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Abstract

The purpose of this paper is to reconcile observations of dark matter e�ects on the galactic
and cosmological scales with the null results of astroparticle physics observations such
as CDMS and ANTARES. This paper will also provide a candidate uni�ed and simpler
mathematical formulation for the Lambda CDM model. Uni�cation is achieved by a
combination of the f(R) approach, with the standard LCDM approach and in�ationary
models. It is postulated that dark matter-energy �elds depend on the Ricci curvature
R. Standard methods of classical and quantum �eld theory on curved space time are
applied. When this model is treated as a quantum �eld theory in curved space-time, the
dark matter-dark matter fermion annihilation cross section grows as the square of the
Ricci scalar. It is proposed and mathematically demonstrated that in this model dark
matter particles could have shorter lifetimes in regions of relatively strong gravity such
as near the sun, near the Earth, or any other large mass. The unexpected di�culties
in directly observing fermionic particles of dark matter in Earth based observatories are
explained by this theory. The gravitational �eld of the Sun and Earth may e�ect them
in ways the standard WIMP models would never predict.

Keywords: dark matter theory, dark energy, in�ation, quantum �eld theory, modi�ed
gravity

1. Introduction

The ΛCDM model or �concordance model� is the standard model of modern cos-
mology. This model contains a number of separate theories with di�erent mathematical
formulations. This model has a total of fourteen free parameters, which are tightly con-
strained by observation. ΛCDM models the universe to the best degree which we can
measure. While a minority search for alternatives, ΛCDM is the most accepted model.
There are still certain details which need to be reconciled. The precise nature of dark
matter and dark energy are chief among those concerns.

To understand dark matter, scientist have tried to observe it in a variety of exper-
iments. There have been tantalizing hints of dark matter, but not a discovery. Dark
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Figure 1: Graphical abstract: A 3D surface of revolution with the solar system, not to scale, embedded.
Decreasing dark matter-energy density with decreasing distance from a center of mass, such as the Sun.
Decreasing distance from a center of mass means increasing Ricci curvature. The lower dark matter-
energy density would explain why dark matter is seen in astronomical observations in regions where the
Ricci curvature would be small, but never near dense centers of mass. The lower density would explain
why direct detection e�orts have so far shown null results.

matter has proven more di�cult to detect in ground based experiments than initially
thought. This paper will try to explain why dark matter has been so hard to observe in
Earth based experiments while the astronomical evidence for it is, practically, incontro-
vertible.

1.1. Observations in the literature.

Numerous astronomical observations con�rm the existence of dark matter halos around
galaxies [11]. While searches for dark matter particles in earthbound observatories have
not found de�nitive results. The results for [10, 9], for instance, have been inconclusive.
Observations of stellar motions within 13,000 light years of the sun found less dark matter
than expected[16], but those results are not without controversy [6, 5].

Assuming dark matter has particles and anti-particles and behaves under gravity as
normal matter would, there should be a concentration of said matter in and around astro-
nomical centers of mass. Observations were made in search of dark matter - dark matter
annihilation inside the sun [2], no dark matter annihilation signal was observed from the
galactic core. A gamma ray halo around the galactic center suggest the possibility of
dark matter- dark anti-matter annihilation to gamma rays at some distance from the
galactic core itself [7, 15]. Precise measurements of the energy loss in binary pulsar PSR
J0348+0432 due to gravitational radiation showed that it can be modeled with General
Relativity without the addition of any dark matter [3]. These lines of evidence point to
the conclusion that dark matter may not interact gravitationally in the exact same way
as baryonic matter.
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1.2. Hypothesis

These observations hint at the pattern indicated in the visual abstract Figure (1).
The dark matter is most long lived where gravity is weak, and has a much shorter life
where gravity is strong. If this is the case, then it would explain why dark matter has
not been observed near dense concentrations of matter.

The �elds precise behavior will depend on which metric and hence which R is in e�ect.
In the case of a galaxy, the Ricci curvature corresponding to Schwarzchild's metric would
be used. In the case of the universe the Friedman-Lemaitre-Robertson-Walker R would
be used. In the following formulation the Ricci scalar is simply a parameter.

Hypothesis of Ricci curvature dependence: Dark matter-energy �elds depend
on the Ricci curvature, R, in such a way that dark energy �elds weaken as (R) increases
and strengthen as R decreases.

2. Classical �eld theory.

Based on the above observations and the hypothesis and using well known �eld theo-
ries for massive scalar and massive vector bosons, and massive spinor �elds a candidate
action can be written.

