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Abstract

In quantum gravity, one looks for alternative structures to spacetime
physics than ordinary real manifolds. In this first part, we propose an
alternative universal construction containing the latter as an equilibrium
state under the action of the universal diffeomorphism group. Our theory
contains many other previous proposals in the literature as special cases.
However, the crucial point we make is that those have to be appreciated
in the universal context developed here.

1 Introduction

In modern physics, people question the very fabric of spacetime from many
different vantage points of view. As explained in great detail in the upcom-
ing book of the author [1], the superposition principle cannot be applied to
spacetime which implies that spacetime cannot be quantized in the operational
sense. This indicates that an observer lives in one “spacetime” and since no a
priori discreteness can be imposed, the author [2] reached the conclusion that
any approach to spacetime had to be based on the continuum given that the
notion of locality is only canonically defined in that context. This appears to
imply that even in the ontological sense, a standard real manifold is the only
natural candidate for a spacetime structure. So, the only question is whether
there exists a universal construction based on the continuum allowing for more
generic possibilities? The answer to this question surprisingly is yes and the
difference lies in the statistical density matrix approach to quantum mechanics
and the normal textbook state approach. We can, and will look at spacetime
in the quantum statistical sense with the standard notions of locality inherited
from R4. The approach we will take is the algebraic one by means of W ? alge-
bras; this is just a temporary step and we are aware that more exotic avenues
will have to be taken as explained in [1]. The problematic aspect of all non-
commutative approaches so far is that the diffeomorphism group has no natural
place in the formalism and indeed, imposing algebraic relations by hand breaks
diffeomorphism invariance of the single algebra. The answer to this problem
is to consider all possible algebras and modeling one manifold on a particular
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one. Hence, a diffeomorphism will map one manifold into another and the only
fixed manifolds are the abelian and free ones. Moreover, the abelian continuum
spacetimes have the largest symmetry group and therefore they are preferred
from the point of view of internal symmetries. Therefore, any quantum space-
time dynamics should be based upon the fact that a maximal internal symmetry
group, as a subgroup of the free diffeomorphisms, determines the only stable
ground state. Hence, we conjecture that the theory developed in [1] describes
the ground state of a much larger one which allows for small scale granularity
as quantum fluctuations at sufficiently small scales.

This paper is organized as follows: first we introduce topological manifolds and
give some examples. However, a deeper understanding of topological manifolds
emerges from the development of (first order) differential calculus; this is accom-
plished in section 3 and some nontrivial insights are provided. The construction
of higher differential operators, the curvature of the quantum connection and
the general definition of differentiable manifolds is postponed to future work.
Although this approach to quantum spacetime has been developed indepen-
dently, the most valuable personal contact in this regard has been with Shahn
Majid, some of whose writings and ideas regarding C∗ algebraic representations
of Hopf ? spacetime algebras have been useful. In particular, I recommend [3]
and [4]. Also, in retrospect, some of the ideas in this paper resemble those of
Grothendieck topology in the sense that the open algebras form a sheaf over
an ordinary topological space and the immersions of the open algebras associ-
ated to the open subsets in the covering of charts are prime examples of what
category theorists call a sieve. However, there is also more information to it
which is given in the definition of the local algebras attached to the generators
of the coordinate structure [5]. Therefore, our construction is more restricted
than the one of Grothendieck topology (since we can also do analysis) and it
might be helpful to see if there exists a more category theoretical definition for
which our manifolds constitute particular representations. There is a very slight
resemblance to the standard Haag Kleinert axioms of Quantum Field Theory
which also works with local algebras over R4 but the correspondence does not
carry very far in the sense that no Minkowski causality or anything like that is
implemented.

2 Topological Quantum Manifolds

Basically, the universal complex (or real) algebra in n variables x̂i is the free
one F∞n ; we shall also be concerned with the free algebra of finite words Fn
which is equipped with a canonical involution ? which simply reverses the order
of the words and conjugates the complex numbers. Hence, every generator is
Hermitian and therefore has a real spectrum if one restricts to W ? algebraic
representations. Besides Frn, there is the totally commutative algebra Crn in n
variables xi and we denote by φ : Frn → Crn : x̂i → xi the canonical homomor-
phisms where r ∈ {∅,∞}. Moreover, we adjoin all algebras with an identity
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element and restrict to unital ? homomorphisms. The idea is to represent Fn
in unital W ? algebras A equipped with a trace functional ωA. Therefore let
π : Fn ⊂ Dom(π) ⊂ F∞n → A be a unital, maximal, star homomorphism
(where Dom(π) is a subalgebra) with a dense image and denote by σ(i, π,A)
the spectrum of π(x̂i) in A; then it is natural to construct the compact and
bounded “cube”

O(π,A) = ×ni=1σ(i, π,A) .

