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Abstract:

We consider a system of two free bodies in de Sitter invariant quantum theory. In
quasiclassical approximation the mean value of the mass operator for such a system
is given by a standard expression plus a correction V which is always negative and in
the nonrelativistic approximation is proportional to m1m2, where m1 and m2 are the
masses of the bodies. At very large distances the standard relative distance operator
describes a well known cosmological acceleration. In particular, the cosmological
constant problem does not exist and there is no need to involve dark energy or other
fields for solving this problem. At the same time, for systems of macroscopic bodies
this operator does not have correct properties at smaller distances and should be
modified. Among possible modifications with correct properties there is such that in
the nonrelativistic approximation V is proportional to −m1m2(1/δ1 + 1/δ2)/[r(m1 +
m2)] where r is the distance between the bodies and δi (i = 1, 2) is the width of the
de Sitter momentum distribution for body i. We argue that fundamental quantum
theory should be based on a Galois field with a large characteristic p which is a
fundamental constant characterizing laws of physics in our Universe. Then one can
give a natural explanation that δi is inversely proportional tomi, V = −Gm1m2/r and
G depends on the structure of many-body wave functions. A very rough estimation of
this quantity gives a value of order R/(mN lnp) where R is the radius of the Universe
(such that Λ = 3/R2 is the cosmological constant) and mN is the nucleon mass. If R
is of order 1026m then lnp is of order 1080 and therefore p is of order exp(1080).
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Chapter 1

Introduction

1.1 The main idea of this work

Let us consider a system of two particles and pose a question whether they interact
or not. In theoretical physics there is no unambiguous criterion for answering this
question. For example, in classical (i.e. non quantum) nonrelativistic and relativistic
mechanics the criterion is clear and simple: if the relative acceleration of the particles
is zero they do not interact, otherwise they interact. However, those theories are
based on Galilei and Poincare symmetries, respectively and there is no reason to
believe that those symmetries are exact symmetries of nature.

In quantum mechanics the criterion can be as follows. If E is the energy
operator of the two-particle system and Ei (i = 1, 2) is the energy operator of particle
i then one can formally define the interaction operator U such that

E = E1 + E2 + U (1.1)

Therefore the criterion can be such that the particles do not interact if U = 0, i.e.
E = E1 + E2.

In local quantum field theory (QFT) the criterion is also clear and simple:
the particles interact if they can exchange by virtual quanta of some fields. For
example, the electromagnetic interaction between the particles means that they can
exchange by virtual photons, the gravitational interaction - that they can exchange
by virtual gravitons etc. In that case U in Eq. (1.1) is an effective operator obtained
in the approximation when all degrees of freedom except those corresponding to the
given particles can be integrated out.

A problem with approaches based on Eq. (1.1) is that the answer should
be given in terms of invariant quantities while energies are reference frame dependent.
Therefore one should consider the two-particle mass operator. In standard Poincare
invariant theory the free mass operator is given byM =M0(q) = (m2

1+q2)1/2+(m2
2+

q2)1/2 where the mi are the particle masses and q is the relative momentum operator.
In classical approximation q becomes the relative momentum and M0 becomes a
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function of q not depending on the relative distance between the particles. Therefore
the relative acceleration is zero and this case can be treated as noninteracting.

Consider now a free two-particle system in de Sitter (dS) invariant theory.
We do not assume that our theory is QFT on dS spacetime, that it involves General
Relativity (GR) etc. We assume only that elementary particles are described by
irreducible representations (IRs) of the dS algebra and (by definition) a system of
free particles is described by a representation where not only the energy but all
other operators are given by sums of the corresponding single-particle operators. In
representation theory such a representation is called the tensor products of IRs. In
other words, we consider only quantum mechanics of two free particles in dS invariant
theory. In that case the two-particle mass operator can be written asM =M0(q)+V
where V is an operator depending not only on q. In classical approximation V
becomes a function depending on the relative distance. As a consequence, the relative
acceleration is not zero. As shown in Refs. [4, 1, 2] and others (see also Sect.
2.3 of the present paper), the result for the relative acceleration describes a well
known cosmological repulsion (sometimes called dS antigravity) obtained in GR on
dS spacetime. However, our result has been obtained without involving Riemannian
geometry, metric, connection and dS spacetime.

One might argue that the above situation contradicts the law of inertia
according to which if particles do not interact then their relative acceleration must
be zero. However, this law has been postulated in Galilei and Poincare invariant
theories and there is no reason to believe that it will be valid for other symmetries.
Another argument might be such that dS invariance implicitly implies existence of
other particles which interact with the two particles under consideration. Therefore
the above situation resembles a case when two particles not interacting with each other
are moving with different accelerations in a nonhomogeneous field and therefore their
relative acceleration is not zero. This argument has much in common with a well
known discussion of whether empty spacetime can have a curvature and whether a
nonzero curvature implies the existence of dark energy or other fields. In Sect. 1.3
we argue that fundamental quantum theory should not involve spacetime at all. In
particular, dS invariance on quantum level does not involve Riemannian geometry
and dS spacetime.

In QFT interactions can be only local and there are no interactions at
a distance (sometimes called direct interactions), when particles interact without
an intermediate field. In particular, a potential interaction (when the force of the
interaction depends only on the distance between the particles) can be only a good
approximation in situations when the particle velocities are much smaller than the
speed of light c. The explanation is such that if the force of the interaction depends
only on the distance between the particles and the distance is slightly changed then
the particles will feel the change immediately, but this contradicts the statement that
no interaction can be transmitted with the speed greater than the speed of light.
Although standard QFT is based on Poincare symmetry, physicists typically believe
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that the notion of interaction adopted in QFT is valid for any symmetry. However,
the above discussion shows that the dS antigravity is not caused by exchange of
any virtual particles. In particular a question about the speed of propagation of dS
antigravity in not physical. In other words, the dS antigravity is an example of a
true direct interaction. It is also possible to say that the dS antigravity is not an
interaction at all but simply an inherent property of dS invariance.

On quantum level, de Sitter and anti de Sitter (AdS) symmetries are
widely used for investigating QFT in curved spacetime. However, it seems rather
paradoxical that such a simple case as a free two-body system in dS invariant theory
has not been widely discussed. According to our observations, such a situation is a
manifestation of the fact that even physicists working on dS QFT are not familiar
with basic facts about IRs of the dS algebra. It is difficult to imagine how standard
Poincare invariant quantum theory can be constructed without involving well known
results on IRs of the Poincare algebra. Therefore it is reasonable to think that when
Poincare invariance is replaced by dS one, IRs of the Poincare algebra should be
replaced by IRs of the dS algebra. However, physicists working on QFT in curved
spacetime argue that fields are more fundamental than particles and therefore there
is no need to involve IRs. On the other hand, as already noted, we will argue in Sect.
1.3 that fundamental quantum theory should not involve spacetime at all.

Our discussion shows that the notion of interaction depends on symmetry.
For example, when we consider a system of two particles which from the point of view
of dS symmetry are free (since they are described by a tensor product of IRs), from
the point of view of our experience based on Galilei or Poincare symmetries they are
not free since their relative acceleration is not zero. This poses a question whether
not only dS antigravity but other interactions are in fact not interactions but effective
interactions emerging when a higher symmetry is treated in terms of a lower one. In
particular, is it possible that quantum symmetry is such that on classical level the
relative acceleration of two free particles is described by the same expression as that
given by the Newton gravitational law and corrections to it?

If we accept dS symmetry then the first step is to investigate the structure
of dS invariant theory from the point of view of IRs of the dS algebra. This problem
is discussed in Refs. [1, 2, 3]. In Ref. [4] we discussed a possibility that gravity is
simply a manifestation of the fact that fundamental quantum theory should be based
not on complex numbers but on a Galois field with a large characteristic p which is
a fundamental constant defining the laws of physics in our Universe. This approach
to quantum theory, which we call GFQT, has been discussed in Refs. [5, 6, 7] and
other publications. In Refs. [8, 9] we discussed additional arguments in favor of our
hypothesis about gravity. We believe that the results of the present paper give strong
indications that this hypothesis is correct. Before proceeding to the derivation of
these results, we would like to discuss a general structure of fundamental quantum
theory.
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1.2 Remarks on the cosmological constant prob-

lem

The discovery of the cosmological repulsion (see e.g., [10, 11]) has ignited a vast
discussion on how this phenomenon should be interpreted. The majority of authors
treat this phenomenon as an indication that the cosmological constant (CC) Λ in
GR is positive and therefore the spacetime background has a positive curvature.
According to References [12, 13], the observational data on the value of Λ define it
with the accuracy better than 5%. Therefore the possibilities that Λ = 0 or Λ < 0 are
practically excluded. To discuss the CC problem in greater details, we first discuss
the following well-known problem: How many independent dimensionful constants
are needed for a complete description of nature? A paper [14] represents a trialogue
between three well known scientists: M.J. Duff, L.B. Okun and G. Veneziano. The
results of their discussions are summarized as follows: LBO develops the traditional
approach with three constants, GV argues in favor of at most two (within superstring
theory), while MJD advocates zero. According to Reference [15], a possible definition
of a fundamental constant might be such that it cannot be calculated in the existing
theory. We would like to give arguments in favor of the opinion of the first author
in Ref. [14]. One of our goals is to argue that the cosmological and gravitational
constants cannot be fundamental physical quantities.

Consider a measurement of a component of angular momentum. The
result depends on the system of units. As shown in quantum theory, in units h̄/2 = 1
the result is given by an integer 0,±1,±2, .... But we can reverse the order of units
and say that in units where the momentum is an integer l, its value in kg ·m2/sec
is (1.05457162 · 10−34 · l/2)kg ·m2/sec. Which of those two values has more physical
significance? In units where the angular momentum components are integers, the
commutation relations between the components are

[Mx,My] = 2iMz [Mz,Mx] = 2iMy [My,Mz] = 2iMx

and they do not depend on any parameters. Then the meaning of l is clear: it shows
how big the angular momentum is in comparison with the minimum nonzero value 1.
At the same time, the measurement of the angular momentum in units kg ·m2/sec
reflects only a historic fact that at macroscopic conditions on the Earth in the period
between the 18th and 21st centuries people measured the angular momentum in such
units.

The fact that quantum theory can be written without the quantity h̄ at
all is usually treated as a choice of units where h̄ = 1/2 (or h̄ = 1). We believe that a
better interpretation of this fact is simply that quantum theory tells us that physical
results for measurements of the components of angular momentum should be given in
integers. Then the question why h̄ is as it is, is not a matter of fundamental physics
since the answer is: because we want to measure components of angular momentum
in kg ·m2/sec.
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Our next example is the measurement of velocity v. The fact that any
relativistic theory can be written without involving c is usually described as a choice
of units where c = 1. Then the quantity v can take only values in the range [0,1].
However, we can again reverse the order of units and say that relativistic theory tells
us that results for measurements of velocity should be given by values in [0,1]. Then
the question why c is as it is, is again not a matter of physics since the answer is:
because we want to measure velocity in m/sec.

One might pose a question whether or not the values of h̄ and cmay change
with time. As far as h̄ is concerned, this is a question that if the angular momentum
equals one then its value in kg ·m2/sec will always be 1.05457162 · 10−34/2 or not.
It is obvious that this is not a problem of fundamental physics but a problem how
the units (kg,m, sec) are defined. In other words, this is a problem of metrology and
cosmology. At the same time, the value of c will always be the same since the modern
definition of meter is the length which light passes during (1/(3 · 108))sec.

It is often believed that the most fundamental constants of nature are h̄, c
and the gravitational constant G. The units where h̄ = c = G = 1 are called Planck
units. Another well known notion is the ch̄G cube of physical theories. The meaning
is that any relativistic theory should contain c, any quantum theory should contain h̄
and any gravitational theory should contain G. However, the above remarks indicates
that the meaning should be the opposite. In particular, relativistic theory should not
contain c and quantum theory should not contain h̄. The problem of treating G is a
key problem of this paper and will be discussed below.

A standard phrase that relativistic theory becomes non-relativistic one
when c → ∞ should be understood such that if relativistic theory is rewritten in
conventional (but not physical!) units then c will appear and one can take the limit
c → ∞. A more physical description of the transition is that all the velocities in
question are much less than unity. We will see in Section 2.3 that those definitions
are not equivalent. Analogously, a more physical description of the transition from
quantum to classical theory should be that all angular momenta in question are very
large rather than h̄→ 0.

Consider now what happens if we assume that dS symmetry is funda-
mental. We will see that in our approach dS symmetry has nothing to do with dS
space but now we consider standard notion of this symmetry. The dS space is a
four-dimensional manifold in the five-dimensional space defined by

x21 + x22 + x23 + x24 − x20 = R2 (1.2)

In the formal limit R → ∞ the action of the dS group in a vicinity of the point
(0, 0, 0, 0, x4 = R) becomes the action of the Poincare group on Minkowski space.
In the literature, instead of R, the CC Λ = 3/R2 is often used. Then Λ > 0 in
the dS case, Λ < 0 in the AdS one and Λ = 0 for Poincare symmetry. The dS
space can be parameterized without using the quantity R at all if instead of xa
(a = 0, 1, 2, 3, 4) we define dimensionless variables ξa = xa/R. It is also clear that

7



the elements of the SO(1,4) group do not depend on R since they are products of
conventional and hyperbolic rotations. So the dimensionful value of R appears only
if one wishes to measure coordinates on the dS space in terms of coordinates of the
flat five-dimensional space where the dS space is embedded in. This requirement does
not have a fundamental physical meaning. Therefore the value of R defines only a
scale factor for measuring coordinates in the dS space. By analogy with c and h̄, the
question why R is as it is, is not a matter of fundamental physics since the answer is:
because we want to measure distances in meters. In particular, there is no guarantee
that the cosmological constant is really a constant, i.e., does not change with time.
It is also obvious that if dS symmetry is assumed from the beginning then the value
of Λ has no relation to the value of G.

If one assumes that spacetime background is fundamental then in the spirit
of GR it is natural to think that the empty spacetime is flat, i.e., that Λ = 0 and this
was the subject of the well-known dispute between Einstein and de Sitter. However,
as noted above, it is now accepted that Λ 6= 0 and, although it is very small, it is
positive rather than negative. If we accept parameterization of the dS space as in Eq.
(1.2) then the metric tensor on the dS space is

gµν = ηµν − xµxν/(R
2 + xρx

ρ) (1.3)

where µ, ν, ρ = 0, 1, 2, 3, ηµν is the diagonal tensor with the components η00 = −η11 =
−η22 = −η33 = 1 and a summation over repeated indices is assumed. It is easy to
calculate the Christoffel symbols in the approximation where all the components of
the vector x are much less than R: Γµ,νρ = −xµηνρ/R2. Then a direct calculation
shows that in the nonrelativistic approximation the equation of motion for a single
particle is

a = rc2/R2 (1.4)

where a and r are the acceleration and the radius vector of the particle, respectively.
Suppose now that we have a system of two noninteracting particles and

{ri, ai} (i = 1, 2) are their radius vectors and accelerations, respectively. Then Eq.
(1.4) is valid for each particle if {r, a} is replaced by {ri, ai}, respectively. Now if we
define the relative radius vector r = r1 − r2 and the relative acceleration a = a1 − a2

then they will satisfy the same Eq. (1.4) which shows that the dS antigravity is
repulsive. It terms of Λ it reads a = Λrc2/3 and therefore in the AdS case we have
attraction rather than repulsion.

The fact that even a single particle in the Universe has a nonzero acceler-
ation might be treated as contradicting the law of inertia but, as already noted, this
law has been postulated only for Galilean or Poincare symmetries and we have a = 0
in the limit R → ∞. A more serious problem is that, according to standard expe-
rience, any particle moving with acceleration necessarily emits gravitational waves,
any charged particle emits electromagnetic waves etc. Does this experience work in
the dS world? This problem is intensively discussed in the literature (see e.g., Ref.
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[16] and references therein). Suppose we accept that, according to GR, the loss of
energy in gravitational emission is proportional to the gravitational constant. Then
one might say that in the given case it is not legitimate to apply GR since the con-
stant G characterizes interaction between different particles and cannot be used if
only one particle exists in the world. However, the majority of authors proceed from
the assumption that the empty dS space cannot be literally empty. If the Einstein
equations are written in the form Gµν +Λgµν = (8πG/c4)Tµν where Tµν is the stress-
energy tensor of matter then the case of empty space is often treated as a vacuum
state of a field with the stress-energy tensor T vac

µν such that (8πG/c4)T vac
µν = −Λgµν .

This field is often called dark energy. With such an approach one implicitly returns
to Einstein’s point of view that a curved space cannot be empty. Then the fact that
Λ 6= 0 is treated as a dark energy on the flat background. In other words, this is an
assumption that Poincare symmetry is fundamental while dS one is emergent.

However, in this case a new problem arises. The corresponding quantum
theory is not renormalizable and with reasonable cutoffs, the quantity Λ in units
h̄ = c = 1 appears to be of order 1/l2P = 1/G where lP is the Planck length. It
is obvious that since in the above theory the only dimensionful quantities in units
h̄ = c = 1 are G and Λ, and the theory does not have other parameters, the result
that GΛ is of order unity seems to be natural. However, this value of Λ is at least
by 120 orders of magnitude greater than the experimental one. Numerous efforts to
solve this CC problem have not been successful so far although many explanations
have been proposed.

Many physicists argue that in the spirit of GR, the theory should not
depend on the choice of the spacetime background (a principle of background inde-
pendence) and there should not be a situation when the flat background is preferable.
Moreover, although GR has been confirmed in several experiments in Solar system, it
is not clear whether it can be extrapolated to cosmological distances. In other words,
our intuition based on GR with Λ = 0 cannot be always correct if Λ 6= 0. In Ref.
[17] this point of view is discussed in details. The authors argue that a general case
of Einstein’s equation is when Λ is present and there is no reason to believe that a
special case Λ = 0 is preferable.

In summary, numerous attempts to resolve the CC problem have not con-
verged to any universally accepted theory. All those attempts are based on the notion
of spacetime background and in the next section we discuss whether this notion is
physical.

1.3 Should physical theories involve spacetime

background?

From the point of view of quantum theory, any physical quantity can be
discussed only in conjunction with the operator defining this quantity. For example,
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in standard quantum mechanics the quantity t is a parameter, which has the meaning
of time only in classical limit since there is no operator corresponding to this quantity.
The problem of how time should be defined on quantum level is very difficult and is
discussed in a vast literature (see e.g., Refs. [18] and references therein). It has been
also well known since the 1930s [19] that, when quantum mechanics is combined with
relativity, there is no operator satisfying all the properties of the spatial position op-
erator. In other words, the coordinates cannot be exactly measured even in situations
when exact measurements are allowed by the non-relativistic uncertainty principle.
In the introductory section of the well-known textbook [20] simple arguments are
given that for a particle with mass m, the coordinates cannot be measured with the
accuracy better than the Compton wave length h̄/mc. This fact is mentioned in
practically every textbook on quantum field theory (see e.g., Ref. [21]). Hence, the
exact measurement is possible only either in the non-relativistic limit (when c→ ∞)
or classical limit (when h̄→ 0).

We accept a principle that any definition of a physical quantity is a de-
scription how this quantity should be measured. In quantum theory this principle
has been already implemented but we believe that it should be valid in classical the-
ory as well. From this point of view, one can discuss if coordinates of particles can
be measured with a sufficient accuracy, while the notion of spacetime background,
regardless of whether it is flat or curved, does not have a physical meaning. Indeed,
this notion implies that spacetime coordinates are meaningful even if they refer not
to real particles but to points of a manifold which exists only in our imagination.
However, such coordinates are not measurable. To avoid this problem one might try
to treat spacetime background as a reference frame. Note that even in GR, which
is a pure classical (i.e., non-quantum) theory, the meaning of reference frame is not
clear. In standard textbooks (see e.g., Ref. [22]) the reference frame in GR is defined
as a collection of weightless bodies, each of which is characterized by three numbers
(coordinates) and is supplied by a clock. Such a notion (which resembles ether) is not
physical even on classical level and for sure it is meaningless on quantum level. There
is no doubt that GR is a great achievement of theoretical physics and has achieved
great successes in describing experimental data. At the same time, it is based on
the notions of spacetime background or reference frame, which do not have a clear
physical meaning.

In classical field theories (e.g. in classical electrodynamics), spatial co-
ordinates are meaningful only as the coordinates of test particles. However, in GR
spacetime is described not only by coordinates but also by a curvature. The philos-
ophy of GR is that matter creates spacetime curvature and in the absence of matter
spacetime should be flat. Therefore Λ 6= 0 implicitly implies that spacetime is not
empty. However, the notion of spacetime without matter is fully unphysical and, in
our opinion, it is a nonphysical feature of GR that there are solutions when mat-
ter disappears but spacetime still exists and has a curvature (a zero curvature for
Minkowski spacetime and a nonzero curvature if Λ 6= 0). This feature cannot be
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justified even taking into account the fact that GR is a pure classical theory. In some
approaches (see e.g. Ref. [23]), when matter disappears, the metric tensor becomes
not the Minkowskian one but zero, i.e. spacetime disappears too. Also, as argued
in Ref. [24], the metric tensor should be dimensionful since gµνdx

µdxν should be
scale independent. Then the absolute value of the metric tensor is proportional to
the number of particles in the Universe.

In view of this discussion, it is unrealistic to expect that successful quan-
tum theory of gravity will be based on quantization of GR. The results of GR might
follow from quantum theory of gravity only in situations when spacetime coordinates
of real bodies is a good approximation while in general the formulation of quantum
theory should not involve spacetime background at all. One might take objection
that coordinates of spacetime background in GR can be treated only as parameters
defining possible gauge transformations while final physical results do not depend on
these coordinates. Analogously, although the quantity x in the Lagrangian density
L(x) is not measurable, it is only an auxiliary tool for deriving equations of motion
in classical theory and constructing Hilbert spaces and operators in quantum theory.
After this construction has been done, one can safely forget about background coor-
dinates and Lagrangian. In other words, a problem is whether nonphysical quantities
can be present at intermediate stages of physical theories. This problem has a long
history discussed in a vast literature. Probably Newton was the first who introduced
the notion of spacetime background but, as noted in a paper in Wikipedia, ”Leib-
niz thought instead that space was a collection of relations between objects, given
by their distance and direction from one another”. As noted above, the assumption
that spacerime exists and has a curvature even when matter is absent is not physical.
We believe that at the fundamental level unphysical notions should not be present
even at intermediate stages. So Lagrangian can be at best treated as a hint for con-
structing a fundamental theory. As stated in Reference [20], local quantum fields and
Lagrangians are rudimentary notion, which will disappear in the ultimate quantum
theory. Those ideas have much in common with the Heisenberg S-matrix program
and were rather popular till the beginning of the 1970’s. In view of successes of gauge
theories they have become almost forgotten.

