
A Lattice Model for the Optimization of
Communication in Parallel Algorithms

Sven DE SMET a,1,
a Student at Ghent University

Abstract. This paper describes a unified model for the optimization of communi-
cation in parallel algorithms and architectures. Based on a property that provides a
unified view of locality in space and time, an algorithm is constructed that gener-
ates a parallel architecture that is optimized for communication for a given compu-
tation. The optimization algorithm is constructed using the lattice algebraic prop-
erties of congruence relations and is therefor applicable in a general context. An
application to a bio-informatics algorithm demonstrates the value of the model and
optimization algorithm.

Keywords. Parallelism, Communication, Locality, Architecture

Introduction

In order to optimally benefit from the incessant increase in parallel computational ca-
pacity in modern architectures, the available parallelism in our algorithms must increase
accordingly. It is well-known that communication in parallel architectures creates a bot-
tleneck that limits the benefits of parallelism in many cases. Since manual optimization
of communication in parallel architectures requires considerable effort, we must resort
to automatic optimization.

This paper describes an abstract model of a parallel, computing machine and its
communication architecture. The model further defines the abstract property communi-
cation regularity that represents an opportunity to optimize communication while con-
structing an architecture for a specific algorithm. This property unifies data distribu-
tion [1,2] and array contraction [3,4] in their most general form. An algorithm to con-
struct an architecture with optimized communication for a given computation is given.
The optimization algorithm is demonstrated by applying it to a bio-informatics algorithm
in section 6.

1. Mathematical Background

1.1. Notation

Let a..bwith a, b ∈ Z denote the set of integers from a up to and including b: a..b, {i|i ∈
Z∧ a ≤ i ≤ b}. For a vector or tuple x, let |x| denote the number of elements it contains.

1sven.desmet@cubiccarrot.com, http://www.cubiccarrot.com/salmoc/

For a set A, let PA denote the set of all its subsets and LA,P(A2) denote the set

of binary relations on A. The Kleene Closure of A is denoted with A∗,
N
∪
i
Ai.

For a relation l on A and a set B⊆A, let UA
lB denote the earliest l-successor of

B on A, which is defined by the axiom

PA
∀
B
UA

lB ∈ A∧
B
∀
b
bl UA

lB∧
A
∀
a
(

B
∀
b
bl a)⇒UA

lB l a (1)

1.2. Partitions

1.2.1. Basic definitions

A partition B of a set A is a set of subsets of A such that their disjoint union is equal

to A, i.e. A,
B
t
B
B. The cells of a partition are the subsets of which it consists. Let CA

denote the set of all partitions of A.
A partition P is at least as fine as a partition Q, denoted as P�Q (or, Q is at least

as coarse as P, Q�P), if every cell of P is contained in a cell of Q:

P�Q,
P

∀
P

Q

∃
Q
P ⊆Q (2)

A partition P is finer than a partition Q, denoted as P≺Q (or, Q is coarser than P,
Q�P) if P�Q∧P 6= Q.

The refining operation is defined as ⊗,UCA
� and the coarsening operation is de-

fined as �,UCA
� . The bottom of CA is ⊥A,UCA

� CA = {{a}|a ∈ A}, the finest ele-
ment, while the top of CA is>A,UCA

� CA = {A}, the coarsest element. For every set A,
the structure (CA, � ,⊗,�,⊥,>) forms a complete lattice.

1.2.2. Constructions

Let B|A, {B ∩ A|B ∈ B} denote the restriction of a partition B ∈ CB to a set A⊆B.
A partition hierarchy is a tuple of partitions where subsequent partitions in the

tuple satisfy a binary relation. Let HlA denote the set of partition hierarchies on A that
satisfy the relation l,

S
∀
A

LCA
∀
l
HlA, {s|s ∈ (CA)∗ ∧

2..|s|
∀
i
si−1 l si} (3)

Let TlA with l ∈ LA denote the set of tree-structured graphs where the nodes are
labeled with elements of A and the labels of parent and child-nodes satisfy the relation
l,

S
∀
A

LA
∀
l
TlA, {G|G ∈ Trees(A)∧

G2

∀
v,w
v
G→ w⇒ v l w} (4)

where we have identified a tree G ∈ Trees(A) with its set of nodes and we have v G→ w
iff an edge (v, w) ∈ G2 exists in the tree.

