (17)

Putting this equation of state in eqn. (16) and integrat-
ing, one obtains the substratum pressure as a function of
the magnificarion scale R:

4 ln ‖R‖+ ln ‖p‖ = C ′ ⇒ ‖p‖ =
eC

′

R4
⇒ p = ±C

+

R4
,

(18)
where C+ ≥ 0 is a constant of integration. In virtue of
eqn. (18), eqn. (14) is rewritten in a total differential
form:

2RṘdṘ+
(
Ṙ2 + kc2 ± 8πG

c2
C+

R2
+

8πG
c2

p̃R2

)
dR = 0.

(19)
Indeed, eqn. (19) is a total differential of a constant
λ(R, Ṙ) = constant:

dλ(R, Ṙ) =
∂λ(R, Ṙ)
∂Ṙ

dṘ+
∂λ(R, Ṙ)
∂R

dR = 0, (20)

since:

∂λ(R, Ṙ)
∂Ṙ

= 2RṘ ⇒ ∂2λ(R, Ṙ)
∂R∂Ṙ

= 2Ṙ; (21)

∂λ(R, Ṙ)
∂R

= Ṙ2 + kc2 ± 8πG
c2

C+

R2
+

8πG
c2

p̃R2 ⇒ (22)

∂2λ(R, Ṙ)
∂Ṙ ∂R

= 2Ṙ ∴
∂2λ(R, Ṙ)
∂R∂Ṙ

=
∂2λ(R, Ṙ)
∂Ṙ ∂R

= 2Ṙ.

(23)

Integrating, one has:∫
∂λ(R, Ṙ) =

∫
2RṘ ∂Ṙ = 2R

∫
Ṙ dṘ+h(R) ∴ (24)

λ(R, Ṙ) = RṘ2 + h(R), (25)

where h(R) is a function of R. From eqs. (22) and (25):

∂

∂R
λ(R, Ṙ) = Ṙ2 + kc2 ± 8πG

c2
C+

R2
+

8πG
c2

p̃R2 ⇒

h(R) =
∫ (

kc2 ± 8πG
c2

C+

R2
+

8πG
c2

p̃R2

)
dR ∴ (26)

h(R) = kc2R∓ 8πG
c2

C+

R
+

8πG
3c2

p̃R3. (27)

Putting this result from eqn. (27) in eqn. (25):

λ(R, Ṙ) = RṘ2 +kc2R∓ 8πG
c2

C+

R
+

8πG
3c2

p̃R3 = constant

(28)

is the general solution of the total differential equation
eqn. (19). Dividing both sides of eqn. (28) by R3 6= 0:

λ(R, Ṙ)
R3

=
Ṙ2 + kc2

R2
∓ 8πG

c2
C+

R4
+

8πG
3c2

p̃, (29)

using the eqn. (13), one obtains:

λ(R, Ṙ)
R3

=
8πG
c2

(
ρ

3
∓ C+

R4

)
+

8πG
3c2

(ρ̃+ p̃) ∴ (30)

λ(R, Ṙ) = constant = 0, (31)

in virtue of eqs. (17), (18) and ρ̃ + p̃ = 0 for the back-
ground vacuum. Of course, the same result is obtained
from eqn. (13), since this equation is a constant of move-
ment of eqn. (14), being eqn. (16) the connection be-
tween the two. Neglecting the vacuum contribution in re-
lation to the ultrarelativistic substratum, one turns back
to the eqn. (28), set the initial condition R = R0, Ṙ = 0,
at t = 0, obtaining for the substratum pressure:

p(R) = k
c4R2

0

8πGR4
, (32)

and for the magnification scale velocity:

Ṙ2 = −kc2
(

1− R2
0

R2

)
. (33)



4

Now, robusteness [10] requires an open universe with k =
−1. Hence, the locally flat substratum energy is given by
[11]:

E+ = −4πR3p(R)⇒ R0 = −2GE+
0

kc4
, (34)

in virtue of eqn. (32) and the initial condition E+ = E+
0 ,

R = R0 at t = 0. Returning to eqn. (33), one obtains
the magnification scale velocity:

Ṙ = c

√
1−

4G2
(
E+

0

)2
c8R2

, (35)

giving Ṙ → c as R → ∞. Rewriting eqn. (35), one
obtains the dynamical Schwarzchild horizon:

R =
2G
c4

E+
0√

1− Ṙ2/c2
. (36)

We will not use the eqn. (34) (now you should read the
appendix to follow the following argument) to obtain the
energy from the energy density and volume for t 6= 0,
since we do not handle very well the question of the con-
servation of energy in cosmology caused by an inherent
lack of application of the Noether’s theorem. In virtue
of the adopted initial conditions, an initial uncertainty
R0 related to the initial spatial position of an arbitrary
origin will be translated to a huge uncertainty R at the
actual epoch. Indeed, one never knows the truth about
the original position of the origin, hence the uncertainty
grows as the universe enlarge. The primordial energy
from which the actual energy of the universe came from
was taken as E+

0 at the beginning. This amount of en-
ergy is to be transformed over the universe evolution,
giving the present amount of the universe, i.e., the en-
ergy of an actual epoch t-sliced hypersurface of simul-
taneity. But this energy at each instant t of the cosmo-
logical evolution turns out to be the transformed primor-
dial indeterminacy E+

0 , since E+
0 is to be obtained via

the Heisenberg indeterminacy principle. In other words,
we argue that the energetical content of the universe at
any epoch is given by the inherent indeterminacy caused
by the primordial imdeterminacy. At any epoch, one
may consider a copy of all points pertaining to the same
hypersurface of similtaneity but at rest, i.e., an instan-
taneous non-expanding copy of the expanding instanta-
neous hypersurface of simultaneity. Related to an actual
R indeterminacy of an origin in virtue of its primordial
R0 indeterminacy, one has the possibility of an alterna-
tive shifted origin at R. This shifted origin expands with
Ṙ in relation to that non-expanding instantaneous copy
of the universe at t. Since the primordial origin was con-
sidered to encapsulate the primordial energy E+

0 , this
energy at the shifted likely alternative origin should be

E+
0 /
√

1− Ṙ2/c2, since, at R, a point expands with Ṙ in
relation to its non-expanding copy. We postulate:

• The actual energy content of the universe is a con-
sequence of the increasing indeterminacy of the
primordial era. Any origin of a comoving refer-
ence frame within the cosmological substratum has
an inherent indeterminacy. Hence, the indetermi-
nacy of the energy content of the universe may
create the impression that the universe has not
enough energy, raising illusions as dark energy and
dark matter speculations. In other words, since
the original source of energy emerges as an inde-
terminacy, we postulate this indeterminacy con-
tinues being the energy content of the universe:

δE(t) = E+(t) = E+
0 /
√

1− Ṙ2/c2.

This result is compatible with the Einstein field
equations. The compatibility is discussed within the
appendix. In virtue of this interpretation, eqn. (36) has
the aspect of the Schwarzchild radius, hence the ebove
designation.
The t-instantaneous locally flat spreading out rate of
dynamical energy at t-sliced substratum is given by the
summation over the ν-photonic frequencies:

Ṙ
d

dR

 E+
0√

1− Ṙ2/c2

 =

=
8π2R2h

c2

∫ ∞
0

ν3

exp (hν/kBT )− 1
dν =

8π6k4
BR

2

15c2h3
T 4,

(37)

where kB is the Boltzmann constant, h the Planck con-
stant and T the supposed rapid thermodinamically equi-
librated t-sliced locally flat instantaneous cosmological
substratum temperature. Now, setting, in virtue of
Heisenberg principle:

E+
0 R0

c
≈ h (34)⇒

(
E+

0

)2
=
hc5

2G
, (38)

one obtains, in virtue of eqn. (37):

T 4 =
15c7h3

16π6Gk4
B

1
R2

√
1− 2Gh

c3R2
. (39)

Hence, the temperature of the cosmological substratum
vanishes[12] at t = 0, rapidly reaching the maximum ≈
1032K, and assintotically decreasing to zero again as t→
∞.

