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The Lambda CDM model or “concordance model” is the standard model of modern cosmology.
This model contains a number of separate theories with different mathematical formulations. The
subject of this paper is a proposed Lagrangian which would provide a unified mathematical frame-
work for the concordance model of cosmology. The utility of this is a great simplification compared
to the currently accepted formulation with several different Lagrangian’s and underlying theories
for each major element of the concordance model.

I. INTRODUCTION

The ACDM model or “concordance model” is the standard model of modern cosmology. This model contains
a number of separate theories with different mathematical formulations. The subject of this paper is a proposed
Lagrangian which would provide a unified mathematical framework for the concordance model of cosmology. In the
process new insight can be gained into the nature of dark matter and dark energy which the separate formulations
do not provide. My motivation for writing this paper is to provide a mathematical basis for Lambda CDM similar to
the standard model of particle physics.

There are certain mysteries to the standard model of cosmology. It contains vast amounts of matter and energy of
an unknown energy. Matter which we cannot detect in spite of massive efforts such as the cryogenic dark matter search
IT (CDMS 1I)[3]. Energy which we can only detect by it’s effect on the acceleration of the expansion of the universe....
then model with a constant A. This simple model makes very good predictions there has to be a mathematically
more elegant formulation than the current collection of no less than three very different parts (depending on how one
counts) which make up the current model. The following outlines an attempt at such a model.

II. THE LAGRANGIAN

We have not observed any dark matter particles on Earth to date. The best result we have is a signal with much
noise[3]. One way to explain this would be to have dark matter decay as the Ricci curvature increases. This means
that the dark matter-energy fields should grow weak as R increases and strong as R decreases. The fields precise
behavior will depend on which metric and hence which R is in effect. In the case of a galaxy the Schwarzchild R
would be used, in the case of the universe the Friedman-Lemaitre-Robertson-Walker R would be used. This effect
would naturally explain why a spherical halo of dark matter would be expected at a characteristic distance from a
galaxy as R in the Schwarzchild metric depends on radial distance r. In that regime a higher r, means a lower R
which would mean a longer life for dark matter particles at cosmological distances from concentrations of mass.

Reviewing the published literature it contains Lagrangian’s for inflation, dark matter, dark energy, etc. The
standard formulation of Lambda CDM would consist of Einsteins field equations, a Lagrangian for inflation, another
one for dark matter, and another one for dark energy. What follows I claim can model all of the physics of those
numerous elements of theory in a simpler and mathematically elegant fashion.
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Where R is the Ricci curvature. Using functions of the Ricci curvature has done in a program known as f of R
gravity. Here I have identified the functions f with the scalar and vector fields of inflation and assumed that said fields
were massive.

*Electronic address: hfarmer@mail.depaul.edu; URL: www.hontasfarmer.com; Thanks are due to Dr. Jesus Pando and Dr. Anuj Sarma
of Depaul University for teaching me cosmology.



This Lagrangian should look familiar if one looks at it as a combination of the Lagrangian for a massive scalar field
in curved space-time[2|, and a massive vector field also in curved space time (much like the Proca Lagrangian for a
massive photon). These fields are found in theories of inflation in which they drive the rapid expansion[l, 4-9]. The
details of how these fields would drive inflation, their slow roll parameters, etc, are given in those citations. Even
though these may look the same, they are not, ¢ and A are not merely fields of inflation in this model. These fields
are with us today in the form of dark matter and dark energy. Whereas in models of inflation they decay away during
reheating and totally disappear.