Likewise, one can restrict the variables in Cn to O(π,A). Because of the spectral
decomposition theorem, for every n vector ~α in the cube, index i and εi > 0, one
has a unique Hermitian spectral operator P εiαi which is by definition a shorthand
for

P i((αi − εi, αi + εi)) .

The operators have the usual intersection properties. Hence for every resolution
~ε, we may define an event P~ε(~α) in the algebra A as the maximal Hermitian
projection operator which is smaller than all P εiαi (notice that this projection
operator may become zero if the resolution becomes to high, that is εi too
small) and it is formally denoted by

P~ε(~α) = ∧ni=1P
i((αi − εi, αi + εi)).

Now, it is easy to see that if one were to cover a cube by smaller cubes (arbitrary
overlaps are allowed), take the projection operators associated to those and
consider the smallest projection operator which majorizes all of these, then,
by the superposition principle, the latter is smaller or equal to the projection
operator of the full cube. This is a very quantum mechanical idea where we
acknowledge that the whole is more than the sum of its parts and therefore we
have to give up the idea of a classical partition. Hence, for any relative open
subset W; there exists a unique smallest projection operator which majorizes
all projection operators attached to subcoverings of W by relative open cubes
(a subcovering simply is a set of relative open cubes contained in W). Hence,
there is a natural almost everywhere weakly continuous1 mapping κ(π,A) from
relative open subsets W of O(π,A) to A given by

κ(π,A)(W) = P (W) .

For disjoint Wj one obtains that

P (W1)P (W2) = 0 ,

meaning that the coherence of the theory depends upon the scale you are ob-
serving at. Concretely, if you zoom into the region W1 you will be oblivious to
the entanglement with the region W2; however, looking at both together gives
a very different picture. If the dynamics itself were scale dependent in this way,
then it might explain why we see a local world on our scales of observation and
above, while the macroscopic world would seem to be completely entangled.

1We shall explain this notion later on.
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This picture would offer a complete relativization of physics where giants would
look to us as if we were electrons. Also,

P (W1) ≺ P (W2)

of W1 ⊂ W2, which means that zooming in is a consistent procedure. Now, we
can go on and construct several forms of equivalence, going from ultra strong
to ultra weak. Two representations πi : Fn ⊂ Dom(πi) ⊂ F∞n → Ai are ultra
strongly isomorphic if and only if there exists a C? isomorphism γ : A1 → A2

such that π2 = γ◦π1 and Dom(π1) = Dom(π2). They are called strongly isomor-
phic it is only demanded that γ is a unital star isomorphism from π1(Dom(π1))
to π2(Dom(π2)). We say, moreover, that they are weakly isomorphic when
equality is supposed to only hold on Dom(π1) ∩Dom(π2) and finally we define
them to be ultra weakly equivalent if and only if γ is a star isomorphism from
π1(Fn) to π2(Fn) and equality only holds on Fn. In the case of real manifolds,
ultra weak covariance is the only notion which applies and we continue now to
investigate it. Now, we are ready to go over to an atlas construction; a topolog-
ical space M is said to be a real, n-dimensional, non-commutative manifold if
there exists a covering ofM by open sets Vβ , a homeomorphism φβ from Vβ to
a relative open subset of the cube O(πβ ,Aβ) associated to some representation
πβ : Dom(πβ) → Aβ of the free algebra in n letters. This homeomorphism
canonically lifts to the algebra on the open subsets W ⊂ Vβ by stating that
φ̂β(W) = κ(πβ ,Aβ)(φβ(W)). Hence, a single chart is a tuple (Vβ , πβ ,Aβ , φβ)
and we proceed now to construct an atlas by demanding compatibility.

Definition 1 Two charts Vβj with some non zero overlap Vβ1 ∩ Vβ2 6= ∅ are
said to be compatible if and only if the canonical mapping between the normed
subsets

{Pβj (φ̂βj (W)) |W ⊂ Vβ1 ∩ Vβ2}

induces a star isomorphism between the normed algebras generated by them; the
latter preserves the trace functionals ωAβ .