A partition bijection is a bijective relation between the cells of two partitions. A
partition bijection on the sets C and D also specifies a partition of C ∪ D where each
cell of the partition of C ∪ D is the union of a cell of the partition of C with its related
cell of the partition of D.

A partition on a set A can be specified using a function f ∈ A→ B to another set B
by allocating all elements that are mapped to the same value by f to a cell unique to this
value. Let us denote the resulting partition with A[f],

A[f], {{a|a ∈ A∧ f(a) = i}|i ∈ Im f} (5)

A set Y ⊆CA is an abstraction of the set of partitions on A iff⊗ and� are closed on
A and {⊥A,>A}⊆Y . The structure (Y, � ,⊗,�,⊥,>) also forms a complete lattice.

2. Representation of Computations

A computation is a structure (Ω,Γ,∆,) where

• Ω is the set of operations executed during the computation.
• ∆ is the data space, the set of data elements accessed during the computation.

Information can be stored in a data element and can later be retrieved from it. The
data space is specified implicitly by Ω and Γ.

• Γ⊆Ω→ ∆ is the set of access functions that map an operation to a data element
accessed by it. (In the full version of this paper, partial functions will be accounted
for.)

• ∈ LΩ is a minimal partial order of the operations such that any execution of
the computation must respect to obtain valid results

For the static specification and analysis of computations, Ω and ∆ are often given
as the finite union of sets of a specific type. In this case, the finite union of operations is

indexed by S, the set of statements , Ω,
S
∪
s
Ωs, while the finite union of data elements

is indexed by V , the set of variables, ∆,
V
∪
v
∆v . Let Γvs ⊆Ωs → ∆v denote the access

functions from s ∈ S to v ∈ V .

3. An Abstract Architecture

Let X, {s, t} where s denotes space and t denotes time. Let
◦� be an operation that

transforms an element x ∈ X to the other element
◦
x ∈ X \ {x}.

3.1. Specification

An architecture for a computation (Ω,Γ,∆) is a structure (Ω, γ,∆) where

• Ω� ∈ X→ H�Ω is the spacetime hierarchy, which consists of

∗ The space hierarchy Ωs ∈ H�Ω. Every cell of every partition in this in-
creasingly fine partition hierarchy can be identified with an abstract processing
element on which the operations in the cell are executed. If the cell is further
refined into subcells by a subsequent partition, the subcells of the cell can be
identified with smaller parallel processing elements contained by it.

∗ The time hierarchy Ωt ∈ H�Ω. Every cell of every partition in Ωt can be
identified with an abstract time interval during which the operations in the cell
are executed. Subcells of this cell can be identified with smaller time intervals
contained by it.

• ∆� is the communication topology, which consists of

∗ The interconnection topology ∆s ∈
1..|Ωs|
×
i
T� CΩs

i . Every cell of every par-

tition in this tuple of partition trees can be identified with an abstract intercon-
nection channel. An interconnection channel allows to transfer data between
a set of processing elements. The subcells of an interconnection cell are iden-
tified with smaller interconnection channels that, combined, transfer the same
data elements at a different level of the spacetime hierarchy. A partition tree
has a level for every level of the time hierarchy.

∗ The memory topology ∆t ∈
1..|Ωt|
×
i
T� CΩt

i. Every cell of every partition in

∆t can be identified with an abstract memory element. A memory element
allows to store data during a specific time interval. Subcells of a memory cell
are identified with smaller memory elements that are available during smaller
intervals. A partition tree has a level for every level of the space hierarchy.

• The access set topology γ ∈ X → (T⊇PΓ)∗. The structure of γ is identical to
∆, but every node of the trees is now labeled with a subset F of Γ. For F ⊆Γ
the operation-data partition of C ⊆Ω is the finest partition such that every op-
eration is contained in the same cell as the data elements that it accesses:

BF (C),UC(C ∪ ∆)
� {Q|Q ∈ C(C ∪ ∆)∧

F

∀
f

C×∆

∀
ω,δ

δ= f(ω)⇒
Q

∃
Q
{ω, δ}⊆Q}

(6)
For F ⊆Γ the data-access partition of C ∈ CΩ is

QF (C),
C
∪
C
BF (C)|Ω (7)

For x ∈ X∧ (g, h) ∈ 1..|Ωx| × 1..|Ω
◦
x| the x-communication partition induced

by an access set F ⊆Γ at the level of (g, h) is

Kxg,h(F), (Ωx
g+1⊗Ω

◦
x
h)�QF (Ωx

g ⊗Ω
◦
x
h) (8)

3.2. Classical Spacetime Partitioning and Ω

Notice that Ω is more concrete than the abstract machine considered by Lim and
Lam [5,6] in the context of classical affine spacetime partitioning in the sense that it

specifies the execution of the operations in more detail. Indeed, Ω can be considered as a
simultaneous partitioning of space and time which contrasts with the alternating par-
titioning that is used for finding a solution for synchronization-minimal parallelisation.