Indeed. R0 = R(t = 0) =
√

2Gh/c3, in virtue of eqs.
(34) and (38), giving T 4(R0) = T 4(t = 0) = 0. Also, the
maximum temperature is T ≈ 1032K, from eqn. (39),
occuring when R = Rmax =

√
3/2R0 =

√
3Gh/c3, as

one obtains by dT 4/dR = 0 with d2T 4/dR2 < 0. Below
[13], one infers these properties of eqn. (39).



5

0

1

1 2 3

T 4

T 4
max

x ≡ R/R0

(T/Tmax)4 =
(
3
√

3/2
)√

1− 1/x2/x2

Now, one puts the result of eqn. (38) in eqn. (35) and
integrates:∫ R

(2Gh/c3)1/2

R√
R2 − 2Gh/c3

dR = c

∫ t

0

dτ, (40)

obtaining:

t =
1
c

√
R2 − 2Gh/c3 ⇒ t(Rmax) =

√
Gh

c5
≈ 10−43s,

(41)
for the elapsed time from t = 0 to the instant in which
the substratum temperature reaches the maximum value
T ≈ 1032K. The initial acceleration, namely the explo-
sion/ignition acceleration at t = 0 of the substratum is
obtained from eqn. (35):

R̈ = Ṙ
dṘ

dR
=

4G2
(
E+

0

)2
c6R3

(38)
=

2Gh
cR3

∴ (42)

R̈
(
R = R0 =

√
2Gh/c3

)
=

√
c7

2Gh
≈ 1051m/s2. (43)

An interesting calculation is the extension of the eqn.
(39) formula to predict the actual temperature of the
universe.
Since 2Ghc−3R−2 << 1 for atual stage of the universe,
eqn. (39) is approximately given by:

T 4 ≈ 15c7h3

16π6Gk4
B

1
R2
⇒ R2 ≈ 15c7h3

16π6Gk4
B

1
T 4
. (44)

Also, for actual age of the universe, eqn. (41) is approx-
imately given by:

t ≈ R

c

(44)
=

√
15c5h3

16π6Gk4
B

1
T 2

∴ (45)

T 2
Now =

√
15c5h3

16π6Gk4
B

t−1
Now = 5.32× 1020t−1

Now

(
K2s

)
.

(46)

Before going further on, one must remember we are not

in a radiation dominated era. Hence, the left-hand side
and the right-hand side of eqn. (37) must be adapted for
this situation. The left-hand accomplishes the totality
of spreading out energy in virtue of cosmological dynam-
ics. It equals the right-hand side in an ultrarelativistic
scenario. But, as the universe evolves, the right-hand
side becomes a fraction of the totality of spreading out
energy. Rigorously, as the locally flatness of the t-sliced
substratum increases, one multiplies both sides of eqn.
(37) by (4/c)×

(
1/4πR2

)
and obtains the t-sliced instan-

taneously spreading out enclosed energy density. Hence
the right-hand side of eqn. (37) turns out to be multi-
plied by the ratio between the total cosmological density
ρc [14] and the radiation density ρr. Hence, eqn. (46) is
rewritten:√

ρc
ρr

T 2
Now = 5.32× 1020t−1

Now

(
K2s

)
. (47)

The actual photonic density is ρr = 4.7 × 10−31kg/m3

and the actual total cosmological density is ρc = 1.3 ×
10−26kg/m3. For the reciprocal age of universe, t−1

Now in
eqn. (47), one adopts the Hubble’s constant, for open
universe, H = t−1

Now = 2.3 × 10−18s−1. Hence, by eqn.
(47), one estimates the actual temperature of the uni-
verse:

T 2
Now =

√
4.7× 10−31

1.3× 10−26
× 5.32× 1020 × 2.3× 10−18 K2 ∴

(48)

TNow = 2.7K, (49)

very close to the CMB temperature.

APPENDIX - ON THE PLAUSIBILITY OF THE
POSTULATE

From eqns. (17) and (32):

ρ = 3p = −3c4R2
0

8πG
1
R4
⇒ Eρ = −c

4R2
0

2G
1
R
, (50)

since k = −1; Eρ is the energy (negative) obtained from
volume and ρ. From eqn. (34), R2

0 = 4G2(E+
0 )2/c8.