We now proceed by giving some examples.

We start by the most trivial thing and show that ordinary real manifolds
have a natural place in this setup. Let M be an n-dimensional real mani-
fold and consider the coordinate chart (V, ψ). Define now the Hilbert space
L2(ψ(V),dnx) and the multiplication operators xi. Define A to be the W ∗ sub-
algebra generated by the xi of the full W ? algebra of bounded operators, then
π : Fn → A : x̂i → xi has a unique maximal extension. The spectrum of each of
these multiplication operators is continuous and varies between ai < bi and the
canonical mapping φ is given by φ(v) = ψ(v). Then, the canonical projectors
associated to W ⊂ V are given by P (W) = χφ(W) where the latter is the char-
acteristic function on W. Clearly, a coordinate transformation induces a W ?

algebraic isomorphism between these commutative projection operators. By the
same arguments, one sees that any commutative n-dimensional measure space
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is represented in this framework; so we are left with presenting a non abelian
example. A very simple example is a double sheeted manifold constructed from
the Hilbert space L2(R4,d4x) ⊗ C2 and consider the algebra generated by the
operators xµ ⊗ σµ(x) where the σµ(x) are automorphic to the standard space-
time Pauli algebra (σµ) = (1, σi). That is σµ(x) = U(x)σµU†(x) for U(x)
some 2 × 2 complex unitary matrix. The whole manifold structure depends
upon U(x), since suppose U(x) = 1, then the cube is R4 and the set of basic
projection operators is given by

P εt = χ[t−ε,t+ε] ⊗ 1

P εx =
1
2
[
χ[x−ε,x+ε] ⊗ |1, 1〉〈1, 1|+ χ[−x−ε,−x+ε] ⊗ |1,−1〉〈1,−1|

]
P εy =

1
2
[
χ[y−ε,y+ε] ⊗ |i, 1〉〈i, 1|+ χ[−y−ε,−y+ε] ⊗ | − i, 1〉〈−i, 1|

]
P εz =

1
2
[
χ[z−ε,z+ε] ⊗ |0, 1〉〈0, 1|+ χ[−z−ε,−z+ε] ⊗ |1, 0〉〈1, 0|

]
.

Hence, the operators P ε(t,x,y,z) vanish as soon as at least two of the spatial
coordinates have modulus greater or equal to ε. Therefore, if one is far away
in two coordinates from the origin, one sees nothing except on the scales of the
distances to the origin itself. If only one coordinate, say z has a modulus greater
than ε, then the projection operator is given by

P ε(t,x,y,z) = 1
2 χ[|x|−ε,−|x|+ε]×[|y|−ε,−|y|+ε]×[z−ε,z+ε] ⊗ |0, 1〉〈0, 1|+
1
2 χ[|x|−ε,−|x|+ε]×[|y|−ε,−|y|+ε]×[−z−ε,−z+ε] ⊗ |1, 0〉〈1, 0| ,

and the reader is invited to work out the projection operator for a case in which
all spatial coordinates have a modulus smaller than ε. Therefore, one obtains
an axial structure where any of the coordinate axes are privileged as well as a
neighborhood of the origin. In a forthcoming publication, we shall work out an
example for more generic U(x).

The reader may well have noticed that we still have to say something about
dimension since dimensional collapse is possible; indeed any real n dimensional
manifold is a m dimensional noncommutative one if and only if m ≥ n. On
the other hand, discrete manifolds do not necessarily have a one dimensional
representation due to the algebraic relations (so we have some kind of entangle-
ment dimension). Therefore, one might be tempted to declare the dimension of
a manifold to be the minimal one; it is for now a matter of taste whether one
allows for collapse or not and we leave this to the discretion of the reader.

3 Canonical Differentiable Structure

Before we define a differential structure, we have to identify the natural class
of functions on a local chart (Vβ , πβ ,Aβ , φβ). The thing is that points and
functions are simply unified in the algebraic context; they just are elements of
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Aβ . Indeed, a function is nothing than some limit of a finite polynomial in
the πβ(x̂i) and the natural question is how we should define the function on an
open setW ⊂ Vβ . There are two natural candidates for local functions which we
call the entangled and unentangled one for obvious reasons. The former forgets
how an element A ∈ Aβ arises from the fundamental building blocks and maps
A→ Â, where the latter is defined as

Â(W) = Pβ(W)APβ(W) ,

and obviously Â maps distinct regions to orthogonal operators; moreover, Â
preserves the order relation in the sense that

