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Abstract

This paper outlines an approach to mathematical logic which is different from the standard one. We
list the most relevant features of the system. In first-order logic there exist two different concepts of
term and formula, in place of these two concepts in our approach we have just one notion of
expression. The set-builder notation is enclosed as an expression-building pattern. In our system we
can easily express second-order and all-order conditions (the set to which a quantifier refers is
explicitly written in the expression). The meaning of a sentence will depend solely on the meaning
of the symbols it contains, it will not depend on external ‘structures’. Our deductive system is based
on a very simple definition of proof and provides a good model of human mathematical deductive
process. The soundness and consistency of the system are proved, as well as the fact that our system
is not affected by the most known types of paradox. The paper provides both the theoretical
material and two fully documented examples of deduction. The author has built the whole system
with the idea to provide a faithful model of human mathematical deductive process. He believes this
objective has been achieved but obviously the reader is free to examine the system and get his own
opinion about it.



1. Introduction

This paper outlines a system or approach to mathematical logic which is different from the standard
one. By ‘the standard approach to logic’ I mean the one presented in chapter 2 of Enderton’s book
([1]) and there named ‘First-Order Logic’. The same approach is also outlined in chapter 2 of
Mendelson’s book ([2]), where it is named ‘Quantification Theory’.

We now list the features of our system, pointing out the differences and improvements with respect
to standard logic.

In first-order logic there exist two different concepts of term and formula, in place of these two
concepts in our approach we have just one notion of expression. Each expression is referred to a
certain ‘context’. A context is a (possibly empty) sequence of ordered pairs (x,p), where x is a
variable and ¢ is itself an expression. Given a context k = (Xx1,;) .. (Xm,®m) We call a ‘state on k’ a
function which assigns ‘allowable values’ (we’ll explain this later) to the variables X, .. , Xy, . [f tis
an expression with respect to context k and ¢ is a state on k, we’ll be able to define the meaning of t
with respect to k and o, which we’ll denote by #(k,t,0) .

Our approach requires to build all at the same time, contexts, expressions, states and meanings.
We’ll call sentences those expressions which are related to an empty context and whose meaning is
true or false. The meaning of a sentence depends solely on the meaning of the symbols it contains, it
doesn’t depend on external ‘structures’.

In first-order logic we have terms and formulas and we cannot apply a predicate to one or more
formulas, this seems a clear limitation. With our system we can apply predicates to formulas. We’ll
see this allows in principle to give a rigorous construction of the liar paradox, but we can also give a
fairly simple explanation of such paradox, which in the end is not a paradox (see section 8).

When we specify a set in mathematics we often use the ‘set-builder notation’. Examples of sets

defined with this notation are {xe NI dye N: x = 2y}, {xeRl x = x*}, and so on. In our system the

set-builder notation is enclosed as an expression-building pattern, and this is an advantage over
standard logic.

Of course in our approach we allow connectives and quantifiers, but unlike first-order logic these
are at the same level of other operators, such as equality, membership and more. While the set-
builder notation is necessarily present with its role, connectives and quantifiers as ‘operators’ are
not strictly mandatory and are part of a broader category. For instance the universal quantifier
simply applies an operation of logical conjunction to a set of conditions, and so it can be classified
as an operator.

In first-order logic variables range over individuals, but in mathematics there are statements in
which both quantifiers over individuals and quantifiers over sets of individuals occur. One simple
example is the following condition:

for each subset X of N and for each x € N we have xe X or x¢ X .

Another example is the condition in which we state that every bounded, non empty set of real
numbers has a supremum. Formalisms better suited to express such conditions are second-order
logic and type theory, but these systems have a certain level of complexity and are based on
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different types of variable. In our system we can express the conditions we mentioned above, and
we absolutely don’t need different types of variables, the set to which the quantifier refers is
explicitely written in the expression, this ultimately makes things easier and allows a more general
approach. If we read the statement of a theorem in a mathematics book, usually in this statement
some variables are introduced, and when introducing them often the set in which they are varying is
explicitly specified, so from this point of view our approach is consistent with the actual processes
of mathematics.

Let’s examine how our system behaves when giving a meaning and possibly a truth value to
expressions. Standard logic doesn’t plainly associate meanings and truth values to formulas. It
introduces some related notion as the concepts of ‘structure’ (defined in section 2.2 of Enderton’s
book), truth in a structure, validity, satisfiability. Within first-order logic a structure is used, first of
all, to define the collection of things to which a quantifier refers to. Moreover, some symbols such
as connectives and quantifiers have a fixed meaning, while for other symbols the meaning is given
by the structure. In first-order logic there is a certain level of independence between the meaning of
symbols and the language’s set of formulas. For instance, if P is a 2-places predicate symbol and t;,
t, are terms then Ptt; is always a formula, and this doesn’t depend on the meaning of P, t; and t,.
Anyway, what if P was a 3-places predicate? In this case Pt t; couldn’t be a formula. This is just an
example to show that the independence between the meaning of symbols and the set of formulas
isn’t absolute.

In our approach we do not ask, as a requirement, to have independence between the meaning of
symbols and the set of expressions, nor do we take care to investigate what happens when changing
the meaning of symbols. It wouldn’t be easy to deal with this because, for example, you should
determine the desired level of independence and variability. Also, I could not say whether trying to
deal with this matters would produce any result or added value. For a first presentation of our
approach, this argument doesn’t seem a priority, it could be a subject of future studies.

Therefore if a symbol is in our system it has his own meaning, and we don’t feature a notion of
structure like the one of first-order logic. Also, the set of expressions in our language depends on
the meaning of symbols. We’ll simply speak of the meaning of an expression and when possible of
the truth value of that meaning. As we’ve already said, the meaning of a sentence will depend solely
on the meaning of the symbols it contains, it will not depend on external ‘structures’.

Our deductive system seeks to provide a good model of human mathematical deductive process.
The concept of proof we’ll feature is probably the most simple and intuitive that comes to mind, we
try to anticipate some of it.

If we define S as the set of sentences then an axiom is a subset of S, an n-ary rule is a subset of s,
If ¢ is a sentence a proof of ¢ is a sequence (y1, .., ¥nm) of sentences such that

- there exists an axiom A such that y,€ A ;
- if m>1 then for each j=2..m one of the following hold

o there exists an axiom A such that y;e A

o there exist an n-ary rule R and iy, .., i, <j such that (yi), .. , Yim), ¥j) € R
- Ym=0.

Our deductive system, in order to do its job, needs to track the various hypotheses we have
introduced along our proof. In a fixed moment of our reasoning we have a sequence of active
hypotheses, and we need to be able to apply one of our rules. To this end our axioms and rules need
to be properly constructed.



As regards the soundness of the system, it is proved at the beginning of section 5. Consistency is a
direct consequence of the soundness. We also discuss (in section 8) how the system relates with
some well known paradoxes, it comes out that our system doesn’t lead to this kind of
inconsistencies. Actually (and obviously) I'm not aware of inconsistencies to which it would lead.

We have examined the main features of the system. If the reader will ask what is the basic idea
behind a system of this type, in agreement with what I said earlier I could say that the principle is to
provide a faithful model of human mathematical deductive process.

This statement about our system of course is not a mathematical statement, so I cannot give a
mathematical proof of it. On the other hand, in general, suppose we want to provide a mathematical
model of some process or reality. The goodness of the model can be judged much more through
experience than through mathematics. In fact, mathematics always has to do with models and not
directly with reality.

This paper’s purpose is to present an approach to logic, but clearly we cannot provide here all
possible explanations and comparisons in any way related to the approach itself.
The author believes that this paper provides a fairly comprehensive presentation of the approach in
question, this introduction includes significant elements of explanation, justification and
comparison with the standard approach to logic. Other material in this regard is presented in the
subsequent sections (for example in the final part of Section 5 and in Section 8).

First-order logic has been around for many decades, but to date no absolute evidence has been
found that first-order logic is the best possible logic system. In this regard I may quote a stronger
statement at the beginning of Jos¢ Ferreiros’ paper ‘The road to modern logic — an interpretation’

([4D).

“It will be my contention that, contrary to a frequent assumption (at least among philosophers), First-Order Logic is not
a ‘natural unity’, i.e. a system the scope and limits of which could be justified solely by rational argument.”

Honestly, in my opinion, the approach to logic I propose seems to be a ‘natural unity’ much more
than first-order logic is, and I did what I thought was reasonable to explain this.

Further investigations on this approach will possibly be performed, in the future, by the author
and/or other people. If any claim of this introduction would seem inappropriate, the author is ready
to reconsider and possibly fix it. In any case he believes the most important part of this paper is not
in the introduction, but in subsequent sections.

The paper is quite long but you can get an idea of the content quickly enough. In fact, the author has
chosen to include all the proofs, but quite often these are simple proofs. In addition, the most
complex parts are the two definitions 2.1 and 4.6. These have a certain complexity, but at first
reading it is not necessary to care of all the details.



2. Language: symbols, expressions and sentences, and their meaning

We begin to describe our language and then the expressions that characterize it. In the process of
defining expressions we also define their meaning and the context to which the expression refers.
The expressions of our language are constructed from some set of symbols according to certain
rules. Expressions are sequences of symbols with meaning, ‘sentences’ are specific expression
whose meaning has the property of being true or false. We begin by describing the sets of symbols
we need.

First we need a set of symbols V. V members are also called ‘variables’ and just play the role of

variables in the construction of our expressions (this implies that V members have no meaning
associated).

In addition we need another set of symbols C. C members are also called ‘constants’ and have a
meaning. For each ¢ in C we denote by #(c) the meaning of ¢ .

Let f be a member of C. Being f endowed with meaning, f is always an expression of our language.
However, the meaning of f could also be a function. In this case f can also play the role of 'operator’
in the construction of expressions that are more complex than the simple constant f.

Not all operators that we need, however, are identifiable as functions. Think to the logical
connectives (logical negation, logical implication, quantifiers, etc..), but also to the predicate of
membership ‘e’ and the predicate of equality ‘=". These operators are symbols without a precise
meaning, therefore we don’t give them a precise meaning in our language, but we will need to give
meaning to the application of the operator to objects, where the operator is applicable.

In mathematics and in the real world objects can have properties, such as having a certain color, or
being true, or being false. A property is therefore something that can be assigned to an object, no
object, more than one object. For example, with reference to color, one or more objects are red or
have the property 'to be of red color'. But more generally one or more objects have a color. Suppose
to indicate, for objects x that have a color, the color of x with C(x). So we can say that C is a
property applicable to a class of objects. On the same object class we can indicate with R(x) the
condition 'x has the red color'. R is in turn a property applicable to a class of objects, with the
characteristic that for all x R(x) is true or false. A property with this additional feature can be called
a 'predicate’.

The class of objects to which a property may be assigned may be called the domain of the property.
The members of that domain may be individual objects or sequences of objects, for example, if x is
an object and X is a set, the condition 'xe X' involves two objects, and then members of the domain
of the membership property are the ordered pairs (x,X), where x is an object and X is a set.
Generally we are dealing with properties such that the objects of their domain are all individual
objects, or all pairs. Theoretically there may also be properties such that the objects of their domain
are sequences of more than two items or even the number of items in sequence may be different in
different elements of the domain.

As mentioned above the concept of ‘property’ is similar to the concept of function, but in
mathematics there are properties that are not functions. For example, the condition 'xe X' just



introduced can be applied to an arbitrary object and an arbitrary set, so the ‘membership property’
has not a well determined domain and cannot be considered a function in a strict sense.

So to build our language we need another set of symbols F, where each f in F represents a property
Pr. Symbols in F are also called operators or 'property symbols'. We will not assign a meaning to
operators, because a property is not easily mappable to a consistent mathematical object (function
or other). However, for each f we must know

- the condition A¢(Xxy,...,X,) (Where X, .., X, are variables that stay for an arbitrary finite

number of arbitrary objects) that indicates if Pr is applicable to (xj, .., Xp);
- the value of P«(xy,..,xx) (Where x1, .., X, are variables representing an arbitrary finite number
of arbitrary objects for which A¢xy,...,X,) is true) .

Since the concept is subtle we immediately specify what are the most important operators that we
may include in our language, providing for each of them the conditions A¢(Xj,...,Xn) and Pg(Xi,..,Xs).

- Logical conjunction: it’s the symbol A and we have

For n#£2 A,(x1,...,Xx,) = false
A.(X1,X2) = (x4 true or x; false) and (X, true or x, false)
P.(X1,X2) = both x; and x; are true

- Logical disjunction: it’s the symbol v and we have

For n#£2 A, (x1,...,x,) = false
A, (x1,X2) = (x4 true or x; false) and (X, true or x, false)
P, (X1,X7) = at least one between x; € X, is true

- Logical implication: it’s the symbol — and we have

For n#£2 A_,(x4,...,x,) = false
A_,(x1,X2) = (x1 true or x; false) and (X, true or x, false)
P_(x1,X2) = (X, 1s false) or (X, is true)

- Logical negation: it’s the symbol — and we have
For n>1 A_(xy,...,x,) = false
A_(Xx;) =true
P_(x1) = x; 1s false
- Universal quantifier: it’s the symbol V and we have
For n>1 Av(xy,...,x,) = false
Av(x1) = X, 18 a set, for each x in x; (X is true or X is false)
Pv(x1) = for each x in x; (X is true) .

- Existential quantifier: it’s the symbol 3 and we have

For n>1 As(xy,...,X,) = false
As(x1) = x1 1s a set, for each X in X; (X 1S true or X is false)



P5(x1) = there is x in x; such that (x is true) .
- Membership predicate: it’s the symbol € and we have

For n#£2 Ac(X1,...,Xn) = false
Ac(x1,Xp) =X is a set
Pc(x1,x2) = X1 is a member of x,

- Equality predicate: it’s the symbol = and we have

For n#£2 A_(Xy,...,X,) = false
A_(X1,X2) = true
P_(x1,x2) = X is equal to x;

We can think and use also other operators, for instance operations between sets such as union or
intersection can be represented through an operator, etc. .

In the standard approach to logic, quantifiers are not treated like the other logical connectives, but in
this system we mean to separate the operation of applying a quantifier from the operation whereby
we build the set to which the quantifier is applied, and therefore the quantifier is treated as the other
logical operators (altogether, the universal quantifier is simply an extension of logical conjunction,
the existential quantifier is simply an extension of logical disjunction).

With regard to the operation of building a set, we need a specific symbol to indicate that we are
doing this, this symbol is the symbol '{ }' which we will consider as a unique symbol.

Besides the set builder symbol, we need parentheses and commas to avoid ambiguity in the reading
of our expressions; to this end we use the following symbols: left parenthesis ‘(‘, right parenthesis
‘)’, comma ‘,” and colon :’. We can indicate this further set of symbols with Z .

To avoid ambiguity in reading our expressions we require that the sets V, C, F and Z are disjoint.
It’s also requested that a symbol does not correspond to any chain of more symbols of the language.

More generally, given ay, ... , o, and By, .., B symbols of our language, we assume that (supposed
to use the symbol ‘I’ to indicate the concatenation of characters or strings) equality of the two
chains o Il ... [lay e By I ... Il By is achieved when and only when m = n and for each i = 1..n a;=p;.

While the set Z will be always the same, the sets V, C, F, may change according to what is the
language that we describe. To describe our language it is required to know the sets V, F, C and the
function # which associates a meaning to every element of C. In other words, our language is

identified by the 4-tuple (V, F, C, #). Since the ‘meaning’ of an operator is not a mathematical
object, operators must be seen as symbols which are tightly coupled with their meaning.

Before we can describe the process of constructing expressions we still need to introduce some
notation about (finite) sequences of ordered pairs (briefly ‘soops’). In fact in that process we’ll use
the notion of ‘context’ and the notion of ‘state’, both contexts and states will be defined as soops.
We immediately agree to indicate the empty sequence with &, a non-empty soop is clearly a
sequence ((a;,by), ... , (am,bm)) where m is a positive integer and a; and b; can be whatever object.
Given two soops a = ((a;,by), ... , (am,bm)) and y = ((c1,dy), ..., (cn,dy)) we indicate with a Il y the
concatenation of o and vy, so



a ” Y = ((al’bl)’ cee (am,bm),(cl,dl), et (Cn,dn)) .

Given an ordered pair (a;,b;), ((a;,by)) is a soop. Often we will simply write (a;,b;) to mean ((a;,by)),
and this will not be ambiguous.

For instance if a = ((a;,by), ... , (am,bm)) and we write a Il (c1,d;), the meaning of this expression is
clearly a Il ((cy1,dy)), if we speak of context (a;,b;) we clearly refer to context ((a;,b;)). Moreover, the
soop a = ((a;,by), ... , (ambm)) can also be indicated with ((a;,by)) Il ... Il ((am,bm)), or more
sinthetically with (a;,by) Il ... Il (am,bm).