For parallelisation, a hierarchy φ ∈ H�Ω is constructed where the partitions it
contains are labeled as either space or time partitions. So, for a partition φi in this tuple
with i ∈ 1..|φ|, we have φj �φi for all j ∈ 1..i. A partition is therefore finer than both
its finest preceding space and its finest preceding time partition.

In contrast, partitions in Ω are only finer than the finest preceding partition of the
same X-type. The extra information encodes the relation between the subcells of cells
that result from partitioning the operations w.r.t. to the other spacetime element. We can
use this to optimize the communication hierarchy while extending the alternating parti-
tioning that results from a parallelisation to a spacetime hierarchy Ω with the same par-
allelism structure. The spacetime hierarchy models parallelism, scheduling and mapping
in space and time in a unified way.

4. Architecture Optimization

4.1. Communication Regularity

For x ∈ X∧ (g, h) ∈ 1..|Ωx| × 1..|Ω
◦
x| there is x-communication regularity for an

access set F ⊆Γ at the level of (g, h) iff Kxg,h(F)≺Ωx
g ⊗Ω

◦
x
h.

If x= s this allows to construct an interconnection partition Kxg,h(F) where each
common interconnection element contains less data elements and is accessed by less
processing elements, leading to a generalization of data distribution which allows to
use a smaller and faster interconnection element for each cell.

If x= t this allows to construct a memory partition Kxg,h(F) such that fewer data
elements must be accessible during a shorter interval in each cell of the partition. If the
intervals are totally ordered by the time partition, the same memory can be reused for the
separate time cells. This results in a generalization of array contraction which allows
to use a smaller and faster memory for each cell.

To optimize an architecture the simultaneous partitioning must be chosen such that
communication regularity can be maximally used and the complexity of the architecture
is minimized.

4.2. Optimization

4.2.1. Access Set Decomposition

Since for every pair of partitions A and B we have (A�B�A)∧ (A�B�B) it
makes sense to decompose the set of access functions in F into a set of subsets G⊆PF
such that F =

G
∪
S
S and such that the original data access partition QF (C) is split into

several data access partitions that are potentially finer. This may allow to utilize commu-
nication regularity for some of the subsets even if it cannot be utilized for QF (C). The
access sets can only be decomposed in this way if consistency for the entire computation
can be guaranteed.

In the context of Kahn Process Networks (KPNs), an array of data accessed by a
pair of statements is considered as a communication channel and the access functions
that produce and consume the data are mapped to input and output port domains of this
channel [7,8,9,10,11]. Inspired by the producer-consumer view, we will minimize the
number of access functions per subset by considering only those access functions within
a basic producer-consumer set (PCS) and associating each basic PCS with a separate
communication partition. The basic PCSs in G that result in a finer partitioning than the
coarser partition in the hierarchy are then used to construct a new level of the access set
topology. If two basic PCSs result from the same parent in the communication tree and
yield the same communication partition, then they can be replaced by their union and the
PCSs are not constructed separately.

For KPNs there is no global schedule and consistency of the computation is guaran-
teed by serializing the data that is communicated through a channel w.r.t. the original se-
quential specification of the computation using blocking read and write operations. Since
a global schedule does exist in the spacetime hierarchy, we can model a communication
channel as a simple memory without synchronisation. Since the dependencies are guar-
anteed to be satisfied for the global schedule the consistency of the computation is also
guaranteed.

Evidently, subsets of access functions that access disjoint subsets of data elements
can be considered separately. We can further minimize the size of a basic PCSs by cre-
ating one PCS f̂ for every distinct read access function f . By including all write access
functions in each PCS we can ensure that the correct data is read if the global spacetime

schedule is obeyed. Let V denote an index set for ∆ =
V
∪
v
∆v such that a setRv of access

functions can be associated to each v ∈ V such that the access functions in Rv access
data elements in ∆v only. LetWv ⊆Rv denote the subset of write access functions. For
every access function f a basic PCS f̂ is defined as

V
∀
v

Rv

∀
f
f̂ ,Wv

s ∪ {f} (9)

If no read accesses are available for a variable, the set of write accesses is considered as
a separate PCS.