̂̂
A(W2)(W1) = Â(W1)

for W1 ⊂ W2. However, this transformation does not erase entanglement with
regions outside W as the reader may easily verify and obviously, this ansatz
is not a suitable candidate for defining a differential since it does not “feel”
the order in which the elementary variables occur. Let us start with finite
polynomials in unity and the preferred variables πβ(x̂i), then one meets a rarity
which might seem to be a lethal problem at first sight but really is nothing
but a manifestation of what breaking of entanglement means. That is let A =
Q(1, πβ(x̂i)), where Q is some polynomial of finite degree, then we define

Q̂(W) = Q(Pβ(W), Pβ(W)πβ(x̂i)Pβ(W))

as the local unentangled realization of Q. Now, it is possible for two polynomials
Q1 and Q2 to determine identical elements in Aβ , but the local realizations Q̂j
differ; also, the reader is invited to construct some examples on this. All this
implies that we have to define nets of polynomials and declare equivalence with
respect to the resolution one is measuring which removes the absolutism from
Aβ ; that is,

Q̂1 ∼W Q̂2

if and only if Q̂1(W) = Q̂2(W). One verifies moreover that the local unen-
tangled Â has the same inclusion and disjoint properties than the entangled
one. Therefore, consider a natural directed net (Qi, i ∈ N) of finite polyno-
mials in the fundamental variables x̂i and unity, then we say that the domain
Dom((Qi, i ∈ N), (πβ ,Aβ)) of this net relative to the chart (πβ ,Aβ) is given by
the set of relative opens W ⊂ O(πβ ,Aβ) so that Q̂i(W) is a weakly convergent
series of operators. For the general reader, the weak topology on a W ? algebra
is the locally convex topology generated by the continuous complex linear func-
tionals ψβ : Aβ → C. Now in order to define continuity and differentiability of
such functions, we need to equip the relative open sets with a canonical topol-
ogy, that is the Vietoris topology which is defined by the relative open subsets
(O,V)(W) where V ⊂ W ⊂ W ⊂ O and (O,V)(W) is the set of all open sets Z
satisfying V ⊂ Z ⊂ O.
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Definition 2 Therefore, the net (Qi, i ∈ N) is of bounded variation relative to
(πβ ,Aβ) in W ∈ Dom((Qi, i ∈ N), (πβ ,Aβ)) if and only if for every ε > 0 and
continuous functional ψβ, there exists an open set containing W such that for
any open Z contained in it we have that

|ψβ((Q̂i, i ∈ N)(W)− (Q̂i, i ∈ N)(Z))| < ε .

In order to define directional continuity, partial differential operators and finite
difference operators, we need the notion of directional displacement. Therefore,
let ~e be a unit vector in Rn and δ; then the translation T(δ~e) canonically lifts as
a continuous map to the space of all open sets by the prescription

T(δ~e)(W) =W + δ~e .

We need also need to lift the translations to homomorphisms between the lo-
cal algebras Alocβ (W) which requires the use of a quantum connection. Here,
Alocβ (W) is the W ? subalgebra of Aβ generated by Pβ(W)πβ(x̂i)Pβ(W) and
Pβ(W) which is not the same as Pβ(W)AβPβ(W) (which is also a Von Neu-
mann algebra) as explained before. The reason why we need a connection is
because at some resolution ε, Pβ(W) will not majorize, nor commute with the
P i((αi− ε, αi + ε)) so that the projection operators will not be projection oper-
ators anymore but twisted depending upon the region W and spectral operator
at hand. This does of course not happen in the abelian case where everything
remains trivial. Also, it is generally not so that for V ⊂ W one obtains that

Alocβ (V) ⊂ Alocβ (W)

and the reason is that fine grained projections can add a twist where coarser
grained projections do not. Of course, this inclusion property does hold when
we do not cut entanglement, that is

Pβ(V)AβPβ(V) ⊂ Pβ(W)AβPβ(W)

for V ⊂ W. Let us give some example confirming these facts, consider the
following discrete four dimensional quantum manifold

t =
(

0 1
1 0

)
x =

(
0 σ1

σ1 0

)
y =

(
0 σ2

σ2 0

)

z =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
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A little algebra reveals that [t, x] = [t, y] = 0, {x, y} = 0 and t2 = x2 = y2 = 1.
Also, one notices that y and z do not commute nor anticommute. The spectrum
of t, x, y is {−1, 1} and both eigenspaces have dimension two; for z it clearly
is {0, 1, 2} and therefore the cube consists out of 24 points. Associate V to
that subset of the cube with arbitrary values for t, x and y = 1 = z and W to
arbitrary values for t, x, z and y = 1, then clearly V ⊂ W. One computes that