Given a soop a = (a;,by) Il ... Il (am,bm) we can define dom(a) (the domain of a) as the set
{ai, .., an}. If for each i,j=1..m i# — a;#a; then o is called a ‘univocal soop’ and for each i=1..m we
can define a(a;) = b; .

We define R(a) as the set of a’s ‘restrictions’, so

R((X) = {8} (@) { (al,bl) ... 1 (ap,bp) | p<m } .
And of course dom(g) = J, R(g) = {e} .
If o and y are soops, we write o = y to mean that ae R(y) .

Given a univocal soop o = (a;,by) Il ... Il (am,bm) and a set A in {J} U { {aj,..,ap} | p<m } there is
exactly one ye R(a) such that dom(y)=A, we will identify y with o/A .

If a 1s a univocal soop and ye R(a) it is easy to see that o/dom(y) =7y .

We also need some notation referred to generic strings, this notation will be useful when applied to

our expressions, which are non-empty strings. If t is a string we can indicate with ¢(t) t’s length, i.e.

the number of characters in t. If ¢(t) > O for each a in {1, .., ¢(t)} at position o within t there is a
character, this symbol will be indicated with t[a]. We call ‘depth of a within t* (briefly d(t,a)) the
number which is obtained by subtracting the number of right round brackets ‘)’ that occur in t
before position a from the number of left round brackets ‘(‘ that occur in t before position a .

Let 9, ¢, n be strings with ¢(9)>0, ¢(¢)>0, and let t =3 Il ¢ I n; let also ain {1, .., ¢(e)} . It seems

clear enough that d(t, ¢(9)+a) = d(t, ¢(9)+1) + d(o, o).

We assume the ‘space’ or ‘blank’ character will never occur in our expressions (the expressions
we’ll build in definition 2.1). This character might occur in the representations of expressions just
for the sake of readability, but formally we assume there are no blank characters.

We can now describe the process of constructing expressions for our language L. This is an
inductive process in which not only we build expressions, but also we associate them with meaning,
and in parallel also define the fundamental concept of ‘context’. This process will be identified as
Definition 2.1' although in reality it is a process in which we give the definitions and prove
properties which are needed in order to set up those definitions.

A small note on notation: In general we use the o symbol to indicate the end of a definition / lemma
/ theorem (especially when it may be unclear where the ‘item’ ends). In the case of big definitions



as the following within the definition you may find titled paragraphs (which may also correspond to
propositions or assumptions). If not clear on where the paragraph ends, we will use the - symbol to
indicate the end of the paragraph.

Definition 2.1:

Since this is a complex definition, we will first try to give an informal idea of the entities we’ll
define in it. The definition is by induction on positive integers, now we list the sets and concepts
we’ll define for a generic positive integer n.

K(n) is the set of ‘contexts’ at step n. A context k is a soop, we can represent a (non empty) context
k with a notation like this: k = (x;,91) Il ... Il (Xn,®m) Where for each 1 x; is a variable and @; is an
expression.

For each ke K(n) Z(k) is the set of ‘states’ bound to context k. If n>1 and ke K(n-1) then Z(k) has
already been defined at step n-1 or formerly, otherwise it will be defined at step n.

If k= &,e) II... Il (xm,®m) 1S a context, a state on k is a soop o = (x1,81) Il ... Il (Xm,Sm), Where
(roughly speaking) s; are members of the meaning of the corresponding espression ¢; .

For each ke K(n) E(n,k) is the set of expressions bound to step n and context k.

E(n) is the union of E(n,k) for ke K(n) (this will not be explicitly recalled on each iteration in the
definition).

For each ke K(n), te E(n,k), ce Z(k) we’ll define #(k,t,6) which stays for ‘the meaning of t bound to
k and o’. If n>1, ke K(n-1) and te E(n-1,k) then #(k,t,c) has already been defined at step n-1 or
formerly, otherwise it will be defined at step n.

For each ke K(n), te E(n,k)

V(1) is the set of the variables that occur within t, bound to a quantifier ;

Vi(t) is the set of the variables that occur within t, not bound to a quantifier ;

V(t) is the set of the variables that occur within t (of course V(t) = Vy(t) U V(t), so V(t) will not be
explicitly defined each time).

If n>1, keK(n-1) and te E(n-1,k) then Vy(t) and V(t) have already been defined at step n-1 or
formerly, otherwise they will be defined at step n.

We will also use some sets that will be defined in the same way at each step, so we will not define
them each time.

For each ke K(n), we define Ey(n,k) = {t | te E(n,k), Voe Z(k) #(k,t,0) is a set} .

For each ke K(n), te Eq(n,k) we define M(k,t) = Useza) #(k,t,0) .

For each ke K(n) we define M(n,k) = Ui psymx M(K,t) .
We finally define M(n) = Ukekm M(nk) .
We have seen that some entities may have been defined before step n and in this case we are not to

define them at step n, however at step n we need to check the definition that has been given is
coherent with what we would expect.



Now we are ready to perform the simple initial step of our inductive process.

We set K(1) = {e}, Z(¢) = {e}, E(1,e) = C.
For each te E(1,¢) (=C) we define #(g,t,g) = #(t), Vp(t) = D, Vi) = D .

The inductive step is much more complex. Suppose all our definitions have been given at step n and
let’s proceed with step n+1. In this inductive step we will need several assumptions which will be
identified with a title like ‘Assumption 2.1.x’. Each assumption is a statement that must be valid at
step 1, we suppose is valid at step n and needs to be proved true at step n+1 at the end of our
definition process.

The first assumption we need is the following.

Assumption 2.1.1: For each ke K(n): k#¢, o€ E(k) there exist a positive integer m and xi,..Xxpe V/,
01,..,Pm€ E(n), s1,..,Sm € M(n) such that

- Vi,j=1..m 175_] —> XﬁfXj

- k=00 I I (X, Qrm)

- o=xnLs) . 1 (Xm,Sm) - —

Thanks to this assumption for each ke K(n): k#¢, o€ E(k) the objects m, X1,..Xn€ V, @1,..,0m€ E(n),
S1,--,Sm€ M(n) are uniquely determined and for each i=1..m we can use the notation k(x;) to identify
@i, and use the notation o(x;) to identify s;. Furthermore for each ke K(n) we can define R(k) and
dom(k) etc. Similarly for each ce Z(k) we can define R(c) and dom(o) etc.

We can proceed with the inductive step and set
Km)" = { hll (y,9) | heK(n), peE(n,h), ye (V-dom(h)), Vpe E(h) #(h,¢.p) is a set } ,
K(n+1) = K(n) u K(n)*.

For each k in K(n)" there exist he K(n) , ye (V-dom(h)), o€ E(n,h) such that k = h Il (y,¢), and it is
clear that h, y, ¢ are unique.

So if k¢ K(n) we can define
E(k) = { o ll (y,8) | 6e E(h), se #(h,0,0) }.

If we accept this definition this implies that the same definition of Z(k) is true also for k in
K(n)*mK(n) .

To prove this we need a second assumption.

Assumption 2.1.2: for each k in K(n)

(k=¢)Vv

(n>1 A
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Jge K(n-1), ze V-dom(g), ye E(n-1,2): x= g Il (z,y) A Voe E(g) #(g,y,0) is a set A
E(k) ={ o ll(z,s) | o€ E(g), se #(g,y,0) } )
So let us consider k in K(n)*mK(n), we have k#¢, so

n>1 A 3ge K(n-1), ze V-dom(g), ye E(n-1,2): k= g Il (z,y) A Voe E(g) #(g,y,0) is a set A
Ek) ={ o ll(zs) | o€ E(g), se#(g,y.0) } .

But we also have k = h Il (y,p), so g=h, z=y, y=0,
Z(k)={ oll(y,s) | ce E(h), se#(h,p,0) } .

Therefore we have proved the following result, which is a consequence of the previous assumption.

Consequence 2.1.3:

for each keK(n)", heK(n), ye (V-dom(h)), p€E(n,h) such that VpeZ(h) #(h,p,p) is a set and
k=hll (y,p) we have

2Z(k)={ oll(y,s) | ce E(h), se#(h,p,0) }.

To ensure the unique readability of our expressions we need the following assumption (which is
clearly satisfied for n=1).

Assumption 2.1.4: For each te E(n)
- ] #°C
- iftfe(t)] = )’ then d(t,e(t)) = 1, else d(t,(t)) =0 .

- given an integer a.in {1, .., ¢(t)} if (tf[a]=":" or tfa]=",” or t[a]=")" ) then d(t,0)>1 .
_|

It is time to define E(n+1,k), for each k in K(n+1), and for each t in E(n+1,k) and o in Z(k) we need
to define #(k,t,0), and also we need to define Vy(t) and V(t) .

We have to warn that the definition of #(k,t,6), V(t) and V(t) is not an easy matter.

In fact, E(n+1,k) will be defined as the union of different sets. Consider for instance the situation
where ke K(n). One of these sets is E(n,k), the old set of expressions bound to context k. But of
course there also are new sets. If an expression belongs just to E(n,k) and not to the new sets, then
we don’t need to reason about #(k,t,c), because simply it has already been defined.

However, if an expression belongs both to E(n,k) and to one or more of the new sets, we will have a
proposed definition of #(k,t,c) for each new set, and we have to check that this proposed definition
is equal to the real definition.

If an expression belongs to just one new set and not to E(n,k) then we will simply define #(k,t,0)
with the proposed definition of #(k,t,5) for the new set.
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If an expression belongs to more than one new set, and not to E(n,k), we will need to check that the
proposed definitions of #(k,t,c) for each new set are equivalent, and then we will be authorized to
set #(k,t,0) with one of these proposed definitions.

When k¢ K(n) the discussion is simpler: it cannot be te E(n,k), so we just have to consider the other
situations. For the definition of Vy,(t) and V(t) the reasoning is similar but slightly different.

To have a formal approach to the subject we define the new sets of expressions bound to context k,
and for expressions in each of them we define the proposed values of #(k,t,6) and Vy(t), V(1) .

For each k = h Il (y,9) in K(n)" we define

E.(n+1,k) = {t | te E(n,h) A y& Vi(t) } .

For each te Ey(n+1,k), 6 = p Il (y,s) € E(k) we define the proposed values of #(k,t,6) and V(t),
Vi(t) :

#(k’t’c)(n+1,k,a) = #(h’t7p)7
ViOm+1.ka) = Vi), Vo(O)m+1xa) = Vo(t) .

For each k = h Il (y,9) in K(n)" we define
Ep(n+1,k) = {y} .
For each te Ey(n+1,k), 6 =p Il (y,s) € E(k) we define

#(K,t,6)m+1.k0) = 0(Y),
Vi®) w10 = (Y} Vo meixpn =9 .

As a premise to the following definition we specify that, given a positive integer m and a set D, we
call D™ the set D x .. x D where D appears m times (when m=1 of course D'=D), and a function
whose domain is a subset of D™ is called a ‘function with m arguments’.

For each k in K(n) we define E.(n+1,k) as the set of the strings (¢)(¢1, ... , ) such that
- mis a positive integer
- 0,01 .., 0m e E(nk);
- for each ce E(k) #(k,p,0) is a function with m arguments and
(#k, @1, 0), ..., #(, o, ©) ) is a member of its domain.

This means that for each te E.(n+1,k) there are a positive integer m and ¢, ¢y, .. , o, € E(n) such
that t = (@)(¢1, ... , Om). We will now show that m, ¢, ¢y, ... , @y, are uniquely determined. Within
this complex definition this proof of unique readability may be considered as a technical detail, and
can be skipped at first reading.

Suppose there are also a positive integer p and y, vy, ... , yp such that t = (y)(y1, ... , yp). We want
to show that p=m, y=¢ and for each i=1..m y;=0; .
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If we assign m we can give an ‘explicit representation’ of t. In fact if m=2 t = (¢)(91,92), if m=3
t = (@)(@1,92,93), and so on. In this explicit representation of t we can see explicit occurrences of

[

symbols ‘,” and ‘)’. There are explicit occurrences of ‘,” only when m>1. We indicate with q the
position of the first explicit occurrence of ‘)’ and the second explicit occurrence of )’ is clearly in

position ¢(t). If m>1 we indicate with qy, .. , qm. the positions of explicit occurrences of *,’.

In the same way if we assign p we can give another ‘explicit representation’ of t. In fact if p=2
t=(W)(V1,y2), if p=3 t=(V)(y1,y2,y¥3), and so on. In this explicit representation of t we can see
explicit occurrences of symbols ‘,” and ‘)’. There are explicit occurrences of ‘,” only when p>1. We
indicate with r the position of the first explicit occurrence of ‘)’ and the second explicit occurrence

of ©)’ is clearly in position ((t). If p>1 we indicate with ry, .. , r,; the positions of explicit
occurrences of ‘.

We have d(t,g-1) = d(t, | + (@) ) =d(t,1 + 1) + d(o, (@) = 1 + d(o, €(¢)).

If t[g-1]1 = @[()] = °)" then d(t,q) = d(t,q-1) = 1 = d(¢, &()) = 1.
Else t[g-1] = o[¢(@)] & {(*,’)’} so d(t,q) = d(t,g-1) = 1 + d(o, «(e)) = 1.

Suppose g<r. Obviously g>1, g-1>1, g-1<r-2 = €(y); y[g-1] =t[q] = ©)’. So

d(t,q) =d(t, 1 +(q-1)) =d(t,2) + d(y, g-1) =1 + d(y, g-1) > 2 . This is a contradiction because we
have proved d(t,q) = 1. So g>r.
In the same way we can prove that r>q, so it follows that r=q .

Clearly ¢(y) =r—2 =q -2 ={(p), and for each a=1..0(¢) ¢[a] = tfa+1] = y[a]. In other words y=¢.

Of course we have also
dt,r) =d(t,q) =1,d(t, r+2) =d(tr) - 1 + 1 =1, d(t,qg+2) =d(t,q) -1+ 1 =1.
First we examine the case where m=1. First of all we want to show that p=1. Suppose p>1.

In this situation we have

dit,ry,— D =dt,r+ 1+ (- 1= (+ 1)) =d(t, r+1 + €(yy)) = d(t,r+2) + d(y1, €(y1)) =
= 1 +d(y1, (y)).

If t[r; — 1] = y1[€(y1)] = )" then d(t,ry) = d(t,r; — 1) = I =d(yy, €(y1) = 1.
Else t[r; — 1] = yi[e(y1)] & {*(°,)’} so d(t,r) =d(t,r; — 1) = 1 + d(yy, €(y1)) = 1.

On the other side we have to consider that

(o) =€t)-1-(q+1)=€t)-q-2,
ni)-1,
n-Q@+H<a)-1-(@q+1)=¢t)-q-2=Ue1) ,
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rn>q+2,rn-(@q+H=>1,

Qi[r = (g+D] =t[r] =°",

1 =d(try) =d(t, g+2) + d(@1, 11 — (q+1)) = 1 + d(@1, 11 — (g+1)) .

This causes d(@;, r; — (q+1)) = 0, but for assumption 2.1.4 we must have d(p;, r; — (q+1))>1.

So it must be p=1.
Of course €(y)) =€) — 1 —(r+ 1) =€t)—r-2=0t) —q—2 =U0)),

For each o=1..0(p)) ¢1[a] =t[q+ 1 + a] =t[r + 1 + a] = y;[a]. Therefore y; = ¢; .

Now let’s discuss the case where m>1.
First we want to prove that for each i=1..m-1 p>i, d(t,q;)=1, ri=qi, yi = ¢; .
Let’s show that p>1, d(t,q;)=1, ri=qi, y1=0; .

If p=1 of course m=1, so p>1 holds. Suppose q;<r; .

We have that d(t, q; — 1) =d(t,q+ 1 + (@) =d(t, g+ 1 + 1) + d(@y, €(p1)) = 1 + d(py, €(P1)).
If t{q) — 1] = @i[¢(@1)] = )" then d(t,q;) = d(t,q1 — 1) — 1 =d(@1, «(@1)) = 1.

Else t[q; — 1] = @i[¢(eD] & {°(*,")’} so d(t,q1) =d(t,q1 — 1) =1 + d(o1, «(@1) = 1.

And we have also

(y)=r-1-+1)=r-1r-2,

q-r-l<rn-r-1,q-r-1<y),
qQq>q+l,q>r+l,q—-r-1>1,

1=dtq)=dt,r+1+(q-r-1)=dt, r+2) +d(y;,q—-r—1)=1+d(y;,q—r—1).
Sod(yi, qi —r—1)=0. Butsince y[q; —r— 1] =t[q;] = ‘,” by assumption 2.1.4 we must have
d(y1,qi —r—1)>1, so we have a contradiction .