One may try to further decompose the PCSs by also separating the writing access
functions into separate channels. To make this possible, all reading access functions must
be altered to ensure that data is read from the right channel. While this may add complex-
ity at run-time, in some cases the benefits of improved communication regularity may
justify such an approach.

4.2.2. Constructing an Optimized Architecture

The first step in the construction of an optimized architecture for a given computation
is to extract maximal parallelism by recursively constructing an alternating spacetime
hierarchy φ ∈ H�Ω in the considered partition abstraction starting with φ0 =>Ω. Each
step j + 1 of this recursion consists of two steps:

• Space partitioning: detect the finest partition φ2j+1�φ2j such that the subcells
within every cell of φj access distinct cells of the data elements.

• Time partitioning: detect a coarsest partition φ2j+2≺φ2j+1 such that within ev-
ery cell of φj , the subcells can be totally ordered in a way that is compatible with
 .

In the next step, each partition in the alternating spacetime hierarchy is coarsened
to a partition of Ω that maximizes communication regularity. For a given set G of PCSs
obtained after access set decomposition at the level (g, h) we therefore first construct a
setH ⊆G for which every PCS has a data access partition that is finer than the spacetime
partition considered at that level:

Hg,h, {K|K ∈ G∧QK(Ωx
g ⊗Ω

◦
x
h)≺Ωx

g ⊗Ω
◦
x
h} (10)

Since A�B⇒A�B = B, a useful strategy to utilize communication regularity is
to find a set Mg,h⊆Hg,h and a partition Ωx

g+1 such that either

Mg,h

∀
N

Ωx
g+1⊗Ω

◦
x
h�QN (Ωx

g ⊗Ω
◦
x
h) (11)

or

Mg,h

∀
N
QN (Ωx

g ⊗Ω
◦
x
h)�Ωx

g+1⊗Ω
◦
x
h (12)

by choosing

Ωx
g+1�

Mg,h

⊗
N
QN (Ωx

g ⊗Ω
◦
x
h) (13)

or

Ωx
g+1�

Mg,h

�
N
QN (Ωx

g ⊗Ω
◦
x
h) (14)

because communication regularity can then be used for every N ∈Mg,h.
If L is the set of valid extensions of an alternating spacetime partition φk

at a level of the hierarchy, then we can find Mg,h by progressively adding new

PCSs from Hg,h while {C|C ∈ L∧C�
Mg,h

⊗
N
QN (Ωx

g ⊗Ω
◦
x
h)} 6= ∅ (or, {C|C ∈

L∧C�
Mg,h

�
N
QN (Ωx

g ⊗Ω
◦
x
h)} 6= ∅, respectively). The PCSs with the highest data-to-

operations ratio in Hg,h are considered first such that the optimization starts with the
most complex communication partitions. Once a set Mg,h has been constructed, the al-
gorithm is restarted to find new solutions starting from the remaining PCSs in Hg,h.
After completion the solutions are compared and the optimal solution is chosen.

Since communication regularity at a coarser level of the hierarchy also reduces the
number of data cells for all finer levels of the hierarchy, an optimization that starts by op-
timizing the coarsest levels of h and progresses to finer levels appears to be an interesting
strategy. When no more PCSs from Hg,h can be added, the next h-level is considered to
attempt to further improve the partition.

5. Architecture Instantiation

Instantiating the architecture requires to scan all elements in the partition hierarchy. For
a partition hierarchy, the scanning proceeds hierarchically by scanning the coarsest parti-
tion and recursively scanning the partition of every cell it contains. Branches in partition
trees are also scanned recursively.

To instantiate Ω, a specification of Ωs or code to scan Ωs is generated. If every
processing element must be constructed separately the scanning code is executed to gen-
erate every processing element. Code to scan Ωt is also generated and provided as code
to execute on every processing element (while an identification of the specific space cell
is provided as parameters to the code).

To instantiate ∆, a specification of ∆s or code to scan ∆s is generated. If every
interconnection element must be constructed separately the scanning code is executed
and every cell of the interconnection hierarchy is instantiated while connecting the asso-
ciated processing elements to it. Furthermore code must be added to copy data between
the coarser and finer memory elements of ∆t between subsequent time steps.