P (V) =
1
2


0 0 0 0
0 1 −i 0
0 i 1 0
0 0 0 0


and P (W) = 1

2 (1 + y). We compute Aloc(W) and show that P (V) does not
belong to it. Elementary algebra shows that

P (W)tP (W) =
1
2

(
σ2 1
1 σ2

)
P (W)xP (W) = 0
P (W)yP (W) = P (W)
P (W)zP (W) = P (W)

even though P (W) does not commute with z. It is now easy to show that
Aloc(W) is two dimensional and that P (V) is not in it. Finally, we compute the
dimension of P (W)AP (W); the latter is four as can be easily seen by starting
from the expression

3
2
z − 1

2
z2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 = α

and notice that P (W)αP (W)− 1
2P (W) ∼ P (V).

From the weak continuity of κ “almost everywhere” one deduces that the local
algebra’s Aloc(W) almost never jump when we move W around. Therefore,
what one could call quasilocal algebra’s are basically the same as the local ones.
Hence, we define a connection, or parallel transport, Γβ(V,W) as a bifunction
of two relatively open sets which map to a star homomorphism between the
respective local algebra’s; that is,

Γβ(V,W) : Alocβ (V)→ Alocβ (W)

where a path dependence is possible in the composition and we could at most
look for rules of intersection and inclusion. For V ⊂ W, one has that when
a spectral projector P ≺ P (V) or P (V)PP (V) = P then the same is true for
P (W) and we demand Γ(V,W) to preserve these fixpoints. Other principles
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of this kind are not possible, it might be that P commutes with P (V) but not
with P (W) and vice versa. We might still ask however for the connection to be
optimal which means that the homomorphisms cannot be majorized. Therefore,
in case the local algebra’s are isomorphic, Γ(V,W) is an isomorphism too. Also,
we demand the connection to be unital, meaning that Γ(W,W) is equal to the
identity. There will be two further requirements on the connection which is
that the basic functions πβ(x̂i) are weakly continuous or differentiable wherever
κ(πβ ,Aβ) is in all or some directions ~e. The latter is a huge constraining between
the analytical and W ? algebraic aspects of Aβ .

We have two different notions of continuity and differentiability because κ(πβ ,Aβ)

has a peculiar and natural status within our construction. First of all, we say
that κ(πβ ,Aβ) is weakly continuous in a point W in the Vietoris topology when
for all ε > 0 and continuous functionals ψβ , there exists an open neighborhood
O in the Vietoris topology such that for any Z ∈ O we have that

|ψβ
(
κ(πβ ,Aβ)(W)− κ(πβ ,Aβ)(Z)

)
| < ε.

Likewise, we say that κ(πβ ,Aβ) is continuous in the direction ~e at W when for
any ε > 0 and ψβ , there exists a δ > 0 so that for any |h| < δ

|ψβ
(
κ(πβ ,Aβ)(W)− κ(πβ ,Aβ)(T(h~e)(W))

)
| < ε.

Concerning the notion of weak differentiability of κ(πβ ,Aβ), there exist several
and we have to find out if some of them are equivalent or not. Let me first
start by examining the abelian case in sufficient detail and then generalize to
the nonabelian setting. In the Schrodinger like setting explained before, the
projection operators are just characteristic functions and in one dimension, the
computations simplify considerably (however, there is no problem generalizing
this to higher dimensions as the reader may try to do) while the results are
universal. Naively, one would think we have to calculate the limit of

1
δ

(
χ(a+δ,b+δ) − χ(a,b)

)
for 0 < δ → 0. If one would restrict to the continuous functions as a separating
subalgebra of the L2 functions (at least on a compact measure space), then this
limit exists in the weak sense and it is δ(b)− δ(a) which is outside the algebra
since it is not well defined on the whole Hilbert space. Now, if again, we would
only restrict to the continuous functions, then the limit

1
δ1−γ

(
χ(a+δ,b+δ) − χ(a,b)

)
is zero and independent of γ > 0. However, if one were to go over to the full
Hilbert space, then it is necessary and sufficient that γ > 1