Hence q; > r; and in the same way we can show that r; > q, therefore r; =q; .

At this point we observe that ¢(p;)) =q1 -1 -(q+1)=qi—-q-2 =1 —1 -2 ={(y;) and for each
o=1..0(p1) ¢i[a] =t[q+ 1 +a] =t[r+ 1 + a] = y;[a] , hence y; =@, .

We have proved that p>1, d(t,q;)=1, r1=q;, v1=¢; , and if m=2 we have also shown that for each
i=1..m-1 p>i, d(t,qi)=1, Ii=qi, Vi = Qj .
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Now suppose m>2, let i=1..m-2, suppose we have proved p>i, d(t,q;)=1, ri=qi, V; = ¢; , we want to
show that p>i+1, d(t,qi+1)=1, ris1=qi+1, Vit 1=@is1 -

First of all d(t, giy1 — 1) = d(t, q; + €(@is1)) = d(t, gi + 1) + d(@Qiz1, UPis1)) = 1 + d(@is1, €Pir1)).
If t[qi+1 — 1] = @iri[€(@is1)] = )’ then d(t,qis1) = d(t,qiv1 — 1) — 1 = d(@ir1, U@is1)) = 1.

Else t[qi+1 — 1] = @ixi[€(@ir)] & {°(",")’} so d(t,qix1) = d(t,qis1 — 1) = 1 + d(@ir1, €(Pis1)) = 1.
Suppose p=i+1. We have i<m-2,1+ 2 <m, t[qg;+1] = °,”. And we have also

yp) =) - 1-r1;,
Qis1 SO — 1, Qi1 — 1 <€) — 1 — 13 = €(yp),

Qi+l — L =Qiv1 — ¢ =1,

VplQis1 — il = tlqis] =7,

1 =d(t,qir1) = d(t, 1 + (Qis1 — 1) =d(t, 1 + 1) + d(yp, Giv1 —15) = 1 + d(yp, Gis1 — ).
So d(yp, qis1 —1i) = 0, and this contradicts assumption 2.1.4. Therefore p > i+1.

Now suppose qi+1 < Ii+1. In this case

(i) =Tig1 — 1 =13,

Qi1 <Tis1 — 1, Qis1 — 1 <Tigg — 1 =11 = €(yis1)

Qi+l — L =Qiv1 — ¢ =1,

Vir1[Qivr — 1] = t[qQin] = 7,

I =d(t,qis1) =d(t, 1 + (Qis1 — 1) = d(t, 15 + 1) + d(Wis1, Qw1 — 1) = 1 + d(Wis1, Qiv1 — ).

So d(yi+1, giv1 — 13) = 0, and this contradicts assumption 2.1.4. Therefore qiy; > riyg .

In the same way we can prove that qi;; < i, hence i) = g4+ 1S proved .

Moreover €(@is1) = Qis1 — 1 — Qi =Tip1 — 1 — 15 = (yis1), foreach o =1 .. €(yis1)
Viri[a] = t[r + o] = t[qi + a] = @ir1[a] . And SO Wir1=@is1 .

We have proved that for each i=1..m-1 p>i, d(t,q)=1, ri=q;, Vi = ¢; .
So p>m, and in the same way we could prove m>p, therefore p=m.

We have seen that ry,.; = qu.1, it follows
((Qm) =0(t) — 1 — qm.1 =€(t) — 1 — 1.1 = €(yy), and for each o = 1..0(¢p)
Omla] = t[qm-1+a] = t{ry+a] = ym[a] , therefore vy, = @, .

So also in the case m>1 it is shown that p=m and for each i=1..m y;=@;
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For each t = (¢)(¢y, ... , om) € Ec(n+1,k) we can define

#(k,t,G)(n+1,k,c) = #(k,(P,G) ( #(k’(Pl’G)7 cee #(k’(PI‘IbG) ) ’
ViOm+1ke) = V(@) U V(@) U ... U Vi(Qm) ,
Vi(Dm+1x0) = V(@) U V(@) U ... U Vi(Qr) .

For each k in K(n) we define E4(n+1,k) as the set of the strings (f)(¢, ... , ¢m) such that
- fbelongs to F
- mis a positive integer
- 01, .., 0m € E(nk);
- for each ce E(k) A #(k, @1, 0), ... , #(K, om, 0) ) is true.

For instance, this means that if the logical conjunction symbol A belong to F, ¢1, ¢ belong to

E(n,k) and for each e Z(k) both #(k, ¢, 6) and #(k, ¢,, o) are true or false, then (A)(¢;,9,) belongs
to Eq(n+1,k).

This implies that for each te Egq(n+1,k) there are f in F, a positive integer m and @y, .. , o, € E(n)
such that t = (f)(py, ... , Om). We will now show that f, m, ¢, ... , @, are uniquely determined.
Within this complex definition this proof of unique readability may be considered as a technical
detail, and can be skipped at first reading.

Suppose there are also ge F, a positive integer p and vy, ... , Y, such that t = (g)(y1, ... , yp). We
want to show that g=f, p=m and for each i=1..m y;=¢; .

If we assign m we can give an ‘explicit representation’ of t. In fact if m=2 t = (f)(¢,9»), if m=3
t = (£)(¢1,92,03), and so on. In this explicit representation of t we can see explicit occurrences of

[

symbols ‘,” and ‘)’. There are explicit occurrences of ‘,” only when m>1. The explicit occurrences

of ‘)’ are clearly in positions 3 and ¢(t). If m>1 we indicate with qy, .., qm-1 the positions of explicit
occurrences of ‘.

In the same way if we assign p we can give another ‘explicit representation’ of t. In fact if p=2

t = (g)(y1,y2), if p=3 t=(g2)(y1,¥2,y3), and so on. In this explicit representation of t we can see
explicit occurrences of symbols ‘,” and ‘)’. There are explicit occurrences of ‘,” only when p>1. The

explicit occurrences of )’ are clearly in positions 3 and ¢(t). If p>1 we indicate with ry, .. , 1,y the
positions of explicit occurrences of ‘,’.

It is immediate to see that g = t[2] =f.
We first consider the case where m=1. Here we have to show that p=1, y;=0; .

Suppose p>1. In this situation we have

ditr;— 1) =d(t, 4+ (r; —1-4)) =d(t, 4 + ((y)) =d(t,4+1) + d(y, (y)) =
=1+ d(y1, 6yy)).

If tlr; — 1] = w1 [€y1)] = °)" then d(t,r)) = d(t,r; — 1) — 1 =d(y1, d(y1)) = 1.
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Else t[r; — 1] = yi[l(yD] & {*(°,)} sod(t,r) =d(t,ry — 1) =1 + d(y1, €(y) = 1.
On the other side we have to consider that

o) =t —1-4=(1)-5,

r-4<)-1-4=0)-5=¢),
n>4+1,1n-4>1,
¢oi[r —4]=tn]="",

1 =d(tr)=dt, 4+ (r; —4)) =d(t, 4+1) + d(p;, 11 —4) =1 +d(py, 11— 4) .
This causes d(@;, r; —4) = 0, but for assumption 2.1.4 we must have d(¢;, r; —4) > 1.

So it must be p=1.

Of course (y) = €(t) — 1 —4 = (g)),

For each o=1..¢(p,) ¢[a] = t[4 + a] = y;[a]. Therefore y; = ¢; .

Now let’s discuss the case where m>1.
First we want to prove that for each i=1..m-1 p>i, d(t,q;)=1, ri=qi, yi = ¢; .
Let’s show that p>1, d(t,q;)=1, ri=qi, y1=0; .

If p=1 of course m=1, so p>1 holds. Suppose q;<r; .

We have that d(t, q; — 1) =d(t, 4 + €(@y)) = d(t, 4 + 1) + d(@y, ¢(1)) = 1 + d(@1, €(¢1)).
If t{q) — 1] = @i[¢(@1)] = )" then d(t,q1) = d(t,q1 — 1) — 1 =d(@1, «(@1)) = 1.

Else t[q; — 1] = oile(on] & {°(",’)’} so d(t,q1) =d(t,q1 — 1) =1 + d(y, «(e1)) = 1.

And we have also

(y)=r-1-4,

q-4<r-1-4=Uy1),
q124+1’q1_4217

1=d(tq)=dt,4+(q—4)=dt, 4+1)+d(y,q1 -4 =1+d(yi,q1 —4).
So d(yy, q; —4) = 0. But since y;[q; — 4] = t[qi] = *,” by assumption 2.1.4 we must have
d(y1, q1 —4) > 1, so we have a contradiction .

Hence q; > r; and in the same way we can show that r; > q, therefore r; =q; .
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At this point we observe that ¢(p;) =q;— 1 -4 =1, -1 -4 =¢(y;) and for each a=1..¢(p,)
¢1la] =t[4 + a] = y[a] , hence y; =@, .

We have proved that p>1, d(t,q;)=1, r1=q;, v1=¢; , and if m=2 we have also shown that for each
i=1..m-1 p>i, d(t,qi)=1, Ii=qi, Vi = Q; .

Now suppose m>2, let i=1..m-2, suppose we have proved p>i, d(t,q;)=1, 1ri=q;, V; = @; , we want to
show that p>i+1, d(t,qi+1)=1, Iis1=qis1, Yit1=Qis1 -

First of all d(t, gis1 — 1) = d(t, q; + €(@is1)) = d(t, gi + 1) + d(@ir1, UPis1)) = 1 + d(@is1, €Pis1)).
If t[qiv1 — 1] = @ir1[l(@is)] = °) then d(t,qi+1) = d(t,Qis1 — 1) — 1 = d(@is1, €(@i1)) = 1.

Else t[qis1 — 11 = @in[€(@ixD] € {°(°)")’} so d(t,qi+1) = d(t,qis1 — 1) = 1 + d(@is1, €@is1)) = L.
Suppose p=i+1. We have i<m-2,1+ 2 <m, t[qg;+1] = *,”. And we have also

yp) =) - 1-r1;,
Qis1 S0 — 1, Qi1 — 1 <€) — 1 — 13 = €(yp),

Qivl —Ti =Qiv1 — Qi =1,

VplQis1 — il = t{qis1] =),

1 =d(t,qir1) = d(t, 1 + (Qis1 — 1) = d(t, 1 + 1) + d(yp, Gis1 —15) = 1 + d(yp, qip1 — 1).
So d(yp, qis1 —1i) =0, and this contradicts assumption 2.1.4. Therefore p > i+1.

Now suppose qi+1 < 1i+1. In this case

((Yir1) =Tig1 — 1 — 17,

Qi1 <Tis1 — 1, Qis1 — 1 <Tigg — 1 =1 = €(yis1)

Qi+l — L =Qiv1 — ¢ =1,

Virt[Qivr — 1] = t[Qin] = 7,

I =d(t,qis1) =d(t, 1; + (Qis1 — 1) = d(t, 15 + 1) + d(Wis1, Qw1 — 1) = 1 + d(Wis1, Qis1 — ).

So d(yi+1, giv1 — 13) = 0, and this contradicts assumption 2.1.4. Therefore qiy; > riyg .

In the same way we can prove that qi;; < ri;, hence i = qi4+1 1S proved .

Moreover €(@iy1) = gis1 — 1 — Qi =iy — 1 — 13 = €(yi41), for each o =1 .. €(yi;1)
Vis[o] = t[r; + a] = t[q; + a] = @ir1[a] . And S0 Wi 1=y .

We have proved that for each i=1..m-1 p>i, d(t,q)=1, ri=q;, Vi = ¢; .
So p>m, and in the same way we could prove m>p, therefore p=m.

We have seen that ry,.; = qu.1, it follows
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((Om) =0(t) — 1 — qm.1 =€(t) — 1 — 1.1 = €(yy), and for each o = 1..0(¢p)
Omla] = t{[qm-1+a] = t{ry+a] = ywla] , therefore vy, = @, .

So also in the case m>1 it is shown that p=m and for each i=1..m y;=¢; .

_|

For each t = (f)(9y, ... , om) € Eq(n+1,k) we can define
#(k7t’6)(n+1,k,d) = Pf ( #(k’(Pl’G)7 cee #(k’(PIIbG) ) ’
ViOw+1ka) = Vi@1) U ... U VPm) ,
VoD @+1ka) = Vo(@1) U ... U Vi(@n) .
For each k in K(n) we define E.(n+1,k) as the set of strings { }(X;:01, ... , Xm:@m, ¢) such that

- mis a positive integer

- Xi,...,Xnqdistinct € V-dom(k) ;

- @1 € E(n,k), for each oe Z(k) #(k,,,0) is a set ;

- if m>1, for each i=1..m-1 if we define k’; = kll(x1,@ Il .. lI(x;,¢;) it follows

k’i € K(n) A ¢i11€ E(n, k’;) A for each 6’i€e 2(kK’;) #(K’i, @i+1, 075) is a set ;

- if we define k', = klI(x1,@ Il .. I(Xm,Pm) it follows k’ e K(n) A e E(nk’y) .

This means that for each te E.(n+1,k) there are a positive integer m, Xy, ... , X € V and

0, ¢1, .. , m € E(n) such that t = {}(X1:01, ... , Xm:®m, ¢). We’ll now show that m, xi, ... , Xp,
¢, ¢1, .. , o are uniquely determined. Within this complex definition this proof of unique
readability may be considered as a technical detail, and can be skipped at first reading.

Suppose there are also a positive integer p, yi, ... , ¥p € V., ¥, yi, ... , yp, € E(n) such that
t={}(yivi, ..., Ym:Vm, V). We want to show that p=m, for each i=1..m y; = x;, y; = ¢; , y=0 .

If we assign m we can give an ‘explicit representation’ of t. In fact if m=2 t = { }(X;:Q1, X2:02, @), if
m=3 t = { }(X;:01, X2:¢2, X3:03, ¢), and so on. In this explicit representation of t we can see explicit

[

occurrences of symbols ‘,” and ‘:’. We indicate with q, .., qm the positions of explicit occurrences
of ‘> and with ry, .., ry, the the positions of explicit occurrences of *,’.

In the same way if we assign p we can give another ‘explicit representation’ of t. In fact if m=2
t={}(yrv, y2:v2, v), if p=3 t = {}(y1:W¥1, Y2:¥2, V3:¥3, V), and so on. In this explicit representation
of t we can see explicit occurrences of symbols *,” and ‘. We indicate with q’y, .., q’p the positions
of explicit occurrences of ;> and with r’y, .., r’, the the positions of explicit occurrences of *,’.

We want to show that for each i=1..m p>i yi=xi, q’i=q;, d(t,r;)=1, r’i=1;, V;=0; .

The first step is to show that y;=x, q’1=qy, d(t,r))=1, r’ =11, y1=0; .

Of course y; =t[3] =x1,q’1 =4 =q; . Moreover
d(tr; - D) =d(t,qi + (ri — 1 —qu)) =d(t, qi + €(@1)) =d(t, qi + 1) + d(@1, €(@1)) = 1 + d(@1, 1)) .

If t[r; — 1] = ¢1[(1)] = )’ then d(t,r;) =d(t,r; — 1) — 1 =d(@y, €(¢1)) = 1.
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Else t[ry — 1] = gi[l@D] & {*(",))"} sod(tr) =d(t.r; — 1) =1+ d(o1, e1)) = 1.
Now suppose 1; < 1’;. This would mean that

(y)=r1-1-q"1,

n-qi<ri-1-q 1=y,

n-q1=n-q=>1,

yilr —ql =tr] =",

l=d(tr)=d(t, g1+ (1 -q 1) =d(t,q’1+ D) +d(yi, i =g ) =1+d(y1, 11 -q"1) .
So d(yy, r; —q’1) =0, and this contradicts assumption 2.1.4.

Hence r; > 1’1, in the same way we can show that r; <r1’y, therefore r; =1’ .

At this point we observe that

((@;)=1r1—1—-q;=0¢vy;)and foreach a =1 .. ¢(y)

vi[a] =t[q’; + o] =t[q: + o] = ¢i[a], hence y; =0 .

If m=1 we have proved that for each i=1..m p>i y;=x;, q’i=qi, d(t,r;)=1, r’i=r;, Vi=0; .