However, in recent years there is a tendency to treat spacetime as not
fundamental but emergent. This approach is now widely discussed in the literature in
view of holographic principle and the recent work by Verlinde [25] where the Newton
gravitational law has been derived assuming that spacetime is emergent and this
principle is valid. As noted in Ref. [25], ”Space is in the first place a device introduced
to describe the positions and movements of particles. Space is therefore literally just
a storage space for information...”. This implies that the emergent spacetime is
meaningful only if matter is present. The author of Ref. [25] states that in his
approach one can recover Einstein equations where the coordinates and curvature
refer to the emergent spacetime. However, it is not clear how to treat the fact that
the formal limit when matter disappears is possible and spacetime formally remains
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although, if it is emergent, it cannot exist without matter.
In quantum theory, if we have a system of particles, its wave function (rep-

resented as a Fock state or in other forms) gives the maximum possible information
about this system and there is no other way of obtaining any information about the
system except from its wave function. So the information encoded in the emergent
space should be somehow extracted from the system wave function. However, to the
best of our knowledge, there is no theory relating the emergent space with the system
wave function. Typically the emergent space is described in the same way as the
”fundamental” space, i.e. as a manifold and it is not clear how the points of this
manifold are related to the wave function. The above arguments showing that the
”fundamental” space is not physical can be applied to the emergent space as well.
In particular, the coordinates of the emergent space are not measurable and it is not
clear what is the meaning of those coordinates where there are no particles at all. It
is also known that at present the holographic principle is only a hypothesis which has
not been experimentally verified. At the same time, since the nature of gravity is a
very difficult fundamental problem, we believe that different approaches for solving
this problem should be welcome.

In summary, although the most famous successes of theoretical physics
have been obtained in theories involving spacetime background, this notion does not
have a physical meaning. Therefore a problem arises how to explain the fact that
physics seems to be local with a good approximation. In Section 2.3 it is shown that
the result given by Eq. (1.4) is simply a consequence of dS symmetry on quantum
level when quasiclassical approximation works with a good accuracy. For deriving
this result there is no need to involve dS space, metric, connection, dS QFT and
other sophisticated methods. The first step in our approach is discussed in the next
section.

1.4 Symmetry on quantum level

If we accept that quantum theory should not proceed from spacetime background, a
problem arises how symmetry should be defined on quantum level. Note that each
system is described by a set of independent operators and they somehow commute
with each other. We accept that by definition, the rules how they commute define a
Lie algebra which is treated as a symmetry algebra.

Such a definition of symmetry on quantum level is in the spirit of Dirac’s
paper [26]. We believe that for understanding this Dirac’s idea the following ex-
ample might be useful. If we define how the energy should be measured (e.g., the
energy of bound states, kinetic energy etc.), we have a full knowledge about the
Hamiltonian of our system. In particular, we know how the Hamiltonian should com-
mute with other operators. In standard theory the Hamiltonian is also interpreted
as an operator responsible for evolution in time, which is considered as a classical
macroscopic parameter. In situations when this parameter is a good approximate
parameter, macroscopic transformations from the symmetry group corresponding to
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the evolution in time have a meaning of evolution transformations. However, there is
no guarantee that such an interpretation is always valid (e.g., at the very early stage
of the Universe). In general, according to principles of quantum theory, self-adjoint
operators in Hilbert spaces represent observables but there is no requirement that
parameters defining a family of unitary transformations generated by a self-adjoint
operator are eigenvalues of another self-adjoint operator. A well known example from
standard quantum mechanics is that if Px is the x component of the momentum
operator then the family of unitary transformations generated by Px is exp(iPxx/h̄)
where x ∈ (−∞,∞) and such parameters can be identified with the spectrum of the
position operator. At the same time, the family of unitary transformations generated
by the Hamiltonian H is exp(−iHt/h̄) where t ∈ (−∞,∞) and those parameters
cannot be identified with a spectrum of a self-adjoint operator on the Hilbert space of
our system. In the relativistic case the parameters x can be formally identified with
the spectrum of the Newton-Wigner position operator [19] but it is well known that
this operator does not have all the required properties for the position operator. So,
although the operators exp(iPxx/h̄) and exp(−iHt/h̄) are well defined, their physical
interpretation as translations in space and time is not always valid.

The definition of the dS symmetry on quantum level is that the operators
Mab (a, b = 0, 1, 2, 3, 4, Mab = −M ba) describing the system under consideration
satisfy the commutation relations of the dS Lie algebra so(1,4), i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (1.5)

where ηab is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 =
−η44 = 1. These relations do not depend on any free parameters. One might say
that this is a consequence of the choice of units where h̄ = c = 1. However, as noted
above, any fundamental theory should not involve the quantities h̄ and c.

With such a definition of symmetry on quantum level, dS symmetry looks
more natural than Poincare symmetry. In the dS case all the ten representation
operators of the symmetry algebra are angular momenta while in the Poincare case
only six of them are angular momenta and the remaining four operators represent
standard energy and momentum. If we define the operators P µ as P µ =M4µ/R then
in the formal limit when R → ∞, M4µ → ∞ but the quantities P µ are finite, the
relations (1.5) become the commutation relations for representation operators of the
Poincare algebra such that the dimensionful operators P µ are the four-momentum
operators. Note also that the above definition of the dS symmetry has nothing to do
with dS space and its curvature.

A theory based on the above definition of the dS symmetry on quantum
level cannot involve quantities which are dimensionful in units h̄ = c = 1. In partic-
ular, we inevitably come to conclusion that the dS space, the gravitational constant
and the cosmological constant cannot be fundamental. The latter appears only as a
parameter replacing the dimensionless operators M4µ by the dimensionful operators
P µ which have the meaning of momentum operators only if R is rather large. There-
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fore the cosmological constant problem does not arise at all but instead we have a
problem why nowadays Poincare symmetry is so good approximate symmetry. This
is rather a problem of cosmology but not quantum physics.

1.5 Remarks on quasiclassical approximation in

quantum mechanics

In quantum theory, states of a system are represented by elements of a
projective Hilbert space. The fact that a Hilbert space H is projective means that if
ψ ∈ H is a state then const ψ is the same state. The matter is that not the probability
itself but only relative probabilities of different measurement outcomes have a physical
meaning. In particular, normalization of states to one is only a matter of convention.
This observation will be important in Chap. 4 while in this and the next chapters we
will always work with states ψ such that ||ψ|| = 1 where ||...|| is a norm. It is defined
such that if (..., ...) is a scalar product in H then ||ψ|| = (ψ, ψ)1/2.

In quantum theory every physical quantity is described by a selfadjoint
operator. Each selfadjoint operator is Hermitian i.e. satisfies the property (ψ2, Aψ1) =
(Aψ2, ψ1) for any states belonging to the domain of A. If A is an operator of some
quantity then the mean value of the quantity and its uncertainty in state ψ are given
by Ā = (ψ,Aψ) and ∆A = ||(A− Ā)ψ||, respectively. The condition that a quantity
corresponding to the operator A is quasiclassical in state ψ can be defined such that
|∆A| ≪ |Ā|. This implies that the quantity can be quasiclassical only if |Ā| is rather
large. In particular, if Ā = 0 then the quantity cannot be quasiclassical.

Let B be an operator corresponding to another physical quantity and B̄
and ∆B be the mean value and the uncertainty of this quantity, respectively. We
can write AB = {A,B}/2 + [A,B]/2 where the commutator [A,B] = AB − BA
is anti-Hermitian and the anticommutator {A,B} = AB + BA is Hermitian. Let
[A,B] = −iC and C̄ be the mean value of the operator C.

A question arises whether two physical quantities corresponding to the
operators A and B can be simultaneously quasiclassical in state ψ. Since ||ψ1||||ψ2|| ≥
|(ψ1, ψ2)|, we have that

∆A∆B ≥ 1

2
|(ψ, ({A− Ā, B − B̄}+ [A,B])ψ)| (1.6)

Since (ψ, {A− Ā, B − B̄}ψ) is real and (ψ, [A,B]ψ) is imaginary, we get

∆A∆B ≥ 1

2
|C̄| (1.7)

This condition is known as a general uncertainty relation between two quantities. A
well known special case is that if P is the x component of the momentum operator
and X is the operator of multiplication by x then [P,X ] = −ih̄ and ∆p∆x ≥ h̄/2.
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The states where ∆p∆ = h̄/2 are called coherent ones. They are treated such that
the momentum and the coordinate are simultaneously quasiclassical in a maximal
possible way. A well known example is that if

ψ(x) =
1

a
√
π
exp[

i

h̄
p0x−

1

2a2
(x− x0)

2]

then X̄ = x0, P̄ = p0, ∆x = a/
√
2 and ∆p = h̄/(a

√
2).

For simplicity we consider a one dimensional motion. In standard text-
books on quantum mechanics, the presentation starts with a wave function ψ(x) in
coordinate space since it is implicitly assumed that the meaning of space coordi-
nates is known. Then a question arises why P = −ih̄d/dx should be treated as the
momentum operator. The explanation is as follows.

Consider wave functions having the form ψ(x) = exp(ip0x/h̄)a(x) where
the amplitude a(x) has a sharp maximum near x = x0 ∈ [x1, x2] such that a(x) is
not small only when x ∈ [x1, x2]. Then ∆x is of order x2 − x1 and the condition
that the coordinate is quasiclassical is ∆x ≪ |x0|. Since −ih̄dψ(x)/dx = p0ψ(x) −
ih̄exp(ip0x/h̄)da(x)/dx, we see that ψ(x) will be approximately the eigenfunction of
−ih̄d/dx with the eigenvalue p0 if |p0a(x)| ≫ h̄|da(x)/dx|. Since |da(x)/dx| is of order
|a(x)/∆x|, we have a condition |p0∆x| ≫ h̄. Therefore if the momentum operator
is −ih̄d/dx, the uncertainty of momentum ∆p is of order h̄/∆x, |p0| ≫ ∆p and this
implies that the momentum is also quasiclassical. At the same time, |p0∆x|/h̄ is
approximately the number of oscillations which the exponent makes on the segment
[x1, x2]. Therefore the number of oscillations should be much greater than unity. In
particular, the quasiclassical approximation cannot be valid if ∆x is very small, but on
the other hand, ∆x cannot be very large since it should be much less than x0. Another
justification of the fact that −ih̄d/dx is the momentum operator is that in the formal
limit h̄ → 0 the Schroedinger equation becomes the Hamilton-Jacobi equation. This
discussion resembles a well known discussion on the validity of geometrical optics:
it is valid when the wave length is much less than characteristic dimensions of the
problem.

We conclude that the choice of −ih̄d/dx as the momentum operator is
justified from the requirement that in quasiclassical approximation this operator be-
comes the classical momentum. However, it is obvious that this requirement does
not define the operator uniquely: any operator P̃ such that P̃ − P disappears in
quasiclassical limit, also can be called the momentum operator.

One might say that the choice P = −ih̄d/dx can also be justified from the
following considerations. In nonrelativistic quantum mechanics we assume that the
theory should be invariant under the action of the Galilei group, which is a group of
transformations of Galilei spacetime. The x component of the momentum operator
should be the generator corresponding to spatial translations along the x axis and
−ih̄d/dx is precisely the required operator. In this consideration one assumes that
spacetime has a physical meaning while, as noted in Sect. 1.3, this is not the case.
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As noted in Sect. 1.4, one should start not from spacetime but from a sym-
metry algebra. Therefore in nonrelativistic quantum mechanics we should start from
the Galilei algebra and consider its IRs. For simplicity we again consider a one di-
mensional case. Let Px = P be one of representation operators in an IR of the Galilei
algebra. We can implement this IR in a Hilbert space of functions ψ(p) such that
∫∞

−∞
|ψ(p)|2dp <∞ and P is the operator of multiplication by p, i.e. Pψ(p) = pψ(p).

Then a question arises how the operator of the x coordinate should be defined. In
contrast with the momentum operator, the coordinate one is not defined by the rep-
resentation and so it should be defined from additional assumptions. Probably a
future quantum theory of measurements will make it possible to construct opera-
tors of physical quantities from the rules how these quantities should be measured.
However, at present we can construct necessary operators only from rather intuitive
considerations.

By analogy with the above discussion, one can say that quasiclassical wave
functions should be of the form ψ(p) = exp(−ix0p/h̄)a(p) where the amplitude a(p)
has a sharp maximum near p = p0 ∈ [p1, p2] such that a(p) is not small only when
p ∈ [p1, p2]. Then ∆p is of order p2 − p1 and the condition that the momentum is
quasiclassical is ∆p ≪ |p0|. Since ih̄dψ(p)/dp = x0ψ(p) + ih̄exp(−ix0p/h̄)da(p)/dp,
we see that ψ(p) will be approximately the eigenfunction of ih̄d/dp with the eigen-
value x0 if |x0a(p)| ≫ h̄|da(p)/dp|. Since |da(p)/dp| is of order |a(p)/∆p|, we have
a condition |x0∆p| ≫ h̄. Therefore if the coordinate operator is X = ih̄d/dp, the
uncertainty of coordinate ∆x is of order h̄/∆p, |x0| ≫ ∆x and this implies that
the coordinate defined in such a way is also quasiclassical. We can also note that
|x0∆p|/h̄ is approximately the number of oscillations which the exponent makes on
the segment [p1, p2] and therefore the number of oscillations should be much greater
than unity. It is also clear that the quasiclassical approximation cannot be valid if
∆p is very small, but on the other hand, ∆p cannot be very large since it should be
much less than p0.

Although this definition of the coordinate operator has much in common
with standard definition of the momentum operators, several questions arise. First
of all, by analogy with the discussion about the momentum operator, one can say
that the condition that in classical limit the coordinate operator should become the
classical coordinate does not define the operator uniquely. One might require that
the coordinate operator should correspond to translations in momentum space or
be the operator of multiplication by x where the x representation is defined as a
Fourier transform of the p representation but these requirements are not justified.
The condition |x0| ≫ ∆x might seem to be unphysical since x0 depends on the choice
of the origin in the x space while ∆x does not depend on this choice. Therefore a
conclusion whether the coordinate is quasiclassical or not depends on the choice of
the reference frame. However, one can notice that not the coordinate itself has a
physical meaning but only a relative coordinate between two particles.

Nevertheless, the above definition of the coordinate operator is not fully
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in line with what we think is a physical coordinate operator. To illustrate this point,
consider, for example a measurement of the distance between some particle and the
electron in a hydrogen atom. We expect that ∆x cannot be less than the Bohr radius.
Therefore if x0 is of order of the Bohr radius, the coordinate cannot be quasiclassical.
One might think that the accuracy of the coordinate measurement can be defined as
|∆x/x0| and therefore if we succeed in keeping ∆x to be of order of the Bohr radius
when we increase |x0| then the coordinate will be measured with a better and better
accuracy when |x0| becomes greater. This intuitive understanding might be correct
if the distance to the electron is measured in a laboratory where a distance is of
order of centimeters or meters. However, is this intuition correct when we measure
distances between macroscopic bodies? In the spirit of GR, the distance between two
bodies which are far from each other should be measured by sending a light signal
and waiting when it returns back. However, when a reflected signal is obtained, some
time has passed and we don’t know what happened to the body of interest (e.g. if
the Universe is expanding). For such experiments the logic is opposite to what we
have with the standard definition of the coordinate operator in quantum mechanics:
the accuracy of measurements is better not when the distance is greater but when it
is less. We will discuss this problem in Chap. 3.

1.6 The content of this paper

In Chap. 2 we construct IRs of the dS algebra following the book by Mensky [27]. This
construction makes it possible to show that the well known cosmological repulsion is
simply a kinematical effect in dS quantum mechanics. The derivation involves only
standard quantum mechanical notions. It does not require dealing with dS space,
metric tensor, connection and other notions of Riemannian geometry. As argued in
the preceding sections, fundamental quantum theory should not involve spacetime at
all. In our approach the cosmological constant problem does not exist and there is
no need to involve dark energy or other fields for explaining this problem.

In Chap. 3 we construct IRs in the basis where all quantum numbers are
discrete. This makes it possible to investigate for which two-body wave functions one
can get standard Newton’s law of gravity. The explicit construction is given in Sect.
3.4.

In Chap. 4 we argue that fundamental quantum theory should be based
on Galois fields rather than complex numbers. In our approach, standard theory
is a special case of a quantum theory over a Galois field (GFQT) in a formal limit
when the characteristic of the field p becomes infinitely large. We tried to make the
presentation as self-contained as possible without assuming that the reader is familiar
with Galois fields.

In Chap. 5 we construct quasiclassical states in GFQT and discuss the
problem of calculating the gravitational constant. Finally, Chap. 6 is the discussion.
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Chapter 2

Basic properties of de Sitter
invariant quantum theories

2.1 dS invariance vs. AdS and Poincare invariance

As already mentioned, the motivation for this work is to investigate whether standard
gravity can be obtained in the framework of a free theory. In standard nonrelativistic
approximation, gravity is characterized by the term −Gm1m2/r in the mean value of
the mass operator. Here G is the gravitational constant, m1 and m2 are the particle
masses and r is the distance between the particles. Since the kinetic energy is always
positive, the free nonrelativistic mass operator is positive definite and therefore there
is no way to obtain gravity in the framework of the free theory. Analogously, in
Poincare invariant theory the spectrum of the free two-body mass operator belongs
to the interval [m1 +m2,∞) while the existence of gravity necessarily requires that
the spectrum should contain values less than m1 +m2.

In theories where the symmetry algebra is the AdS algebra so(2,3), the
structure of IRs is well known (see e.g. Ref. [28]). In particular, for positive energy
IRs the AdS Hamiltonian has the spectrum in the interval [m,∞) and m has the
meaning of the mass. Therefore the situation is pretty much analogous to that in
Poincare invariant theories. In particular, the free two-body mass operator again has
the spectrum in the interval [m1+m2,∞) and therefore there is no way to reproduce
gravitational effects in the free AdS invariant theory.

As noted in Sect. 1.2, the existing experimental data practically exclude
the possibility that Λ ≤ 0 since the cosmological acceleration is not zero and is a
consequence of repulsion, not attraction. This is a strong argument in favor of dS
symmetry vs. Poincare and AdS ones. As argued in Sect. 1.4, quantum theory should
start not from spacetime but from a symmetry algebra. Therefore the choice of dS
symmetry is natural and the cosmological constant problem does not exist. However,
the majority of physicists prefer to start from a flat spacetime and treat Poincare
symmetry as fundamental while dS one as emergent.
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In contrast to the situation in Poincare and AdS invariant theories, the
free mass operator in dS theory is not bounded below by the value of m1 +m2. The
discussion in Sect. 2.3 shows that this property by no means implies that the theory is
unphysical. Therefore if one has a choice between Poincare, AdS and dS symmetries
then the only chance to describe gravity in a free theory is to choose dS symmetry.

2.2 IRs of the dS Algebra

If we accept dS symmetry on quantum level as described in Sect. 1.4, a question
arises how elementary particles in quantum theory should be defined. A discussion
of numerous controversial approaches can be found, for example in the recent paper
[29]. Although particles are observables and fields are not, in the spirit of QFT, fields
are more fundamental than particles, and a possible definition is as follows [30]: It is
simply a particle whose field appears in the Lagrangian. It does not matter if it’s stable,
unstable, heavy, light—if its field appears in the Lagrangian then it’s elementary,
otherwise it’s composite. Another approach has been developed by Wigner in his
investigations of unitary irreducible representations (UIRs) of the Poincare group
[31]. In view of this approach, one might postulate that a particle is elementary if
the set of its wave functions is the space of an IR of the symmetry group or Lie
algebra in the given theory. Since we do not accept approaches based on spacetime
background then by analogy with the Wigner approach we accept that, by definition,
elementary particles in dS invariant theory are described by IRs of the dS algebra by
Hermitian operators. For different reasons, there exists a vast literature not on such
IRs but on UIRs of the dS group. References to this literature can be found e.g., in
our papers [2, 3] where we used the results on UIRs of the dS group for constructing
IRs of the dS algebra by Hermitian operators. In this section we will describe the
construction proceeding from an excellent description of UIRs of the dS group in a
book by Mensky [27]. The final result is given by explicit expressions for the operators
Mab in Eq. (2.16). The readers who are not interested in technical details can skip
the derivation.

The elements of the SO(1,4) group will be described in the block form

g =

∥

∥

∥

∥

∥

∥

g00 aT g04
b r c
g40 dT g44

∥

∥

∥

∥

∥

∥

(2.1)

where

a =

∥

∥

∥

∥

∥

∥

a1

a2

a3

∥

∥

∥

∥

∥

∥

bT =
∥

∥ b1 b2 b3
∥

∥ r ∈ SO(3) (2.2)

and the subscript T means a transposed vector.
UIRs of the SO(1,4) group belonging to the principle series of UIRs are

induced from UIRs of the subgroup H (sometimes called “little group”) defined as
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follows [27]. Each element of H can be uniquely represented as a product of elements
of the subgroups SO(3), A and T: h = rτAaT where

τA =

∥

∥

∥

∥

∥

∥

cosh(τ) 0 sinh(τ)
0 1 0

sinh(τ) 0 cosh(τ)

∥

∥

∥

∥

∥

∥

aT =

∥

∥

∥

∥

∥

∥

1 + a2/2 −aT a2/2
−a 1 −a

−a2/2 aT 1− a2/2

∥

∥

∥

∥

∥

∥

(2.3)

The subgroup A is one-dimensional and the three-dimensional group T is the dS
analog of the conventional translation group (see e.g., Ref. [27]). We believe it
should not cause misunderstandings when 1 is used in its usual meaning and when to
denote the unit element of the SO(3) group. It should also be clear when r is a true
element of the SO(3) group or belongs to the SO(3) subgroup of the SO(1,4) group.
Note that standard UIRs of the Poincare group are induced from the little group,
which is a semidirect product of SO(3) and four-dimensional translations and so the
analogy between UIRs of the Poincare and dS groups is clear.

Let r → ∆(r; s) be an UIR of the group SO(3) with the spin s and τA →
exp(imdSτ) be a one-dimensional UIR of the group A, where mdS is a real parameter.
Then UIRs of the group H used for inducing to the SO(1,4) group, have the form

∆(rτAaT;mdS, s) = exp(imdSτ)∆(r; s) (2.4)

We will see below that mdS has the meaning of the dS mass and therefore UIRs of the
SO(1,4) group are defined by the mass and spin, by analogy with UIRs in Poincare
invariant theory.

Let G=SO(1,4) and X = G/H be the factor space (or coset space) of G
over H . The notion of the factor space is well known (see e.g., Ref. [27]). Each
element x ∈ X is a class containing the elements xGh where h ∈ H , and xG ∈ G
is a representative of the class x. The choice of representatives is not unique since
if xG is a representative of the class x ∈ G/H then xGh0, where h0 is an arbitrary
element from H , also is a representative of the same class. It is well known that X
can be treated as a left G space. This means that if x ∈ X then the action of the
group G on X can be defined as follows: if g ∈ G then gx is a class containing gxG
(it is easy to verify that such an action is correctly defined). Suppose that the choice
of representatives is somehow fixed. Then gxG = (gx)G(g, x)H where (g, x)H is an
element of H . This element is called a factor.