2 in which case the
limit is also zero. Therefore, we say that κ(πβ ,Aβ) is γ-weakly differentiable with
respect to a separating2 subset Ψβ(γ) of continuous functionals in the direction

2Separating means that for all distinct A,B ∈ Aβ there exists a ψβ ∈ Ψβ(γ) such that
ψβ(A) 6= ψβ(B).
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~e at W if there exists an element ∂γ~e κ(πβ ,Aβ)(W) such that for all ε > 0 and
ψβ ∈ Ψβ(γ), there exists a δ > 0 such that for all 0 < h < δ we have that∣∣∣∣ψβ ( 1

h1−γ

(
κ(πβ ,Aβ)(T(h~e)(W))− κ(πβ ,Aβ)(W)

)
− ∂γ~e κ(πβ ,Aβ)(W)

)∣∣∣∣ < ε.

Similarly, one could forget about Ψβ(γ) and demand that γ > 1
2 . This attitude

could lead to very different algebra’s and we will not even start its investigation
in this short paper. An obvious property is that if κ(πβ ,Aβ) is differentiable with
respect to (γ1,Ψβ(γ1)), then it is also the case for (γ2,Ψβ(γ1)) where γ2 < γ1

and the differential is exactly zero.

We now turn to continuity and differentiability of nets (Q̂i, i ∈ N) of finite
polynomials on their relative domain (with respect to (πβ ,Aβ)). Define now

T̂(δ~e)(W) = Γ(W, T(δ~e)(W))

then we say that (Q̂i, i ∈ N) differentiable at W in the interior of its relative
domain in the direction of ~e if and only if for any ψβ , there exists a unique
element

∂~e (Q̂i, i ∈ N)(W) ∈ Aloc(W)

such that

ψβ

(
∂~e (Q̂i, i ∈ N)(W)

)
= lim

δ→0

1
δ
ψβ

(
T̂−δ~e

[
(Q̂i, i ∈ N)(T(δ~e)(W))

]
− (Q̂i, i ∈ N)(W)

)
.

So, the differential operator is only defined if some translates of W belong to
the relative domain of (Q̂i, i ∈ N) for arbitrarily small δ. Therefore, partial
differentials are not defined for directions in which the set at hand is isolated.
Of course, if one looks only at larger scales, then jumps may be accomplished
and the difference operators are canonically defined. One could also resort here
to notions of (γ,Ψβ(γ)) differentiability, but I see no stringent need to do it at
this point.

Before we give some examples, let us proceed by defining the holonomy groups
attached to the connection; for any W, we define H(W) as the group of ho-
momorphisms from Aloc(W) to itself generated by finite compositions of the
kind

Γ(Wn,W)Γ(Wn−1,Wn) . . .Γ(W1,W2)Γ(W,W1).

We say that a connection is flat when all the holonomy groups are equal to
the identity. Consider as before the trivial example of a real n dimensional
manifold, then the translation mappings induce a canonical flat connection on
the pairs of opens differing by a translate as follows: every spectral operator
P i((αi − ε, αi + ε) ∩W) = P (W)P i((αi − ε, αi + ε))P (W) gets mapped to

P i((αi − ε+ δei, αi + ε+ δei) ∩ T(δ~e)(W)).
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Actually, this is all we need to calculate differentials and so on, but the reader
might wish to extend this definition in a canonical way to generic pairs. For
W of compact closure and real differentiable function f with W ⊂ Dom(f) one
associates a unique algebra element f̃ (in the commutative case we do not need
the nets). It is easy to calculate that the new differential

∂~e
̂̃
f(W) = ∂̂~e f̃ χW ,

reduces to the old one and that the latter even exists in the norm topology in
this case.

All these results allow us now to obtain a better insight into the nature of
noncommutative n dimensional manifolds. Before we engage in this discussion
we still need to solve some questions:

• We have demanded that for overlapping charts the algebra’s of local pro-
jection operators (with respect to these charts) are isomorphic; how does
this algebra relate to the local algebra with respect to that chart?

• We have seen that for V ⊂ W, it does not necessarily hold that Aloc(V) ⊂
Aloc(W). However, does there exist an isomorphism of Aloc(V) into a
subalgebra of Aloc(W) ?

• Finally, say that W contains r components with respect to Vβ ; does the
spectrum of the local algebra Aloc(W) contain at least r components ?