Consider the case where m>1. Let i=1..m-1, we suppose p>i yi=xi, q’i=qi, d(t,r;)=1, r’j=r;, yi=¢; and
want to show pi+1 yiyi1=Xis1, Q' i+1=qi+1, d(CTir1)=1, Uis1=Tist, Yis1=Qis1 -

We can immediately show that d(t,ri+;)=1. In fact
d(t, Qi+1 + 1) = d(t, I‘i) =1,

d(trisr = 1) =d(t, gint + (T = 1 = ir1)) = d(E, Qivr + €@in1)) = d(t, Givr + 1) + d(@isr, UPin1)) =
=1+ d(@it1, UGis1)) -

If t[ris1 — 1] = @it [U(@ir1)] = ) then d(t,1is1) = d(t,ris — 1) — 1 = d(@is1, APir1)) = 1.
Else t[ris1 — 1] = @i [€(@ir)] & {°(5,7)} so d(t,rip1) = d(trier — 1) = 1 + d(@is1, €(pis1)) = 1.

Suppose p=i . In this case

y)=H—1-r7y,
L =<0 - 1 -1 =0y) ,
Ll — i =T — 6> 1,

2

Y1y — 5] =trgl =57,

I =d(tris) =dt i+ (G — 1) =d(t, i+ 1) + d(y, ri41 — 1) = 1 + d(y, 111 — 174) -
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So d(y, riy; — r’;) = 0, and this contradicts assumption 2.1.4. Therefore p>i+1. It follows
immediately that y;; = t[r’i+1] = t[ri+1] = Xi41 and q’i+1=qi+1 -

Now we suppose ti+; < 1’i+1 . This would mean that
(Yir1)) =T — 1 = qQ'is1

il —Qirt ST — L = Qi =0y1)

Titl —Qisl =Tig1 —Qis1 = 1,

Viri[Liv1 — @il =t ] =47,

I =d(tris) =d(t, Qi1 + @t — Qi) =d(€ Qi + 1) + d(Wivr, Tin — Qis1) = 1+ d(Wist, i — Qis1) -

So d(yis1, Tiv1 — q’i+1) = 0, and this contradicts assumption 2.1.4. Hence riy; > r’i;1, in the same way
we can show that ri,; <r’iy1, therefore rj;; =1’i41 .

At this point we observe that

U @ir1) =Tis1 — 1 — Qi1 = Ayi41) and for each o =1 .. €(yis1)
Vis[a] = t[q’ir1 + o] = t[qis1 + a] = @isi[a], hence yiy = @iy1 -
It is shown that for each i=1..m p>i y;=x;, q’i=qi, d(t,r))=1, r’i=ri, Yi=; .

So p>m. In the same way we could prove that m>p, so p=m. In our proof we just need a final step,
which is proving that y=¢. This clearly holds because of

y)=0t)—1-r'p=0t) -1 -1, =00), for each o = 1..0(y)
yla] =t[r’y + o] = tlrm + o] = ¢la] .

For every t = { }(X1:01, ... , Xm:®Pm, @) € Ee(n+1,k) we can define

#(K,t,0)(n+1.ke) = {#K m,0,0'm) | 0'm €EK ), 6 E ' }.

If we use a notation closer to the one of our formulas, we can write

#(K,t,0)mr1ke) = {} (Om €EK m): 6 E G’ m , #(K m®,0'm) ) -

In the paper we will often use a notation like {} (6’ €E(k’p): 6 E 6’y , #(K ' 1m,0,06’m) ) to define

our sets, in this example the meaning of this notation is clearly the same meaning of
{(#K m,0,0’'m) | 0'm€BE(K’ M), 0 E ', }.

Moreover, if m=1

ViOms1xe) = V(@) U (Vi(@)-{x1}) ;
V(O ms1xe) = {X1} U V(1) U V(@) 5

If m>1
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Vi) m+1xe) = Vi@01) U (Vi(@2)-{x1}) U ... U (VHOm)-{X1,--sXm-1}) U (VH@)-{X1,....Xm}) ;
Vo(Oms1xe) = {X1,.Xm} U V(@1) U .. U V() U V(@) .

We have terminated the definition of the ‘new sets’ (of expressions bound to context k) and the
related work, we are now ready to define E(n+1,k).

We establish that

- for each ke K(n)" - K(n) E(n+1.,k) = Ea(n+1.,k) U Ey(n+1,k)
- for each ke K(n) - K(n)" E(n+1,k) = E(n,k) U E.(n+1,k) U Eg(n+1,k) U Ec(n+1,k)
- for each ke (K(n)" N K(n))

E(n+1,k) = E(n,k) U E,(n+1,k) U Ey(n+1,k) U Ec(n+1,k) U Eq(n+1,k) U Ec(n+1,k)

We can also have an unified definition by setting, for each ke K(n+1):

- ifkeK(n)*
E’.(n+1,k) = Ey(n+1,k), E’p(n+1,k) = Ep(n+1,k)

else
E.(n+1k) =3, E'y(n+1,k) = ;

- if ke K(n)
E’(n,k) = E(n,k), E’.(n+1,k) = E.(n+1,k), E’4(n+1,k) = Eq(n+1,k), E’c(n+1,k) = Ec(n+1,k)

else
Emk) =G, E(n+1 k)=, E'4(n+1 k) =, E’.(n+1. k)= .

and finally setting
E(n+1,k) =E’(n,k) U E’,(n+1,k) U E’y(n+1,k) U E’.(n+1,k) U E’4(n+1,k) U E’c(n+1,k) .
For every t in E(n+1,k), with respect to the definition of #(k,t,0), there are three possibilities:

1) tisin E’(n,k): then #(k,t,0) is already defined; if t is in one of the sets E’y(n+1,k) we need to
verify that #(k,t,6) = #(K,t,6)m+1 k.w)

2) tisnotin E’(n,k) and t is in just one of the sets E’(n+1,k): then we just define
#(k,t,0) = #K,L0)mr1.kw)

3) tisnotin E’(n,k) and t is more than one of the sets E’(n+1,k): in this case we need to verify
that for each distinct wy, w, such that te E’,;(n+1,k) N E’y»(n+1,k)
#(K.t,0) e 1k wi) = FKE0) 41,k w2)-
Then #(k,t,c) will be defined equal to #(k,t,6)m+1.x.w) for whatever w such that te E’(n+1,k) .

By point 1) we are required to verify that for each keK(n+1), we{ab,c,d,e}, t in
E’(n,k)NE’y(n+1,k) and o€ Z(k) #(k,t,0) = #(K,t,0)m+1.kw) -

By point 3) we are required to verify that for each ke K(n+1), w,wy €{ab,c,d,e}: wi#w,, t in
E’wi(n+1,k) N E’y2(n+1,k) and o€ Z(k) #(K,1,6)@n+1.kw1) = #FEKLO) 1 kw2)-
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Those verifications ensure us that #(k,t,c) is defined for every t in E(n+1.,k), and also we are
enabled to state that

for each ke K(n+1), we {a,b,c.,d,e}, t in E’y(n+1,k) and ce E(k) #(K.t,0)@n+1xw) = #(K,t,0) .

As regards the definition of Vy(t) and V¢(t) we can make a similar argument. For each te E(n+1)
there are three possibilities:

1) tisin E(n): then Vy(t) and V(t) are already defined; if t is in one of the sets E’w(n+1,k) we
need to verify that Viy(t) = Vp(O)m+1xw) (and the same for V(t) )

2) t is not in E(n) and there are just one ke K(n+1) and we {a,b,c,d,e} such that t is in
E’w(n+1,k): then we just define Vi(t) = Vp(t)n+1x.w) (and the same for V(t) ).

3) tis not in E(n) and there are more than one ke K(n+1) and we {a,b,c,d,e} such that t is in
E’w(n+1,k): in this case we need to verify that for each k;,k, € K(n+1) and w;,w, with
te E'wi(n+1.k)N E’yo(n+1,ky) we have Vp(t)msixiwi) = Vo(m+1k2.w2) (and the same for
Vi(t)). Then Vi(t) will be defined equal to Vp(t)m+1xw) for whatever k,w such that t is in
E’w(n+1.k).

By point 1) we are required to verify that for each ke K(n+1), we {a,b,c,d,e} and for each t in
E(n) N E’y(n+1,k) Vu(t) = Vp(t)m+1.kw) (and the same for V(t) ) .

By point 3) we are required to verify that for each k;k, € K(n+l), wi,wye{ab,c,d.e},
te E’Wl(n+1,k1)m E’Wz(n+1,k2) (SUCh that te E(Il)) we have Vb(t)(n+1,k1,w1) = Vb(t)(n+1,k2,w2) (and the
same for V((t)).

Those verifications ensure us Vp(t) and Vg(t) are defined for every t in E(n+1,k), and also we are
enabled to state that

for each ke K(n+1), we {a,b,c,d,e} and t in E’(n+1,K) Vi ()(n+1x.w) = Vb(t) (and the same for V(t)).
We now have to perform the required verifications. These verifications require a further set of

assumptions. We will immediately list those assumptions, and also significant consequences to
them that will in turn be used in our verification process.

Assumption 2.1.5: if n>1 then K(n-1)  K(n) . —

Assumption 2.1.6: Let «k in K(n) such that for each x in dom(x)"Ndom(k) x(x)=k(x). Let
t € E(n,x)NE(n,k). Let 6,€ E(x), pke Z(k) such that Vxe (dom(kx)ndom(k)) 6(x) = pk(X).
Then #(x,t,0,) = #(k,t,px) . —

The next assumption has a central role in our verification process.

Assumption 2.1.7: For each ke K(n), te E(n,k) one and only one of these 5 alternative situations is
verified:

a. teC, Voe E(k) #(x,t,0) = #(1), Vi(t)=3, V()=
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b. n>1, tedom(x), Voe Z(k) #(k,t,0) = o(t), Vit)={t}, Vp(t)=D

c. n>1,3heK(n-1):hE«, J o, ¢y, .., on € En-1,h):
t=(@)(@1, ..., Pm), te E(n,h),
for each pe Z(h) #(h,o,p) is a function with m arguments,
(#(h, @1, p), ... , #(h, @, p) ) is a member of its domain,
#(h, t, p) = #(h,0.p) (#(h,@1.p), ... , #(,om,p) )
Vi(t) = V(@) U V(o)) U ... U V(o) ,
V(1) = V(@) U Vp(@1) U ... U V(@) ,
for each ce E(x), pe E(h): p E o it results
#(x, t, 0) =#(h, t, p)

d. n>1,3heK(n-1):hE«,IfeF, @y, .., pm € E(n-1,h):
t=®(1, ... . om), te E(n,h),
for each pe Z(h) A¢( #(h, @1, p), ..., #(h, Om, p) ) ,
#(h, t, p) = Pr (#(h,¢1,p), ... , #(h,Qm.p) )
Vi(t) = V(o)) U ... U V(o) ,
V(1) = V(o) U ... U V(@) ,
for each ce E(x), pe E(h): p E o it results
#(x<, t,0) =#(h, t, p)

e. n>1,dheKm-1):hEx I, 0y, .., on e EMn-1),
3Ixy, ..., Xy distinct € V-dom(h) :
t={}Xi:Q1, ..., Xm:Qm, ®), te E(n,h),

¢ € E(n-1,h), for each pe E(h) #(h,,p) is a set ;
if m>1 for each i=1..m-1 if we define h’; = hll(x;,@)Il .. ll(x;,¢;) it follows

h’; € K(n-1) A ¢i;1€ E(n-1, h’;) A for each p’ie Z(h’;) #(h’;, ¢is1, p’i) 1S a set ;
if we define h’y, = hll(x;,@ Il .. (X, @) it follows h’ e K(n-1) A pe E(n-1,h’y,) ;

for each pe Z(h)
#htp)={}(P'm€EM W): p E Pm, # 1m,0.p"m) ) 5

if m=1 Vi(t) = Vo) U (V(@)-{x1}) ;
V(D) = {x1} U V(1) U V(@) .

if m>1
Vi(t) = V(1) U (Ve(@2)-{x1}) U ... U (VHOm)-{X15-0:Xm-1}) U (VH(@)-{X1,...,.Xm}) 3
Vu(0) = {X1,.Xm} U V(@1) U .. U V() U Viu(9) ,

for each o€ E(x) and for each pe E(h): pEo it results
#(c, t,0) =#(h, t, p) .
_|

Assumption 2.1.8: Let n>1, ke K(n), he R(k): h#k. Then he K(n-1), for each ce Z(k) if we define
p = o/dom(h) then pe Z(h) .

_|

Assumption 2.1.9: if n>1 then for each ge K(n-1) E(n-1,g) < E(n,g) . —
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Consequence 2.1.10:
Suppose k, k’e K(n), ye V-dom(k), pe E(n,k): k> = k Il (y,). Moreover let ce E(k) and 6’ E(K’)
such that 6 © o’. Then there is s in #(k,(,o) such that 6" = o Il (y,s).

Proof:
By our assumption 2.1.2

(n>1 A
JgeK(n-1), ze V-dom(g), ye E(n-1,2): kK’= g Il (z,y) A Vpe E(g) #(g,y,p) is a set A
Ek) ={pll(zs) | peE(g), se#(gy.p) } ).

Sokll (y,p) = kK’= gl (z,y). Clearly this means that y=z, =y, k=g, and
Ek) ={pll(y.s) | peE(k), se#(k,0,p) } .

Hence there exist pe Z(k), se #(k,p,p) such that 6" = p Il (y,s).

Now dom(p) = dom(k) = dom(c), and p = 6’/dom(p) = ¢’/dom(c) =G .

The obvious conclusion is that 6> = ¢ Il (y,s) and se#(k,,0) .

Consequence 2.1.11:
Suppose k, k’e K(n), ye V-dom(k), o€ E(n,k): k> =k Il (y,p). Moreover let 6 E(k) and
o’ =0 ll (y,s), with se #(k,p,0). Then 6’e Z(k’), and clearly c=c’ .

Proof:
By our assumption 2.1.2

(n>1 A
Jge K(n-1), ze V-dom(g), ye E(n-1,2): kK’= g Il (z,y) A Vpe E(g) #(g,y,p) is a set A
Ek) ={pll(zs) | peE(g), se#(gy.p) } )

Sok Il (y,p) = k’= g ll (z,y). Clearly this means that y=z, p=vy, k=g, and

EK) ={pll(y.s) | peE(k), se#(k,0.p) } .

It follows immediately that 6’ Z(k’), and clearly 6=0o’ .

Consequence 2.1.12:

Let g,he K(n), 9, @1, .., o € E(n), x4, ... , Xy, distinct € (V-dom(g)) N (V-dom(h))

25



t={}XiQn ... s XmiQm, 9);

¢ € E(n,g), for each pe Z(g) #(g,p1,p) 1s a set ;

if m>1 then for each i=1..m-1 if we define g’; = gll(x1,p)Il .. lI(x;,9;) it follows
g’i € K(n) A ¢ir1€ E(n, g’i) A for each p’ie Z(g’;) #(2’i, ®i+1, pi) 1S a set ;

if we define g’y, = gll(x1,@ Il .. l(Xm,Pm) it follows g’ e K(n) A o€ E(n,g 1)

¢ € E(n,h), for each o€ Z(h) #(h,p,,0) is a set ;

if m>1 then for each i=1..m-1 if we define h’; = hll(x;,p)Il .. [I(x;,p;) it follows
h’; € K(n) A ¢iz1€ E(n, h’;) A for each 6’i€ E(h’;) #(h'y, @i41, 075) is a set ;

if we define h’y, = hll(x;,@ Il .. l(Xm,@m) it follows h’ e K(n) A o€ E(n,h’y,)

Moreover we suppose that Vxe dom(g)ndom(h) h(x)=g(x), and let pe E(g), o€ E(h) such that
Vxe dom(g)ndom(h) p(x)=c(x). Then

{(}(0neEn): 6 Ec y ,# 1 n0,0'm) ) ={}(Pm €EEW): PE P'm, (& m®P.P m) ).
Proof:

Letue {} (0'meEMO’ n): 0 E 'y , # (N n,,6'm) ), we want to show that
ue {J(Pm€EEm):PE P m»#E m®PP m) )

There exists 6, € E(h’y) such that o & 6'y, , u = #(h',0,6"m).
First of all we may observe that h’,e K(n), h’,#¢, so n>1 .

We also observe that he K(n) and so h can be expressed in the form (z;,y1) Il .. Il (z,,y,,) (if h=¢ we
assume p=0 and this expression reduces to €), and o€ E(h) can be expressed in the form
(z,r) M (zZptp).

So we have h’'y = (z1,y1) I 11 (Zp,wp) T (X1,00) 1. 1T (Xiny @)

Since 6’y € E(h’) 6’ can be expressed as (z1,vi) I .. I (zp,vp) I (x1,wi) Il 1l (X, Win).
Because of 6E6’y, it follows that 6’y = (z1,11) Il .. Il (zp,1p) | (X1, W) 112 Ml (X, Win).