The explicit form of the operators Mab depends on the choice of represen-
tatives in the space G/H . As explained in papers on UIRs of the SO(1,4) group (see
e.g., Ref. [27]), to obtain the possible closest analogy between UIRs of the SO(1,4)
and Poincare groups, one should proceed as follows. Let vL be a representative of
the Lorentz group in the factor space SO(1,3)/SO(3) (strictly speaking, we should
consider SL(2, C)/SU(2)). This space can be represented as the velocity hyperboloid
with the Lorentz invariant measure

dρ(v) = d3v/v0 (2.5)
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where v0 = (1 + v2)1/2. Let I ∈ SO(1, 4) be a matrix which formally has the same
form as the metric tensor η. One can show (see e.g., Ref. [27] for details) that
X = G/H can be represented as a union of three spaces, X+, X− and X0 such that
X+ contains classes vLh, X− contains classes vLIh and X0 has measure zero relative
to the spaces X+ and X−.

As a consequence, the space of UIR of the SO(1,4) group can be imple-
mented as follows. If s is the spin of the particle under consideration, then we use
||...|| to denote the norm in the space of UIR of the group SU(2) with the spin s. Then
the space of UIR is the space of functions {f1(v), f2(v)} on two Lorentz hyperboloids
with the range in the space of UIR of the group SU(2) with the spin s and such that

∫

[||f1(v)||2 + ||f2(v)||2]dρ(v) <∞ (2.6)

It is well-known that positive energy UIRs of the Poincare and AdS groups
(associated with elementary particles) are implemented on an analog of X+ while
negative energy UIRs (associated with antiparticles) are implemented on an analog
ofX−. Since the Poincare and AdS groups do not contain elements transforming these
spaces to one another, the positive and negative energy UIRs are fully independent.
At the same time, the dS group contains such elements (e.g., I [27]) and for this
reason its UIRs can be implemented only on the union of X+ and X−. Even this fact
is a strong indication that UIRs of the dS group cannot be interpreted in the same
way as UIRs of the Poincare and AdS groups.

A general construction of the operators Mab is as follows. We first define
right invariant measures on G = SO(1, 4) and H . It is well known that for semisim-
ple Lie groups (which is the case for the dS group), the right invariant measure is
simultaneously the left invariant one. At the same time, the right invariant measure
dR(h) on H is not the left invariant one, but has the property dR(h0h) = ∆(h0)dR(h),
where the number function h → ∆(h) on H is called the module of the group H . It
is easy to show [27] that

∆(rτAaT) = exp(−3τ) (2.7)

Let dρ(x) be a measure on X = G/H compatible with the measures on G and H .
This implies that the measure on G can be represented as dρ(x)dR(h). Then one can
show [27] that if X is a union of X+ and X− then the measure dρ(x) on each Lorentz
hyperboloid coincides with that given by Equation (2.5). Let the representation space
be implemented as the space of functions ϕ(x) on X with the range in the space of
UIR of the SU(2) group such that

∫

||ϕ(x)||2dρ(x) <∞ (2.8)

Then the action of the representation operator U(g) corresponding to g ∈ G is defined
as

U(g)ϕ(x) = [∆((g−1, x)H)]
−1/2∆((g−1, x)H ;mdS, s)

−1ϕ(g−1x) (2.9)
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One can directly verify that this expression defines a unitary representation. Its
irreducibility can be proved in several ways (see e.g., Ref. [27]).

As noted above, if X is the union of X+ and X−, then the representation
space can be implemented as in Equation (2.4). Since we are interested in calculating
only the explicit form of the operators Mab, it suffices to consider only elements of
g ∈ G in an infinitely small vicinity of the unit element of the dS group. In that
case one can calculate the action of representation operators on functions having the
carrier in X+ and X− separately. Namely, as follows from Eq. (2.7), for such g ∈ G,
one has to find the decompositions

g−1vL = v′
Lr

′(τ ′)A(a
′)T (2.10)

and
g−1vLI = v”LIr”(τ”)A(a”)T (2.11)

where r′, r” ∈ SO(3). In this expressions it suffices to consider only elements of H
belonging to an infinitely small vicinity of the unit element.

The problem of choosing representatives in the spaces SO(1,3)/SO(3) or
SL(2.C)/SU(2) is well known in standard theory. The most usual choice is such that
vL as an element of SL(2,C) is given by

vL =
v0 + 1 + vσ
√

2(1 + v0)
(2.12)

Then by using a well known relation between elements of SL(2,C) and SO(1,3) we
obtain that vL ∈ SO(1, 4) is represented by the matrix

vL =

∥

∥

∥

∥

∥

∥

v0 vT 0
v 1 + vvT/(v0 + 1) 0
0 0 1

∥

∥

∥

∥

∥

∥

(2.13)

As follows from Eqs. (2.4) and (2.9), there is no need to know the ex-
pressions for (a′)T and (a”)T in Eqs. (2.10) and (2.11). We can use the fact [27]
that if e is the five-dimensional vector with the components (e0 = 1, 0, 0, 0, e4 = −1)
and h = rτAaT, then he = exp(−τ)e regardless of the elements r ∈ SO(3) and aT.
This makes it possible to easily calculate (v′

L,v”L, (τ
′)A, (τ”)A) in Eqs. (2.10) and

(2.11). Then one can calculate (r′, r”) in these expressions by using the fact that the
SO(3) parts of the matrices (v′

L)
−1g−1vL and (v”L)

−1g−1vL are equal to r′ and r”,
respectively.

The relation between the operators U(g) and Mab is as follows. Let Lab

be the basis elements of the Lie algebra of the dS group. These are the matrices with
the elements

(Lab)
c
d = δcdηbd − δcbηad (2.14)
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They satisfy the commutation relations

[Lab, Lcd] = ηacLbd − ηbcLad − ηadLbc + ηbdLac (2.15)

Comparing Eqs. (1.5) and (2.15) it is easy to conclude that the Mab should be the
representation operators of −iLab. Therefore if g = 1 + ωabL

ab, where a sum over
repeated indices is assumed and the ωab are such infinitely small parameters that
ωab = −ωba then U(g) = 1 + iωabM

ab.
We are now in position to write down the final expressions for the operators

Mab. Their action on functions with the carrier in X+ has the form

J = l(v) + s, N == −iv0
∂

∂v
+

s× v

v0 + 1
,

B = mdSv + i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v] +

s× v

v0 + 1
,

E = mdSv0 + iv0(v
∂

∂v
+

3

2
) (2.16)

where J = {M23,M31,M12}, N = {M01,M02,M03}, B = {M41,M42,M43}, s is the
spin operator, l(v) = −iv × ∂/∂v and E = M40. The action of the generators on
functions with the carrier in X− is analogous [2] but the corresponding expressions
will not be needed in this paper.

In deriving these expressions we used only the commutation relations (1.5),
no approximations have been made and the results are exact. In particular, the
dS space, the cosmological constant and the Riemannian geometry have not been
involved at all. Nevertheless, the expressions for the representation operators is all
we need to have the maximum possible information in quantum theory. If one defines
m = mdS/R and the operators P µ = M4µ/R then in the formal limit R → ∞ we
indeed obtain the expressions for the operators of the IRs of the Poincare algebra
such that the Lorentz algebra operators are the same, E = mv0 and P = mv where
E is the standard energy operator and P is the standard momentum operator which
is the operator of multiplication by p = mv. Therefore m is the standard mass in
Poincare invariant theory.

When s = 0, the operator N contains i∂/∂v which is proportional to the
standard coordinate operator i∂/∂p. The factor v0 in N is needed for Hermiticity
since the volume element is given by Eq. (2.5). Such a construction can be treated
as a relativistic generalization of standard coordinate operator and in that case N is
proportional to the Newton-Wigner position operator [19]. However, it is well known
that this operator does not satisfy all the requirements for the coordinate operator.
First of all, as noted in Sect. 1.3, in relativistic theory the coordinate cannot be
measured with the accuracy better than h̄/mc. Another argument is as follows. If we
find eigenfunctions of the x component of the Newton-Wigner position operator with
eigenvalues x and construct a wave function which at t = 0 has a finite carrier in x
then, as follows from the Schroedinger equation with the relativistic Hamiltonian, at
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any t > 0 this function will have an infinite carrier. In other words, the wave function
will be instantly spread over the whole space while the speed of propagation should
not exceed c. These remarks show that the construction of the physical coordinate
operator is far from being obvious.

It is well known that in Poincare invariant theory the operatorWP = E2−
P2 is the Casimir operator, i.e., it commutes with all the representation operators.
According to the well known Schur lemma in representation theory, all elements in
the space of IR are eigenvectors of the Casimir operators with the same eigenvalue.
In particular, they are the eigenvectors of the operator WP with the eigenvalue m2.
As follows from Eq. (1.5), in the dS case the Casimir operator of the second order is

I2 = −1

2

∑

ab

MabM
ab = E2 +N2 −B2 − J2 (2.17)

and a direct calculation shows that for operators (2.16) the numerical value of I2 is
m2

dS − s(s+ 1) + 9/4. In Poincare invariant theory the value of the spin is related to
the Casimir operator of the fourth order which can be constructed from the Pauli-
Lubanski vector. An analogous construction exists in dS invariant theory but we will
not dwell on this.

2.3 dS quantum mechanics and cosmological re-

pulsion

The results on IRs can be applied not only to elementary particles but even to macro-
scopic bodies when it suffices to consider their motion as a whole. This is the case
when the distances between the bodies are much greater that their sizes.

A general notion of contraction has been developed in Ref. [32]. In our case
it can be performed as follows. Let us assume that mdS > 0 and denote m = mdS/R,
P = B/R and E = E/R. The set of operators (E,P) is the Lorentz vector since
its components can be written as M4ν (ν = 0, 1, 2, 3)) Then, as follows from Eq.
(1.5), in the limit when R → ∞, mdS → ∞ but mds/R is finite, one obtains a
standard representation of the Poincare algebra for a particle with the mass m such
that P = mv is the particle momentum and E = mv0 is the particle energy. In that
case the operators of the Lorentz algebra (N,J) have the same form for the Poincare
and dS algebras.

In Sect. 1.2 we argued that fundamental physical theory should not con-
tain dimensional parameters at all. In this connection it is interesting to note that
the de Sitter mass mdS is a ratio of the radius of the Universe R to the Compton wave
length of the particle under consideration. Therefore even for elementary particles
the de Sitter masses are very large. For example, if R is of order 1026m then the de
Sitter masses of the electron, the Earth and the Sun are of order 1039, 1093 and 1099,
respectively.
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Consider the nonrelativistic approximation when |v| ≪ 1. If we wish to
work with units where the dimension of velocity is m/sec, we should replace v by v/c.
If p = mv then it is clear from the expressions for B in Eq. (2.16) that p becomes
the real momentum P only in the limit R → ∞. Now by analogy with nonrelativistic
quantum mechanics (see Sect. 1.5), we define the position operator r as i∂/∂p and
in that case the operator N in Eq. (2.16) becomes −Er. At this stage we do not
have any coordinate space yet. However, the consideration in Sect. 1.5 shows that
there exist states where both, p and r are quasiclassical. In this approximation we
can treat them as usual vectors and neglect their commutators. Then as follows from
Eq. (2.16)

P = p+mcr/R H = p2/2m+ cpr/R (2.18)

where H = E−mc2 is the classical nonrelativistic Hamiltonian. As follows from these
expressions,

H(P, r) =
P2

2m
− mc2r2

2R2
(2.19)

The last term in this expression is the dS correction to the nonrelativistic
Hamiltonian. It is interesting to note that the nonrelativistic Hamiltonian depends
on c although it is usually believed that c can be present only in relativistic theory.
This illustrates the fact mentioned in Section 1.2 that the transition to nonrelativistic
theory understood as |v| ≪ 1 is more physical than that understood as c→ ∞. The
presence of c in Eq. (2.19) is a consequence of the fact that this expression is written in
standard units. In nonrelativistic theory c is usually treated as a very large quantity.
Nevertheless, the last term in Eq. (2.19) is not large since we assume that R is very
large. The result for one particle given by Eq. (1.4) is now a consequence of the
equations of motion for the Hamiltonian given by Eq. (2.19).

Another way to show that our results are compatible with GR is as follows.
The well known result of GR is that if the metric is stationary and differs slightly from
the Minkowskian one then in the non-relativistic approximation the curved spacetime
can be effectively described by a gravitational potential ϕ(r) = (g00(r)− 1)/2c2. We
now express x0 in Eq. (1.2) in terms of a new variable t as x0 = t+ t3/6R2− tx2/2R2.
Then the expression for the interval becomes

ds2 = dt2(1− r2/R2)− dr2 − (rdr/R)2 (2.20)

Therefore, the metric becomes stationary and ϕ(r) = −r2/2R2 in agreement with Eq.
(2.19).

Consider now a system of two free particles described by the variables pj

and rj (j = 1, 2). Define the standard nonrelativistic variables

P12 = p1 + p2 q = (m2p1 −m1p2)/(m1 +m2)

R12 = (m1r1 +m2r2)/(m1 +m2) r = r1 − r2 (2.21)
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where now we use r to denote the relative radius vector. Then if the particles are
described by Eq. (2.16), the two-particle operators P and E in the non-relativistic
approximation are given by

P = P12 +
iM0(q)

R

∂

∂P12
E =M0(q) +

P2
12

2M0(q)
+

i

R
(P12

∂

∂P12
+ q

∂

∂q
+ 3) (2.22)

where M0(q) = m1 +m2 + q2/2m12 and m12 is the reduced two-particle mass. As a
consequence, the nonrelativistic mass operator (E2 − P2)1/2 in first order in 1/R is
given by

M = m1 +m2 +
q2

2m12
+

i

R
(q

∂

∂q
+

3

2
) (2.23)

Therefore the classical internal nonrelativistic two-body Hamiltonian is

Hnr(q, r) =
q2

2m12

+
qr

R
(2.24)

where q and r are the classical relative momentum and radius vector. Hence in
quasiclassical approximation the relative acceleration is again given by Eq. (1.4).

The fact that two free particles have a relative acceleration is well known
for cosmologists who consider dS symmetry on classical level. This effect is called
the dS antigravity. The term antigravity in this context means that the particles
repulse rather than attract each other. In the case of the dS antigravity the relative
acceleration of two free particles is proportional (not inversely proportional!) to the
distance between them. This classical result is a special case of the dS symmetry on
quantum level when quasiclassical approximation works with a good accuracy.

In dS theory, the spectrum of free two-body operator (2.23) is not bounded
below by m1+m2 and a question arises whether this is acceptable or not. In spherical
coordinates the internal two-body Hamiltonian corresponding to the nonrelativistic
mass operator is

Hnr =
q2

2m12
+

i

R
(q
∂

∂q
+

3

2
) (2.25)

where q = |q|. This operator acts in the space of functions ψ(q) such that
∫ ∞

0

|ψ(q)|2q2dq <∞

and the eigenfunction ψK of Hnr with the eigenvalue K satisfies the equation

q
dψK

dq
=
iRq2

m12
ψK − (

3

2
+ 2iRK)ψK (2.26)

The solution of this equation is

ψK =

√

R

π
q−3/2exp(

iRq2

2m12
− 2iRKlnq) (2.27)
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and the normalization condition is (ψK , ψK ′) = δ(K − K ′). The spectrum of the
operator Hnr formally belongs to the interval (−∞,∞) but this is a consequence
of the nonrelativistic approximation and the fact that the square root for the mass
operator was calculated in first order in 1/R. However, the spectrum of Hnr for sure
has negative values and therefore the spectrum of the mass operator has values less
than m1 +m2.

Suppose that ψ(q) is a wave function of some state. As follows from Eq.
(2.27), the probability to have the value of the energy K in this state is defined by
the coefficient c(K) such that

c(K) =

√

R

π

∫ ∞

0

exp(− iRq2

2m12

+ 2iRKlnq)ψ(q)
√
qdq (2.28)

If ψ(q) does not depend on R and R is very large then c(K) will practically be different
from zero only if the integrand in Eq. (2.28) has a stationary point q0, which is defined
by the condition K = q20/2m12. Therefore, for negative K, when the stationary point
is absent, the value of c(K) will be exponentially small.

This result confirms that, as one might expect from Eq. (2.24), the dS
antigravity is not important for local physics when r ≪ R. At the same time, at
cosmological distances the dS antigravity is much stronger than any other interaction
(gravitational, electromagnetic etc.). Since the spectrum of the energy operator is
defined by its behavior at large distances, this means that in dS theory there are
no bound states. This does not mean that the theory is unphysical since stationary
bound states in standard theory become quasistationary with a very large lifetime
if R is large. For example, as shown in Eqs. (14) and (19) of Reference [33], a
quasiclassical calculation of the probability of the decay of the two-body composite
system gives that the probability equals w = exp(−πǫ/H) where ǫ is the binding
energy and H is the Hubble constant. If we replace H by 1/R and assume that
R = 1026m then for the probability of the decay of the ground state of the hydrogen
atom we get that w is of order exp(−1035) i.e., an extremely small value. This result
is in agreement with our remark after Eq. (2.28).

In Reference [1] we discussed the following question. In standard quan-
tum mechanics the free Hamiltonian H0 and the full Hamiltonian H are not always
unitarily equivalent since in the presence of bound states they have different spectra.
However, in dS theory there are no bound states, the free and full Hamiltonians have
the same spectra and therefore they are unitarily equivalent. Hence one can work in
the formalism when interaction is introduced not by adding an interaction operator
to the free Hamiltonian but by a unitary transformation of this operator.

Although the example of the dS antigravity is extremely simple, we can
draw the following very important conclusions.

In our approach the phenomenon of the cosmological acceleration has an
extremely simple explanation in the framework of dS quantum mechanics for a system
of two free bodies. There is no need to involve dS space and Riemannian geometry
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since the fact that Λ 6= 0 should be treated not such that the spacetime background
has a curvature (since the notion of the spacetime background is meaningless) but as
an indication that the symmetry algebra is the dS algebra rather than the Poincare
or AdS algebras. Therefore for explaining the fact that Λ 6= 0 there is no need to
involve dark energy or any other quantum fields.

Our result is in favor of the argument in Sect. 1.3 that in quantum theory it
is possible to reproduce classical results of GR. Indeed, we see that standard classical
dS antigravity has been obtained from a quantum operator without introducing any
classical background. When the position operator is defined as r = i(∂/∂q) and time
is defined by the condition that the Hamiltonian is the evolution operator then one
recovers the classical result obtained by considering a motion of particles in classical
dS spacetime.

The second conclusion is as follows. We have considered the particles as
free, i.e. no interaction into the two-body system has been introduced. However, we
have realized that when the two-body system in the dS theory is considered from
the point of view of the Galilei invariant theory, the particles interact with each
other. Although the reason of the effective interaction in our example is obvious,
the existence of the dS antigravity poses the problem whether other interactions, e.g.
gravity, can be treated as a result of transition from a higher symmetry to Poincare
or Galilei one.

The third conclusion is that if the dS antigravity is treated as an interaction
then it is a true direct interaction since it is not a consequence of the exchange of
virtual particles.

Finally, the fourth conclusion is as follows. The result of Eq. (2.27) shows
that in the free dS theory the spectrum of the free Hamiltonian is not bounded below
by zero and therefore the spectrum of the free mass operator has values less than
m1 + m2 (see also Refs. [4, 2, 8, 3]). Therefore the fact that the spectrum of the
free mass operator is not bounded below by the value m1 +m2, does not necessarily
mean that the theory is unphysical. Moreover, if we accept the above arguments
that dS symmetry is more relevant than Poincare and AdS ones, the existence of the
spectrum below m1 +m2 is inevitable.

Our final remark is as follows. The consideration in this chapter involves
only standard quantum-mechanical notions and in quasiclassical approximation the
results on the cosmological acceleration are compatible with GR. As argued in Sect.
1.5, the standard coordinate operator has some properties which do not correspond
to what is expected from physical intuition; however, at least from mathematical
point of view, at cosmological distances quasiclassical approximation is valid with
a very high accuracy. At the same time, as discussed in the next chapter, when
distances are much less than cosmological ones, this operator should be modified.
We consider a modification when the wave function contains a rapidly oscillating
exponent depending on R. Then the probability to have negative values of K is not
exponentially small as it should be in our approach to gravity.
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Chapter 3

Algebraic description of irreducible
representations

3.1 Construction of IRs in discrete basis

In this section we construct a pure algebraic implementation of IRs such that the
basis is characterized only by discrete quantum numbers. This approach is of interest
not only in standard dS quantum theory but also because the results can be used in
a quantum theory over a Galois field (GFQT). To make relations between standard
theory and GFQT more straightforward, we will modify the commutation relations
1.5 by writing them in the form

[Mab,M cd] = −2i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (3.1)

One might say that these relations are written in units h̄/2 = c = 1. However, as
noted in Sect. 1.2, fundamental quantum theory should not involve quantities h̄ and c
at all, and Eq. (3.1) indeed does not contain these quantities. The reason for writing
the commutation relations in the form (3.1) rather than (1.5) is that in this case the
minimum nonzero value of the angular momentum is 1 instead of 1/2. Therefore the
spin of fermions is odd and the spin of bosons is even. This will be convenient in
GFQT where 1/2 is a very large number (see Chap. 4). Since we are interested in
description of macroscopic bodies, then, as already noted, for our purposes it suffices
to consider only IRs with zero spin and in what follows we consider only such IRs.

A starting point of our construction is a choice of a cyclic vector e0 such
that by acting on e0 by certain representation operators and taking all possible linear
combinations, the whole representation space can be obtained. We choose e0 to be a
dS analog of the rest state. Since B is the dS analog of the momentum operator, we
require that e0 is a vector satisfying the conditions

Be0 = Je0 = 0 I2e0 = (w + 9)e0 (3.2)
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The last requirement reflects the fact that all elements from the representation space
are eigenvectors of the Casimir operator I2 with the same eigenvalue. When the
representation operators satisfy Eq. (3.1), the numerical value of the operator I2 is
not as indicated after Eq. (2.17) but

I2 = w − s(s+ 2) + 9 (3.3)

where w = m2
dS . Therefore for spinless particles the numerical value equals w + 9.

As follows from Eq. (3.1) and the definitions of the operators (J,N,B, E)
in Sect. 2.2,

[E ,N] = 2iB [E ,B] = 2iN [J, E ] = 0

[J j , Jk] = [Bj, Bk] = 2iejklJ
l [Bj , Nk] = 2iδjkE

[J j , Bk] = 2iejklB
l [J j , Nk] = 2iejklN

l (3.4)

where the indices j, k.l can take the values 1, 2, 3, δjk is the Kronecker symbol, ejkl
is the absolutely antisymmetric tensor such that e123 = 1 and a sum over repeated
indices is assumed. It is obvious from these relations that the definition (3.2) is
consistent since the set (B,J) is a representation of the so(4) subalgebra of so(1,4).