As a response to the first question, we already know that the algebra of local
projection operators is not contained in the local algebra and the question is
whether the inverse holds. But before we treat these questions in generality,
let us see how they are answered in the our previous example. Concerning the
first question, we notice that the only nonzero projection operators (apart from
P (V) and P (W)) arise from y = 1 and t = ±1; they are given by

P (t = 1 = y) =
1
4


1 i 1 i
−i 1 −i 1
1 i 1 i
−i 1 −i 1



P (t = −1 = −y) =
1
4


1 −i −1 i
i 1 −i −1
−1 i 1 −i
−i −1 i 1

 .

It is most easily seen that P (W)tP (W) = 2P (t = 1 = y)− P (W) which shows
that Aloc(W) is a subalgebra of the algebra generated by the local projection
operators P (V) with V ⊆ W. The second question is answered in the negative
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since Aloc(V) is generated by P (V) and

P (V)tP (V) =
1
2


1 0 0 i
0 0 0 0
0 0 0 0
−i 0 0 1


and it is easy to verify that this algebra is not isomorphic to Aloc(W). Therefore,
the answer to the second question is inconclusive since in the commutative
case Aloc(V) ⊆ Aloc(W). Regarding the third issue, W contains 12 points
and the cube of Aloc(W) contains also 12 of them3. However, all projection
operators vanish in the former case while in the latter exactly 3 of them are
nonzero. Therefore, the question appears to hold on the ontological as well as
the empirical level.

Let us start with some mathematical preliminaries.

Theorem 1 Let P and Q be two (noncommuting) Hermitian projection oper-
ators then the projection operators P ∧Q and P ∨Q belong to M′ ∩M, where
M′ is the commutant in Aβ of the Von Neumann algebra M generated by P
and Q. In particular, any Hermitian projection operator which is smaller than
P ∧Q or larger than P ∨Q belongs to M′.

Proof : Represent P and Q on a Hilbert space H and consider the smallest
closed subspace H′ which is left invariant by both of them. Then this H′ has
P ∨Q as identity operator and we have to show that it is generated by P and
Q. For the intersection, the proof is easy: 1

2 (PQ+QP ) = P ∧ Q + A where
(P ∧Q)A = 0, A? = A, ||A|| ≤ 1 but 1 does not belong to the discrete spectrum,
and therefore

P ∧Q = lim
n→∞

(
1
2

(PQ+QP )
)n

in the weak sense. Replacing Q by Q′ = Q−PQ−QP +PQP , we see that it is
zero if and only if Q = P ; moreover, PQ′ = Q′P = 0 and Q′ as a mapping from
(1−P )H′ to (1−P )H′ does not contain 0 in its discrete spectrum. Otherwise,
there would exist a vector v ∈ (1−P )H′ such that (1−P )Qv = 0 or Qv = PQv
which is impossible unless v is in the intersection of both hyperspaces which
implies it must be the zero vector. In the finite dimensional case, it easy to
construct polynomials fα(x) with fα(0) = 0 such that

fα(Q′) = Pα

where α ∈ σ(Q′) and Pα is its spectral operator. Therefore, one can recuperate
the identity P ∨ Q − P on (1 − P )H′ in the algebra of Q′ only. In the infinite
dimensional case, this technique fails since the polynomials will start to oscillate
heavily which has a detrimental effect on the continuous spectrum. However, if

3One calculates that the spectrum of P (W)tP (W) is {−2, 2, 0} and the projection operator
on the zero eigenvalue is 1

2
(1− y).
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one considers the algebra generated by 1, P,Q a similar argument holds due to
the Stone Weierstrass and spectral theorem.

Concerning the first question, let us elaborate on whether given a cube P1, P2

where P1 = P + Q with PQ = 0 and corresponding to distinct discrete eigen-
values, it is true that

(P1 ∧ P2)P (P1 ∧ P2) = αP1 ∧ P2 + (1− α)P ∧ P2 − αQ ∧ P2

for some α ∈ R (actually the reader can check that any linear combination of
these operators has to be of this form). It is easily seen that this statement is
false, since consider the orthonormal unit vectors ei, i : 1 . . . 5, and the following
subspaces:

P = Span{cos(θ)e1 + sin(θ)e2, cos(ψ)e3 + sin(ψ)e4}
Q = Span{sin(θ)e1 − cos(θ)e2, sin(ψ)e3 − cos(ψ)e4}
P2 = Span{e2, e3, e5}.