Hence, eqn. (50) is rewritten:

Eρ = −2G
c4
(
E+

0

)2 1
R
. (51)

With the eqn. (36), we reach:

Eρ = −E+
0

√
1− Ṙ2/c2. (52)

This negative energy arises from the adopted negative
pressure solution. But, its fluctuation is positive:

δEρ =
E+

0√
1− Ṙ2/c2

Ṙ δṘ

c2
, (53)
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since both, Ṙ and δṘ, are positive within our model (see
eqn. (40)). Let δt be the time interval within this fluc-
tuation process. Multiplying both sides of the eqn. (53)
by δt, we obtain:

δEρ δt =
E+

0√
1− Ṙ2/c2

(
ṘδṘ/c2

)
δt. (54)

The above relation must obey the Heisenberg indeter-
minacy principle, and one may equivalently interpret it
under the following format:

δEρ δt =
E+

0√
1− Ṙ2/c2

(δt)∗ ≈ h, (55)

An energy indeterminacy having the magnitude of the
actual cosmological energy content carries an indetermi-
nacy δṘ ≈ c about the magnification scale velocity Ṙ
with Ṙ ≈ c. For such an actual scenario in which Ṙ ≈ c
(see eqn. (35) with R→∞), we have:

δt ≈ (δt)∗ ⇒ δEρ|∞R0
= E+ =

E+
0√

1− Ṙ2/c2
, (56)

if[15] Ṙ → c. Now, let’s investigate the primordial time
domain t ≈ 0. To see this, we rewrite ṘδṘ within the
eqn. (54). Firstly, from eqn. (35):

Ṙ = c
√

1−R2
0/R

2 ⇒ ṘδṘ =
c2R2

0

R3
δR, (57)

where R0 =
√

2Gh/c3 as obtained before. Whithin the
primordial time domain t ≈ 0, we have R ≈ R0 and
δR ≈ R0, as discussed before. Hence, the eqn. (57)
reads:

ṘδṘ ≈ c2. (58)

if t ≈ 0. Back to the eqn. (54) we obtain again:

δt ≈ (δt)∗ ⇒ δEρ|≈R0
= E+ =

E+
0√

1− Ṙ2/c2
, (59)

if t ≈ 0. This justify the use of E+ = E+
0 /
√

1− Ṙ2/c2

within our postulate, emerging from the positive fluctu-
ation of the negative enerergy Eρ obtained from volume

and the negative energy density ρ stated via the fluid
state equation, eqn. (17), and entering within the field
equations.
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[6] One shall rigorously attempt to the fact: the isotropy and
homogeneity are t-sliced referred, i.e., these two properties
logically emerging from the cosmological principle hold upon
the entire fluid at t, holding spatially at t, i.e., homogeneity
and isotropy are spatial properties of the fluid. Regarding the
time, one observer can be at an own proper τ -geodesic...

[7] Defining r′ =
√
|K| r, one straighforwardly goes through...

[8] see eqn. (7).
[9] One shall remember the cosmological principle: on average,

for large enough scales, at t-sliced substratum, the universe
has the same aspect in spite of the spatial localization of the
observer in the t-slice ⇒ ρ = ρ(t). Also, since Λ is constant, ρ̃
and p̃ are constants such that ρ̃+ p̃ = 0.

[10] For, Ṙ2 ∈ R in eqn. (33) with R ≥ R0.
[11] The Hawking-Ellis dominant energy condition giving the pos-

itive energy, albeit the expansion dynamics obtained via eqn.
(32).

[12] We argue there is no violation of the third law of thermody-
namics, since one must go from the future to the past when
trying to reach the absolute zero, violating the second law of
thermodynamics. At t = 0, one is not reaching the absolute
zero since there is no past before the beginning of the time. To
reach the absolute zero, in an attempt to violate the Nernst
principle, one must go from the past to the future.

[13] The eqn. (39) is simply rewritten to plot the graph, i.e.:
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and, as obtained before,

R0 =
√

2Gh/c3.
[14] Actually, the critical one, since observations asseverate it.
[15] Eqn. (56) holds from t > 10−43 seconds, as one easily verify

from eqn. (35).