We define e1 = 2Ee0 and

en+1 = 2Een − [w + (2n+ 1)2]en−1 (3.5)

These definitions make it possible to find en for any n = 0, 1, 2.... As follows from
Eqs. (3.4) and (3.5), Jen = 0 and B2en = 4n(n+2)en. We use the notation Jx = J1,
Jy = J2, Jz = J3 and analogously for the operators N and B. Instead of the (xy)
components of the vectors it may be sometimes convenient to use the ± components
such that Jx = J+ + J−, Jy = −i(J+ − J−) and analogously for the operators N and
B. We now define the elements enkl as

enkl =
(2k + 1)!!

k!l!
(J−)

l(B+)
ken (3.6)
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Then a direct calculation using Eqs. (3.2-3.6) gives

Eenkl =
n+ 1− k

2(n + 1)
en+1,kl +

n + 1 + k

2(n+ 1)
[w + (2n+ 1)2]en−1,kl

N+enkl =
i(2k + 1− l)(2k + 2− l)

8(n+ 1)(2k + 1)(2k + 3)
{en+1,k+1,l −

[w + (2n+ 1)2]en−1,k+1,l} −
i

2(n+ 1)
{(n + 1− k)(n+ 2− k)en+1,k−1,l−2 −

(n+ k)(n+ 1 + k)[w + (2n+ 1)2]en−1,k−1,l−2}

N−enkl =
−i(l + 1)(l + 2)

8(n+ 1)(2k + 1)(2k + 3)
{en+1,k+1,l+2 −

[w + (2n+ 1)2]en−1,k+1,l+2}+
i

2(n+ 1)
{(n + 1− k)(n+ 2− k)en+1,k−1,l −

(n+ k)(n+ 1 + k)[w + (2n+ 1)2]en−1,k−1,l}

Nzenkl =
−i(l + 1)(2k + 1− l)

4(n+ 1)(2k + 1)(2k + 3)
{en+1,k+1,l+1 −

[w + (2n+ 1)2]en−1,k+1,l+1} −
i

n+ 1
{(n+ 1− k)(n + 2− k)en+1,k−1,l−1 −

(n+ k)(n+ 1 + k)[w + (2n+ 1)2]en−1,k−1,l−1} (3.7)

B+enkl =
(2k + 1− l)(2k + 2− l)

2(2k + 1)(2k + 3)
en,k+1,l −

2(n+ 1− k)(n + 1 + k)en,k−1,l−2

B−enkl =
(l + 1)(l + 2)

2(2k + 1)(2k + 3)
en,k+1,l+2 +

2(n+ 1− k)(n + 1 + k)en,k−1,l

Bzenkl =
(l + 1)(2k + 1− l)

2(2k + 1)(2k + 3)
en,k+1,l+1 −

4(n+ 1− k)(n + 1 + k)en,k−1,l−1

J+enkl = (2k + 1− l)enk,l−1 J−enkl = (l + 1)enk,l+1

Jzenkl = 2(k − l)enkl (3.8)

where at a fixed value of n, k = 0, 1, ...n, l = 0, 1, ...2k and if l and k are not in this
range then enkl = 0. Therefore, the elements enkl form a basis of the spinless IR with
a given w.
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The next step is to define a scalar product compatible with the Hermiticity
of the operators (E ,B,N,J). Since B2 + J2 is the Casimir operator for the so(4)
subalgebra and

(B2 + J2)enkl = 4n(n+ 2)enkl (3.9)

the vectors enkl with different values of n should be orthogonal. Since J2 is the
Casimir operator of the so(3) subalgebra and J2enkl = 4k(k + 1)enkl, the vectors enkl
with different values of k also should be orthogonal. Finally, as follows from the last
expression in Eq. (3.8), the vectors enkl with the same values of n and k and different
values of l should be orthogonal since they are eigenvectors of the operator Jz with
different eigenvalues. Therefore, the scalar product can be defined assuming that
(e0, e0) = 1 and a direct calculation using Eqs. (3.2-3.6) gives

(enkl, enkl) = (2k + 1)!C l
2kC

k
nC

k
n+k+1

n
∏

j=1

[w + (2j + 1)2] (3.10)

where Ck
n = n!/[(n − k)!k!] is the binomial coefficient. At this point we do not

normalize basis vectors to one since, as will be discussed below, the normalization
(3.10) has its own advantages.

Each element of the representation space can be written as

x =
∑

nkl

c(n, k, l)enkl

where the set of the coefficients c(n, k, l) can be called the wave function in the (nkl)
representation. As follows from Eqs. (3.7) and (3.8), the action of the representation
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operators on the wave function can be written as

Ec(n, k, l) = n− k

2n
c(n− 1, k, l) +

n + 2 + k

2(n+ 2)
[w + (2n+ 3)2]

c(n+ 1, k, l)

N+c(n, k, l) =
i(2k + 1− l)(2k − l)

8(2k − 1)(2k + 1)
{ 1
n
c(n− 1, k − 1, l)−

1

n+ 2
[w + (2n+ 3)2]c(n + 1, k − 1, l)} −

i(n− 1− k)(n− k)

2n
c(n− 1, k + 1, l + 2) +

i(n + k + 2)(n+ k + 3)

2(n+ 2)
[w + (2n+ 3)2]c(n+ 1, k + 1, l + 2)

N−c(n, k, l) =
−i(l − 1)l

8(2k − 1)(2k + 1)
{ 1
n
c(n− 1, k − 1, l − 2)−

1

n+ 2
[w + (2n+ 3)2]c(n + 1, k − 1, l − 2)}+

i(n− 1− k)(n− k)

2n
c(n− 1, k + 1, l)−

i(n + k + 2)(n+ k + 3)

2(n+ 2)
[w + (2n+ 3)2]c(n+ 1, k + 1, l)

Nzc(n, k, l) =
−il(2k − l)

4(2k − 1)(2k + 1)
{ 1
n
c(n− 1, k − 1, l − 1)−

1

n+ 2
[w + (2n+ 3)2]c(n + 1, k − 1, l − 1)} −

i(n− 1− k)(n− k)

n
c(n− 1, k + 1, l + 1) +

i(n + k + 2)(n+ k + 3)

n + 2
[w + (2n+ 3)2]c(n+ 1, k + 1, l + 1) (3.11)
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B+c(n, k, l) =
(2k − 1− l)(2k − l)

2(2k − 1)(2k + 1)
c(n, k − 1, l)−

2(n− k)(n+ 2 + k)c(n, k + 1, l + 2)

B−c(n, k, l) = − (1− l)l

2(2k − 1)(2k + 1)
c(n, k − 1, l − 2) +

2(n− k)(n+ 2 + k)c(n, k + 1, l)

Bzc(n, k, l) = − l(2k − l)

(2k − 1)(2k + 1)
c(n, k − 1, l − 1)−

4(n− k)(n+ 2 + k)c(n, k + 1, l + 1)

J+c(n, k, l) = (2k − l)c(n, k, l + 1) J−c(n, k, l) = lc(n, k, l − 1)

Jzc(n, k, l) = 2(k − l)c(n, k, l) (3.12)

We use ẽnkl to denote basis vectors normalized to one and c̃(n, k, l) to
denote the wave function in the normalized basis. As follows from Eq. (3.10), the
vectors ẽnkl can be defined as

ẽnkl = {(2k + 1)!C l
2kC

k
nC

k
n+k+1

n
∏

j=1

[w + (2j + 1)2]}−1/2enkl (3.13)

As noted in Sects. 2.2 and 2.3, the operatorB is the dS analog of the usual momentum
P such that in Poincare limit B = 2RP. The operator J has the same meaning as
in Poincare invariant theory. Then it is clear from Eqs. (3.11) and (3.12) that for
macroscopic bodies the quantum numbers (nkl) are much greater than 1. With this
condition, a direct calculation using Eqs. (3.10-3.13) shows that the action of the
representation operators on the wave function in the normalized basis is given by

E c̃(n, k, l) = 1

2n
[(n− k)(n+ k)(w + 4n2)]1/2

[c̃(n + 1, k, l) + c̃(n− 1, k, l)]

N+c̃(n, k, l) =
i(w + 4n2)1/2

8nk
{(2k − l)[(n + k)c̃(n− 1, k − 1, l)−

(n− k)c̃(n + 1, k − 1, l)] + l[(n+ k)c̃(n + 1, k + 1, l + 2)−
(n− k)c̃(n− 1, k + 1, l + 2)]}

N−c̃(n, k, l) =
−i(w + 4n2)1/2

8nk
{l[(n + k)c̃(n− 1, k − 1, l − 2)−

(n− k)c̃(n + 1, k − 1, l − 2)]− (2k − l)[(n− k)c̃(n− 1, k + 1, l)−
(n + k)c̃(n+ 1, k + 1, l)]}

Nz c̃(n, k, l) =
−i[l(2k − l)(w + 4n2)]1/2

4nk
{(n+ k)c̃(n− 1, k − 1, l − 1)−

(n− k)c̃(n + 1, k − 1, l − 1) + (n− k)c̃(n− 1, k + 1, l + 1)−
(n + k)c̃(n+ 1, k + 1, l + 1)} (3.14)
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B+c̃(n, k, l) =
[(n− k)(n+ k)]1/2

2k
{(2k − l)c̃(n, k − 1, l)−

lc̃(n, k + 1, l + 2)}

B−c̃(n, k, l) =
[(n− k)(n+ k)]1/2

2k
{(2k − l)c̃(n, k + 1, l)−

lc̃(n, k − 1, l− 2)}

Bz c̃(n, k, l) = −1

k
[l(2k − l)(n− k)(n+ k)]1/2{c̃(n, k − 1, l − 1)−

c̃(n, k + 1, l + 1)}
J+c̃(n, k, l) = [l(2k − l)]1/2c̃(n, k, l + 1)

J−c̃(n, k, l) = [l(2k − l)]1/2c̃(n, k, l − 1)

Jzc̃(n, k, l) = 2(k − l)c̃(n, k, l) (3.15)

3.2 Quasiclassical approximation

Consider now the quasiclassical approximation in the ẽnkl basis. By analogy with the
discussion of the quasiclassical approximation in Sects. 1.5 and 2.3, we assume that
a state is quasiclassical if its wave function has the form

c̃(n, k, l) = a(n, k, l)exp[i(−nϕ + kα + (l − k)β)] (3.16)

where a(n, k, l) is an amplitude, which is not small only in some vicinities of n = n0,
k = k0 and l = l0. We also assume that when the quantum numbers (nkl) change
by one, the main contribution comes from the rapidly oscillating exponent. Then, as
follows from the first expression in Eq. (3.14), the action of the dS energy operator
can be written as

E c̃(n, k, l) ≈ 1

n0
[(n0 − k0)(n0 + k0)(w + 4n2

0)]
1/2cos(ϕ)c̃(n, k, l) (3.17)

Therefore the quasiclassical wave function is approximately the eigenfunction of the
dS energy operator with the eigenvalue

1

n0
[(n0 − k0)(n0 + k0)(w + 4n2

0)]
1/2cosϕ.

We will use the following notations. When we consider not the action of
an operator on the wave function but its approximate eigenvalue in the quasiclassical
state, we will use for the eigenvalue the same notation as for the operator and this
should not lead to misunderstanding. Analogously, in eigenvalues we will write n,
k and l instead of n0, k0 and l0, respectively. By analogy with Eq. (3.17) we can
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consider eigenvalues of the other operators and the results can be represented as

E =
1

n
[(n− k)(n+ k)(w + 4n2)]1/2cosϕ

Nx = (w + 4n2)1/2{−sinϕ
k

[(k − l)cosαcosβ + ksinαsinβ] +

cosϕ

n
[(k − l)sinαcosβ − kcosαsinβ]}

Ny = (w + 4n2)1/2{−sinϕ
k

[(k − l)cosαsinβ − ksinαcosβ] +

cosϕ

n
[(k − l)sinαsinβ + kcosαcosβ]}

Nz = −[l(2k − l)(w + 4n2)]1/2(−1

k
sinϕcosα +

1

n
cosϕsinα)

Bx =
2

k
[(n− k)(n + k)]1/2[(k − l)cosαcosβ + ksinαsinβ]

By =
2

k
[(n− k)(n+ k)]1/2[(k − l)cosαsinβ − ksinαcosβ]

Bz =
2

k
[l(2k − l)(n− k)(n + k)]1/2cosα

Jx = 2[l(2k − l)]1/2cosβ Jy = 2[l(2k − l)]1/2sinβ

Jz = 2(k − l) (3.18)

In particular, B2 = 4(n2 − k2), J2 = 4k2 in agreement with Eq. (3.9).
In Sect. 2.3 we described quasiclassical wave functions by six parameters

(r,p) while in the basis ẽnkl the six parameters are (n, k, l, ϕ, α, β). Since in the dS
theory the ten representation operators are on equal footing, it is also possible to de-
scribe a quasiclassical state by quasiclasscal eigenvalues of these operators. However,
we should have four constraints for them. As follows from Eqs. (2.17) and (3.18), the
constraints can be written as

E2 +N2 −B2 − J2 = w N×B = −EJ (3.19)

As noted in Sect. 2.3, in Poincare limit E = 2RE, B = 2Rp (since we have replaced
Eq. (1.5) by Eq. (3.1)) and the values of N and J are much less than E and B.
Therefore the first relation in Eq. (3.19) is the Poincare analog of the well known
relation E2 − p2 = m2.

The quantities (nklϕαβ) can be expressed in terms of quasiclassical eigen-
values (E ,N,B,J) as follows. The quantities (nkl) can be found from the relations

B2 + J2 = 4n2 J2 = 4k2 Jz = 2(k − l) (3.20)
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and then the angles (ϕαβ) can be found from the relations

cosϕ =
2En

B(w + 4n2)1/2
sinϕ = − BN

B(w + 4n2)1/2

cosα = −JBz/(BJ⊥) sinα = (B× J)z/(BJ⊥)

cosβ = Jx/J⊥ sinβ = Jy/J⊥ (3.21)

where B = |B|, J = |J| and J⊥ = (J2
x + J2

y )
1/2. In quasiclassical approximation,

uncertainties of the quantities (nkl) should be such that ∆n≪ n, ∆k ≪ k and ∆l ≪
l. On the other hand, those uncertainties cannot be very small since the distribution
in (nkl) should be such that all the ten approximate eigenvalues (E ,N,B,J) should
be much greater than their corresponding uncertainties. The assumption is that for
macroscopic bodies all these conditions can be satisfied.

In Sect. 2.3 we discussed operators in Poincare limit and corrections of
order 1/R to them, which lead to the dS antigravity. Consider now the dS antigravity
in the basis defined in this chapter. The first question is how Poincare limit should
be defined. In contrast with Sect. 2.3, we can now work not with the unphysical
quantities v or p = mp defined on the Lorentz hyperboloid but directly with the
(approximate) quasiclassical eigenvalues of the representation operators. In contrast
with Sect. 2.3, we now define p = B/(2R), m = w1/2/(2R) and E = (m2 + p2)1/2.
Then Poincare limit can be defined by the requirement that when R is large, the
quantities E and B are proportional to R while N and J do not depend on R. In this
case, as follows from Eq. (3.19), in Poincare limit E = 2RE and B = 2Rp.

In has been noted in Sect. 2.3 that if r is defined as i∂/∂p then in quasi-
classical approximation N = −2Er. If this result is correct in the formalism of this
chapter then it is obvious that the second relation in Eq. (3.19) is the Poincare analog
of the well known relation J = r× p. However a problem arises how r should be de-
fined in the present formalism and how to prove whether N = −2Er or not. If B and
J are given and B 6= 0 then a requirement that r×p = J does not define r uniquely.
One can define parallel and perpendicular components of r as r = r||B/|B|+ r⊥ and
analogously N = N||B/|B|+N⊥. Then the relation r× p = J defines uniquely only
r⊥ and it follows from the second relation in Eq. (3.19) that N⊥ = −2Er⊥. However,
it is not clear yet how r|| should be defined and whether the last relation is also valid
for the parallel components of N and r. As follows from the second relation in Eq.
(3.21), it will be valid if |sinϕ| = r||/R, i.e. ϕ is the angular coordinate.

Consider now corrections to Poincare limit in the present formalism. As
follows from Eq. (3.19), E = (w +B2 −N2 + J2)1/2. If N = |N| and we assume that
N/E is of order 1/R, then, in contrast with the situation in Sect. 2.3, the correction
to E is of order 1/R2, not 1/R. Namely, in order 1/R2

E = (w +B2)1/2[1− N2 − J2

8R2E2
] (3.22)

As follows from Eq. (3.3), the two-body dS mass operator W can be defined such
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that if I2 is the two-body Casimir operator (2.17) then

I2 = W − S2 + 9 (3.23)

where S is the two-body spin operator which can be expressed in terms of the two-
body Casimir operator of the fourth order. Therefore, in first order in 1/R2 the
approximate quasiclassical eigenvalue of W can be written as

W = W0 − [(
E2

E1

)1/2N1 − (
E1

E2

)1/2N2]
2 + [(

E2

E1

)1/2J1 − (
E1

E2

)1/2J2]
2 + S2 − 9 (3.24)

where W0 = 4R2M2
0 and M2

0 = m2
1 + m2

2 + 2E1E2 − 2p1p2 is exactly the classical
value of the mass squared in Poincare invariant theory.

Suppose that for each particle r|| is defined by the relation N|| = −2Er||.
Then the quantities Nj (j = 1, 2) indeed give a small correction to W and we can
write them as in Sect. 2.3, i.e. Nj = −2Ejrj . Then if M2 =W/(4R2), we have from
Eq. (3.24) that

M2 =M2
0 − E1E2

R2
r2 +

1

4R2
[(
E2

E1
)1/2J1 − (

E1

E2
)1/2J2]

2 +
1

4R2
(S2 − 9) (3.25)

where r = r1 − r2. This result poses the following question. According to standard
intuition, the mass of the two-body system should depend only on relative momenta
and relative distances but at first glance the expression (3.25) depends not only on
relative quantities. The problem arises whether in dS theory relative variables can be
defined in such a way that the expression (3.25) can be rewritten only in terms of such
variables. At this point it is clear that at least in the nonrelativistic approximation
Eq. (3.25) can be indeed expressed in terms of standard relative variables. Indeed,
in this approximation |Jj| ≪ |Nj|, |S| ≪ |Nj|, Ej ≈ mj and M2 ≈ 2(m1 +m2)M .
Therefore it follows from Eq. (3.25) that the classical internal Hamiltonian is given
by

H(r,q) =
q2

2m12
− m12r

2

2R2
(3.26)

In classical mechanics there exist transformations of the Hamiltonian, which do not
change classical equations of motions. One can easily verify that classical equations
of motion for the Hamiltonian (3.26) are the same as for the Hamiltonian (2.24) Note
the correction to the Hamiltonian is always negative and proportional to m12 in the
nonrelativistic approximation.

3.3 Semiclassical approximation

As noted in Sect. 1.1, the main goal of this work is to investigate whether gravity can
be obtained by considering a free two-body system in dS invariant theory. As noted
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in the preceding section, if N/E is of order 1/R then the only possible correction to
the standard two-body mass operator is the dS antigravity which is not small only at
cosmological distances. In this section we will investigate whether scenarios that the
order of N/E is much greater than 1/R are realistic.

Note that the operators in Eq. (3.14) act over the variable n while the
operators in Eq. (3.15) don’t. The formulas defining the action of the operators in Eq.
(3.14) contain multipliers (n + k) and (n− k). We expect that k ≪ n and therefore
one might expect that the main contribution to the operator N can be obtained if
k in (n + k) and (n − k) is neglected. Let N|| be the operator N obtained in this
approximation. Then it follows from Eqs. (3.14) and (3.15) that

N||c̃(n, k, l) =
i

4
[

w + 4n2

(n− k)(n + k)
]1/2B[c̃(n− 1, k, l)− c̃(n+ 1, k, l)] (3.27)

The fact that this part of the operator N is proportional to B justifies the notation
N||. It follows from this expression thatN||/E will be of order 1/R if the last difference
is of that order but if this is not the case then the order of N||/E will be much greater
than 1/R. By semiclassical approximation we mean a situation when the dependence
of the wave function on k and l is quasiclassical but in general we do not assume that
the n dependence is quasiclassical. Then we can replace B by its quasiclassical value
and take into account (see the preceding section) that B = 2[(n−k)(n+k)]1/2 where
B = |B|. As a result,

N||c̃(n, k, l) =
i

2
(w + 4n2)1/2[c̃(n− 1, k, l)− c̃(n+ 1, k, l)]

B

B
(3.28)

As follows from Eqs. (3.14) and (3.15), in this approximation the result
for the remaining part of the operator N is

N⊥c̃(n, k, l) = − 1

4n
(w + 4n2)1/2[c̃(n− 1, k, l) + c̃(n + 1, k, l)](

B

B
× J) (3.29)

and this part is indeed orthogonal to B. Since we assume that J/n is of order 1/R,
N⊥ already contains a factor of order 1/R. If we define r⊥ such that r⊥ ×p = J and
assume that c̃(n± 1, k, l) ≈ c̃(n, k, l) then Eq. (3.29) will give N⊥ = −2Er⊥, i.e. the
result which has been already mentioned.

Since we are now interested in distances much less than R, we will neglect
corrections of order 1/R. For brevity of notations we will omit the (k, l) dependence
of wave functions and will replace c̃(n, k, l) by ψ(n). Suppose that B is directed in
the positive direction of the z axis. Then, as follows from Eqs. (3.14), (3.28) and
(3.29)

Eψ = (w + 4n2)1/2Bψ Nzψ = −(w + 4n2)1/2Aψ (3.30)

where the action of operators A and B is defined as

Aψ(n) = i

2
[ψ(n+ 1)− ψ(n− 1)] Bψ(n) = 1

2
[ψ(n+ 1) + ψ(n− 1)] (3.31)
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The relations between the operators A and B and n are

[A, n] = iB [B, n] = −iA [A,B] = 0 A2 + B2 = 1 (3.32)

Our nearest goal is to investigate whether the quasiclassical results de-
scribed in the preceding section can be substantiated. As noted in Sect. 1.5, in
standard quantum theory the quasiclassical wave function in momentum space con-
tains a factor exp(−ipx) if h̄ = 1. Since n is now the dS analog of pzR, we assume
that ψ(n) contains a factor exp(−inϕ), i.e. the angle ϕ is the dS analof of z/R. It is
reasonable to expect that since all the ten representation operators of the dS algebra
are angular momenta, in dS theory one should deal only with angular coordinates
wich are dimensionless. If ψ(n) = a(n)exp(−inϕ) and we assume that in quasiclas-
sical approximation the main contribution in Eq. (3.31) is given by the exponent
then

Aψ(n) ≈ sinϕψ(n) Bψ(n) ≈ cosϕψ(n) (3.33)

in agreement with the first two expressions in Eq. (3.21). Therefore if ϕ is the dS
analog of z/R and z ≪ R, we recover the result that N|| ≈ −2Er||. Eq. (3.33)
can be treated in such a way that A is the operator of the quantity sinϕ and B is
the operator of the quantity cosϕ. However, the following question arises. As noted
in Sect. 1.5, quasiclassical approximation for a quantity can be correct only if this
quantity is rather large. At the same time, we assume that A is the operator of the
quantity which is very small if R is large.