Then, one has the following identities:

P1 ∧ P2 = |e2〉〈e2|+ |e3〉〈e3|
P ∧ P2 = 0
Q ∧ P2 = 0

PQ = 0.

However, one easily calculates that

(P1 ∧ P2)P (P1 ∧ P2) = sin2(θ)|e2〉〈e2|+ cos2(ψ)|e3〉〈e3|

which is not a multiple of P1 ∧ P2. Therefore, one has that P (W)P iP (W) is in
general not in the algebra generated by P (V) where V ⊆ W. It is now easy to
pick πβ(x̂i) = P + µR where R = |e5〉〈e5| to conclude that

(P1 ∧ P2)πβ(x̂i)(P1 ∧ P2)

is not in the algebra generated by the P (V). This shows that Aloc(W) and the
W ? algebra Aopen(W) generated by the P (V) where V ⊆ W have no relation to
one and another.

Definition 3 We call the chart (Vβ , πβ ,Aβ , φβ) pointed when for all W,

Aloc(W) ⊆ Aopen(W).

We now proceed to answer the third question which intuitively means that if you
zoom in you see more and more disconnected components. Now, it is obvious
that this property does not even hold in the commutative case where on large
scales one may see many isles but on small scales all one sees is one of them.

13



However, a refinement of the question is nevertheless interesting and one might
want to look for manifolds which have only one component on a given scale and
where the number of components grows polynomially (or even exponentially) in
the inverse scaling 1

λ .

We now have obtained a better view on how we should do function theory on
a noncommutative topological manifold although we are confronted with an
apparent dilemma. On one side Aopenβ (W) is the natural algebra we should use
to compare overlapping charts, but Alocβ (W) is the natural algebra for function
theory. What we learned is that they have generically little to do with one
and another; therefore, this begs the question of how to even define algebraic
functions on the entire manifold. It is here that the (trace) functionals ωAβ
come into play in the following sense: let M be a noncommutative manifold,
then F : τ(M) → C, where τ(M) is the set of open subsets of M equipped
with the Vietoris topology, is an algebraic function if and only if for any chart
(Vβ , πβ ,Aβ , φβ), there exists a net of polynomials (Qβi , i ∈ N) such that

F (W) = ωAβ

((
Q̂βi , i ∈ N

)
(W)

)
.

Continuity of F is obviously defined with respect to the Vietoris topology. We
call F nuclear if and only if for any V,W, one has that

F (V ∪W) = F (W) + F (V)− F (V ∩W).

Obviously, the standard continuous functions on a real n dimensional manifold
with a volume element induce nuclear continuous functions by putting the trace
functional equal to the n dimensional integral. We can define higher order
algebraic functions as follows

F (W,V1, . . .Vm) = ωAβ

(
Pβ(V1) . . . Pβ(Vm)

(
Q̂βi , i ∈ N

)
(W)

)
where Vj ⊂ W. The gluing conditions ensure us that the identity element in Fn
canonically defines a set of (higher order) algebraic functions.

Let us finish by commenting upon the very act of pasting together “algebraic
charts”. We have learned two ways of cutting entanglement, which was by going
over to local and open W ? algebra’s associated to open subsets of M; also, the
W ? algebraic framework forces us in the cauldron of relatively open subsets of
Rn. This implies that in order to generate a nontrivial topology (with respect
to a continuum background) some sort of “decoherence” has to occur. Indeed,
saying that two charts are described by separate W ? algebra’s really means that
the points in both charts do not “entangle” in some sense. Whether or not this
is a desirable conclusion remains to be seen.
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4 Conclusions

We have made first steps with universal n dimensional manifolds in the context
of W ? algebra’s by defining topological noncommutative manifolds, clarifying
the (lack of) relationships between different local W ? algebra’s and by mak-
ing first steps with functional calculus. What remains to be done it to treat
higher differential calculus and define general differentiable nonabelian mani-
folds. From thereon, one can construct vector and tensor calculus and define
noncommutative geometry. It would be instructive to construct explicit real-
izations of Hopf ? algebra’s as our construction should allow for this and much
more; this would offer a concrete interpretational framework for amongst others
kappa Minkowski spacetime.

Hence, the we have reached the conclusion that what we see depends upon the
scale that we are looking at, but the continuum Rn background always is and
constitutes the very backbone of the entire construction. Therefore, spacetime
is grounded in the continuum albeit we may perceive it in an atomistic way.
This is precisely the conclusion the author advocated in [2].
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