6. Application example: CYK bifurcation

Many important algorithms that have been developed to analyze genomic data are closely
related to the CYK CFG parsing algorithm. The most relevant part of this algorithm (for
the purpose of optimization) can be specified in the polyhedral model. In this model, the
sets of operations and data elements are represented by unions of Z-polyhedra2 where
every operation is identified by its iteration vector. The data used by an operation is
accessed through affine functions on the vector spaces that contain the sets of operations.

The CYK algorithm contains both uniform and non-uniform dependences. In con-
trast to the non-uniform dependences, the uniform dependences do not result in signif-
icant complexity for the communication architecture and little can be done to optimize
for them. For this reason, we will restrict ourselves to the study of the non-uniform de-
pendences. In order to enable a manual analysis of these dependences, we consider the
simplest possible form of the CYK-algorithm that exhibits the same non-uniform com-
munication patterns as the general CYK-algorithm. We therefore consider a trivial gram-
mar that consists of the CFG-rule S → SS only, where S is a variable of the language.
The corresponding loopnest is

N

Θ
l=2

N−l
Θ
i=0

l−1

Θ
k=1

v[l, i], v[l, i] + v[k, i] ∗ v[l − k, i+ k] (15)

where Θ denotes a for loop.
The considered abstraction of partitions is the set of affine partitions of the sets

of operations and data elements. The relevant operations on the partitions can be cal-
culated using the linear algebra of vector spaces. Let us use J (f1, f2, . . . , fn) to suc-
cinctly denote the partition A[(f1,f2,...,fn)] induced by a multi-dimensional affine function
(f1, f2, . . . , fn) on a set A.

2a Z-polyhedron is the intersection of a polyhedron with a grid

In section 6.1 the communication optimization algorithm is applied to the loopnest
given above. Based on the observation that the available communication regularity is not
optimally used, we use ad hoc transformations based on the algebraic properties of the
computation in order to allow us to optimally use the available communication regularity
in section 6.2. I believe that the resulting communication structure recovers a crucial
part of a recent custom design of the Nussinov algorithm based on decades of research
experience [12].

The similarity between the CYK parsing algorithm and other computationally more
demanding bio-informatics algorithms (such as pairwise secondary structure alignment)
suggests that the analysis presented in this paper might open the door to applying similar
optimization steps to these algorithms.

6.1. Automatic Parallelisation and Communication Optimization

The given loopnest is the result of parallelisation using a synchronisation-minimal space-
time partitioning [5,6]. The outer loop corresponds to a time partition that maximizes
parallelism. The middle loop corresponds to a space partition, while the inner loop cor-
responds to another time partition. We will consider the given parallelism structure as an
alternating spacetime partition that we will complete to obtain a spacetime hierarchy that
optimizes communication.

The computation contains three distinct access functions:

α(l, i, k), [l, i] δ(l, i, k), [k, i] ε(l, i, k), [l − k, i+ k] (16)

We have three read references for a single statement s, which results in three PCSs
α̂= {α}, δ̂= {α, δ} and ε̂= {α, ε}. Let a and b denote the first and second dimension of
the data space respectively.

The given loopnest is the result of parallelisation using a classical spacetime par-
titioning technique. The outer loop corresponds to a time partition that maximizes par-
allelism. The middle loop corresponds to a space partition, while the inner loop corre-
sponds to another time partition. We will consider the given parallelism structure as an
alternating spacetime partition that we will complete to obtain a spacetime hierarchy that
optimizes communication.

The data access partitions are:

Qα̂(Ωt
1⊗Ωs

1) =J (l, i)

Qδ̂(Ω
t
1⊗Ωs

1) =J (i)

Qε̂(Ωt
1⊗Ωs

1) =J (l + i)

(17)

(Note that Ωt
1 =>Ω and Ωs

1 =>Ω.) For the outer time partition, we choose the only
available partition, Ωt

2,J (l). This choice has communication regularity for α̂ only,
since Ks

1,1(α̂) =J (l)≺>Ω while Ks
1,1(δ̂) =>Ω and Ks

1,1(ε̂) =>Ω. The data partition
that corresponds to the memory partition for α̂ is J (a).