If ϕ is small, we have sinϕ ≈ ϕ and in this approximation A can be treated
as the operator of the angular variable ϕ. This seems natural since in standard theory
the operator of the z coordinate is id/dpz and A can be written as iD where D is
the finite difference analog of derivative over n (there is no derivative over n since n
is the discrete variable and can take only values 0,1,2...). When ϕ is not small, the
argument that A is the operator of the quantity sinϕ is as follows. Since

arcsinϕ =
∞
∑

l=0

(2l)!ϕ2l+1

4l(l!)2(2l + 1)

one might think that

Φ =

∞
∑

l=0

(2l)!A2l+1

4l(l!)2(2l + 1)

can be treated as the operator of the quantity ϕ. Indeed, as follows from this expres-
sion and Eq. (3.32), [Φ, n] = i what is the dS analog of the relation [z, pz] = i.

We will consider several models of the function ψ(n) where it will be
possible to explicitly calculate Ā and ∆A and to check whether the condition ∆A ≪
|Ā| (showing that the quantity A in the state ψ is quasiclassical) is satisfied (see Sect.
1.5). In this connection the following remark is important. Although so far we are
working in standard dS quantum theory over complex numbers, we will argue in the
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next chapters that fundamental quantum theory should be finite. We will consider
a version of quantum theory where complex numbers are replaced by a Galois field.
In this approach only those functions ψ(n) are physical which have a finite carrier in
n. Therefore we assume that ψ(n) can be different from zero only if n ∈ [nmin, nmax].
If nmax = nmin + δ − 1 then a necessary condition that n is quasiclassical is δ ≪ n.
At the same time, since δ is the dS analog of ∆pR and R is very large, we expect
that δ ≫ 1. We use ν to denote n − nmin. Then if ψ(ν) = a(ν)exp(−iϕν), we can
expect by analogy with the consideration in Sect. 1.5 that the state ψ(ν) will be
quasiclassical if |ϕδ| ≫ 1 since in this case the exponent makes many oscilations on
[nmin, nmax]. Even this condition indicates that ϕ cannot be extremely small.

Our first example is such that ψ(ν) = exp(−iϕν)/δ1/2 if ν ∈ [nmin, nmax]
and ψ(ν) = 0 if n /∈ [nmin, nmax]. Then a simple calculation gives

Ā = (1− 1

δ
)sinϕ ∆A = (

1− sin2ϕ/δ

δ
)1/2

B̄ = (1− 1

δ
)cosϕ ∆B = (

1− cos2ϕ/δ

δ
)1/2

n̄ = (nmin + nmax)/2 ∆n = δ(
1− 1/δ2

12
)1/2 (3.34)

Therefore for the validity of the condition ∆A ≪ |Ā|, |sinϕ| should be not only much
greater than 1/δ but even much greater than 1/δ1/2. Note also that ∆A∆n is not of
order unity as one might expect but of order δ1/2. This result shows that the state
ψ(ν) is not maximally quasiclassical. At the same time, if cosϕ is or order unity
then ∆B ≪ |B̄| with a high accuracy and therefore the quantity B is quasiclassical.
The analysis of this example shows that for ensuring the validity of quasiclassical
approximation in a greater extent, one should consider functions ψ(ν) which are
small when ν is close to nmin or nmax.

Consider now a case ψ(ν) = const Cν
δ exp(−iϕν) where const can be de-

fined from the normalization condition. Since Cν
δ = 0 when ν < 0 or ν > δ, this func-

tion is not zero only when ν ∈ [0, δ]. The result of calculations is that const2 = 1/Cδ
2δ

and

Ā =
δsinϕ

δ + 1
∆A = [

(2δ + 1)(1 + δcos2ϕ)

(δ + 1)2(δ + 2)
]1/2

B̄ =
δcosϕ

δ + 1
∆B = [

(2δ + 1)(1 + δsin2ϕ)

(δ + 1)2(δ + 2)
]1/2

n̄ =
1

2
(nmin + nmax) ∆n =

δ

2(2δ − 1)1/2
(3.35)

If ϕ is small, the quantity ∆A∆n is now of order unity but still the condition ∆A ≪
|Ā| is satisfied only when |sinϕ| ≫ 1/δ1/2. The matter is that ψ(ν) has a sharp peak
at ν = δ/2 and by using Stirling’s formula it is easy to see that the width of the peak
is of order δ1/2.
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Our last example is ψ(ν) =
√

2/δ exp(−iϕν)sin(πν/δ) if ν ∈ [nmin, nmax]
and ψ(ν) = 0 if n /∈ [nmin, nmax]. The result of calculations is

Ā = sinϕ cos(π/δ) ∆A = sin(π/δ) [cos2ϕ− cos(2ϕ)/δ]1/2

B̄ = cosϕ cos(π/δ) ∆B = sin(π/δ) [sin2ϕ+ cos(2ϕ)/δ]1/2

n̄ = (nmin + nmax)/2 ∆n = [
4

δ

δ/2
∑

l=1

l2cos2(πl/δ)]1/2 (3.36)

Therefore if ϕ is small, the quantity ∆A∆n is of order unity and for the validity of
the condition ∆A ≪ |Ā| it suffices to require that |sinϕ| ≫ 1/δ.

A question arises whether there exist states where quasiclassical approx-
imation is valid when |sinϕ| is of order 1/δ or less. As follows from Eqs. (1.7) and
(3.32), ∆A∆n ≥ |B̄|/2. Therefore the answer is negative if |B̄| is of order unity. One
might argue that the angular variable ϕ depends on the choice of the origin and it is
always possible to find a reference frame where |sinϕ| ≫ 1/δ. However, the relative
angular distance between two particles does not depend on the choice of the reference
frame. In the next section we will investigate conditions when the angular distance
between two particles is quasiclassical.

3.4 Newton’s law of gravity

In Sect. 3.2 we discussed a two-body system assuming that for each body j (j = 1, 2)
the operatorsNj have the order 1/R with respect to the operators Ej. In the preceding
section we discussed a possibility that this might not be the case for the components of
Nj parallel to Bj . Consider the two-body Casimir operator I2 in the approximation
when all corrections of order 1/R are neglected. As follows from Eq. (2.17), this
operator is given by

I2 = −1

2

∑

ab

(M
(1)
ab +M

(2)
ab )(M

ab(1) +Mab(2)) (3.37)

where the superscripts (1) and (2) refer to bodies 1 and 2, respectively. Since the
Casimir operator for body j is wj + 9 (see Sect. 3.1), we have in our approximation

I2 = w1 + w2 + 2E1E2 + 2N1N2 − 2B1B2 + 18 (3.38)

As already noted, the main goal of this work is to investigate whether
the Newton gravitational law can be obtained in the framework of de Sitter invari-
ant quantum theory of two free particles. We will not investigate relativistic (post
Newtonian) corrections to this law. A usual way of investigating the spectrum of the
two-body mass operator is to decompose the full internal two-body space into sub-
spaces corresponding to definite eigenvalues of the operator J2 where J is the internal
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two-body angular momentum operator. It is known that the Newton gravitational
law is spherically symmetric i.e. does not depend on the internal angular momentum.
For this reason we consider a simplest possible case when each body has zero angular
momentum and its momentum is directed along the positive direction of the z axis.
Then, as follows from Eq. (3.29), the ⊥ components of the operators Nj are absent
and Nj is proportional to Bj .

In semiclassical approximation we treat Bj as usual vectors while, as fol-
lows from Eqs. (3.30) and (3.31)

Ej = (wj + 4n2
j )

1/2Bj Nj = −Bj

Bj
(wj + 4n2

j )
1/2Aj (3.39)

Here the operators Aj and Bj act on the two-body wave function ψ(n1, n2) such that
for each j the corresponding operators act only over their ”own” variables according
to Eq. (3.31). For example

A1ψ(n1, n2) =
i

2
[ψ(n1 + 1, n2)− ψ(n1 − 1, n2)]

B1ψ(n1, n2) =
1

2
[ψ(n1 + 1, n2) + ψ(n1 − 1, n2)] (3.40)

and analogously for the operators A2 and B2. In Poincare limit, A1 = A2 = 0 and
B1 = B2 = 1.

As follows from Eqs. (3.38) and (3.39), in our approximation

I2 = I2P + 2[(w1 + 4n2
1)(w2 + 4n2

2)]
1/2(B − 1) (3.41)

where I2P is proportional to the two-body Casimir operator in Poincare invariant
theory (with the coefficient 4R2) and in this section we use B to denote A1A2+B1B2.
The meaning of this notation is as follows. As noted in the preceding section, in
standard treatment of quasiclassical approximation, Aj is the operator sinϕj and Bj

is the operator cosϕj where ϕj is the angular variable of body j. In this case B is the
operator of the quantity cosϕ1cosϕ2 + sinϕ1sinϕ2 = cosϕ where ϕ = ϕ1 − ϕ2 is the
relative angular distance between the bodies. We see that the result depends only on
the relative angular distance, as it should be. In this approximation the correction
to the mean value of the operator I2 is

∆I2 = −2[(w1 + 4n2
1)(w2 + 4n2

2)]
1/2(1− cosϕ) (3.42)

We again see that the correction is negative and proportional to the body masses in
nonrelativistic approximation. If ϕ is small, we have 1−cosϕ ≈ ϕ2/2 = r2/2R2 where
r is the usual relative distance. It is easy to see that in this case we recover the result
for the cosmological term given by Eq. (3.26). We define the two-body operator A
as B2A1 − B1A2. The reason is that in standard quasiclassical approximation this is
the operator of cosϕ2sinϕ1 − cosϕ1sinϕ2 = sinϕ.
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The next step is to express n1 and n2 in terms of total and relative dS
variables N and n. Since the nj are the dS analogs of the z components of momenta,
we define N = n1+n2. In nonrelativistic theory the relative momentum is defined as
q = (m2p1−m1p2)/(m1+m2) and in relativistic theory as q = (E2p1−E1p2)/(E1+E2).
Therefore one might define n as n = (m2n1 − m1n2)/(m1 + m2) or n = (E2n1 −
E1n2)/(E1 + E2). These definitions involve Poincare masses and energies. Another
possibility is n = (n1 − n2)/2. In all these cases we have that n → (n + 1) when
n1 → (n1 + 1), n2 → (n2 − 1) and n → (n− 1) when n1 → (n1 − 1), n2 → (n2 + 1).
In what follows, only this feature is important. Then, as follows from Eq. (3.31) and
the definition of the two-body operators A and B in this section

Aψ(N, n) = i

2
[ψ(N, n+1)−ψ(N, n− 1)] Bψ(N, n) = 1

2
[ψ(N, n+1) +ψ(N, n− 1)]

(3.43)
Therefore the two-body operators A and B do not act over the total variable N while
their action over the relative variable n is the same as the action of the corresponding
single-body operators in Eq. (3.31).

We now can investigate the validity of quasiclassical approximation in
internal two-body space by analogy with the investigation in the preceding section.
If we consider internal wave functions of the form ψ(n) = a(n)exp(−iϕn) then the
results given by Eqs. (3.34-3.36) fully apply in the two-body case but ϕ is now the
relative angular distance. It has been noted that quasiclassical approximation cannot
be valid if ϕδ is of order unity or less. It has been also noted that in the single-body
case ϕ depends on the choice of the origin. However, in the two-body case the relative
angular distance variable ϕ does not depend on the choice of the origin.

It is usually believed that for macroscopic bodies quantum effects are negli-
gible and quasiclassical approximation works with extremely high accuracy. Therefore
in view of the above discussion one might expect that for macroscopic bodies the value
of ϕδ is very large. Since ϕ can be treated as r/R where r is the relative distance and
δ can be treated as 2R∆q where ∆q is the width of the relative momentum distribu-
tion in the internal two-body wave function, ϕδ is of order r∆q. For understanding
what the order of magnitude of this quantity is, one should have estimations of ∆q
for macroscopic wave functions. However, to the best of our knowledge, the existing
theory does not make it possible to give reliable estimations of this quantity.

Below we argue that ∆q is of order 1/rg where rg is the gravitational
(Schwarzschild) radius of the component of the two-body system which has the greater
mass. Then ϕδ is of order r/rg. This is precisely the parameter defining when stan-
dard Newtonian gravity is a good approximation to GR. For example the gravitational
radius of the Earth is of order 0.01m while the radius of the Earth is RE = 6.4×106m.
Therefore RE/rg is of order 109. However, since in many observations of gravity on
the Earth no quantum effects have been noticed, it is reasonable to think that gravity
on the Earth is a classical phenomenon with the accuracy much greater that 10−9.
The gravitational radius of the Sun is of order 3000m and the distance from the Sun to
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the Earth is or order 150× 109m. So r/rg is of order 10
8 but we believe that classical

theory describes the Sun-Earth system with a much greater accuracy. It is believed
that even black holes (where rg/r is of order unity) are described by GR (which is
a pure classical theory) with a very high accuracy. In view of these observations it
is important to understand whether ϕδ is indeed the right parameter defining the
accuracy of quasiclassical approximation. As noted in Sect. 1.5, the expectation that
this is the case is based on our experience in atomic and nuclear physics. However,
in view of our macroscopic experience, it seems unreasonable that if the uncertainty
∆ϕ of ϕ is of order 1/δ then the relative accuracy ∆ϕ/ϕ in the measurement of ϕ is
better when ϕ is greater. It is reasonable to expect that the greater the distance is,
the greater is the absolute uncertainty of the measurement.

In view of these observations, we assume that when distances are much less
than cosmological ones, a rapidly oscillating exponent in macroscopic wave functions
should be not exp(−iϕn) but exp(−iχn) where χ is a function of ϕ and δ. Then
the results given by Eqs. (3.34-3.36) remain valid but in these expressions ϕ should
be replaced by χ. In particular, the accuracy of quasiclassical approximation is now
defined by the parameter χδ rather than ϕδ. Suppose that χ = const (ϕδ)α. Since the
role of the rapidly oscillating exponent is to ensure the validity of the quasiclassical
approximation even when δ is not anomalously large, we should have that α < 0.
Then ∆χ = const ϕα−1δα∆ϕ. Since the best accuracy for χ is such that ∆χ is
of order 1/δ, we have that ∆ϕ = const ϕ1−α/δ1+α. This relation shows that the
accuracy of ∆ϕ becomes better when ϕ decreases and this is a desirable behavior.
Moreover, if α < 0 then even the relative accuracy ∆ϕ/ϕ becomes better when ϕ
decreases. At the same time, we expect that the greater is δ, the better the accuracy
of ∆ϕ is. For this reason we should have that α > −1. In summary, α should be
inside the open interval (−1, 0). Ideally, the value of α and const should be given by a
quantum theory of measurements which should relate operators of physical quantities
with the way how these quantities are measured. However, although quantum theory
exists for more than 80 years, we still do not have such a theory. For this reason
a conclusion about an operator which does not belong to the symmetry algebra can
be drawn only from considerations based on the existing intuition. In particular, the
operator of the relative distance between two macroscopic bodies does not belong to
the symmetry algebra.

We accept that χ = const/(ϕδ)1/2. Then, if const is of order unity, the pa-
rameter χδ defining the accuracy of quasiclassical approximation is of order (δ/ϕ)1/2.
In view of the above remarks, this quantity is of order R/(rrg)

1/2. If R is of order
1026m then in the above example with the Earth χδ is of order 1024 and in the above
example with the Sun-Earth system it is of order 1019. Hence the accuracy of qua-
siclassical approximation is by many orders of magnitude greater than in the case
when the accuracy is defined by ϕδ.

Now, as follows from Eqs. (3.34-3.36), with ϕ replaced by χ, the value of
B̄ in all these cases is cosχ with a high accuracy, and in the case described by Eq.
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(3.36), the accuracy of both, ∆A and ∆B is not worse than 1/δ. Let us calculate the
mean value of ∆I2 in the case when the internal wave function contains the factor
exp(−iχn). As follows from Eq. (3.41) and (3.43), this value is defined by

B̄ = (ψ,Bψ) = 1

2

Nmax
∑

N=Nmin

∑

n

ψ(N, n)∗[ψ(N, n+ 1) + ψ(N, n− 1)] (3.44)

where Nmin = n1min + n2min and Nmax = n1max + n2max where njmin and njmax

(j = 1, 2) are the values of nmin and nmax for body j. Therefore N can take δ1 + δ2
values. Now we use nmin and nmax to define the minimum and maximum values of
the relative dS momentum n. For each fixed value of N those values are different, i.e.
they are functions of N . Let δ(N) = nmax − nmin for a given value of N . It is easy
to see that δ(N) = 0 when N = Nmin and N = Nmax while for other values of N ,
δ(N) is a natural number in the range (0, δmax] where δmax = min(δ1, δ2). The total
number of values of (N, n) is obviously δ1δ2, i.e.

Nmax
∑

N=Nmin

δ(N) = δ1δ2 (3.45)

The result of Eqs. (3.34-3.36) that B̄ ≈ cosϕ has been obtained for wave functions
normalized to one. These functions contained the normalization factor 1/δ1/2. How-
ever, in the case of Eq. (3.44) the wave functions contain the normalization factor
1/(δ1δ2)

1/2. Therefore in view of the above discussion

B̄ =
1

δ1δ2

Nmax
∑

N=Nmin

δ(N)cos[
const

(ϕδ(N))1/2
] (3.46)

and, as follows from Eq. (3.41), the mean value of ∆I2 is given by

∆I2 = 2[(w1 + 4n2
1)(w2 + 4n2

2)]
1/2{{ 1

δ1δ2

Nmax
∑

N=Nmin

δ(N)cos[
const

(ϕδ(N))1/2
]} − 1} (3.47)

Strictly speaking, the quasiclassical form of the wave function exp(−iχn)a(n) cannot
be used if δ(N) is very small; in particular, it cannot be used when δ(N) = 0. We
assume that in these cases the internal wave function can be modified such that the
main contribution to the sum in Eq. (3.47) is given by those N where δ(N) is not
small.

If ϕ is so large that the argument of cos in Eq. (3.47) is always extremely
small, then, as follows from Eq. (3.45), ∆I2 = 0 and the correction to Poincare limit
is zero. Note that Eq. (3.47) has been derived neglecting all corrections of order 1/R
since we assume that our discussion is valid at not extremely large distances where
the cosmological acceleration is not important. In the general case it follows from
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Eq. (3.47) that ∆I2 is always negative and proportional to m1m2 in nonrelativistic
approximation.

The next approximation is that this argument α is small such we can
approximate cos(α) by 1−α2/2. Then, taking into account the fact that the number
of values of N is δ1 + δ2 we get

∆I2 = −const[(w1 + 4n2
1)(w2 + 4n2

2)]
1/2 δ1 + δ2
δ1δ2|ϕ|

(3.48)

where const > 0. Now, by analogy with the derivation of Eq. (3.26), it is easy to
show that the classical nonrelativistic Hamiltonian is

H(r,q) =
q2

2m12
− const

m1m2R

(m1 +m2)r
(
1

δ1
+

1

δ2
) (3.49)

where const is the same as in Eq. (3.48). We see that the correction disappears
if the width of the dS momentum distribution for each body becomes very large.
In standard theory (over complex numbers) there is no limitation on the width of
distribution while, as noted in the preceding section, in quasiclassical approximation
the only limitation is that the width of the dS momentum distribution should be much
less than the mean value of this momentum. In the next chapters we argue that in
GFQT it is natural that the width of the momentum distribution for a macroscopic
body is inversely proportional to its mass. Then we recover the Newton gravitational
law. Namely, if

δj = (constR)/(mjG) (j = 1, 2) (3.50)

where G is another constant then

H(r,q) =
q2

2m12
−G

m1m2

r
(3.51)

It is well known that in GR and other field theories the N -body system
can be described by a Hamiltonian depending only on the degrees of freedom cor-
responding to these bodies only in order v2 since even in order v3 one should take
into account other degrees of freedom. For this reason in the literature on GR the
N -body Hamiltonian is discussed taking into account post-Newtonian corrections to
the Hamiltonian (3.51). However, among these corrections there is one which does
not depend on velocities at all but is quadratic in G/r. Namely, the Hamiltonian
with post-Newtonian corrections discussed in a vast literature (see e.g. Ref. [22]) is

H(r,q) =
q2

2m12
−G

m1m2

r
+ (...) +

G2m1m2(m1 +m2)

2r2
(3.52)

where (...) contains relativistic corrections of order v2. The last term in this expression
is responsible for the precession of the perihelion of Mercury’s orbit.
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In our approach the Newton law (3.51) has been obtained for a system of
two free bodies in dS invariant theory. Therefore in the framework of our approach one
can try to obtain not only the Newton law but also corrections to it in any order in v.
As noted in the beginning of this section, in this paper we will not consider corrections
of order v2 since for simplicity of derivation of Eq. (3.51) we assumed that the internal
angular momentum is zero. However, remarks can be made about the correction
containing (G/r)2. For calculating this correction one might use the approximation
for cosα in Eq. (3.47) with the accuracy α4, i.e. cosα ≈ 1−α2/2 + α4/24. Since Eq.
(3.47) describes corrections to the mean value of the mass operator squared while
Eq. (3.52) represents the mean value of the mass operator, the term with α2 will
give a correction of order (G/r)2 to H(r,q). A simple calculation shows that this
correction equals −(Gm1m2)

2/[2(m1 + m2)r
2]. Therefore, in contrast with the last

term in Eq. (3.52), this correction is negative. It gives a much smaller contribution
to the precession of the perihelion of Mercury’s orbit than the last term in Eq. (3.52).
Indeed, if m1 =M ,m2 = m and M ≫ m then our correction is −G2Mm2/2r2 while
the last term in Eq. (3.52) is G2M2m/2r2. At the same time, the term with α4 in the
decomposition of cosα gives a positive correction which is proportional to m1m2. The
problem is that if formally cosα is expended in Eq. (3.47) then one should calculate
the sum

Nmax
∑

N=Nmin

1

δ(N)

which is singular. The reason is that for calculating the contribution of those quantum
numbers where δ(N) is small, one cannot use quasiclassical expressions for the wave
functions. We conclude that for calculating the correction of order (G/r)2 in our
approach, it is necessary to go beyond quasiclassical approximation and in general
the sum in Eq. (3.47) should be calculated without expanding cos.
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Chapter 4

Why is GFQT more pertinent
physical theory than standard one?