For each i=1..m-1 we have h’; = (z;,y1) Il .. Il (zp,yp) Il (x1,01) Il .. Il (X;,91), and

dom(h’;) = {zi,..,2,X1,..,Xi} so we can define ¢’; = ¢’ ,/dom(h’;) and we have

o’y = (z,r) Il 1 (zp,rp) T (x,wp) I 11 (X5, w5).

We also define h’g=h, 6’y = 6. We can immediately observe that for each i=1..m-1 6’{=6’4;.

We can prove that for each i=1..m ¢’;€ Z(h’;) and there is si€ #(h’i_.1,¢i,6°;.1) such that
c’i =01 Il (Xi,84).

We will prove this by induction on i. Let us perform the initial step of our induction process.
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We have ¢’1=0’/dom(h’y). If m=1 then ¢’;=0c’,e E(h’;), otherwise h’;eR(h’,,) h’;#h’, , and this
means (by 2.1.8) that 6’ 1€ E(h’y) .

We have h’g, b’y e K(n), x;e€ V-dom(h’y), ¢; € E(n,h’g), h’y = h’oll(x1,91), 6’0 E(h’p), 6" 1€ E(h’y),
6’ 0EC’] .

We can apply consequence 2.1.10 and state there is s;€#(h’,9;,6’¢) such that 6°; = ¢’ Il (x1,81).

We now perform the inductive step. This is needed only if m>I1, let i=1..m-1. We suppose
c’i€ E(h’;) and there is s;e #(h’i-l,(l)i,c’i-l) such that ¢’; = 6’51 Il (X3,84).

We have ¢’j,1=6"/dom(h’;;). If i+1=m then ¢’;;1=06",€ E(h’j;1), otherwise h’;;;€ R(h’,) h’i1#h 'y,
and this means (by 2.1.8) that 6’j;1€ Z(h’i41) .

We have h’;, hi€K@), xi€V-dom(h’s), ¢ii€Emb%), hi=h"illXi,0i1), o’i€Eh’),
c’is1€E(h’i41), 0 EC 141 -

We can apply consequence 2.1.10 and state there is s;;;€ #(h’;,¢i:1,6’;) such that
6is1 = 0 i Il (Xis1,8i41)-

We now define p’; = p Il (x1,81), and, if m>1, foreachi=1.. m-1 p’i11 = p’i Il (Xis1, Sis1) -
We will show that for each i=1..m p’i€ E(g’;).
We begin by showing that p’1€ Z(g’;). We intend to use assumption 2.1.6 to show that s;e #(g,9;,p).

We consider that gh € K(n), Vxedom(g)hdom(h) h(x)=g(x), peZ(g), oeZ(h),
Vxe dom(g)ndom(h) p(x)=c(x). Then by assumption 2.1.6 #(g,¢1,p) = #(h,p;,0), so s;€#(g,01,p).

We can now use consequence 2.1.11 to show that p’1€ E(g’y). In fact g, g’1€ K(n), x;€ V-dom(g),
¢1€E(n,g), g1 = gli(x1,01), pe Z(g), p’1 = p Il (x1.81), s1€#(g,91,p). So by 2.1.11 we get p’ 1€ E(g’1).

If m>1 we need to perform an inductive step. Let i=1..m-1, we suppose that p’;€ Z(g’;) and want to
show that p’j;;€ E(g’i+1). First we intend to use assumption 2.1.6 to show that si.1€ #(gi,Pi+1,p’i)-

We consider that g’;,h’je  K(n), Vxedom(g’;))mdom(h’;y) h’j(x)=g’i(x). Furthermore
¢isi€E(mh’) NEm,g), pieE(g’), o’i€E(h’), Vxedom(p’y)ndom(c’;) p’i(x)=c’i(x). Then by
assumption 2.1.6 #(g’;,0ir1,p’i) = #(1';,0i+1,6°1), SO Sit1€#(L i, Piv1,0")-

We can now use consequence 2.1.11 to show that p’i;1€E(g’iy1). In fact g’i,g’iy1 € K(n),
Xits1€V-dom(g’i), ¢i1 € EMmgi), g = gillXi,0is), pHEE(E), Sin€H(E0,0ir1.p"),
Pis1 = P’i Il (Xis1,Si+1). So by 2.1.11 we get p’ir1€ Z(g i41)-

We can conclude that p’ e Z(g’m). By 2.1.6 we can derive that #(h’,,0,6"m) = #(2" m,0,p m)- In fact
gmh’'me K(n), Vxedom(g'n)Ndom(h’y) h’n(x)=g’m(x), ¢€E(nh’y) N EMm,gw), p’'mEE( m),
o’'m€ E(h’y), Vxedom(p’n)Ndom(c’y) p’m(X)=0"m(x). Therefore #(h’,9,6"m) = #(2 m,®,p m)-

Of course we have also p=p’y , SO0 P'mEE(E'm), PEP m» U = #(Z" m,P,p m). In other words
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ue {}(p’m EE(g’m): pE p’m 5 #(g’m,(P,p’m) ).

The proof of the converse implication (ifue {}(p'm €E(gm): P E P'm > #(E m,P,p m) ) then
ue {} (6'meEMn):c =6’y ,#0'y,0'm) ) ) is perfectly analogous.
_|

We now start with the verifications required to define #(k,t,c). There we have to verify that
- for each we{a,b,c,d,e}, tin E’(n,k) N E’w(n+1,k) and ce Z(k)
#(k,t,0) = #K.LO)m+1kw 5
- for each wi,wye {a,b,c.d,e}: wi#wy, tin E’1(n+1,k) N E’yo(n+1,k) and ce E(k)
#(K,t,0) e 1wty = FKL0) (ns1,k w2)-

Suppose t in E’(n,k) NE’;(n+1,k), and so t € E(nk) m E.(n+1,k). As a consequence of
te Eo(n+1,k) we have that ke K(n)*, so k = h Il (y,¢) where he K(n) , p€ E(n,h), ye (V-dom(h)), and
we also have te E(n,h); 6 = p Il (y,s) with p € E(h), se #(h,,p); #(K,t,0)m+1.x2) = #(h,t,p).

By assumption 2.1.6, since t € E(n,k) N E(n,h), we get #(h,t,p) = #(k,t,0), and then
#(k’t76)(n+1,k,a) = #(k,t,ﬁ).

Now we consider the situation in which t is in E’(n,k) N E’y(n+1,k) and then t belongs to
E(n,k) N Ey(n+1,k). As a consequence of te Ey(n+1,k) we have that ke K(n)", so k = h Il (y,¢p) where
he K(n) , € E(n,h), ye (V-dom(h)), and we also have t=y; ¢ = p Il (y,s) with p € E(h), se #(h,0,p);
#(K,1,0)m+1,kp) = ().

By assumption 2.1.7, which applies because of te E(n,k), we must have te dom(k),
#(k,t,0) = o(t) = o(y) = #(K,L,0)m+1 k) -

Let’s examine the situation in which t is in E’(n,k) N E’.(n+1,Kk) and then t belongs to
E(n,k) N Ec(n+1,k). As a consequence of te E.(n+1,k) there exist ¢, ¢y, .. , o € E(n,k) such that
t = ((P)((Pl’ cee (Pm) ’ #(k,t,G)(nH,k,c) = #(k,(P,G) ( #(k,(Pl’G)7 cee #(k’(PI‘IbG) ) .

Since te E(n,k) we can apply assumption 2.1.7 and obtain that n>1, there exists he K(n-1): h E «,
te E(n,h), for each pe E(h) #(h,p,p) is a function with m arguments, ( #(h, @1, p), ... , #(h, @m, p) ) is
a member of its domain, #(h, t, p) = #(h,,p) (#(h,@1,p), ... , #h,Qm,p) ).

We define p = o/dom(h). If h=k then p = 6 € Z(h). Otherwise by assumption 2.1.8 we still get
pe Z(h).

By assumption 2.1.7 we have

#(k, t, o) = #(h, t, p) = #(h,0.p) (#(h.@1.p), ..., #(h.Qm.p) ) .

Now we can consider that k,he K(n), ¢,pi€ E(n,k)nE(n,h), ceE(k), peZ(h), we can apply
assumption 2.1.6 to obtain that

#(h,(P,p) ( #(h’(Pbp)’ LER #(h,(Pm,p) ) = #(k,(P’G) ( #(k’(Pl’G)7 LR #(k,(Pm,G) ) = #(k,t,c)(nﬂ,k,c) B SO we
have proved
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#(k’ t’ G) = #(k’t76)(n+1,k,c) .

Next we consider the case in which t is in E’(n,k) N E’4(n+1,k) and then t belongs to
E(n,k) N Egq(n+1,k). As a consequence of te Eq(n+1,k) there exist fe F, @y, .. , o, € E(n,k) such that
t=® (@1, ..., Pm), #(K,t,0)n+1 k.0 = Pr (#(K,01,0), ..., #(K,pm,0) ) .

Since te E(n,k) we can apply assumption 2.1.7 and obtain that n>1, there exists he K(n-1): h E x,
te E(n,h), for each pe Z(h) A #(h, @1, p), ... , #(h, om, p) ), #(h, t, p) = Pr (#(h,01,p), ..., #(h,om.p) ).

We define p = o/dom(h). If h=k then p = 6 € Z(h). Otherwise by assumption 2.1.8 we still get
pe E(h).

By assumption 2.1.7 we have
#(k, t, o) =#(h, t, p) = Pr (#(h,@1.p), ..., #(h,om,p) ).

Now we can consider that k,he K(n), ¢i€ E(n,k)nE(n,h), ce E(k), pe E(h), we can apply assumption
2.1.6 to obtain that

Py (#(h,01,p), ..., #(h,0m.p) ) = Pr (#(K,91,0), ... , #(K,0m,0) ) = #(K,t,6)(n+1x.4) » SO We have proved

#(k’ t’ G) = #(k’t76)(n+1,k,d) .

In this part of our verification we just need to examine the case in which t is in
E’(n,k) N E’.(n+1,k) and so t belongs to E(n,k) N Ec.(n+1,k). As a consequence to te E.(n+1,k)
there exist a positive integer m, X1, .., Xy, distinct € V-dom(k), ¢, @1, .. , ¢ € E(n) such that
t={}X1:01, ... , Xm:@m, ¢®). Moreover we have

- @1 € E(n,k), for each oe Z(k) #(k,,,0) is a set ;
- if m>1, for each i=1..m-1 if we define k’; = kll(x;,@)Il .. ll(x;,05) it follows

k’; € K(n) A ¢ir1€E(n, k’;) A for each 6°i€ Z(k’;) #(K’;, ¢ir1, 0'1) 1S a set ;
- if we define k', = klI(x1,@ Il .. I(Xm,Pm) it follows k’ e K(n) A e E(nk’p) .

For a fixed ce Z(k)
#(Kt,0)n+1ke) = {} (O m €EK M): G E ' , #K m,0,0'm) )

Since te E(n,k) we can apply assumption 2.1.7 and obtain that n>1, there exists he K(n-1): h E k,
te E(n,h), and also

¢ € E(n-1,h), for each pe E(h) #(h,¢;,p) is a set ;
if m>1 for each i=1..m-1 if we define h’; = hll(x;,@)Il .. lI(x;,@;) it follows

h’; € K(n-1) A ¢is1€ E(n-1, h’;) A for each p’ie Z(h’;) #(h’;, ¢is1, p’i) 1S a set ;
if we define h’y, = hll(x;,@ Il .. [(Xm,Pm) it follows h’ e K(n-1) A pe E(n-1,h’y,) ;

for each pe Z(h) #(h,t,p) = {}(P'm €EM’'n): p E p'm , # 1m,0,p'm) ) .
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We define p = o/dom(h). If h=k then p = 6 € Z(h). Otherwise by assumption 2.1.8 we still get
pe E(h).

By assumption 2.1.7

#k, t,0) =#b, t, p) = {}(P'm €EM'm): pE p'm, # ' m,.p"m) ) -

To complete our proof, we need to show that

{} (@meEKn): 0 E ' m , #Km9,0'm)) ={}(P'm €EM'm): pE p'm, #1'm0,p'm) ).
This follows by consequence 2.1.12 , that can be applied because of:

k,he K(n), @, @1, .. , om € E(n), x4, .., Xy distinct € (V-dom(k)) N (V-dom(h)),
t={}X1:01, ..., Xmi@Pm, D),

¢ € E(n,k), for each oe Z(k) #(k,;,0) is a set ;
if m>1, for each i=1..m-1 if we define k’; = kll(x;,@)Il .. ll(x;,¢;) it follows

k’; € K(n) A ¢ir1€E(n, kK’;) A for each 6°i€ E(k’;) #(K’;, ¢ir1, 0'1) 1S a set ;
if we define k’y, = kll(x1,@ Il .. I(Xm,@m) it follows k’ e K(n) A o€ E(n,k’y,) .

¢ € E(n,h), for each pe E(h) #(h,p,p) is a set ;
if m>1 for each i=1..m-1 if we define h’; = hll(x;,@)Il .. lI(x;,@;) it follows
h’; € K(n) A ¢ir1€ E(n, h’;) A for each p’ie Z(h’y) #(h’s, @iy, p’i) is @ set ;
if we define h’y, = hll(x,@)Il .. I(Xm,¢m) it follows h’,e K(n) A e E(n,h’y,) .
For each xe dom(k)ndom(h) k(x)=h(x), o€ E(k), pe Z(h), for each xe dom(k)ndom(h) c(x)=p(x).

_|
We now need to verify

- for each w;,wye {a,b,c,d,e}: wi#wy, tin E’1(n+1,k) N E’yo(n+1,k) and ce E(k)
#(K,t,0) e 1 wi) = #K,E,0) 41,k w2)-

Fortunately for us, for many values of w,w; it is easy to see that E’y,(n+1,k) N E’y2(n+1,k) = &.

We use a table to list all cases where this happens (of course in the table we have barred the cells
which are duplicates or not of interest).

E,nt1k)  |[Epntlk)  |Bontlk) | Eantlk) | Eentlk)
Btll) @

Evotlk) . g @ 2
E?Hig //////////////////// /////////////////// ///////////////////// 2 2
E'.(n+1.k)

It is immediate to see that when w,w»€ {b,c,d,e} and w;#w, we have

E’ wi(n+1,k) N E’yo(n+l k) = .
30



We can also easily prove that E’,(n+1,k) N E’y(n+1,k) = .

Suppose t is in E’,(n+1,k) N E’y(n+1,k). This means that te E,(n+1,k) and ke K(n)*, so we can
write kK = h Il (y,p), with he K(n) , p€E(n,h), ye (V-dom(h)). We have te E(n,h), and since
te Ey(n+1,k) we have t=y. We can apply assumption 2.1.7 to te E(n,h), situations a,c,d,e can not
occur, so situation b must occur, but this means that ye dom(h), against our hypothesis.

Therefore we just need to examine three cases: t in E’,(n+1,k) ME’(n+1,k), t in
E’.(n+1,k) N E’4(n+1,k), tin E’(n+1,k) N E’c(n+1,k).

Consider the case where t in E’;(n+1,k) N E’.(n+1,Kk), and so t € E;(n+1,k) N E.(n+1,k).

As a consequence of te E.(n+1,k) there exist @, ¢y, .., o € E(n,k) such that t = (¢)(¢y, ... , Om) ,
#(k,t,G)(nH,k,c) = #(k,(P,G) ( #(k’(Pl’G)7 cee #(k,(Pm’G) ) .

As a consequence of te E,(n+1,k) we have that ke K(n)", so k = h Il (y,p) where he K(n) , o€ E(n,h),
ye (V-dom(h)), and we also have te E(n,h); 6 = p Il (y,s) with p € E(h), s€ #(h,0,p);
#(k,t,(s)(nﬂ,k,a) = #(h7t’p)'

Since te E(n,h) we can apply assumption 2.1.7 and obtain that n>1, there exist ge K(n-1): g&h,
te E(n,g), for each e E(g) #(g,¢,0) is a function with m arguments, ( #(g, @1, 0), ... , #(g, Om, 0) ) is
a member of its domain, #(g, t, 0) = #(g,9,0) ( #(g,91,0), ... , #(g,Pm,0) ).

Let d=p/dom(g). If g=h then d=pe E(g), otherwise by assumption 2.1.8 we still get de Z(g).

By assumption 2.1.7 we have

#(k’t76)(ﬂ+1,k,ﬁ) = #(h’ t, P) = #(g’ t, 8) = #(g,(p,S) ( #(g,(Pl,S), cee s #(g,(Pm,S) )

Since g, k € K(n), ¢, ¢; € E(n,g)NE(n,k), o€ E(k), 6€ E(g), etc., we can apply assumption 2.1.6 and
obtain that

#(K,L,0)m+1 k) = #(,9,0) (#(2,01,0), ..., #(g,Pm,0) ) =
= #(k’(P’G) ( #(k’(Pl,G), LR #(k,(Pm’G) ) = #(k,t,c)(nﬂ,k,c) .
Consider now the case where t in E’;(n+1,k) N E’3(n+1,Kk), and so t € E,(n+1,k) N Eg(n+1,k).