For the space partition, the available partitions that result in the same alternating
spacetime partition are L0 = {J (i + µl)|µ ∈ Q}. The sets of PCSs that result from
executing the optimisation algorithm are M (0)

1,1 , {δ̂} and M (1)
1,1 , {ε̂} where M (0)

1,1 re-

sults in a partition Ωs
2(M (0)

1,1),Qδ̂(Ω
t
1⊗Ωs

1) =J (i) while M (1)
1,1 results in a partition

Ωs
2(M (1)

1,1),Qε̂(Ωt
1⊗Ωs

1) =J (l + i). Since these choices are completely symmetric

and result in an architecture with the same complexity, we will only consider M (0)
1,1 . For

the outer level of the time hierarchy, Ωs
2(M (0)

1,1) partitions both the α̂-channel with parti-
tion J (b) and the δ̂-channel with partition J (b). For the next level of the time hierarchy,
Ωs

2(M (0)
1,1) further partitions the ε̂-channel with partition J (a+ b).

Finally, for the inner time partition, the available partitions that result in the same al-
ternating spacetime partition are L1 = {J (k+γi)|γ ∈ Q}. The α̂-channel is already par-
titioned completely. Since Qδ̂(Ω

t
2⊗Ωs

1) =⊥Ω and Qε̂(Ωt
2⊗Ωs

1) =⊥Ω every possible
partition has the same cost. For this reason we take the original schedule k.

Since the chosen spacetime hierarchy corresponds to the original layout of the loop-
nest, no changes must be made to its structure. The communication partitions can be used
on a dynamic architecture that can benefit from locality automatically using local caches
by converting the communication channels to separate variables and using the data lay-
out suggested by the communication hierarchy. The original variable v is converted into
three variables vα, vδ, vε and the data layout is transformed for every variable to reflect
the correspond communication hierarchy. The chosen memory partition for vα reduces
it to a one-dimensional array. The resulting loopnest is

N

Θ
l=2

N−l
Θ
i=0

l−1

Θ
k=1

vα[i], vα[i] + vδ[i, k] ∗ vε[l + i, l − k]

vδ[i, l], vα[i]

vε[l + i, l], vα[i]

(18)

Preliminary experiments on an 8-core UltraSparc T1 which can execute up to 32 threads
simultaneously and on a dual-core Pentium D indicate the performance for this kernel is
improved significantly for larger problem sizes and is more scalable compared to classi-
cal approaches.

If we want to implement the resulting loopnest on an architecture such as an FPGA
where the memories and interconnections are managed explicitly, then the space parti-
tion allows to reduce the α̂-channel to a set of scalars and the δ̂-channel to a set one-
dimensional arrays that must be accessible to single processsing elements only. However,
since the ε̂-channel is only partitioned at the second level of the time hierarchy, the data
in the ε̂-channel can only be moved to one-dimensional arrays within each iteration of
l and must be copied between the one-dimensional arrays and a two-dimensional array
that is accessible by each of these channels before and after the execution of the oper-
ations within an l-time cell. The cost of this solution might drastically reduce the per-
formance benefit obtained through parallelisation. At the same time, the analysis of the
data access partitions in equation (17) indicates both the δ̂-channel and ε̂-channel have
communication regularity at the coarsest level of the computation. It is evident to ask
whether it is possible to transform the original loopnest with ad hoc transformations to
make this communication regularity usable at the coarsest level.

6.2. Improved Optimization Enabled by Ad Hoc Transformations

Closer inspection of the dependencies that constrain the set of solutions for the coarsest
time partition reveals that every inner k-loop for l always depends on the last iteration of

a k-loop for l− 1 through one of the main communication channels. Since the algebraic
properties of the reduction performed in the inner loop allow to reorder the operations
in this loop, we use an ad hoc index set splitting transformation that splits the iteration
space in two parts,

N

Θ
l=2

N−l
Θ
i=0

2k≤l
Θ
k=1

v[l, i], v[l, i] + v[k, i] ∗ v[l − k, i+ k]

k≤l−1

Θ
2k>l

v[l, i], v[l, i] + v[k, i] ∗ v[l − k, i+ k]

(19)

and time-reverse the k-loop of the part where the k-loop starts with the value computed
at the previous l-value:

N

Θ
l=2

N−l
Θ
i=0

k≥1

Θ
2k≤l

v[l, i], v[l, i] + v[k, i] ∗ v[l − k, i+ k]

k≤l−1

Θ
2k>l

v[l, i], v[l, i] + v[k, i] ∗ v[l − k, i+ k]

(20)

In this new loopnest the first iteration of the k-loops at length l= la require data com-
puted at lengths l=