4.1 What mathematics is most pertinent for quan-

tum physics?

Since the absolute majority of physicists are not familiar with Galois fields, our first
goal in this chapter is to convince the reader that the notion of Galois fields is not
only very simple and elegant, but also is a natural basis for quantum physics. If a
reader wishes to learn Galois fields on a more fundamental level, he or she might start
with standard textbooks (see e.g. Ref. [34]).

In view of the present situation in modern quantum physics, a natural
question arises why, in spite of big efforts of thousands of highly qualified physicists
for many years, the problem of quantum gravity has not been solved yet. We believe
that a possible answer is that they did not use the most pertinent mathematics.

For example, the problem of infinities remains probably the most chal-
lenging one in standard formulation of quantum theory. As noted by Weinberg [21],
’Disappointingly this problem appeared with even greater severity in the early days of
quantum theory, and although greatly ameliorated by subsequent improvements in the
theory, it remains with us to the present day’. The title of the recent Weinberg’s
paper [35] is ”Living with infinities”. A desire to have a theory without divergences
is probably the main motivation for developing modern theories extending QFT, e.g.
loop quantum gravity, noncommutative quantum theory, string theory etc. On the
other hand, in theories over Galois fields, infinities cannot exist in principle since any
Galois field is finite.

The key ingredient of standard mathematics is the notions of infinitely
small and infinitely large. The notion of infinitely small is based on our everyday
experience that any macroscopic object can be divided by two, three and even a
million parts. But is it possible to divide by two or three the electron or neutrino? It
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seems obvious that the very existence of elementary particles indicates that standard
division has only a limited meaning. Indeed, consider, for example, the gram-molecule
of water having the mass 18 grams. It contains the Avogadro number of molecules
6 · 1023. We can divide this gram-molecule by ten, million, billion, but when we begin
to divide by numbers greater than the Avogadro one, the division operation loses its
meaning.

If we accept that the notion of infinitely small can be only approximate
in some situations then we have to acknowledge that fundamental physics cannot
be based on continuity, differentiability, geometry, topology etc. We believe it is
rather obvious that these notions are based on our macroscopic experience. For
example, the water in the ocean can be described by equations of hydrodynamics but
we know that this is only an approximation since matter is discrete. The reason why
modern quantum physics is based on these notions is probably historical: although
the founders of quantum theory and many physicists who contributed to this theory
were highly educated scientists, discrete mathematics was not (and still is not) a part
of standard physics education.

The notion of infinitely large is based on our belief that in principle we can
operate with any large numbers. In standard mathematics this belief is formalized
in terms of axioms about infinite sets (e.g. Zorn’s lemma or Zermelo’s axiom of
choice) which are accepted without proof. Our belief that these axioms are correct
is based on the fact that sciences using standard mathematics (physics, chemistry
etc.) describe nature with a very high accuracy. It is believed that this is much
more important than the fact that, as follows from Goedel’s incompleteness theorems,
standard mathematics cannot be a selfconsistent theory since no system of axioms
can ensure that all facts about natural numbers can be proved.

Standard mathematics contains statements which seem to be counterintu-
itive. For example, the interval (0, 1) has the same cardinality as (−∞,∞). Another
example is that the function tgx gives a one-to-one relation between the intervals
(−π/2, π/2) and (−∞,∞). Therefore one can say that a part has the same number
of elements as a whole. One might think that this contradicts common sense but in
standard mathematics the above facts are not treated as contradicting.

Another example is that we cannot verify that a+ b = b+ a for any num-
bers a and b. At the same time, in the spirit of quantum theory there should be no
statements accepted without proof (and based only on belief that they are correct);
only those statements should be treated as physical, which can be experimentally
verified, at least in principle. Suppose we wish to verify that 100+200=200+100.
In the spirit of quantum theory it is insufficient to just say that 100+200=300 and
200+100=300. We should describe an experiment where these relations can be veri-
fied. In particular, we should specify whether we have enough resources to represent
the numbers 100, 200 and 300. We believe the following observation is very impor-
tant: although standard mathematics is a part of our everyday life, people typically
do not realize that standard mathematics is implicitly based on the assumption that
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one can have any desirable amount of resources.
Suppose, however that our Universe is finite. Then the amount of resources

cannot be infinite. In particular, it is impossible in principle to build a computer
operating with any number of bits. In this scenario it is natural to assume that
there exists a fundamental number p such that all calculations can be performed only
modulo p. Then it is natural to consider a quantum theory over a Galois field with the
characteristic p. Since any Galois field is finite, the fact that arithmetic in this field
is correct can be verified (at least in principle) by using a finite amount of resources.

Let us look at mathematics from the point of view of the famous Kronecker
expression: ”God made the natural numbers, all else is the work of man”. Indeed, the
natural numbers 0, 1, 2... have a clear physical meaning. However only two operations
are always possible in the set of natural numbers: addition and multiplication. In
order to make addition reversible, we introduce negative integers -1, -2 etc. Then,
instead of the set of natural numbers we can work with the ring of integers where three
operations are always possible: addition, subtraction and multiplication. However,
the negative numbers do not have a direct physical meaning (we cannot say, for
example, ”I have minus two apples”). Their only role is to make addition reversible.

The next step is the transition to the field of rational numbers in which
all four operations except division by zero are possible. However, as noted above,
division has only a limited meaning.

In mathematics the notion of linear space is widely used, and such impor-
tant notions as the basis and dimension are meaningful only if the space is considered
over a field or body. Therefore if we start from natural numbers and wish to have a
field, then we have to introduce negative and rational numbers. However, if, instead
of all natural numbers, we consider only p numbers 0, 1, 2, ... p− 1 where p is prime,
then we can easily construct a field without adding any new elements. This construc-
tion, called Galois field, contains nothing that could prevent its understanding even
by pupils of elementary schools.

Let us denote the set of numbers 0, 1, 2,...p − 1 as Fp. Define addition
and multiplication as usual but take the final result modulo p. For simplicity, let
us consider the case p = 5. Then F5 is the set 0, 1, 2, 3, 4. Then 1 + 2 = 3 and
1 + 3 = 4 as usual, but 2 + 3 = 0, 3 + 4 = 2 etc. Analogously, 1 · 2 = 2, 2 · 2 = 4,
but 2 · 3 = 1, 3 · 4 = 2 etc. By definition, the element y ∈ Fp is called opposite
to x ∈ Fp and is denoted as −x if x + y = 0 in Fp. For example, in F5 we have
-2=3, -4=1 etc. Analogously y ∈ Fp is called inverse to x ∈ Fp and is denoted as
1/x if xy = 1 in Fp. For example, in F5 we have 1/2=3, 1/4=4 etc. It is easy to
see that addition is reversible for any natural p > 0 but for making multiplication
reversible we should choose p to be a prime. Otherwise the product of two nonzero
elements may be zero modulo p. If p is chosen to be a prime then indeed Fp becomes
a field without introducing any new objects (like negative numbers or fractions). For
example, in this field each element can obviously be treated as positive and negative
simultaneously!
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The above example with division might be also an indication that, in the
spirit of Ref. [36], the ultimate quantum theory will be based even not on a Galois
field but on a finite ring (this observation was pointed out to me by Metod Saniga).

One might say: well, this is beautiful but impractical since in physics and
everyday life 2+3 is always 5 but not 0. Let us suppose, however that fundamental
physics is described not by ”usual mathematics” but by ”mathematics modulo p”
where p is a very large number. Then, operating with numbers much smaller than p
we will not notice this p, at least if we only add and multiply. We will feel a difference
between ”usual mathematics” and ”mathematics modulo p” only while operating with
numbers comparable to p.

We can easily extend the correspondence between Fp and the ring of in-
tegers Z in such a way that subtraction will also be included. To make it clearer we
note the following. Since the field Fp is cyclic (adding 1 successively, we will obtain
0 eventually), it is convenient to visually depict its elements by the points of a circle
of the radius p/2π on the plane (x, y). In Fig. 4.1 only a part of the circle near the
origin is depicted. Then the distance between neighboring elements of the field is

0 1 2 3 4 5-1-2-3-4-5

p-1
p-2

p-3

p-4

p-5

1
2

3

4

5

Figure 4.1: Relation between Fp and the ring of integers

equal to unity, and the elements 0, 1, 2,... are situated on the circle counterclockwise.
At the same time we depict the elements of Z as usual such that each element z ∈ Z
is depicted by a point with the coordinates (z, 0). We can denote the elements of Fp

not only as 0, 1,... p− 1 but also as 0, ±1, ±2,,...±(p− 1)/2, and such a set is called
the set of minimal residues. Let f be a map from Fp to Z, such that the element
f(a) ∈ Z corresponding to the minimal residue a has the same notation as a but is

considered as the element of Z. Denote C(p) = p1/(lnp)
1/2

and let U0 be the set of
elements a ∈ Fp such that |f(a)| < C(p). Then if a1, a2, ...an ∈ U0 and n1, n2 are such
natural numbers that

n1 < (p− 1)/2C(p), n2 < ln((p− 1)/2)/(lnp)1/2 (4.1)

then
f(a1 ± a2 ± ...an) = f(a1)± f(a2)± ...f(an)

if n ≤ n1 and
f(a1a2...an) = f(a1)f(a2)...f(an)
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if n ≤ n2. Thus though f is not a homomorphism of rings Fp and Z, but if p is
sufficiently large, then for a sufficiently large number of elements of U0 the addition,
subtraction and multiplication are performed according to the same rules as for ele-
ments z ∈ Z such that |z| < C(p). Therefore f can be treated as a local isomorphism
of rings Fp and Z.

The above discussion has a well known historical analogy. For many years
people believed that our Earth was flat and infinite, and only after a long period
of time they realized that it was finite and had a curvature. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature R. Analogously one might think that the set of numbers describing physics
has a curvature defined by a very large number p but we do not notice it when we deal
only with numbers much less than p. This number should be treated as a fundamental
constant describing laws of physics in our Universe.

One might argue that introducing a new fundamental constant is not justi-
fied. However, the history of physics tells us that new theories arise when a parameter,
which in the old theory was treated as infinitely small or infinitely large, becomes fi-
nite. For example, from the point of view of nonrelativistic physics, the velocity of
light c is infinitely large but in relativistic physics it is finite. Analogously, from the
point of view of classical theory, the Planck constant h̄ is infinitely small but in quan-
tum theory it is finite. Therefore it is natural to think that in the future quantum
physics the quantity p will be not infinitely large but finite.

Let us note that even for elements from U0 the result of division in the field
Fp differs generally speaking, from the corresponding result in the field of rational
number Q. For example the element 1/2 in Fp is a very large number (p+ 1)/2. For
this reason one might think that physics based on Galois fields has nothing to with
the reality. We will see in the subsequent section that this is not so since the spaces
describing quantum systems are projective.

By analogy with the field of complex numbers, we can consider a set Fp2

of p2 elements a + bi where a, b ∈ Fp and i is a formal element such that i2 = −1.
The question arises whether Fp2 is a field, i.e. we can define all the four operations
except division by zero. The definition of addition, subtraction and multiplication in
Fp2 is obvious and, by analogy with the field of complex numbers, one could define
division as 1/(a+ bi) = a/(a2 + b2) − ib/(a2 + b2). This definition can be meaningful
only if a2 + b2 6= 0 in Fp for any a, b ∈ Fp i.e. a2 + b2 is not divisible by p. Therefore
the definition is meaningful only if p cannot be represented as a sum of two squares
and is meaningless otherwise. We will not consider the case p = 2 and therefore p
is necessarily odd. Then we have two possibilities: the value of p (mod 4) is either 1
or 3. The well known result of number theory (see e.g. the textbooks [34]) is that a
prime number p can be represented as a sum of two squares only in the former case
and cannot in the latter one. Therefore the above construction of the field Fp2 is
correct only if p (mod 4) = 3. By analogy with the above correspondence between Fp

and Z, we can define a set U in Fp2 such that a+ bi ∈ U if a ∈ U0 and b ∈ U0. Then
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if f(a+ bi) = f(a) + f(b)i, f is a local homomorphism between Fp2 and Z + Zi.
In general, it is possible to consider linear spaces over any fields. Therefore

a question arises what Galois field should be used in GFQT. It is well known (see e.g.
Ref. [34]) that any Galois field can contain only pn elements where p is prime and n
is natural. Moreover, the numbers p and n define the Galois field up to isomorphism.
It is natural to require that there should exist a correspondence between any new
theory and the old one, i.e. at some conditions the both theories should give close
predictions. In particular, there should exist a large number of quantum states for
which the probabilistic interpretation is valid. Then, in view of the above discussion,
the number p should necessarily be very large and we have to understand whether
there exist deep reasons for choosing a particular value of p or this is simply an
accident that our Universe has been created with this value. In any case, if we accept
that p is a universal constant then the problem arises what the value of n is. Since
we treat GFQT as a more general theory than standard one, it is desirable not to
postulate that GFQT is based on Fp2 (with p = 3 (mod 4)) because standard theory
is based on complex numbers but vice versa, explain the fact that standard theory
is based on complex numbers since GFQT is based on Fp2 . Therefore we should find
a motivation for the choice of Fp2 with p = 3 (mod 4). Arguments in favor of such
a choice are discussed in Refs. [5, 6, 7] and in this paper we will consider only this
choice.

4.2 Correspondence between GFQT and standard

theory

For any new theory there should exist a correspondence principle that at some con-
ditions this theory and standard well tested one should give close predictions. Well
known examples are that classical nonrelativistic theory can be treated as a special
case of relativistic theory in the formal limit c → ∞ and a special case of quantum
mechanics in the formal limit h̄ → 0. Analogously, Poincare invariant theory is a
special case of dS or AdS invariant theories in the formal limit R → ∞. We treat
standard quantum theory as a special case of GFQT in the formal limit p → ∞.
Therefore a question arises which formulation of standard theory is most suitable for
its generalization to GFQT.

A well-known historical fact is that quantum mechanics has been originally
proposed by Heisenberg and Schroedinger in two forms which seemed fully incompati-
ble with each other. While in the Heisenberg operator (matrix) formulation quantum
states are described by infinite columns and operators — by infinite matrices, in the
Schroedinger wave formulations the states are described by functions and operators
— by differential operators. It has been shown later by Born, von Neumann and
others that the both formulations are mathematically equivalent. In addition, the
path integral approach has been developed.

54



In the spirit of the wave or path integral approach one might try to replace
classical spacetime by a finite lattice which may even not be a field. In that case
the problem arises what the natural quantum of spacetime is and some of physical
quantities should necessarily have the field structure. However, as argued in Sect.
1.3, fundamental physical theory should not be based on spacetime.

We treat GFQT as a version of the matrix formulation when complex
numbers are replaced by elements of a Galois field. We will see below that in that
case the columns and matrices are automatically truncated in a certain way, and
therefore the theory becomes finite-dimensional (and even finite since any Galois field
is finite).

In conventional quantum theory the state of a system is described by a
vector x̃ from a separable Hilbert space H . We will use a ”tilde” to denote elements
of Hilbert spaces and complex numbers while elements of linear spaces over a Galois
field and elements of the field will be denoted without a ”tilde”.

Let (ẽ1, ẽ2, ...) be a basis in H . This means that x̃ can be represented as

x̃ = c̃1ẽ1 + c̃2ẽ2 + ... (4.2)

where (c̃1, c̃2, ...) are complex numbers. It is assumed that there exists a complete
set of commuting selfadjoint operators (Ã1, Ã2, ...) in H such that each ẽi is the
eigenvector of all these operators: Ãj ẽi = λ̃jiẽi. Then the elements (ẽ1, ẽ2, ...) are
mutually orthogonal: (ẽi, ẽj) = 0 if i 6= j where (...,...) is the scalar product in H . In
that case the coefficients can be calculated as

c̃i =
(ẽi, x̃)

(ẽi, ẽi)
(4.3)

Their meaning is that |c̃i|2(ẽi, ẽi)/(x̃, x̃) represents the probability to find x̃ in the
state ẽi. In particular, when x̃ and the basis elements are normalized to one, the
probability equals |c̃i|2.

Let us note that the Hilbert space contains a big redundancy of elements,
and we do not need to know all of them. Indeed, with any desired accuracy we can
approximate each x̃ ∈ H by a finite linear combination

x̃ = c̃1ẽ1 + c̃2ẽ2 + ...c̃nẽn (4.4)

where (c̃1, c̃2, ...c̃n) are rational complex numbers. This is a consequence of the well
known fact that the set of elements given by Eq. (4.4) is dense in H . In turn, this set
is redundant too. Indeed, we can use the fact that Hilbert spaces in quantum theory
are projective: ψ and cψ represent the same physical state. Then we can multiply
both parts of Eq. (4.4) by a common denominator of the numbers (c̃1, c̃2, ...c̃n). As
a result, we can always assume that in Eq. (4.4) c̃j = ãj + ib̃j where ãj and b̃j are
integers.

The meaning of the fact that Hilbert spaces in quantum theory are pro-
jective is very clear. The matter is that not the probability itself but the relative
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probabilities of different measurement outcomes have a physical meaning. We be-
lieve, the notion of probability is a good illustration of the Kronecker expression
about natural numbers (see Sect. 4.1). Indeed, this notion arises as follows. Sup-
pose that conducting experiment N times we have seen the first event n1 times, the
second event n2 times etc. such that n1 + n2 + ... = N . We define the quantities
wi(N) = ni/N (these quantities depend on N) and wi = limwi(N) when N → ∞.
Then wi is called the probability of the ith event. We see that all the information
about the experiment is given by a set of natural numbers, and in real life all those
numbers are finite. However, in order to define probabilities, people introduce ad-
ditionally the notion of rational numbers and the notion of limit. Another example
is the notion of mean value. Suppose we measure a physical quantity such that in
the first event its value is q1, in the second event - q2 etc. Then the mean value of
this quantity is defined as (q1n1 + q2n2 + ...)/N if N is very large. Therefore, even
if all the qi are integers, the mean value might be not an integer. We again see that
rational numbers arise only as a consequence of our convention on how the results of
experiments should be interpreted.

The Hilbert space is an example of a linear space over the field of complex
numbers. Roughly speaking this means that one can multiply the elements of the
space by the elements of the field and use the properties ã(b̃x̃) = (ãb̃)x̃ and ã(b̃x̃+c̃ỹ) =
ãb̃x̃ + ãc̃ỹ where ã, b̃, c̃ are complex numbers and x̃, ỹ are elements of the space.
The fact that complex numbers form a field is important for such notions as linear
dependence and the dimension of spaces over complex numbers.

By analogy with conventional quantum theory, we require that in GFQT
linear spaces V over Fp2 , used for describing physical states, are supplied by a scalar
product (...,...) such that for any x, y ∈ V and a ∈ Fp2, (x, y) is an element of Fp2

and the following properties are satisfied:

(x, y) = (y, x), (ax, y) = ā(x, y), (x, ay) = a(x, y) (4.5)

We will always consider only finite dimensional spaces V over Fp2 . Let
(e1, e2, ...eN) be a basis in such a space. Consider subsets in V of the form x =
c1e1 + c2e2 + ...cnen where for any i, j

ci ∈ U, (ei, ej) ∈ U (4.6)

On the other hand, as noted above, in conventional quantum theory we can describe
quantum states by subsets of the form Eq. (4.4). If n is much less than p,

f(ci) = c̃i, f((ei, ej)) = (ẽi, ẽj) (4.7)

then we have the correspondence between the description of physical states in pro-
jective spaces over Fp2 on one hand and projective Hilbert spaces on the other. This
means that if p is very large then for a large number of elements from V , linear com-
binations with the coefficients belonging to U and scalar products look in the same
way as for the elements from a corresponding subset in the Hilbert space.
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In the general case a scalar product in V does not define any positive
definite metric and thus there is no probabilistic interpretation for all the elements
from V . In particular, (e, e) = 0 does not necessarily imply that e = 0. However,
the probabilistic interpretation exists for such a subset in V that the conditions (4.7)
are satisfied. Roughly speaking this means that for elements c1e1 + ...cnen such that
(ei, ei), cic̄i ≪ p, f((ei, ei)) > 0 and cic̄i > 0 for all i = 1, ...n, the probabilistic
interpretation is valid. It is also possible to explicitly construct a basis (e1, ...eN )
such that (ej , ek) = 0 for j 6= k and (ej , ej) 6= 0 for all j (see the subsequent chapter).
Then x = c1e1 + ...cNeN (cj ∈ Fp2) and the coefficients are uniquely defined by
cj = (ej, x)/(ej , ej).

As usual, if A1 and A2 are linear operators in V such that

(A1x, y) = (x,A2y) ∀x, y ∈ V (4.8)

they are said to be conjugated: A2 = A∗
1. It is easy to see that A∗∗

1 = A1 and thus
A∗

2 = A1. If A = A∗ then the operator A is said to be Hermitian.
If (e, e) 6= 0, Ae = ae, a ∈ Fp2, and A∗ = A, then it is obvious that

a ∈ Fp. In the subsequent section (see also Refs. [5, 6]) we will see that there also
exist situations when a Hermitian operator has eigenvectors e such that (e, e) = 0
and the corresponding eigenvalue is pure imaginary.

Let now (A1, ...Ak) be a set of Hermitian commuting operators in V , and
(e1, ...eN ) be a basis in V with the properties described above, such that Ajei = λjiei.
Further, let (Ã1, ...Ãk) be a set of Hermitian commuting operators in some Hilbert
space H , and (ẽ1, ẽ2, ...) be some basis in H such that Ãjei = λ̃jiẽi. Consider a subset
c1e1 + c2e2 + ...cnen in V such that, in addition to the conditions (4.7), the elements
ei are the eigenvectors of the operators Aj with λji belonging to U and such that
f(λji) = λ̃ji. Then the action of the operators on such elements have the same form
as the action of corresponding operators on the subsets of elements in Hilbert spaces
discussed above.

Summarizing this discussion, we conclude that if p is large then there
exists a correspondence between the description of physical states on the language of
Hilbert spaces and selfadjoint operators in them on one hand, and on the language
of linear spaces over Fp2 and Hermitian operators in them on the other.

The field of complex numbers is algebraically closed (see standard text-
books on modern algebra, e.g. Ref. [34]). This implies that any equation of the nth
order in this field always has n solutions. This is not, generally speaking, the case for
the field Fp2 . As a consequence, not every linear operator in the finite-dimensional
space over Fp2 has an eigenvector (because the characteristic equation may have no
solution in this field). One can define a field of characteristic p which is algebraically
closed and contains Fp2 . However such a field will necessarily be infinite and we
will not use it. We will see in this chapter that uncloseness of the field Fp2 does
not prevent one from constructing physically meaningful representations describing
elementary particles in GFQT.
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In physics one usually considers Lie algebras over R and their represen-
tations by Hermitian operators in Hilbert spaces. It is clear that analogs of such
representations in our case are representations of Lie algebras over Fp by Hermitian
operators in spaces over Fp2. Representations in spaces over a field of nonzero char-
acteristics are called modular representations. There exists a wide literature devoted
to such representations; detailed references can be found for example in Ref. [37]
(see also Ref. [5]). In particular, it has been shown by Zassenhaus [38] that all
modular IRs are finite-dimensional and many papers have dealt with the maximum
dimension of such representations. At the same time, it is worth noting that usually
mathematicians consider only representations over an algebraically closed field.