As a consequence of te Eq(n+1,k) there exist fe F, ¢y, .., o € E(n,k) such that t = (f)(¢y, ... , Om),
#(K,6,0)@r1xa) = Pr (#(K,01,0), ... , #(K,Qm,0) ) .

As a consequence of te E,(n+1,k) we have that ke K(n)", so k = h Il (y,¢) where he K(n) , ¢ E(n,h),
ye (V-dom(h)), and we also have te E(n,h); 6 = p Il (y,s) with p € E(h), s€ #(h,0,p);
#(k’t’c)(n+1,k,a) = #(h’t7p)

Since te E(n,h) we can apply assumption 2.1.7 and obtain that n>1, there exist ge K(n-1): g&h,
te E(n’g)7 for eaCh 66 E(g) Af( #(g’ (Pl’ 6)’ cer #(g, (PI‘Ib 6) )’ #(g, t, 8) = Pf ( #(g,(Pl,S), cee #(g,(Pm,S) )'
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Let 0=p/dom(g). If g=h then 6=pe Z(g), otherwise by assumption 2.1.8 we still get de Z(g).
By assumption 2.1.7 we have
#(k,t,(s)(nﬂ,k,a) = #(h7 t7 p) = #(g’ t’ 6) = Pf ( #(g’(Pba)’ cee #(g,(PmaS) )'

Since g, k € K(n), ¢; € E(n,g)nE(n,k), ce E(k), d€ E(g), etc., we can apply assumption 2.1.6 and
obtain that

#(k,t,(s)(nﬂ,k,a) = Pf ( #(g’(Pba)’ eee g #(g,(Pm,a) ) = Pf ( #(k’(Pl,G), see g #(k,(Pm,G) ) = #(k7t’6)(n+1,k,d) .

Finally we examine the case where t in E’;(n+1,k) N E’.(n+1,k), and so t € E,(n+1,k) N Ec(n+1,k).

As a consequence to te E.(n+1,k) there exist a positive integer m, X, .., Xy, distinct € V-dom(k), ¢,
@1, .., om € E(n) such that t = { }(x1:91, ... , Xn:@m, ¢). Moreover we have

- @1 € E(n,k), for each oe Z(k) #(k,;,0) is a set ;
- if m>1, for each i=1..m-1 if we define k’; = kll(x1,@)Il .. lI(x;,¢;) it follows
k’i € K(n) A ¢i11€ E(n, k’;) A for each 6’i€e 2(K’;) #(K’i, @i+1, 075) is a set ;
- if we define k', = klI(x1,@ DIl .. lI(Xm,¢m) it follows ke K(n) A e E(nk’y) .
For a fixed oe Z(k)

# K L) mrike) = {} O m€EK m): 6 E " m , #HK m,0,0'm) ) -

As a consequence of te E,(n+1,k) we have that ke K(n)", so k = h Il (y,p) where he K(n) , ¢ E(n,h),
ye (V-dom(h)), and we also have te E(n,h); 6 = p Il (y,s) with p € E(h), s€ #(h,0,p);
#(k,t,(s)(nﬂ,k,a) = #(h7t’p)'

Since te E(n,h) we can apply assumption 2.1.7 and obtain that n>1, there exists ge K(n-1): g E h,
te E(n,g), and also

¢; € E(n-1,g), for each e E(g) #(g,0,,0) is a set ;
if m>1 for each i=1..m-1 if we define g’; = gll(x;,)Il .. li(x;,9;) it follows
g’i € K(n-1) A 9i11€ E(n-1, g°;) A for each &’i€ Z(g’;) #(g'i, ¢ir1, 0’1) 1S a set ;
if we define g’ = gll(x1,0)II .. [(Xm,Pm) it follows g’ e K(n-1) A pe E(n-1,2’y) ;
for each 6 E(g) #(g,,0) = { }(0’'m €E(g'm): 0 E O’ » #(& m,P.0’m) ) -
Let d=p/dom(g). If g=h then d=pe Z(g), otherwise by assumption 2.1.8 we still get de Z(g).
By assumption 2.1.7

#(k,t,(s)(nﬂ,k,a) = #(h7 t7 p) = #(g’t,s) = {}(6’1‘11 € E(g,m): 6 E 6’I‘Il ’ #(g,m,(P,a,m) ) .

To complete our proof, we need to show that

{} @meEKn): 0 E0m , #Kk'm®,0'm)) = {}(6'm €E(g'm): 0 E 'm, H&'mP,0"m) ) .
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This follows by consequence 2.1.12 , that can be applied because of:

k.geK(n), ¢, ¢1, .., om € E(n), Xy, .., Xm distinet € (V-dom(k)) N (V-dom(g)),
t= { }(Xl:(Pl’ cee s Xm:Qm, (P),

¢ € E(n,k), for each oe Z(k) #(k,;,0) is a set ;
if m>1, for each i=1..m-1 if we define k’; = kll(x;,@)Il .. ll(x;,@;) it follows

k’i € K(n) A ¢i11€ E(n, k’;) A for each 6’i€e 2(K’;) #(K’i, @i+1, 075) is a set ;
if we define k', = kll(x1,@)Il .. l(Xm,@m) it follows k’ e K(n) A pe E(n,k’y,) .

¢ € E(n,g), for each de E(g) #(g,9;,0) is a set ;
if m>1 for each i=1..m-1 if we define g’; = gll(x;,)Il .. li(X;,9;) it follows

g’i € K(n) A ¢ir1€E(n, g’;) A for each &’i€ E(g’;) #(g'i, ¢ir1, 0'i) is a set ;
if we define g’ = gll(x1,@)II .. [(Xm,Pm) it follows g’ e K(n) A o€ E(n,g’y) -

For each xe dom(k)ndom(g) k(x)=g(x), o€ E(k), 6€ E(g), for each xe dom(k)"dom(g) 6(x)=35(X).
_|

Let’s now perform the verifications required to define Vy,(t) and Vit). We have to verify that
- for each ke K(n+1), we {a,b,c,d,e} and for each t in E(n) N E’(n+1,k) Vu(t) = V(O m+1xw)
(and the same for V(t) );
- for each ki .k, € K(n+l), wi,woe{a,b,c,d,e}, te Eyi(n+l,k))N E’yn(n+1,ky) (such that
t¢ E(n)) we have Vp(O)m+1x1.w1) = Vo(Dm+1.k2.w2) (and the same for V(t)).

Suppose t is in E(n) N E’y(n+1,k). As a consequence of te E,(n+1,k) we have that ke K(n)*, so
k =h Il (y,p) where he K(n) , € E(n,h), ye (V-dom(h)), and we also have te E(n,h),
Vi) m+1 k00 = Vi), V(O ms1ka) = V(D) .

Suppose t is in E(n) N E’y(n+1,k). As a consequence of te Ey(n+1,k) we have that ke K(n)*, so
k=h Il (y,p) where he K(n) , 9 E(n,h), ye (V-dom(h)), and we also have t=y, Vi(t)m+1xp) = {Y},
V(O ms1kp) =D .

There exists geK(n) such that teE(n,g). By assumption 2.1.7 we get tedom(g),
Vi O)={t}={y}=ViOm+1kb) Vo)== Vo(Dms1.xb) -

Suppose t is in E(m) N E’(n+1,k). As a consequence of teE.n+l,k) there exist
0, 01, .. , m€ E(n,k) such that t = (0)(@1, ... s Om) » Vi(Om+ike) = V(@) U VH@1) U ... U VHOn),
Vb(Om+1x0) = Vo(@) U Vi(01) U ... U Vi(@m).

There exists ke K(n) such that te E(n,x). By assumption 2.1.7 we get n>1, Fhe K(n-1): h E «,
te E(n,h), Vi(t) = V(@) U V(@) U ... U V@) = Vi(D@+1k0)»
V(1) = V(@) U V(@1) U ... U Vp(@m) = Vo(Dmi1 ke -

Suppose t is in E(m) N E’y(n+1,k). As a consequence of teEg(n+1,k) there exist feF,

?1, - ,0m € E(n,k) such that t = (£)(@1, ... , Om)s Vi) m+1 k) = Vi(@1) U ... U VH(On),
V(O m+1kd) = Vo(01) U ... U Vp(Onm)
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There exists ke K(n) such that te E(n,x). By assumption 2.1.7 we get n>1, Fhe K(n-1): h E «,
te E(n,h), Vi(t) = V(@) U ... U V(@m) = Vi(OD @+ 1k, Vo) = V(@) U ... U Vp(Om) = Ve(D@n+1ka) -

Suppose t is in E(n) N E’«(n+1,k). As a consequence of te E.(n+1,k) there exist a positive integer
m, Xy, .., X distinct € V-dom(k), @, @1, .. , o € E(n) such that t = { }(X1:01, ... , Xm:Qm, ©).

Moreover, if m=1

ViOmr1xe) = V(@) U (Vi(@)-{x1}) ;
V(O ms1xe) = {X1} U V(1) U V(@) 5

If m>1

ViOmr1ke) = V(@) U (Vi(@2)-{x1}) U ... U (VH(@Om)-{X1,-..Xm-1}) U (VH@Q)-{X1,....Xm}) ;
Vo(Oms1xe) = {X1,.Xm} U V(@1) U .. U V() U Vu(0) .

There exists ke K(n) such that te E(n,x). By assumption 2.1.7 we get n>1, Fhe K(n-1): h E «,
te E(n,h),

if m=1

Vi(t) = V(o) U (Vi(@)-{x1}) = Vi(Dm+1ke) »
V(1) = {x1} U Vu(@1) U V(@) = Vo(Dnr1ke) 5

if m>1

Vi(t) = V(o) U (Vi(@)-{x1}) U ... U (VHOm)-{X15:Xm1}) U (VH(@)-{X1,....Xm}) = VD @r1ke) »
V() = {X1,. Xm} U Vi(@1) U .. U V(@) U V(@) = Vp(Dnrike) -
We now need to verify

- for each ki.k, € K(n+l), w,wye{a,b,c.de}, te E’yi(n+1,k;) N E’y2(n+1,ky) (such that
t¢ E(n)) we have Vi(O)mn+1.k1,w1) = Vb(Dm+1x2,.w2) (and the same for V(t)).

First of all we observe that for each ke K(n+1), te E’,(n+1,k) we have that ke K(n)*, so k =h Il (y,p)
where he K(n) , o€ E(n,h), ye (V-dom(h)), and we also have te E(n,h), this means that te E(n). This
implies that we just need to verify

- for each ki,k, € K(n+l), wi,woe{b,c,d,e}, te E’yi(n+tl,k;)) N E’y(n+1k,) (such that
t¢ E(n)) we have Vp(O)m+1x1.w1) = Vo(Dm+1.k2.w2) (and the same for V(t)).

For each k,k, € K(n+1), wi,w-e {b,c,d,e}, if w;#w, then E’1(n+1,k;)) N E’yo(n+1,ky)) = .
So we just need to verify

- for each ki,k, € K(n+1), we {b,c.d,e}, t € E’w(n+1,k;) N E’w(n+1,k;) (such that t¢ E(n)) we
have Vb(t)(n+1,k1,w) = Vb(t)(n+1,k2,w) (and the same for Vi(t)).

Suppose tis in E’y(n+1,k;) N E’p(n+1,k;) .
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From te Ey(n+1,k;) we obtain that kje K(n)", so k; =h; Il (y,¢;) where hjeK(n) , ¢;€E(nh)),
y1€ (V—dom(h,)), and we also have t=y1, Vi{t)a+1k1.0) = {Y1}s VoOas1x)p) =D .
From te Ey(n+1,k;) we obtain that koe K(n)", so ky =hy Il (y2,2) where he K(n) , @€ E(n,hy),
y2€ (V—dom(hy)), and we also have t=ys, Vi(t)ws1.x2)0) = {¥2}, VoOms1x@)p) =D .

Hence Vi()n+1.k1)b) = {t} = VEOms1x21b) 3 VoOm+1x1)b) =D = Vo(O)m+1 k2)b) -

Suppose tis in E’(n+1,k;) N E’.(n+1,k;) .
As a consequence of te E.(n+1,k) there exist ¢, ¢y, .. , 9n€ E(n,k;) such that t = (¢)(¢1, ... , Om) ,

VO w+1x(1).0) = VHQ) U V@) U ... U VHQm), Vb(Dm+1k(1).0) = Vo(@) U V(@1) U ... U Vip(Qm).
As a consequence of te E«(n+1,k) there exist y, yi, .., ype E(n k) such that t = (y)(y1, ... , yp) ,

Vi) m+1x2).0) = Vily) U Vi(y1) U ... U Vi(yp), Vo(ODms1k2).0) = V(W) U Vi(y1) U ... U Vip(yp).
So (@) @1, ..., Om) =t=(Y)(Y1, ..., Yp), it follows p=m, y=0, y;=¢;, hence

Vi) mr1 k11,00 = V(@) U VH@1) U ... U Vi(@m) = VH(O@ns1k2)0) 5
Vo(Om+1k1).0) = Vo(@) U Vip(91) U ... U Vp(0m) = V(D r1 x2)0) -

Suppose tis in E’4(n+1,k;) N E’g(n+1,k;) .
As a consequence of te Eq(n+1,k;) there exist fe F, ¢4, .. ,om € E(n,k;) such that t = (f)(@y, ... , Om),

Vi®Ow+1.x.a) = V(@) U ... U VH@Qm), Vo(ODm+1k1).a) = Vo(@1) U ... U V() .
As a consequence of te Eq(n+1,k») there exist ge F, vy, .. ,y, € E(n,k,) such that t = (g)(y1, ..., yp),

ViOm+1xk2.0 = Vily) U ... U Vi), Ve(Oms1k2).a = Vo(y1) U ... U Vip(yp) .
So (D)(@1, ..., om) =t = (W1, ..., Y¥p), it follows f=g, p=m, y;=¢;, hence

ViOw+1x).a) = Ve(@1) U ... U V(@) = Vi(O@n+1k2).0) -
V(O m+1k1).d) = Vo(@1) U ... U Vp(Om) = Vp(D(nr1 x2).d) -

Suppose tis in E’¢(n+1,k;) N E’(n+1,k>) .

As a consequence of te E.(n+1,k;) there exist a positive integer m, xy, .., Xy, distinct € V-dom(k;),
0, ¢1, .. , Om € E(n) such that t = { }(X1:Q1, ... , Xm:®Pm, D).

Moreover, if m=1

Vi(Om1k1).e) = Vi(@1) U (VH@)-{X1}) ;
V(O mr1xe) = (X1} U V(1) U V(@) 5

If m>1

Vf(t)(n.'.]’k(l)’e) = Vf(([)]) |} (Vf((P2)—{X1}) ... U (Vf((Pm)-{Xl,..,Xm.l}) |} (Vf((P)-{Xl,...,Xm}) S
V(O m+1k(1).e) = {X1..Xm} U Vo(@1) U .. U Vi(Om) U Vi(9) .

As a consequence of te Ec(n+1,ky) there exist a positive integer p, yi, .., yp distinct € V-dom(k,), v,
Vi, -, Wp € E(n) such that t = {}(yi:wi, ..., Ypiyp, W)

Moreover, if p=1
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ViOm+1x2.0 = Vw1 U (Vi(y)-{y1})
Vo(O)m+1k2).0) = (Y1} U Vo(wi) U Vi(y) ;

If p>1

ViOmr1x2re) = Vily) U (Vi(y2)-{y1D) U ... U (ViWp)-{y1,-oYp-1) U (ViW)-{y1,.-.¥p 1) 5
V(O m+1.k2)0) = {¥1,..¥p} Y Vo(y1) U .. U Vip(yp) U Vi(y) .

So {}(X1:@1, .o, Xmi@m, @) =t = { }(Y1:y1, ..., Yp:Wp, V), it follows p=m, y;=xi, yi=¢;, y=0, hence if
m=1

Vi m+1xre) = V(@) U (VH@)-{x1}) = Vi(Dms1.k2).0) 5
Vo(Oms1k1re) = (X1} U Vp(@1) U V(@) = V(D ms1 k2 -

If m>1

Vi(O)ms1xre) = VE@1) U (Vi(@2)-{X1}) U ... U (VH@m)-{X15e0Xm1 }) U (VHQ){ X1, s Xm}) =
= Vf(t)(n+l,k(2),e) )

V(D m+1x(he) = {X1,.Xm} U V(@1) U .. U V(@) U V(@) = Vu(D+1.k2)e) -

_|
In the last part of our definition we need to prove all assumptions we have made at step n are true at
step n+1. The order in which we will provide these proofs is not the same in which we have listed

the assumptions, but this of course is not a problem.