With the hypothesis of Ricci curvature dependence in mind we propose the following
(Equation 1) .

s =
´ √
−g
(
− R

16π −∇
µφ∇µφ− 1

2m
2
φφ

2 − R
6 φ

2 − 1
4F

µνFµν − 1
2m

2
AA

µAµ

−R6A
µAµ + ψ̄ (ıγµDµ −mψ)ψ

)
d4x

(1)

In Equation 1 ∇µ = ∂µ + Γλµλ, and Dµ = ∇µ − iβAµ.
Equation (1) contains the following �elds. φ is a massive scalar �eld similar to the

�elds found in scalar in�ation theory. The �eld Aµ is a massive dark photon �eld similar
to �elds found in previous literature on dark matter[1], in�ation[13, 14, 12], and alterna-
tive gravity[4]. The spinor �eld ψ is a simple fermionic �dark matter� �eld which would
couple to the massive dark photon. Last but not least the Ricci curvature R which will
be used to parameterize the other �elds is present. The scalar and vector �elds have con-
formal coupling to the Ricci scalar which is itself a �eld. This action tells us how dark
sector �elds may interact with eachother, and gravity. By convention fermionic �elds
and massive �elds are termed matter. Massless �elds, and or bosonic �elds are termed
energy. φ, and Aµ, are dark energies, ψ is matter. Current direct detection e�orts are
tuned to search for dark fermions, WIMPS, and would not detect the scalar or vector
�elds.

To uniquely describe our universe one constraint is required. The stress-energy needs
to be at least proportional to the cosmological constant times the metric. This results in
the equation of constraint (equation 3), which is not derivable from the Lagrangian. In
the following λ is simply a constant of proportionality. This constraint is imposed by
observations, and ensures that this model will not stray to far from the ΛCDM model
in its observed e�ects.

Equation 2 gives the stress-energy tensor.
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Tµν = −2∇µφ∇νφ− FµνgλδFλδ −
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Tµν = λgµνΛ (3)

Following all the standard steps of classical �eld theory, the Euler-Lagrange equations
can be derived. The classical �eld equations are as given in (Equation4).

Rµν −Rgµν = 8πG
c2 Tµν

∇αFαµ −
(
m2
A

2 + R
6

)
Aµ = 0

∇µ∇µφ−
(
m2
φ

2 + R
6

)
φ = 0

(Dµγ
µ −mψ)ψ = 0

 (4)

Now we will rewrite the �eld equations, Equation 4, in a form that is unambiguously
valid in curved space time, and parameterized by the Ricci curvature scalar R. The
equations will be written making use of the vierbein formulation where a vector �eld is
represented using a non coordinate basis, and a transformation from the non-coordinate
basis to the coordinate basis. Details about this formalism are available in Appendix J
of [8]. What we need to know for this paper is how the coordinate basis is related to the
non-coordinate basis by way of the metric tensor (Equation 5) .

gµνe
µ
ae
ν
b = ηab (5)

In this formalism the Einstein �eld equations can be written as shown in equation 6.

eµaR
abeνb −Reµaeνbηab = λeµae

ν
bη
abΛ (6)

The equation of constraint 3, and the derivablility of the Einstein �eld equation from
the action (Equation1) ensure that the proposed model will satisfy the solar system test
of General Relativity, and model the large scale cosmology of the accepted ΛCDM theory
any deviations from those models mus be small.

The scalar, vector, and spinor �elds with R as a parameter will be notated as shown
in Equation 7.

Aµ = eµaA
a (R) , φ = φ (R) (7)

The derivatives are simpli�ed by using the Ricci curvature as a parameter. Taking
a derivative with respect to the Ricci curvature itself makes the connection coe�cients
in the covariant derivatives redundant. Those connection coe�cients are, after all, cor-
rections for the fact that a derivative is de�ned for a �at space but is being applied to a
curved space. If the variable of di�erentiation is the Ricci curvature; then connection co-
e�cients will vanish. The equations parameterized by the Ricci scalar become e�ectively
one dimensional. The equations of motion simplify considerably.

The result is a set of four equations 8.
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These equations, in particular the equation for the scalar �eld can be made simple
enough to solve by Mathematica.

FullSimplify[DSolve[{\[Phi]′′[R]− (m�2/2+R/6)∗\[Phi][R] = 0}, \[Phi][R], R]] (9)

Mathematica produces the following result ( Equation10 ).

{{\[Phi][R]− > AiryAi[(3m�2 +R)/6�(1/3)]C[1] +AiryBi[(3m�2 +R)/6�(1/3)]C[2]}}
(10)

The result is that the explicit Ricci curvature dependence is an Airy function. This
could either be an Airy function of the �rst kind, denoted by Ai or of the second kind
denoted Bi. The Airy function of the second kind approaches in�nity as R grows. This
behavior would not explain the null results of experiments on dark matter particles.
The Airy function of the �rst kind is oscillatory at negative curvatures, and decreases
exponentially with R at positive curvatures.

The �nal results are as follows. The details of the solutions are in a Mathematica
CDF �le, and handwritten notes in the supplementary materials. The scalar �eld is an
Airy function in terms of R. The solution is 11.

φ(R) = Ai((3m2
φ +R)/61/3) (11)

The vector �eld12 is quite similar to 11 but for the addition of the basis vector ea.

Aa(R) = Ai((3m2
A +R)/61/3)ea (12)

For the spinor �eld the solution is expressed using Dirac spinors (u(eµaP
a)) as found

in Peskin and Schroeder [17]. Mathematica produces13.