From the previous, it is natural to expect that the correspondence between
ordinary and modular representations of two Lie algebras over R and Fp, respectively,
can be obtained if the structure constants of the Lie algebra over Fp - cjkl, and the
structure constants of the Lie algebra over R - c̃jkl, are such that f(cjkl) = c̃jkl (the
Chevalley basis [39]), and all the cjkl belong to U0. In Refs. [5, 4, 40] modular analogs
of IRs of su(2), sp(2), so(2,3), so(1,4) algebras and the osp(1,4) superalgebra have
been considered. Also modular representations describing strings have been briefly
mentioned. In all these cases the quantities c̃jkl take only the values 0,±1,±2 and the
above correspondence does take place.

It is obvious that since all physical quantities in GFQT are discrete, this
theory cannot involve any dimensionful quantities and any operators having the con-
tinuous spectrum. We have seen in the preceding chapter than the so(1,4) invariant
theory is dimensionless and it is possible to choose a basis such that all the operators
have only discrete spectrum. For this reason one might expect that this theory is
a natural candidate for its generalization to GFQT. In what follows, we consider a
generalization of dS invariant theory to GFQT. This means that symmetry is defined
by the commutation relations (3.1) which are now considered not in standard Hilbert
spaces but in spaces over Fp2. We will see in this chapter that there exists a corre-
spondence in the above sense between modular IRs of the finite field analog of the
so(1,4) algebra and IRs of the standard so(1,4) algebra. At the same time, there is
no natural generalization of the Poincare invariant theory to GFQT.

Since the main problems of QFT originate from the fact that local fields
interact at the same point, the idea of all modern theories aiming to improve QFT is to
replace the interaction at a point by an interaction in some small space-time region.
From this point of view, one could say that those theories involve a fundamental
length, explicitly or implicitly. Since GFQT is a fully discrete theory, one might
wonder whether it could be treated as a version of quantum theory with a fundamental
length. Although in GFQT all physical quantities are dimensionless and take values
in a Galois field, on a qualitative level GFQT can be thought to be a theory with
the fundamental length in the following sense. The maximum value of the angular
momentum in GFQT cannot exceed the characteristic of the Galois field p. Therefore
the Poincare momentum cannot exceed p/R. This can be interpreted in such a way
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that the fundamental length in GFQT is of order R/p.
One might wonder how continuous transformations (e.g. time evolution

or rotations) can be described in the framework of GFQT. A general remark is that if
theory B is a generalization of theory A then the relation between them is not always
straightforward. For example, quantum mechanics is a generalization of classical
mechanics, but in quantum mechanics the experiment outcome cannot be predicted
unambiguously, a particle cannot be always localized etc. As noted in Sect. 1.3,
even in the framework of standard quantum theory, the time evolution is well-defined
only on macroscopic level. Suppose that this is the case and the Hamiltonian H1 in
standard theory is a good approximation for the Hamiltonian H in GFQT. Then one
might think that exp(−iH1t) is a good approximation for exp(−iHt). However, such
a straightforward conclusion is problematic for the following reasons. First, there can
be no continuous parameters in GFQT. Second, even if t is somehow discretized, it
is not clear how the transformation exp(−iHt) should be implemented in practice.
On macroscopic level the quantity Ht is very large and therefore the Taylor series
for exp(−iHt) contains a large number of terms which should be known with a high
accuracy. On the other hand, one can notice that for computing exp(−iHt) it is
sufficient to know Ht only modulo 2π but in this case the question about the accuracy
for π arises. We see that a direct correspondence between the standard quantum
theory and GFQT exists only on the level of Lie algebras but not on the level of Lie
groups.

4.3 Modular IRs of dS algebra and spectrum of dS

Hamiltonian

Consider modular analogs of IRs constructed in Sect. 3.1. We noted that the basis
elements of this IR are enkl where at a fixed value of n, k = 0, 1, ...n and l = 0, 1, ...2k.
In standard case, IR is infinite-dimensional since n can be zero or any natural number.
A modular analog of this IR can be only finite-dimensional. The basis of the modular
IR is again enkl where at a fixed value of n the numbers k and l are in the same
range as above. The operators of such IR can be described by the same expressions
as in Eqs. (3.7-3.12) but now those expressions should be understood as relations in
a space over Fp2. However, the quantity n can now be only in the range 0, 1, ...N
where N can be found from the condition that the algebra of operators described by
Eqs. (3.7) and (3.8) should be closed. It follows from these expressions, that this is
the case if w + (2N + 3)2 = 0 in Fp and N + k + 2 < p. Therefore we have to show
that such N does exist.

In the modular case w cannot be written as w = µ2 with µ ∈ Fp since the
equality a2 + b2 = 0 in Fp is not possible if p = 3 (mod 4). In terminology of number
theory, this means that w is a quadratic nonresidue. Since −1 also is a quadratic
nonresidue if p = 3 (mod 4), w can be written as w = −µ̃2 where µ̃ ∈ Fp and for
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µ̃ obviously two solutions are possible. Then N should satisfy one of the conditions
N + 3 = ±µ̃ and one should choose that with the lesser value of N . Let us assume
that both, µ̃ and −µ̃ are represented by 0, 1, ...(p− 1). Then if µ̃ is odd, −µ̃ = p− µ̃
is even and vice versa. We choose the odd number as µ̃. Then the two solutions are
N1 = (µ̃ − 3)/2 and N2 = p− (µ̃ + 3)/2. Since N1 < N2, we choose N = (µ̃ − 3)/2.
In particular, this quantity satisfies the condition N ≤ (p − 5)/2. Since k ≤ N , the
condition N + k+2 < p is satisfied and the existence of N is proved. In any realistic
scenario, w is such that w ≪ p even for macroscopic bodies. Therefore the quantity
N should be at least of order p1/2. The dimension of IR is

Dim =

N
∑

n=0

n
∑

k=0

(2k + 1) = (N + 1)(
1

3
N2 +

7

6
N + 1) (4.9)

and therefore Dim is at least of order p3/2.
The relative probabilities are defined by ||c(n, k, l)enkl||2. In standard the-

ory the basis states and wave functions can be normalized to one such that the normal-
ization condition is

∑

nkl |c̃(n, k, l)|2 = 1. Since the values c̃(n, k, l) can be arbitrarily
small, wave functions can have an arbitrary carrier belonging to [0,∞). However,
in GFQT the quantities |c(n, k, l)|2 and ||enkl||2 belong Fp. Roughly speaking, this
means that if they are not zero then they are greater or equal than one. Since for
probabilistic interpretation we should have that

∑

nkl ||c(n, k, l)enkl||2 ≪ p, the prob-
abilistic interpretation may take place only if c(n, k, l) = 0 for n > nmax, nmax ≪ N .
That is why in Chap. 3 we discussed only wave functions having the carrier in the
range [nmin, nmax].

As follows from the spectral theorem for selfadjoint operators in Hilbert
spaces, any selfadjoint operator A is fully decomposable, i.e. it is always possible to
find a basis, such that all the basis elements are eigenvectors (or generalized eigen-
vectors) of A. As noted in Sect. 4.2, in GFQT this is not necessarily the case since
the field Fp2 is not algebraically closed. However, it can be shown [34] that for any
equation of the Nth order, it is possible to extend the field such that the equation
will have N + 1 solutions. A question arises what is the minimum extension of Fp2 ,
which guarantees that all the operators (E ,N,B,J) are fully decomposable.

The operators (B,J) describe a representation of the so(4) = su(2)×su(2)
subalgebra. It is easy to show (see also the subsequent section) that the operators
of the representations of the su(2) algebra are fully decomposable in the field Fp2 .
Therefore it is sufficient to investigate the operators (E ,N). They represent compo-
nents of the so(4) vector operator M0ν (ν = 1, 2, 3, 4) and therefore it is sufficient to
investigate the dS energy operator E , which with our choice of the basis has a rather
simpler form (see Eqs. (3.7) and (3.11)). This operator acts nontrivially only over
the variable n and its nonzero matrix elements are given by

En−1,n =
n+ 1 + k

2(n+ 1)
[w + (2n+ 1)2] En+1,n =

n+ 1− k

2(n+ 1)
(4.10)
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Therefore, for a fixed value of k it is possible to consider the action of E in the
subspace with the basis elements enkl (n = k, k + 1, ...N).

Let A(λ) be the matrix of the operator E−λ such that A(λ)qr = Eq+k,r+k−
λδqr. We use ∆r

q(λ) to denote the determinant of the matrix obtained from A(λ) by
taking into account only the rows and columns with the numbers q, q + 1, ...r. With
our definition of the matrix A(λ), its first row and column have the number equal
to 0 while the last ones have the number K = N − k. Therefore the characteristic
equation can be written as

∆K
0 (λ) = 0 (4.11)

In general, since the field Fp2 is not algebraically closed, there is no guarantee that
we will succeed in finding even one eigenvalue. However, we will see below that in a
special case of the operator with the matrix elements (4.10), it is possible to find all
K + 1 eigenvalues.

The matrix A(λ) is three-diagonal. It is easy to see that

∆q+1
0 (λ) = −λ∆q

0(λ)−Aq,q+1Aq+1,q∆
q−1
0 (λ) (4.12)

Let λl be a solution of Eq. (4.11). We denote eq ≡ eq+k,kl. Then the element

χ(λl) =
K
∑

q=0

{(−1)q∆q−1
0 (λl)eq/[

q−1
∏

s=0

As,s+1]} (4.13)

is the eigenvector of the operator E with the eigenvalue λl. This can be verified
directly by using Eqs. (3.11) and (4.10-4.13).

To solve Eq. (4.12) we have to find the expressions for ∆q
0(λ) when q =

0, 1, ...K. It is obvious that ∆0
0(λ) = −λ, and as follows from Eqs. (4.10) and (4.12),

∆1
0(λ) = λ2 − w + (2k + 3)2

2(k + 2)
(4.14)

If w = −µ̃2 then it can be shown that ∆q
0(λ) is given by the following expressions. If

q is odd then

∆q
0(λ) =

(q+1)/2
∑

l=0

C l
(q+1)/2

l
∏

s=1

[λ2 + (µ̃− 2k − 4s+ 1)2](−1)(q+1)/2−l

(q+1)/2
∏

s=l+1

(2k + 2s+ 1)(µ̃− 2k − 4s+ 1)(µ̃− 2k − 4s− 1)

2(k + (q + 1)/2 + s)
(4.15)

and if q is even then

∆q
0(λ) = (−λ)

q/2
∑

l=0

C l
q/2

l
∏

s=1

[λ2 + (µ̃− 2k − 4s+ 1)2](−1)q/2−l

(q+1)/2
∏

s=l+1

(2k + 2s+ 1)(µ̃− 2k − 4s− 1)(µ̃− 2k − 4s− 3)

2(k + q/2 + s+ 1)
(4.16)
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Indeed, for q = 0 Eq. (4.16) is compatible with ∆0
0(λ) = −λ, and for q = 1 Eq. (4.15)

is compatible with Eq. (4.14). Then one can directly verify that Eqs. (4.15) and
(4.16) are compatible with Eq. (4.12).

With our definition of µ̃, the only possibility for K is such that

µ̃ = 2K + 2k + 3 (4.17)

Then, as follows from Eqs. (4.15) and (4.16), when K is odd or even, only the term
with l = [(K + 1)/2] (where [(K + 1)/2] is the integer part of (K + 1)/2) contributes
to ∆K

0 (λ) and, as a consequence

∆K
0 (λ) = (−λ)r(K)

[(K+1)/2]
∏

k=1

[λ2 + (µ̃− 2j − 4k + 1)2] (4.18)

where r(K) = 0 if K is odd and r(K) = 1 if K is even. If p = 3 (mod 4), this equation
has solutions only if Fp is extended, and the minimum extension is Fp2. Then the
solutions are given by

λ = ±i(µ̃ − 2k − 4s+ 1) (s = 1, 2...[(K + 1)/2]) (4.19)

and when K is even there also exists an additional solution λ = 0. When K is odd,
solutions can be represented as

λ = ±2i, ±6i, ...± 2iK (4.20)

while when K is even, the solutions can be represented as

λ = 0, ±4i, ±8i, ...± 2iK (4.21)

Therefore the spectrum is equidistant and the distance between the neighboring ele-
ments is equal to 4i. As follows from Eqs. (4.17), all the roots are simple and then,
as follows from Eq. (4.13), the operator E is fully decomposable. It can be shown
by a direct calculation [6] that the eigenvectors e corresponding to pure imaginary
eigenvalues are such that (e, e) = 0 in Fp. Such a possibility has been mentioned in
the preceding section.

Our conclusion is that if p = 3 (mod 4) then all the operators (E ,N,B,J)
are fully decomposable if Fp is extended to Fp2 but no further extention is necessary.
This might be an argument explaining why standard theory is based on complex
numbers. On the other hand, our conclusion is obtained by considering states where
n is not necessarily small in comparison with p1/2 and standard physical intuition
does not work in this case. One might think that the solutions (4.20) and (4.21)
for the eigenvalues of the dS Hamiltonian indicate that GFQT is unphysical since
the Hamiltonian cannot have imaginary eigenvalues. However, such a conclusion is
premature since in standard quantum theory the Hamiltonian of a free particle does
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not have normalized eigenstates (since the spectrum is pure continuous) and therefore
for any realistic state the width of the energy distribution cannot be zero.

If A is an operator of a physical quantity in standard theory then the
distribution of this quantity in some state can be calculated in two ways. First, one
can find eigenvectors of A, decompose the state over those eigenvectors and then the
coefficients of the decomposition describe the distribution. Another possibility is to
calculate all moments of A, i.e. the mean value, the mean square deviation etc. Note
that the moments do not depend on the choice of basis since they are fully defined
by the action of the operator on the given state. A standard result of the probability
theory (see e.g. Ref. [41]) is that the set of moments uniquely defines the moment
distribution function, which in turn uniquely defines the distribution. However in
practice there is no need to know all the moments since the number of experimental
data is finite and knowing only several first moments is typically quite sufficient.

In GFQT the first method does not necessarily defines the distribution.
In particular, the above results for the dS Hamiltonian show that its eigenvectors
∑

nkl c(n, k, l)enkl are such that c(n, k, l) 6= 0 for all n = k, ...N , where N is at
least of order p1/2. Since the c(n, k, l) are elements of Fp2 , their formal modulus
cannot be less than 1 and therefore the formal norm of such eigenvectors cannot
be much less than p (the equality (e, e) = 0 takes place since the scalar product
is calculated in Fp). Therefore eigenvectors of the dS Hamiltonian do not have a
probabilistic interpretation. On the other hand, as already noted, we can consider
states

∑

nkl c(n, k, l)enkl such that c(n, k, l) 6= 0 only if nmin ≤ n ≤ nmax where
nmax ≪ N . Then the probabilistic interpretation for such states might be a good
approximation if at least several first moments give reasonable physical results (see
the discussion of probabilities in Sect. 4.1). In Chap. 3 we discussed quasiclassical
approximation taking into account only the first two moments: the mean value and
mean square deviation.
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Chapter 5

Quasiclassical states in modular
representations

5.1 Quasiclassical states in representations of

su(2) algebra

The uncertainty relations between the coordinate and momentum and between the
angular coordinate and angular momentum are widely discussed in the literature.
However, to the best of our knowledge, the uncertainty relation between different
components of the angular momentum is not widely discussed. This problem is espe-
cially important in de Sitter invariant theories where all the representation operators
are angular momenta. In this section we consider the simplest case of the uncertainty
relations between the operators (Jx, Jy, Jz) in representations of the su(2) algebra.
The commutation relations between these operators are given by Eq. (3.4). The
discussion in this section is applied both, in the standard and modular cases.

The last three expressions in Eq. (3.8) show that the operators (J+, J−, Jz)
do not change the values of n and k. Therefore is s = 2k is fixed, the basis of IR of
the su(2) algebra can be written as el where l = 0, 1, ...s,

J+el = (s+ 1− l)el−1 J−el = (l + 1)el+1 Jzel = (s− 2l)el (el, el) = C l
s (5.1)

anf C l
s = s!/(l!(s−l)!) is the binomial coefficient. In particular, el is the eigenvector of

Jz with the eigenvalue s− 2l. The Casimir operator of the second order for the su(2)
algebra is J2 and in the representation (5.1) all the vectors from the representation
space are eigenvectors of J2 with the eigenvalue s(s+ 2).

Let e
(x)
l be an analog of el in the basis when Jx is diagonalized, i.e. Jxe

(x)
l =

(s − 2l)e
(x)
l and e

(y)
l be an analog of el in the basis when Jy is diagonalized, i.e.

Jye
(y)
l = (s− 2l)e

(y)
l . A possible expression for e

(x)
l is

e
(x)
l =

(−i)l
2s/2

C l
s

s
∑

q=0

F (−l,−q;−s; 2)eq (5.2)
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where F is the standard hypergeometric function. This can be varified by using Eq.
(5.1) and the relation [42]

(−s+ q)F (−l,−q − 1;−s; 2) + (s− 2l)F (−l,−q;−s; 2)−
qF (−l,−q + 1;−s; 2) = 0 (5.3)

Analogously one can verify that a possible expression for e
(y)
l is

e
(y)
l =

C l
s

2s/2

s
∑

q=0

F (−l,−q;−s; 2)iqeq (5.4)

By using the relation [42]

s
∑

q=0

Cq
sF (−l,−q;−s; 2)F (−l′,−q;−s; 2) = 2sδll′/C

l
s (5.5)

and Eqs. (5.2) and (5.4), it is easy to show that the normalization of the vectors e
(x)
l

and e
(y)
l is the same as the vectors el, i.e.

(e
(x)
l , e

(x)
l′ ) = (e

(y)
l , e

(y)
l′ ) = C l

sδll′ (5.6)

If c(x)(l) is the wave function in the basis e
(x)
l and c(y)(l) is the wave function

in the basis e
(y)
l then it follows from Eqs. (5.2) and (5.4) that

c(x)(l) =
il

2s/2

s
∑

q=0

Cq
sF (−l,−q;−s; 2)c(q)

c(y)(l) =
1

2s/2

s
∑

q=0

(−i)qCq
sF (−l,−q;−s; 2)c(q) (5.7)

Our goal is to construct states, which are quasiclassical in all the three
components of the angular momentum. According to a convention adopted in Sect.
3.1, for the approximate quasiclassical eigenvalues of the operators (Jx, Jy, Jz) we
will use the same notations (Jx, Jy, Jz), respectively. In the modular case we require
additionally that those numbers are integers such that their magnitude is much less
than p (more rigorously, we should require that those numbers belong to the set U0

discussed in Sect. 4.1).
Since the values of (Jx, Jy, Jz) in quasiclassical states are very large, we

can work in the approximation J2
x +J

2
y +J

2
z ≈ s2. By using the above results one can

show that
∑

q

Cq
sz

qF (−q,−l;−s; 2) = (1 + z)s−l(1− z)l (5.8)
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Then, as a consequence of Eqs. (5.7) and (5.8), a possible choice of the wave function
is

c(x)(l) = [(s + Jx + Jz + iJy)(s+ Jy)]
s(s+ Jx)

s−l(Jy + iJz)
l

c(y)(l) = [(s+ Jy + Jz − iJx)(s+ Jx)]
s(s+ Jy)

s−l(Jz + iJx)
l

c(l) = 2s/2[(s+ Jx)(s+ Jy)]
s(s+ Jz)

s−l(Jx + iJy)
l (5.9)

Note that in standard case the dependence of c(l) on l is in agreement with Eqs.
(3.18) and (3.21).

Consider the distribution of probabilities over l in c(l). As follows from
Eqs. (5.1) and (5.9), the normalization sum for c(l) is

ρ =

s
∑

l=0

ρ(l) = [2(s+ Jx)(s+ Jy)]
2s[s(s+ Jz)]

s (5.10)

where
ρ(l) = 2sC l

s[(s+ Jx)(s+ Jy)]
2s(s+ Jz)

2s−l(s− Jz)
l (5.11)

Since there in no nontrivial division in this expression, it follows from Eq. (5.10)
that in the modular case the probabilistic interpretation is valid if ρ ≪ p. Since
the number s for macroscopic bodies is very large, this condition will be satisfied if
slns≪ lnp. We see that not only p should be very large but even lnp should be very
large.

As follows from Eqs. (5.10) and (5.11),

s
∑

l=0

ρ(l)(s− 2l) = Jzρ (5.12)

and therefore with our notations the number Jz is the exact mean value of the operator
Jz. The fact that in the modular case the probabilistic interpretation is valid, implies
that even in this case we can use standard mathematics for qualitative understanding
of the distribution (5.11). In particular, we can use the Stirling formula for the
binomial coefficient in this expression and formally consider l as a continuous variable.
Then it follows from Eq. (5.11) that the maximum of the function ρ(l) is at l = l0
such that l0 = (s− Jz)/2, and in the vicinity of the maximum

ρ(l) ≈ ρ[2πl0(s− l0)/s]
1/2exp[− s(l − l0)

2

2l0(s− l0)
] (5.13)

Therefore in the vicinity of the maximum the distribution is Gaussian with the width
[l0(s− l0)/s]

1/2. If l0 and s− l0 are of order s (i.e. l0 is not close to zero or s/2), this
quantity is of order s1/2.

In standard quantum mechanics, the quasiclassical wave function contains
a factor exp(ipr), which does not depend on the choice of the quantization axis.
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The reason for choosing the wave functions in the form (5.9) is to have an analogous
property in our case. As seen from these expressions, if the quantization axis changes
then the dependence of the wave function on l with the new quantization axis can
be obtained from the original dependence by using a cyclic permutation of indices
(x, y, z). Therefore, if the quantization axis is x or y, the distribution over l is again
given by Eq. (5.13) but l0 is such that l0 = (s−Jx)/2 or l0 = (s−Jy)/2, respectively.

In the above example, the carrier of the wave function c(l) contains all
integers in the range [0, s] but |c(l)|2 has a sharp maximum with the width of order
s1/2. In GFQT it is often important that the carrier should have a width which is
much less than the corresponding mean value. Since properties of the state defined
by the wave function c(l) depend mainly on the behavior of c(l) in the region of
maximum, one can construct states which have properties similar to those discussed
above but the carrier of c(l) will belong to the range [lmin, lmax] where lmax − lmin is
of order s1/2.

Our conclusion is as follows. It is possible to construct states, which are
simultaneously quasiclassical in all the three components of the angular momentum if
all the quantities (Jx, Jy, Jz) are of order s. Then the uncertainty of each component
is of order s1/2. The requirement that neither of the components (Jx, Jy, Jz) should
be small is analogous to the well known requirement in standard quantum mechanics
that in quasiclassical states neither of the momentum components should be small.