Proof of (assumption) 2.1.5 (at level n+1) :

We need to prove that K(n) < K(n+1), this is obvious by definition. —

Proof of 2.1.9 :

We need to prove that for each ke K(n) E(n,k) < E(n+1,k).

For each ke K(n) we have ke K(n+1),

E(n+1,k) =E’(n.k) U E’,(n+1,k) U E’y(n+1,k) U E’.(n+1,k) U E’4(n+1,k) U E’c(n+1,k) =
= E(n,k) U E’;(n+1,k) U E’y(n+1,k) U E’(n+1,k) U E’4(n+1,k) U E’c(n+1,k). —

Proof of 2.1.4 :

We need to prove that for each ke K(n+1), t € E(n+1.k)
- tan]# ¢
- iftfe(t)] = °) then d(t,e(t)) = 1, else d(t,(t)) =0 .

- given an integer a.in {1, .., ¢(t)} if (tfa]=":" or tfa]=",” or t[a]=")" ) then d(t,0)>1 .

We recall that
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E(n+1,k) =E’(n,k) U E’,(n+1,k) U E’y(n+1,k) U E’(n+1,k) U E’4(n+1,k) U E’c(n+1,k) .
Let te E’(n,k), this means that te E(n,k) and ke K(n). We just need to apply assumption 2.1.4.

Let te E’,(n+1,k), this means that te E,(n+1,k) and ke K(n)* . We can write k = h || (y,p), with
he K(n) , o€ E(n,h), ye (V-dom(h)). We have te E(n,h), so we apply assumption 2.1.4 and the proof
is finished.

Let te E’y(n+1,k), this means that te Ey(n+1,k) and ke K(n)" . We can write k = h Il (y,p), with
he K(n) , g€ E(n,h), ye (V-dom(h)). We have t=y, so t has just one character and t[1] differs from
‘5, ), 0, 5. Therefore the proof is finished.

Let te E’(n+1,k), this means that te E.(n+1,k) and ke K(n) . As a consequence of te E.(n+1,k) there
exist @, @1, .. , o< E(n,k) such that t = (¢)(@y, ... , Om).

If we assign m we can give an ‘explicit representation’ of t. In fact if m=2 t = (¢)(91,92), if m=3
t = (@)(@1,92,93), and so on. In this explicit representation of t we can see explicit occurrences of

[

symbols ‘,” and ‘)’. There are explicit occurrences of ‘,” only when m>1. We indicate with q the
position of the first explicit occurrence of ‘)’ and the second explicit occurrence of )’ is clearly in

position ¢(t). If m>1 we indicate with qy, .. , qm.1 the positions of explicit occurrences of *,’.
We have d(t,g-1) = d(t, 1 + (@) ) =d(t,1 + 1) + d(o, &(e)) = 1 + d(o, «()).

If t{q-1] = @[l(e)] = *)” then d(t,q) = d(t,g-1) — 1 = d(g, €(p)) = 1.
Else t[g-1] = o[t(@)] & {‘(*,)’} so d(t,q) =d(t,g-1) = 1 + d(¢, l(¢)) = 1.

If m>1 we can prove for eachiin 1 .. m-1d(t,q) = 1.

First of all we agree that d(t,q+2) =d(t,q) -1+ 1=1.

And we agree that d(t, q; — 1) =d(t,q + 1 + (1)) =d(t,q+ 1 + 1) + d(¢1, «(1)) = 1 + d(@1, €(91)).

If t[q) — 1] = @i[¢(@1)] = )" then d(t,qy) = d(t,q1 — 1) — 1 =d(@1, «(@1)) = 1.
Else t[q: — 1] = ¢i[€(p)] & {°(*,")"} sod(t,q1) =d(t,q1 — 1) =1 + d(¢1, l(@1) = 1.

If m=2 we have finished this step. Suppose now m>2. Leti=1 .. m — 2 and suppose d(t,q;) = 1. We
will show that also d(t,qi+1) = 1 holds.

In fact d(t, qiv1 — 1) = d(t, gi + €(@i+1)) = d(t, qi + 1) + d(@iv1, €@ir1)) = 1 + d(@is1, €Pis1))-

If t[qi+1 — 1] = @iri[€(@is1)] = )’ then d(t,qis1) = d(t,qiv1 — 1) — 1 = d(@iz1, €@is1)) = 1.
Else t[qir1 — 1] = @is1[l(@ix1)] € {*(°,")’} so d(t,qi+1) = d(t,qix1 — 1) = 1 + d(@is1, €@is1)) = 1.

So it is shown that for eachiin 1 .. m-1 d(t,q;) = 1.
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We now want to show that d(t,¢(t)) = 1.

If m=1 then

dt, () - 1) =d(t, g+ 1 + (e1) ) =d(t, g + 2) + d(o1, €(1)) = d(t,q) + d(@1, «(@1) = 1 + d(Pm, €(Pm)).

If m>1 then
d(t, «t) — 1) = d(t, gm-1 + €(@Pm) ) = d(t, gm-1 + 1) + (P, €(Pw)) = 1 + d(Qr, U(Prm)).

If t{e(t) — 1] = oml[€(Pm)] = *)" then d(t,£(t)) = d(t.L(t) — 1) — 1 = d(@m, l(Pm)) = 1.
Else t[e(t) — 1] = u[l(om)] & {*(,")"} so d(t.() = d(t.6) — 1) = 1 + d(Qm, l(om)) = 1.

Let’s now examine the facts we have to prove. It is true that t[¢(t)] # ‘(° . It’s also true that
tleO] =), dtev) = 1.
Moreover suppose a.is in {1, .., €(t)} and (t[a]=":" or tfa]=",” or t[a]=")" ).

Ifaisin {q, q1, .., qm-1, €(t)} we have already shown that d(t,a) = 1.
Otherwise there are these alternative possibilities:

a) o>l Aa<q,
b) m=1 A o>q+1 A a<((t),

c) m>1 Ao>g+l A a<qy,
d) m>2 A Jdi=1..m-2: 0>q; A 0<qiy1 ,

e) m>1 A o>qm1 A a<l(t) .
In situation a) t[a] = ¢o[a — 1]; d(t,a) = d(t,1 + (o — 1)) =d(t,2) + d(@,a-1) =1 + d(p,a-1) > 2.

In situations b) and ¢) t[a] = @i[a—(q + D)];
d(t,o) =d(t,q+ 1 + (a—(g+1))) =d(t,g+ 2) + d(p1,oa—(q+ 1)) =1 +d(p,a—(q+ 1)) > 2.

In situation d) t[a] = @i 1[a — qil;
d(t,0) =d(t,qi + (o — q;)) =d(t,qi + 1) + d(@i+1,00 — qi) = 1 + d(@is1,00 — qi) > 2.

In situation e) t[a] = @m[a — qm-1];

d(t,0) = d(t,qm-1 + (00 = qm-1)) = d(t,qm-1 + 1) + d(@m,0 = gm-1) = 1 + d(Qm, 0 — 1) = 2.

Let te E’4(n+1,k), this means that te Eq(n+1,k) and ke K(n) . As a consequence of te Eq(n+1,k)
there exist fe F, @y, .. , o € E(n,k) such that t = (f)(¢y, ... , Om).

If we assign m we can give an ‘explicit representation’ of t. In fact if m=2 t = (f)(¢;,92), if m=3

t = (£)(¢1,92,03), and so on. In this explicit representation of t we can see explicit occurrences of
symbols ‘,” and ‘)’. There are explicit occurrences of ‘,” only when m>1. The occurrences of )’ are
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clearly in positions 3 and ¢(t). If m>1 we indicate with q;, .. , qm.1 the positions of explicit
occurrences of ‘..

It is immediate to see that d(t,3)=1.

If m>1 we can prove for eachiin 1 .. m-1d(t,q) = 1.

We have d(t, q1 — 1) =d(t, 4 + (1)) =d(t, 4 + 1) + d(¢1, U(¢1)) = 1 + d(@1, €(@1)).

If t[q; — 1] = @1[¢(@1)] = *)” then d(t,q1) = d(t,q1 — 1) — 1 =d(o1, l(@1)) = 1.
Else t[q: — 1] = ¢i[t(@)] & {*(*,”)’} so d(t,q1) =d(t,q1 — 1) =1 + d(¢1, l(@1) = 1.

If m=2 we have finished this step. Suppose now m>2. Leti=1.. m — 2 and suppose d(t,q;) = 1. We
will show that also d(t,qi+1) = 1 holds.

In fact d(t, qir1 — 1) = d(t, g + €(@ir1) = d(t, qi + 1) + d(@is1, €(@ir1) = 1 + d(@is1, €(Pis1)).

If t[qi+1 — 1] = @iri[€(@is1)] = )’ then d(t,qis1) = d(t,qiv1 — 1) — 1 = d(@ir1, U@is1)) = 1.
Else t[qi+1 — 1] = @iri[€(@ir)] & {°(")")} so d(t,qir1) = d(t,qis1 — 1) = 1 + d(@ir1, €(Pis1)) = 1.

So it is shown that for eachiin 1 .. m-1 d(t,q;) = 1.

We now want to show that d(t,¢(t)) = 1.

If m=1 then

dt, ¢) — 1) =d(t, 4 + €(@1) ) = d(t, 4+1) + d(@1, €(91) = 1 + d(@1, €(@1) = 1 + d(Pm, €(Pm)).

If m>1 then

d(t, (t) — 1) = d(t, qm-1 + €(@Pm) ) = d(t, gm-1 + 1) + (@, €(Pw)) = 1 + d(Pp, €(Pr)).

If t{e(t) — 1] = oml[€(Pm)] = )" then d(t,E(1)) = d(t.L(t) — 1) — 1 = d(@m, l(Pm)) = 1.
Else t[e(t) — 1] = u[l(om)] & {*(",")"} so d(t.(1) = d(t.6) — 1) = 1 + d(Qm, l(om)) = 1.

Let’s now examine the facts we have to prove. It is true that t[¢(t)] # ‘(° . It’s also true that
tle®] = ), d(t.et) = 1.
Moreover suppose a.is in {1, .., ¢(t)} and (t[a]=":" or tfa]="," or t[a]=")" ).

If aisin {3, qi, .., qm-1, €(t)} we have already shown that d(t,a) = 1.
Otherwise there are these alternative possibilities:

a) m=1 A >4 A o<l(t) ,
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b) m>1 A a>4 A o0<q; ,
c) m>2 A di=1..m-2: a>q; A 0<qi+] »

d) m>1 A a>Qm1 A a<(t) .

In situations a) and b) t[a] = @i[a — 4];
dt,0) =d(t4 + (a—4)=dt4+ 1) +d(e,0—-4)=1+d(p;,a—4) > 2.

In situation ¢) t[o] = @i1[a — qil;
d(t,a) =d(t,q; + (0 — qp) = d(t,qi + 1) + d(@is1,0 — qi) = 1 + d(@is1,00 — i) > 2.

In situation d) t[a] = Q[0 — qum-1];
d(t,o) = d(t,qm-1 + (00 — gm-1)) = d(t,qm-1 + 1) + d(@m,0 — qm-1) = 1 + d(@m,0 — qm-1) > 2.

Let te E’.(n+1,K), this means that te Ec(n+1,k) and ke K(n) . As a consequence of te E.(n+1,k) there
exist a positive integer m, Xy, .., Xy, distinct € V-dom(k), @, ¢1, .. , om € E(n) such that
t={}X1:01, ... » XmiQm, Q).

If we assign m we can give an ‘explicit representation’ of t. In fact if m=2 t = { }(X1:Q1, X2:02, @), if
m=3 t = { }(X;:01, X2:¢2, X3:93, ¢), and so on. In this explicit representation of t we can see explicit

[

occurrences of symbols ‘,’, ‘> and ‘). We indicate with q;, .., qm the positions of explicit
occurrences of ‘i’ and with ry, .., r, the positions of explicit occurrences of ‘,”. The only explicit

occurrence of ‘)’ has the position ¢(t). We want to show that for each i=1..m d(t,q;)=1, d(t,r;)=1, and

that d(t,((t))=1.

It is obvious that d(t,q;)=1. Moreover
ditri - 1) =dt, qi + (11— 1 —qp)) =d(t, qi + €(@1) =d(t, qi + 1) + d(@1, €(@1)) = 1 + d(@y, €(@1)) .

If tlr; — 1] = gi[€(@1)] = °)’ then d(t,r;) =d(t,r; — 1) — 1 = d(@1, ((91)) = 1.
Else t[r; — 1] = @i[€(e)] & {*(*,")} so d(t,r) =d(t,r; — 1) =1 + d(¢1, l(@1) = 1.

If m=1 we have shown that for each i=1..m d(t,q;)=1, d(t,r;)=1. Now suppose m>1, let i=1..m-1 and
suppose d(t,qi)=1, d(t,r;)=1. We show that d(t,qi+1)=1, d(t,r;+1)=1.

We have qi;; =1; + 2 and it is immediate that d(t,qi+;)=1. Moreover

d(t,rier = 1) = d(t, givr + (T = 1 = qir1)) = A, Gt + A@in1)) = d(t, Qist + 1) + (@i, €@in1)) =
=1+ d(Qit1, €(Qit1)) -

If t[ris1 — 1] = @is1[€(@is1)] = )’ then d(t,riy1) = d(t,ri41 — 1) — 1 = d(@is1, €@Pis1)) = 1.
Else t[ris1 — 1] = @ia[€(@ir)] & {°(°,’)} so d(t,ris1) = d(trier — 1) = 1 + d(@is1, €(pis1)) = 1.

Furthermore
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dt, €t) = 1) =d(t, tm + (€(O) = 1 — 1) ) = d(t, rm + €(@) ) = d(t, 1m + 1) + d(@, €(p)) = 1 + d(, (@)

If t[e(t) — 11 = @[e()] = )’ then d(t4(t) = d(t.6() — 1) — 1 = d(9, ((9)) = 1.
Else t[((t) — 1] = olé(@)] & {*(*,")"} so d(te(t) = d(tet) — 1) = 1 + d(g, (@) = 1.

Let’s now examine the facts we have to prove. It is true that t[¢(t)] # ‘(° . It’s also true that
tle(H] = ), d(tet)) = 1.

Moreover suppose a.is in {1, .., ¢(t)} and (t[a]=":" or tfa]="," or t[a]=")" ).

If aisin {qi, .., m, I'1, ..., 'm, €(t)} we have already shown that d(t,a) = 1.

Otherwise there are these alternative possibilities:

a) di=1..m such that g;<a<r; ,
b) rm<a<d(t).

In situation a) tfa] = @i[o — q;]; d(t,a) = d(t, q; + (. —qp)) = d(t, gi + 1) + d(s, . — qi) =
=1+d(gi,a—q)=>2.

In situation b) t[a] = @[a — ry]; d(t,a) = d(t, 1y + (00 — 1)) = d(t, 1 + 1) + d(@, 0 — 1) =
=1+d(o,a—1y)>2.

Proof of 2.1.1 :

We need to prove that for each ke K(n+1): k#e, ce Z(k) there exist a positive integer m and
X1,--Xm€ V, 01,..,0m€ E(n+1), s1,..,5; € M(n+1) such that

- Vi,j=1..m 175_] —> XﬁfXj

- k=o)X, Om)

- o=xnLs) . 1 (Xm,Sm) -

We can notice that E(n) = Uxekm) E(n,k) € Ukekm) E(n+1,k) < E(n+1).

We can also notice that for each ke K(n)

Ei(n,k) = {tl te E(n,k), Voe E(k) #(k,t,0) is a set} C
c {tlteE(n+1,k), Voe E(k) #(k,t,0) is a set} = Es(n+1,k)

M(n,k) = Ure )i MK,t) € UreBs)m+1.0 MK,t) = M(n+1,k) ;
M(n) = Ukekm M(n,k) € Ukekm M(n+1,k) € M(n+1) .

Now let ke K(n+1) such that k#e, oe Z(k).
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If keK(n) we can apply our assumption and infer that there exist a positive integer m and
X1,--Xm€ V, 01,..,0m€ E(n), s1,..,8m € M(n) such that

- Vi,j=1..m 175_] —> XﬁfXj

- k=) I I (X, ®m)

- o=xnLs) I 1 (Xm,Sm) -

So if ke K(n) our proof is complete.