ψ(R) = upExp
(
−ı(F (R) + eµap

aebµxb)
)

(13)

Where up is a killing spinor and F (R) in Equation 13, is a very complicated func-
tion shown in equation14. It contains a hypergeometric function (Hyper) of the Ricci
curvature.

ψ[R] = Exp
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5
3},m

6

2

]
+(3m2+R)

2
Hyper

[
{ 2

3},{ 4
3 ,
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π

)
(14)
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Figure 2: This is a plot of the solution found by Mathematica for the classical equations of motion for
this theory for the scalar �eld. These �elds decay towards zero as the curvature increases. The stronger
the gravity - the weaker the �elds.
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2.1. Discussion of the classical �elds.

In summary the classical solutions to the �eld equations are given in equation 15.
These solutions are completely general and will apply to any valid Ricci curvature derived
from classic General Relativity. The corrections these introduce will be small and, like
any theory of modi�ed gravity they only take e�ect at cosmological distances.

R
φ(R) = Ai((3m2

φ +R)/61/3)

Aa(R) = Ai((3m2
A +R)/61/3)ea

ψ(R) = upExp
(
−ı(F (R) + eµap

aebµxb)
)
 (15)

The scalar and vector �elds become weaker as the curvature of space time increases.
The spinor �eld oscillates rapidly with increasing Ricci curvature scalar.

2.2. Probability of fermion-fermion annihilation and direct detection e�orts.

In terrestrial experiments which search for dark matter we have assumed that the
dark matter will be fermionic. Let us consider the amplitude and cross section for the
annihilation of four of these fermions into Ricci curvature, gravitational dark energy. In
this interaction four spinors interact to annihilate to two vectors. Two vectors interact
an annihilate to curvature. This is shown in �gure (3) and equation (16). Figure (3)
shows the annihilation of four spin one half particles into two spin one particles, which
in turn annihilate to one spin two particle. On the face of it, this sounds like a very
improbable interaction. To �gure out the probability we will start with equation (16).

< R|ψ̄ψψ̄ψ >=< R|AµAµ >< AµAµ|ψ̄ψψ̄ψ > (16)

After some tedious computation the answer works out to the following.

< R|ψ̄ψψ̄ψ >=
(Aµ0A0µ)

(
ψ̄dirψdir

)
eG[R]

s′[R]eS[R]

(
R

G′[R]
− 1

)
(17)

In equation 17 the term G[R] is a functional of the Ricci curvature scalar R which
results from multiplying these �elds together,S[R] is the action as a functional of the
Ricci curvature scalar R . The terms Aµ0 are constant, and ψ̄dir is the standard solution
for the Dirac spinor �elds. G[R] and S[R] will oscillate. The interesting part of the
squared probability is given by equation 18.∣∣< R|ψ̄ψψ̄ψ >

∣∣2 ≈ (R− 1)
2

= R2 − 2R+ 1 (18)

Equation 18 shows us that the cross section for these particles simply annihilating in-
creases in area as the curvature of space time increases, and decreases as the curvature
of space time decreases. Therefore as gravity becomes stronger, the particles lifetime
becomes shorter. This behavior would partially explain why dark matter hasn't been
directly detected in Earth bound experiments, or near centers of mass in general.
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Figure 3: Feynman style diagram which shows the scenario where four dark fermions of spin 1/2 each,
annihilate to two dark photons of spin 1 each which can annihilate to space-time curvature R (which
is fundamentally a tensor �eld of rank two) of spin two. This is a graphical representation of equation
(16).
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2.3. In�ation

As for in�ation, consider big bang cosmology in a universe dominated by these �elds.
At time equals on Planck time, the universe would have a very high curvature and these
�elds would have a very low energy density. As time begins and the universe expands
initially the strength of the scalar and vector �elds will increase as the curvature of space
time decreases. The energy density of the �elds will grow as the square of the �eld
strength. This increase in the energy density of these �elds will cause a pressure which
will expand the universe even farther. In turn, the �elds will grow in strength as the
curvature of space time decreases. This process will continue until the universe is very
nearly �at and it would happen very quickly. In this model in�ation is driven as the
energy bound up in the highly curved space-time near the big bang transforms into dark
energy of the scalar and vector �elds.

3. Conclusions

The proposed Lagrangian contains all the physics needed to represent the Lambda
CDM model. There is a source of dark matter, dark energy, and in�ation. The behavior
of the �elds is in agreement with our overall observations. This Lagrangian also provides
a minimal explanation for why dark matter has been so hard to observe in experiments
such as CDMS II and XENON100. The dark matter simply decays into dark energy
when the curvature R is too high. Thus there are not �particles� to detect in a region of
high space time curvature, like on Earth. This would provide an explanation for why it
would be harder than expected to detect these particles in a ground based experiment.

This model also explains observations of a dark matter halo around galaxies at a
characteristic distance in a simple and natural way.

There may well be other fermionic and super symmetric types of dark matter. Cer-
tainly numerous particles which will be discovered at accelerator laboratories in the future
which may or may not be dark matter candidates exist. I have no hypothesis about such
dark matter, or how the hypothesized particles could be produced via accelerator based
experiments in this model at this time.
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