5.2 Quasiclassical states in GFQT

In Sect. 3.2 we discussed quasiclassical states in standard theory and noted that they
can be defined by ten numbers (E ,N,B,J), which are subject to constraints (3.19).
For quasiclassical states all those numbers are very large and the numbers (E ,B)
are very large even for elementary particles. Quasiclassical wave functions can be
described by parameters (nklϕαβ), which can be expressed in terms of (E ,N,B,J)
by using Eqs. (3.20) and (3.21).

In GFQT one should use the basis defined by Eq. (3.6) and the coefficients
c(n, k, l) should be elements of Fp2. Therefore, a possible approach to constructing
a quasiclassical wave function in GFQT is to express those coefficients in terms of
(E ,N,B,J). First of all, since the numbers (E ,N,B,J) are very large, we can assume
that they are integers. Then, in general, the relations (3.19) cannot be exact but can
be valid with a high accuracy. As noted in Chap. 4, a probabilistic interpretation
can be possible only if c(n, k, l) 6= 0 for n ∈ [nmin, nmax], k ∈ [kmin, kmax] and l ∈
[lmin, lmax]. Therefore our task is obtain integer values of c(n, k, l) at such conditions.

As noted in Sect. 3.2, a quasiclassical wave function should be such that
the amplitude is a function, which is significant only in a relatively small region,
which can be called the region of maximum. It cannot be extremely narrow since in
the region of maximum the change of the wave function should be mainly governed
by the exponents in Eq. (3.16). It follows from these considerations and Eq. (3.21)
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that the quasiclassical wave function in the region of maximum should have a factor

(2En0 − iBN)nmax−n[−JBz − i(B× J)z]
kmax−k(Jx + iJy)

l−k

where n0 is some value of n inside the interval [nmin, nmax] and J is an integer close
to (J2

x + J2
y + J2

z )
1/2. At the same time, the norm of c(n, k, l)enkl should be a slowly

changing function of (nkl) in the region of maximum. Our nearest aim is to show
that a possible quasiclassical wave function can be written as

c(n, k, l) = 2n−nmin+lmax−l(2En0 − iBN)nmax−n[−JBz − i(B× J)z]
kmax−k

(n− k)!

(nmin − k)!

(2kmax)!k!

(2k)!kmax!
(Jx − iJy)

k−kmin(Jx + iJy)
l−lmin

(J + Jz)
k−kmin

(2k − l)!

(2k − lmax)!
a(n, k, l) (5.14)

where the amplitude a(n, k, l) is a slowly changing function in the region of its maxi-
mum. Since (2k)! = 2kk!(2k−1)!!, this expression does not contain nontrivial divisions
in Fp and therefore the correspondence principle with standard theory is satisfied if
|c(n, k, l)|2 ≪ p.

By using Eqs. (3.10) and (3.18) one can explicitly verify that in the region
of maximum ||c(n, k, l)enkl||2 = ρ̃(n, k, l)|a(n, k, l)|2 where

ρ̃(n, k, l) = 4n−nmin+lmax−lB2(nmax−n+kmax−k)(J2
x + J2

y )
kmax−kmin+l−lmin

(J + Jz)
2(k−kmin)(2k + 1)[

(2kmax)!

(kmax!)2
][

(2kmax)!

(2kmax − lmax)!lmax!
][
lmax!

l!
][

(2k − l)!

(2k − lmax)!
]

[
(2kmax − lmax)!

(2k − lmax)!
][

(n− k)!

(nmin − k)!
][

n!

(nmin − k)!
][
(n+ k + 1)!

(n+ 1)!
]

(w + 4n2
0)

nmax−n[

n
∏

j=1

(w + (2j + 1)2] (5.15)

This expression is written in the form showing that multipliers in each square brackets
do not contain nontrivial divisions in Fp. Then by using Eq. (3.18), it is easy to show
that in the region of maximum

ρ̃(n, k, l) ≈ ρ̃(n+ 1, k, l) ≈ ρ̃(n, k + 1, l) ≈ ρ̃(n, k, l + 1)

Therefore the norm of c(n, k, l)enkl is indeed a slowly changing function of (nkl) in
the region of maximum.

Since Eq. (5.15) does not contain a nontrivial division, there is a chance
that a probabilistic interpretation in GFQT will be valid. As noted in Sect. 4.2,
only ratios of probabilities have a physical meaning. Therefore the problem arises
whether it is possible to find a constant C such that ρ̃(n, k, l) = Cρ(n, k, l), for all
n ∈ [nmin, nmax], k ∈ [kmin, kmax] and l ∈ [lmin, lmax], the conditions ρ(n, k, l) ≪ p,
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a(n, k, l)2 ≪ p are satisfied and the sum
∑

nkl ρ(n, k, l)|a(n, k, l)|2 also is much less
than p. It is clear that for this purpose it is desirable to obtain for ρ(n, k, l) the least
possible value.

It is immediately seen from Eq. (5.15), that a factor

C1 = (J2
x + J2

y )
kmax−kmin

nmin
∏

j=1

(w + (2j + 1)2][
(2kmax)!

(kmax!)2
][

(2kmax)!

(2kmax − lmax)!lmax!
]

can be included into C. The next observation is as follows. If |p| is the magnitude
of standard momentum then, as noted in Sect. 3.1 (see Eq. (3.9)), n is of order |p|R
and k is of order |p|r. Therefore one might expect that in situations we are interested
in, the conditions k ≪ n and ∆k ≪ ∆n are satisfied, where ∆k = kmax − kmin and
∆n = nmax − nmin. However, although R is very large, the relation ∆n ≫ k is valid
only if R is extremely large.

We first consider the case ∆n≪ k. Since

(n+ 1 + k)!

(n+ 1)!
= [(n + 1 + k) · · · (n+ 2 + kmin)][(n + 1 + kmin) · · · (nmin + 2 +

kmin)][(nmin + 1 + kmin) · · · (nmax + 2)][(nmax + 1) · · · (n + 2)] (5.16)

the factor C2 = (nmin +1+ kmin) · · · (nmax +2) can be included into C. Analogously,
since

nmin!

(nmin − k)!
= [nmin · · · (nmin + 1− kmin)][(nmin − kmin) · · · (nmin + 1− k)] (5.17)

the factor C3 = [nmin · · · (nmin + 1 − kmin)] can be included into C. Then a direct
calculation gives

ρ(n, k, l) = 4n−nminB2(nmax−n+kmax−k)(J2
x + J2

y )
l−lmin(J + Jz)

2(k−kmin)

(2k + 1)(l + 1)(lmax−l)(2k + 1− lmax)(lmax−l)(2k + 1− lmax)(2kmax−2k)

(nmin + 1− k)(n−nmin)(nmin + 1)(n−nmin)(nmin + 1− k)(k−kmin)

(n + 2 + kmin)(k−kmin)(nmin + 2 + kmin)(n−nmin)(n+ 2)(nmax−n)

(w + 4n2
0)

nmax−n[

n
∏

j=nmin

(w + (2j + 1)2] (5.18)

where (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol.
It follows from this expression that in the region of maximum

ρ(n, k, l) ≈ 4∆n(J2
x + J2

y )
∆l(J + Jz)

2∆k(nmin + 1− k)∆n(nmin + 1)∆n

(nmin + 1− k)∆k(n + 2− kmin)∆k(nmin + 2 + kmin)∆n(w + 4n2
0)

∆n (5.19)
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where ∆n = nmax − nmin, ∆k = kmax − kmin and ∆l = lmax − lmin. Now we take into
account that ∆n≫ ∆k, ∆n≫ ∆l and in the nonrelativistic approximation w ≫ n2.
Then the condition ρ(n, k, l) ≪ p can be approximately written in the form

∆nlnw ≪ lnp (5.20)

If ∆n≫ k or ∆n and k are of the same order, this estimation is valid too.
Therefore not only the number p should be very large, but even ln(p)

should be very large. As a consequence, if ln(|a(n, k, l)|) ≪ p the condition

∑

nkl

ρ(n, k, l)|a(n, k, l)|2 ≪ p

is satisfied since ln(∆n∆k∆l) ≪ ln(p).

5.3 Many-body systems in GFQT and gravita-

tional constant

In quantum theory, state vectors of a system of N bodies belong to the
Hilbert space which is the tensor product of single-body Hilbert spaces. This means
that state vectors of the N -body systems are all possible linear combinations of func-
tions

ψ(n1, k1, l1, ...nN , kN , lN) = ψ1(n1, k1, l1) · · ·ψN (nN , kN , lN) (5.21)

By definition, the bodies do not interact if all representation operators of the sym-
metry algebra for the N -body systems are sums of the corresponding single-body
operators. For example, the energy operator E for the N -body system is a sum
E1+E2+ ...+EN where the operator Ei (i = 1, 2, ...N) acts nontrivially over its ”own”
variables (ni, ki, li) while over other variables it acts as the identity operator.

If we have a system of noninteracting bodies in standard quantum theory,
each ψi(ni, ki, li) in Eq. (5.21) is fully independent of states of other bodies. How-
ever, in GFQT the situation is different. Here, as shown in the preceding section, a
necessary condition for a wave function to have a probabilistic interpretation is given
by Eq. (5.20). Since we assume that p is very large, this is not a serious restriction.
However, if a system consists of N components, a necessary condition that the wave
function of the system has a probabilistic interpretation is

N
∑

i=1

δilnwi ≪ lnp (5.22)

where δi = ∆ni and wi = 4R2m2
i where mi is the mass of the subsystem i. This

condition shows that in GFQT the greater the number of components is, the stronger
is the restriction on the width of the dS momentum distribution for each component.
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This is a crucial difference between standard theory and GFQT. A naive explanation
is that if p is finite, the same set of numbers which was used for describing one body
is now shared between N bodies. In other words, if in standard theory each body
in the free N -body system does not feel the presence of other bodies, in GFQT this
is not the case. This might be treated as an effective interaction in the free N -body
system.

In Chaps. 2 and 3 we discussed a system of two free bodies such their
relative motion can be described in the framework of quasiclassical approximation.
We have shown that the mean value of the mass operator for this system differs
from the expression given by standard Poincare theory. The difference describes an
effective interaction which we treat as the dS antigravity at very large distances and
gravity when the distances are much less than cosmological ones. In the latter case
the result depends on the total dS momentum distribution for each body (see Eq.
(3.49)). Since the interaction is proportional to the masses of the bodies, this effect
is important only in situations when at least one body is macroscopic. Indeed, if
neither of the bodies is macroscopic, their masses are small and their relative motion
is not described in the framework of quasiclassical approximation. In particular, in
this approach, gravity between two elementary particles has no physical meaning.

The existing quantum theory does not make it possible to reliably calculate
the width of the total dS momentum distribution for a macroscopic body and at best
only a qualitative estimation of this quantity can be given. The above discussion
shows that the greater is the mass of the macroscopic body, the stronger is the
restriction on the dS momentum distribution for each subsystem of this body. Suppose
that a body with the mass M can be treated as a composite system consisting of
similar subsystems with the mass m. Then the number of subsystems is N = M/m
and, as follows from Eq. (5.22), the width δ of their dS momentum distributions
should satisfy the condition Nδlnw ≪ lnp where w = 4R2m2. Since the greater
the value of δ is, the more accurate is the quasiclassical approximation, a reasonable
scenario is that each subsystem tends to have the maximum possible δ but the above
restriction allows to have only such value of δ that it is of the order of magnitude not
exceeding lnp/(Nlnw).

The next question is how to estimate the width of the total dS momentum
distribution for a macroscopic body. For solving this problem one has to change
variables from individual dS momenta of subsystems to total and relative dS momenta.
Now the total dS momentum and relative dS momenta will have their own momentum
distributions which are subject to a restriction similar to that given by Eq. (5.22).
If we assume that all the variables share this restriction equally then the width of
the total momentum distribution also will be a quantity not exceeding lnp/(Nlnw).
Suppose that m = N1m0 where m0 is the nucleon mass. The value of N1 should be
such that our subsystem still can be described by quasiclassical approximation. Then
the estimation of δ is

δ = N1m0lnp/[2Mln(2RN1m0)] (5.23)
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Suppose that N1 can be taken to be the same for all macroscopic bodies. For example,
it is reasonable to expect that when N1 is of order of 103, the subsystems still can
be described by quasiclassical approximation but probably this is the case even for
smaller values of N1.

In summary, although calculation of the width of the total dS momentum
distribution for a macroscopic body is a very difficult problem, GFQT gives a reason-
able qualitative explanation why this quantity is inversely proportional to the mass of
the body. With the estimation (5.23), the result given by Eq. (3.49) can be written
in the form (3.51) where

G =
2constRln(2RN1m0)

N1m0lnp
(5.24)

In Chaps. 1 and 4 we argued that in theories based on dS invariance and/or
Galois fields, neither the gravitational nor cosmological constant can be fundamental.
In particular, in units h̄/2 = c = 1, the dimension of G is length2 and its numerical
value is l2P where lP is the Planck length (lP ≈ 10−35m). Eq. (5.24) is an additional
indication that this is the case since G depends on R (or the cosmological constant)
and there is no reason to think that it does not change with time. One might think
that since GΛ is dimensionless in units h̄/2 = c = 1, it is possible that only this
combination is fundamental. Let µ = 2Rm0 be the dS nucleon mass and Λ = 3/R2

be the cosmological constant. Then Eq. (5.24) can be written as

G =
12const ln(N1µ)

ΛN1µlnp
(5.25)

As noted in Sect. 1.2, standard cosmological constant problem arises when one tries
to explain the value of Λ from quantum theory of gravity assuming that this theory
is QFT, G is fundamental and the dS symmetry is a manifestation of dark energy (or
other fields) on flat Minkowski background. Such a theory contains strong divergences
and the result depends on the value of the cutoff momentum. With a reasonable
assumption about this value, the quantity Λ is of order 1/G and this is reasonable
since G is the only parameter in this theory. Then Λ is by more than 120 orders of
magnitude greater than its experimental value. However, in our approach we have
an additional parameter p which is treated as a fundamental constant. Eq. (5.25)
shows that GΛ is not of order unity but is very small since not only p but even lnp
is very large. For a rough estimation, we assume that the values of const and N1 in
this expression are of order unity. Then assuming that R is of order 1026m, we have
that µ is of order 1042 and lnp is of order 1080. Therefore p is a huge number of order
exp(1080). In the preceding chapter we argued that standard theory can be treated as
a special case of GFQT in the formal limit p→ ∞. The above discussion shows that
restrictions on the width of the total dS momentum arise because p is not infinitely
large. It is seen from Eq. (5.25) that gravity disappears in the above formal limit.
Therefore in our approach gravity is a consequence of the fact that dS symmetry is
considered over a Galois field rather than the field of complex numbers.
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Chapter 6

Discussion and conclusion

As noted in Sect. 1.1, the main idea of this work is that gravity might be not an
interaction but simply a manifestation of de Sitter invariance over a Galois field. This
is obviously not in the spirit of mainstream approaches that gravity is a manifestation
of the graviton exchange or holographic principle. Our approach does not involve
General Relativity, quantum field theory (QFT), string theory, loop quantum gravity
or other sophisticated theories. We consider only systems of two free bodies in de
Sitter invariant quantum theory.

We argue that quantum theory should be based on the choice of symmetry
algebra and should not involve spacetime at all. Then the fact that we observe the
cosmological repulsion is a strong argument that the de Sitter (dS) symmetry is a
more pertinent symmetry than Poincare or anti de Sitter (AdS) ones. As shown in
Refs. [2, 3] and in the present paper, the phenomenon of the cosmological repulsion
can be easily understood by considering quasiclassical approximation in standard dS
invariant quantum mechanics of two free bodies. In the framework of this consider-
ation it becomes immediately clear that the cosmological constant problem does not
exist and there is no need to involve dark energy or other fields. This phenomenon can
be easily explained by using only standard quantum-mechanical notions without in-
volving dS space, metric, connections or other notions of Riemannian geometry. One
might wonder why such a simple explanation has not been widely discussed in the
literature. According to our observations, this is a manifestation of the fact that even
physicists working on dS QFT are not familiar with basic facts about irreducible rep-
resentations (IRs) of the dS algebra. It is difficult to imagine how standard Poincare
invariant quantum theory can be constructed without involving well known results on
IRs of the Poincare algebra. Therefore it is reasonable to think that when Poincare
invariance is replaced by dS one, IRs of the Poincare algebra should be replaced by
IRs of the dS algebra. However, physicists working on QFT in curved spacetime
believe that fields are more fundamental than particles and therefore there is no need
to involve IRs.

The assumption that quantum theory should be based on dS symmetry
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implies several far reaching consequences. First of all, in contrast with Poincare
and AdS symmetries, the dS one does not have a supersymmetric generalization.
Moreover, as argued in our papers [2, 3], in dS invariant theories only fermions can
be fundamental.

One might say that a possibility that only fermions can be elementary
is not attractive since such a possibility would imply that supersymmetry is not
fundamental. There is no doubt that supersymmetry is a beautiful idea. On the
other hand, one might say that there is no reason for nature to have both, elementary
fermions and elementary bosons since the latter can be constructed from the former.
A well know historical analogy is that the simplest covariant equation is not the
Klein-Gordon equation for spinless fields but the Dirac and Weyl equations for the
spin 1/2 fields since the former is the equation of the second order while the latter
are the equations of the first order.

The key difference between IRs of the dS algebra on one hand and IRs of
the Poincare and AdS algebras on the other is that in the former case one IR describes
a particle and its antiparticle simultaneously while in the latter case a particle and its
antiparticle are described by different IRs. As a consequence, in dS invariant theory
there are no neutral elementary particles and transitions particle↔antiparticle are
not prohibited. As a result, the electric charge and the baryon and lepton quantum
numbers can be only approximately conserved. These questions are discussed in
details in Ref. [3].

In the present paper, another feature of IRs of the dS algebra is important.
In contrast with IRs of the Poincare and AdS algebras, in IRs of the dS algebra the
particle mass is not the lowest value of the dS Hamiltonian which has the spectrum
in the range (−∞,∞). As a consequence, the free mass operator of the two-particle
system is not bounded below by (m1+m2) where m1 and m2 are the particle masses.
The discussion in Sect. 2.3 shows that this property by no means implies that the
theory is unphysical.

In 2000, Clay Mathematics Institute announced seven Millennium Prize
Problems. One of them is called ”Yang-Mills and Mass Gap” and the official descrip-
tion of this problem can be found in Ref. [43]. In this description it is stated that
the Yang-Mills theory should have three major properties where the first one is as
follows: ”It must have a ”mass gap;” namely there must be some constant ∆ > 0 such
that every excitation of the vacuum has energy at least ∆.” The problem statement
assumes that quantum Yang-Mills theory should be constructed in the framework of
Poincare invariance. However, as follows from the above discussion, this invariance
can be only approximate and dS invariance is more general. Meanwhile, in dS theory
the mass gap does not exist. Therefore we believe that the problem has no solution.

Since in Poincare and AdS invariant theories the spectrum of the free
mass operator is bounded below by (m1 +m2), in these theories it is impossible to
obtain the correction −Gm1m2/r to the mean value of this operator (here r is the
distance between the bodies and G is a constant). However, in dS theory there is no
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law prohibiting such a correction. It is not a problem to indicate internal two-body
wave functions for which the mean value of the mass operator contains −Gm1m2/r
with possible post-Newtonian corrections. The problem is to show that such wave
functions are quasiclassical with a high accuracy. As shown in Chaps. 2 and 3, in
quasiclassical approximation any correction to the standard mean value of the mass
operator is negative and proportional to m1m2 in nonrelativistic approximation. In
Sect. 3.4 we have explicitly indicated quasiclassical internal wave functions of the
two-body system for which one gets the correction proportional to −m1m2/r (see Eq.
(3.51)).

Our consideration poses a very important question of how the distance
operator should be defined. In standard quantum mechanics the coordinate and
momentum are canonically conjugated and the relation between the coordinate and
momentum representations are given by the Fourier transform. This definition of
the coordinate operator works in atomic and nuclear physics but the problem arises
whether it is physical at macroscopic distances. In Chap. 3 we argue that it is not
and that the coordinate operator should be defined differently.

In Chaps. 4 and 5 we argue that quantum theory should be based on
Galois fields rather than complex numbers. We tried to make the presentation as
simple as possible without assuming that the reader is familiar with Galois fields. Our
version of a quantum theory over a Galois field (GFQT) gives a natural qualitative
explanation why the width of the total dS momentum distribution of the macroscopic
body is inversely proportional to its mass. Then one recovers standard Newton’s law
of gravity. In this approach neither G nor Λ can be fundamental physical constants.
We argue that only GΛ might have physical meaning. The calculation of this quantity
is a very difficult problem since it requires a detailed knowledge of wave functions of
many-body systems. However, GFQT gives clear indications that GΛ contains a
factor 1/lnp where p is the characteristic of the Galois field. We treat standard
theory as a special case of GFQT in the formal limit p → ∞. Therefore gravity
disappears in this limit. Hence in our approach gravity is a consequence of the fact
that dS symmetry is considered over a Galois field rather than the field of complex
numbers. In Chap. 5 we give a very rough estimation of G which shows that lnp is
of order 1080. Therefore p is a huge number of order exp(1080).

In our approach gravity is a phenomenon which has a physical meaning
only in situations when at least one body is macroscopic and can be described in
the framework of quasiclassical approximation. The result (3.47) shows that gravity
depends on the width of the total dS momentum distributions for the bodies under
consideration. However, when one mass is much greater than the other, the momen-
tum distribution for the body with the lesser mass is not important. In particular, this
is the case when one body is macroscopic and the other is the photon. At the same
time, the phenomenon of gravity in systems consisting only of elementary particles
has no physical meaning since gravity is not an interaction but simply a kinematical
manifestation of dS invariance over a Galois field in quasiclassical approximation. In
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this connection a problem arises what is the minimum mass when a body can be
treated as macroscopic. This problem requires understanding of the structure of the
many-body wave function.

The main goal of this paper was to derive standard Newton’s law of gravity.
As shown in Sect. 3.4, in nonrelativistic approximation this law does not depend on
details of internal two-body wave functions while calculating relativistic corrections
requires a knowledge of these details. It is well known that in GR and other field
theories the N -body system can be described by a Hamiltonian depending only on
the degrees of freedom corresponding to these bodies only in order v2/c2 since even in
order v3/c3 one should take into account other degrees of freedom. For this reason in
the literature on GR the N -body Hamiltonian is discussed taking into account post-
Newtonian corrections to the Hamiltonian (3.51). In our approach the Newton law
has been obtained for a system of two free bodies in dS invariant theory. Therefore
in the framework of our approach one can try to obtain not only the Newton law but
also corrections to it in any order in v/c. This problem will be discussed elsewhere.
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