III. EQUATIONS OF MOTION.

Following all the elementary steps of classical field theory the Euler-Lagrange equations for this theory can be
derived. One of those equations is for R itself. That is none other than the Einstein field equation. Then there are
two more equations one for the scalar and one for the vector fields. One more constraint is desirable. The Stress
energy tensor of this field must be proportional to the cosmological constant. This ensures agreement with known
observations. The result is a set of four equations, derived from the above Lagrangian encode all the physics of the
Lambda CDM model.
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Where the stress energy tensor is as follows.
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The next task is to solve these equations for the scalar and vector field. First the scalar field’s solution.
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For the vector field the A°component must be zero in order to satisfy the equation of motion. The derivatives
which make up F% work out that way just as one would expect for an electromagnetism like field. In the process of
solving for A the mass of the A field can be calculated.
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That could be a problem however in the universe we observe R is either zero, for a flat space time, or negative
for a negatively curved space time. This means that in a totally flat space time the mass of this field vanishes. The
universe is never the less not perfectly flat, it has a slight negative curvature which makes the quantity under the
square root, positive and gives this field a small but real mass. The negativity of R ensures the physical behavior of
the fields which matches our observations of dark matter particles in particle physics experiments (or the lack of our
observations in said experiments to be precise)[3].

For the space like components the solution is almost identical to that for the scalar field.
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Wherein i € {1,2,3}.



The masses of these fields are fixed theoretically by the constraint that the stress energy tensor T needs to be
proportional to the cosmological constant. It is possible to determine the mass mg from that constraint. To find an
expression for this mass note that the 7°° component of the stress energy tensor will be of a simple form. Terms
which depend on the vector field drop out as it’s zero in that component. Terms which depend on the velocity V°¢
can be set to zero to ensure the resulting mass is the rest mass of the particle. The resulting equation is
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Unlike the mass of the vector field the mass of this scalar field cannot be zero, ever. Further note that for the observed
universe R will either be negative or zero which means the mass can only be real. Never the less measured values for
the cosmological constant and the density and hence curvature of the universe are needed to arrive at numbers for
these masses.

Elevating this model to a quantum field theory in curved space time would follow a straight forward recipe laid out
in[2, 10]. The Lagrangian has already been written in a manifestly covariant form which will be valid on any manifold
of any curvature. The result will be that there is not one unique vacuum state with which to define the number of
particles. One could only speak of particles existing at a certain point in space time with a particular value for R.
The results of quantizing a field and counting particles are well known as the Unruh effect. So while a detector buried
deep within the Earth would detect hardly any particles, another detector floating in space (as impractical as it would
be for reasons of cost and noise) would have a better chance of detecting the elusive dark matter. That is not to say
that experiments such as CDMS II are a total waste of time but that dark matter may prove even harder to detect
than previously thought.
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Which simplifies to...

IV. CONCLUSIONS

The proposed Lagrangian contains all the physics needed to represent the Lambda CDM model. There is a source
of dark matter, dark energy, and inflation. The behavior of the fields is in agreement with our overall observations .
This Lagrangian also provides a minimal explanation for why dark matter has been so hard to observe in experiments
such as CDMS II. The dark matter simply decays into dark energy when the curvature R is too high. Thus there are
not “particles” to detect in a region of high space time curvature, like on Earth. This would provide an explanation
for why it would be harder than expected to detect these particles in a ground based experiment.

The dark matter mass in this theory is simply the mass of the fields and their associated bosonic particles. There
may well be other fermionic and super symmetric types of dark matter. There certainly numerous particles which
will be discovered at accelerator laboratories in the future which may or may not be dark matter candidates. I have
no hypothesis about such dark matter, or how the hypothesized particles could be produced via accelerator based
experiments in this model at this time. Needless to say their interactions with ordinary matter could only be mediated
by gravity and the weak force. Such is the very definition of dark matter. These particles would also decay very
rapidly in any experiment where they were produced.

This theory also provides a more mathematically satisfying formulation for the dark energy. Instead of a mere
constant the dark energy is represented by a proper stress energy tensor. The advantage of this formulation is that
the physics of the model can be studied in different regimes of curvature. One can now ask how the model would
behave when the curvature was very high, as in near the big bang, or when the curvature will be very negative as in
the distant future.
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