⌊
la
2

⌋
or
⌊
la+1

2

⌋
and only the last iteration requires data computed

at lengths l= 1 and l = la − 1. The iteration at l= la can therefor start long before the
iteration at la − 1 completes. The two statements significantly increase the complexity
for parallelisation analysis. In order to make it amenable to manual analysis, we will fuse
the two inner loops into a single loop by combining operations that depend on the same
lengths l. We first substitute the iterator of the second loop with q= l − k,

N

Θ
l=2

N−l
Θ
i=0

k≥1

Θ
2k≤l

v[l, i], v[l, i] + v[k, i] ∗ v[l − k, i+ k]

q≥1

Θ
2q<l

v[l, i], v[l, i] + v[l − q, i] ∗ v[q, i+ l − q]
(21)

and subsequently fuse the inner loops and the statements contained by them into one
loop and one statement using g= k= q,

N

Θ
l=2

N−l
Θ
i=0

g≥1

Θ
2g≤l

[
v[l, i], v[l, i] + v[g, i] ∗ v[l − g, i+ g]

+ (2g < l)?(v[l − g, i] ∗ v[g, i+ l − g]) : 0
(22)

I believe this new loopnests permits two dimensions of parallelism after a first time-
partition and that these two dimensions of parallelism will allow to use all communicaton
regularity at the coarsest level so that the resulting architecture is ideally suited for an
FPGA implementation.

7. Conclusion

This paper is a slightly modified version of a draft paper that was submitted to ParCo
2011 and is very preliminary. Since I do not have the resources to complete this paper

by increasing its clarity, extending the experimental evaluation and adding a section on
related work, I’m making it available so that it may be useful to others.

8. Acknowledgements

I am grateful to Sean Rul for helping me setup the Niagara experiments.
Initial research that provided the starting point for this paper was supported in part

by a PhD grant of the Institute for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT-Vlaanderen)3 and a BOF/GOA project4 and was also morally
supported by the Flexware (IWT/060068) project.

References

[1] Anderson, J.M., Amarasinghe, S.P., Lam, M.S.: Data and computation transformations for multiproces-
sors. In: Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’95, Santa Barbara, California (1995) 166–178

[2] Anderson, J.: Automatic Computation and Data Decomposition for Multiprocessors. PhD thesis, Stan-
ford, CA, USA (1997)

[3] Lim, A., Liao, S., Lam, M.: Blocking and array contraction across arbitrarily nested loops using affine
partitioning. Proceedings of the eighth ACM SIGPLAN symposium on Principles and practices of
parallel programming (2001) 103–112

[4] Liao, S.: SUIF Explorer: An Interactive and Interprocedural Parallelizer. PhD thesis, Stanford University
(2000)

[5] Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine transforms.
In: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, ACM Press (1997) 201–214

[6] Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine partitions.
Parallel Computing 24(3–4) (May 1998) 445–475

[7] Kienhuis, B.: Compaan: Deriving process networks from matlab for embedded signal processing ar-
chitectures. In: In Proceedings of the 8th International Workshop on Hardware/Software Codesign
(CODES. (2000) 13–17

[8] Rijpkema, E., Kienhuis, B., Deprettere, E.: Compilation from Matlab to process networks. Second
International Workshop on Compiler and Architecture Support for Embedded Systems (CASES’99)
(1999)

[9] Turjan, A., Kienhuis, B., Deprettere, E.: Solving out-of-order communication in kahn process networks.
The Journal of VLSI Signal Processing 40 (2005) 7–18

[10] Turjan, A., Kienhuis, B., Deprettere, E.: Translating affine nested-loop programs to process networks. In:
CASES ’04: Proceedings of the 2004 international conference on Compilers, architecture, and synthesis
for embedded systems, New York, NY, USA, ACM Press (2004) 220–229

[11] Turjan, A., Kienhuis, B., Deprettere, E.: Classifying interprocess communication in process network
representation of nested-loop programs. Trans. on Embedded Computing Sys. 6(2) (2007) 13

[12] Jacob, A., Buhler, J., Chamberlain, R.D.: Accelerating nussinov rna secondary structure prediction with
systolic arrays on fpgas. In: Proceedings of the 2008 International Conference on Application-Specific
Systems, Architectures and Processors, Washington, DC, USA, IEEE Computer Society (2008) 191–196

3from 01/01/2008 to 31/08/2009
4from 01/07/2006 to 31/12/2007