Now suppose k¢ K(n), i.e. ke K(n)" .
There exist he K(n) , ye (V-dom(h)), o€ Ey(n,h) such thatk =h Il (y,p) .

Also, by consequence 2.1.3, there exist pe Z(h), se #(h,¢,p) such that 6 = p Il (y,s).

We can observe that o€ E(n)cE(n+1), se M(h,p)cM(n,h)cM(n)cM(n+1) .

If h=¢ then k = (y,¢) and ¢ = (y,s), with ye V, pe E(n+1), se M(n+1).

If h#e we can apply our assumption 2.1.1 to h and p, so there exist a positive integer m and

X1,--Xm€ V, 01,..,0m€ E(n), s1,..,8m € M(n) such that
- Vi,j=1..m 175_] e XﬁfXj

- h= (Xl,(pl) ... 1 (Xm,(Pm)

- p=xps) o 1 (Xm,Sm) -
Therefore
k=hll (v,0) = x5,0) I ... I Xmy@m) | (v,0) ;
o=pll(y,8) =xps) ... Il KmnoSm) 1 (1,8) ,

and X1,..Xm,Y € V, 01,..,0m,9 € E(n+1), sy,..,8m,8 € M(n+1), Vi=1..m x;£y etc. .

Proof of 2.1.2 :

We need to prove that for each k in K(n+1)
(k=¢)Vv

(Jge K(n), ze V-dom(g), ye E(n,g): x= g Il (z,y) A Voe E(g) #(g,y,0) is a set A
2Z(K)={oll(zs)l oeZ(g), se#(gy,0) } ).

If ke K(n) we can apply assumption 2.1.2 and get
(k=¢)v

(n>1 A
JgeK(n-1), ze V-dom(g), ye E(n-1,2): k= g Il (z,y) A Voe E(g) #(g,y,0) is a set A
E) ={ oll(z;) | 0€E(g), se#(gy.0) } ).
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If we consider that ge K(n), ye E(n,g) the proof is complete, in this case.

Now suppose k¢ K(n), i.e. ke K(n)" .
There exist he K(n) , ye (V-dom(h)), @€ E¢(n,h) such that k¥ = h Il (y,p). By consequence 2.1.3 we
also get E(x) = { o Il (y,s) | oe E(h), se #(h,p,0) }.

_|

Proof of 2.1.8 :

We need to prove that for each ke K(n+1), he R(k): h#k we have he K(n) and for each ce E(k) if we
define p = o/dom(h) then pe Z(h) .

If ke K(n), since k#¢ we can exploit assumption 2.1.8 and say that he K(n-1)cK(n) and for each
o€ Z(k) if we define p = o/dom(h) then pe Z(h) .

Now suppose k¢ K(n), i.e. ke K(n)" .
There exist ge K(n) , ye (V-dom(h)), o€ E¢(n,h) such that k = g Il (y,p). By consequence 2.1.3 we
also get Z(k) = { 0 Il (y,s) | 0 E(g), se #(g,9,9) }.

Of course we have he R(g) and we can distinguish two cases: h=g and h#g .

If h=g then he K(n) and for each ce Z(k) if we define p= 6/dom(h) then we have to consider there
exist o€ E(g), se #(g,¢,0) such that 6 =93 Il (y,s), so 6 = o/dom(d) = 6/dom(g) = o/dom(h) = p, and
pe E(h).

If h#g then we can apply assumption 2.1.8 to g and h and obtain that he K(n-1), for each e Z(g) if
we define p = 6/dom(h) then pe Z(h) . So he K(n). Let ce E(k) and define p = o/dom(h). There exist
o€ E(g), se #(g,9,0) such that 6 =0 Il (y,s), so p = o/dom(h) = 6/dom(h) € E(h) .

_|

Proof of 2.1.7 :

We need to prove that for each ke K(n+1), te E(n+1,x) one and only one of these 5 alternative
situations is verified:

a. teC, VoeE(k) #(i,t,0) = #(t), Vi(t)=3, V()=
b. tedom(k), Voe E(k) #(k,t,0) = o(t), Vi(t)={t}, V()=

c. JdheKmn):h=x 3¢, 0, ..,0n e Enh):
t=(0)@1, --. , Pm), te E(n+1,h),
for each pe Z(h) #(h,o,p) is a function with m arguments,
(#(h, @1, p), ... , #(h, O, p) ) is a member of its domain,
#(h, t, p) = #(h,0,p) (#(h,01,p), ... , #(h,Pm,p) )
Vi(t) = V(@) U V(o) U ... U V() ,
V(1) = V(@) U V(@) U ... U Vi(Pm) ,
for each o€ E(x), pe E(h): p C o it results
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#(x, t, o) = #(h, t, p)

d. FdheKn):hc=k,IfeF, ¢y, .., pm € E(nh):
t=®(o1, ..., Om), te E(n+1,h),
for each pe Z(h) A« #(h, @1, p), ..., #(h, Om, p) ) ,
#(h, t, p) = P (#(h,91,p), ... , #(h,0m,p) )
Vi) = V(o) U ... U V(Qm) ,
Vu(t) = V(1) U ... U Vp(Qr) ,
for each ce E(x), pe E(h): p E o it results
#(x, t, 0) =#(h, t, p)

e. JheKmn):h=x 3¢, 0y, .., on € E),
3Ixy, ..., Xy distinct € V-dom(h) :
t={}(X1:01, ... , Xm:Qm, ©), te E(n+1,h),

¢ € E(n,h), for each pe Z(h) #(h,p,,p) is a set ;
if m>1 for each i=1..m-1 if we define h’; = hll(x;,@)Il .. ll(x;,¢;) it follows

h’; € K(n) A ¢iz1€ E(n, h’;) A for each p’ie Z(h’y) #(h’s, @iy, p’i) is @ set ;
if we define h’y, = hll(x1,@ Il .. I(Xm,Pm) it follows h’,e K(n) A e E(n,h’y) ;

for each pe Z(h)
#htp) ={}(P'meEM n): pE pP'm, # D n,0.p°m) ) ;

if m=1 Vi(t) = V1) U (V(@)-{x1}) ;
Vo) = {x1} U V(01) U V(@) .

if m>1
Vi(t) = V(1) U (Ve(@2)-{x1}) U ... U (VHOm)-{X15-0:Xm-1}) U (VH(@)-{X1,...,Xm });
V(D) = {X1,.Xm} U V(@1) U .. U V(o) U Vi(9) ,

for each o€ E(x) and for each pe E(h): p=o it results
#(<, t,0) =#(h, t,p).
We recall that
E(n+1,x) =E’ (n,x) U E’,(n+1,x) U E’,(n+1,x) U E’.(n+1,x) U E’4y(n+1,x) U E’(n+1,x) .
So we need to prove that
- for each te E’(n,k) one of the five alternative situations is verified;
- for each we {a,b,c,d,e} and te E’(n+1,x) one of the five alternative situations is verified .
Let te E’(n,k), this means that te E(n,x) and ke K(n). This case is easily solved, in fact we apply
assumption 2.1.7 and obtain that one of the five situations is verified at level n, but this means the

situation is also verified at n+1.

Let te E’,(n+1,k), this means that te E,(n+1,x) and ke K(n)* . We can write x = h Il (y,¢), with
he K(n) , € E(n,h), ye (V-dom(h)). We have te E(n,h), so we can apply assumption 2.1.7 to h and
t. Assumption 2.1.7 says that one of five alternative situations (referred to h,n) is true; we need to
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show that the corresponding situation, referred to k,n+1, is also true. If unclear, this statement will
be immediately clarified.

Let’s consider the situation in which
te C, Vpe E(h) #(h,t,p) = #(t), V()=3, V()= .

In this case for each ce E(x) there exist pe Z(h), se #(h,p,p) such that 6 = p Il (y,s) and
#(1,t,0) = #(1,1,0)(n+1.x.a) = H(h,t,p) = #(t) .

So one of the 5 alternative situations at level n+1 is verified, and there is nothing else we need to
show.

Consider the situation where n>1, te dom(h), Vpe Z(h) #(h,t,p) = p(t), Vit)={t}, Vo (t)=L .
In this case te dom(x) and for each o = p Il (y,s) € E(k)
#(K’t,G) = #(K’t’c)(n+l,l<,a) = #(h’t’p) = P(t) = G(t) .

Consider the situation where

n>1,3dgeKn-1): g h, 3y, vy, .., ynu € E(n-1,2) :
t=)W1, ..., ym), te E(n,g),

for each de E(g) #(g,v,0) is a function with m arguments,
(#(g, v1, 0), ... , #(g, Ym, 0) ) is a member of its domain,
#(g, t, 8) = #(g,y,0) (#(g,y1,9), ... , #(g,Ym,0) )

Vi) = Vi(y) U Viy) U ... U Vi(ym) ,

Viu(t) = Vo(y) U V(¥ U ... U V(W) ,

for each pe Z(h), 6€ E(g): 0 T p it results

#(h, t, p) =#(g, t,0) .

We have

geKn), g E &, ¥, i, .., Ym € E(n,g),

t=0)W1, ... s Ym), te E(n+1,g),

for each o€ E(g) #(g,y,0) is a function with m arguments,
(#(g, y1, 9), ... , #(g, Ym, 0) ) is a member of its domain,
#(g, 1, 8) = #(g,y.0) (#(g2.y1.9), ..., #(g,ym.0) )

Vi(t) = Viy) U V(y) U ... U Vi(yn) ,

V(1) = Vo(y) U Vi(y) U ... U V() ,

for each o = p Il (y,s) € E(x), 6€ E(g): d E o, since d=p it results
#(K’t,G) = #(K,t’c)(nﬂ,lc,a) = #(h’t’p) = #(g, t’ 8) .

Consider the situation where

n>1,dgeK(n-1): g= h,3feF, yy, .., ym € E(n-1,g) :

t= (f)(WI’ ooy \Vm)’ te E(n7g)’
for each o€ E(g) A« #(g, v1, 0), ..., #(g, Ym, 0) ) ,
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We have

#(g, t, 8) = Pr (#(g,y1,9), .. , #(&,Ym.0) )
Vi(t) = Vi(y) U ... U V(W) ,

V(0 = Vo(y) U ... U V(W) ,

for each pe Z(h), de E(g): 6 & p it results
#(h, t, p) = #(g, t, 0) .

geKm), g, feF, yy, .., ym € E(n,g):

t= W1, ... , Ym), te E(n+1,2),

for each o€ E(g) A« #(g, v1, 0), ..., #(g, Ym, 0) ) ,
#(g, t, 8) = Pr (#(g,y1,9), ... , #(g,ym.,d) )

Vi(t) = Viy) U ... U Vi(yn) ,

Vp(t) = Vb(\lfl) U...uU Vb(\lfm) s

for each o = p Il (y,s) € E(x), 6€ E(g): d E o, since d=p it results
#(K’t,G) = #(K’t’c)(n+l,l<,a) = #(h’t’p) = #(g, t’ 8) .

Finally consider the situation where

Here we have

n>1,dgeK(n-1): g S h, 3y, vy, .., yu € E(n-1),
3xi, ..., Xy distinct € V-dom(g) :
t={}Xi:yi, .o, XmiWm, V), te E(n,g),

vy, € E(n-1,g), for each de E(g) #(g,y1,0) is a set ;

if m>1 for each i=1..m-1 if we define g’; = gll(x;,y)Il .. lI(x;,y;) it follows

g’i € K(n-1) A yi 1€ E(n-1, g’5) A for each &€ E(g’;) #(g'i, Vi1, 0'5) 1S a set ;

if we define g’y, = gll(x, W)l .. I(Xm,Ym) it follows g’e K(n-1) A ye E(n-1,2°)

for each de E(g)
#(g,1,0) = {}('m €E(g'm): 6 & &'m , #(g'm,W,0'm) ) ;

itm=1 V¢t) = Vi(y1) U (Vi(w)-{x1}) ;
V(D) = {x1} U Vi(y1) U Vip(y) .

if m>1

Vi) = Vi(y) U (Vi(ya)-{x1D) U ... U (Vie(ym)-{X1,.. Xm1 P W (Vi(W)-{x1,

V() = {X1,. Xm} U Vi(y1) U .. U Vi(ym) U Vp(y) ,

for each pe Z(h) and for each 6€ Z(g): 0Cp it results
#(h, t, p) =#(g, t,9) .

geKn): g=Ex, v, vy, .., ¥y € E(n),
X1, ... , Xy distinct € V-dom(g) :

t={}Xy1, ..., XmWm, V), te E(n+1,g),
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vy € E(n,g), for each de E(g) #(g,y1,0) is a set ;
if m>1 for each i=1..m-1 if we define g’; = gll(x;,y)Il .. lI(x;,y;) it follows

g’i € K(n) A yir1€E(n, g’i) A for each 8’i€ Z(g’;) #(g'i, Vi1, 0'i) 1S a set ;
if we define g’, = gll(x, W)l .. I(Xm,¥m) it follows g’ e K(n) A ye E(n,g’n) ;

for each de E(g)
#(2,,0) = {}(0'm €E(Z’m): 8 & &'m , #(Z'mo,0'm) )

if m=1 Vi(t) = Vity1) U (Vi(y)-{x1}) ;
Viu(®) = {x1} U V(1) U V(y) .

if m>1
Vi(t) = Vi(y) U (Vi yo)-{x1}) U ... U (ViWm)-{ X1, Xm-1}) U (Vi(y)-{X1,....Xm}) ;
Vo0 = {X1,. Xm} U Vo(y1) U .. U Vi(ym) U Vp(y) ,

for each o = p Il (y,s) € E(x), 6 E(g): d E o, since d=p it results
#(i,t,0) = #(1,1,0)(n+1.x.a) = H(h,t,p) =#(g, t, 5) .

Let te E’y(n+1,k), this means that te Ey(n+1,x) and ke K(n)" . We can write x = h Il (y,¢), with
he K(n) , e E(n,h), ye (V-dom(h)). We have t=y, so te dom(x), for each 6 = p Il (y,8) € E(k)
#(¢,t,0) = #(,4,0) e 1,kp) = 0(Y) = (1), Vi(t) = Vi(Omerkp) = {t), Vo) = Ve sk =D .

Let te E’.(n+1,k), this means that te E.(n+1,x) and ke K(n) . As a consequence of te E.(n+1,x) there
exist @, ¢y, .. , ome€ E(n,x) such that t = (¢)(¢y, ... , Pm), te E(n+1,x),

for each o€ E(x) #(x,(,0) is a function with m arguments,

(#(x, @1, 0), ..., #(K, O, 0) ) is a member of its domain,

#(x, t, 0) = #(K,5,0)n+1.x.0) = #(K,0,0) ( #(K,91,0), ... , #(K,0m,0) ) ,

Vi) = VilOwr1.c0 = VH(Q) U V@) U ... U V(@) ,

Vu(©) = Ve(Dat1xe) = Vo(@) U V(1) U ... U Vp(Qn) ,

for each o€ E(x), pe E(x): p E o it results p=c and obviously #(xk, t, 6) = #(x, t, p) .

Since k £ « there is nothing else to prove.

Let te E’4(n+1,k), this means that te E4(n+1,x) and ke K(n) . As a consequence of te Eq(n+1,k)
there exist fe F, @y, .. , o € E(n,k) such that t = (f)(¢y, ... , Om), te E(n+1,x),

for each o€ E(x) A« #(x, @1, O), ..., #(K, O, ©) ) is true

#(,t,0) = #(,5,0) i 1.00) = Pr (#(,01,6), ..., #(¢,0m,0) ) ,

Vi) = VilOwr1.ca) = VHQ1) U ... U VH(@m),

V() = Ve(Omsica) = Vo(@1) U ... U Vi(Qm) ,

for each o€ E(x), pe E(x): p E o it results p=c and obviously #(xk, t, 6) = #(x, t, p) .

Since K E « there is nothing else to prove.

Let te E’(n+1,k), this means that te E.(n+1,x) and ke K(n) . As a consequence of te E.(n+1,x) there
exist a positive integer m, Xy, .., Xp, distinct € V-dom(x), @, ¢1, .. , om € E(n) such that
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t={}(X1:01, ... , Xm:Qm, ¢@). Moreover we have te E(n+1,x),
- @1 € E(n,x), for each oe Z(x) #(x,;,0) 1s a set ;
- if m>1, for each i=1..m-1 if we define «’; = «ll(x1,@)Il .. lI(x;,0;) it follows
K’i € K(n) A ¢iz1€ E(n, ©’;) A for each 6’i€ E(k’;) #(K’i, @i+1, 0’5) is a set ;
- if we define K’y = wll(x1,@ Il .. I(Xm,Pm) it follows K’ e K(n) A e E(n, K’y -
For a fixed ce Z(k)
#(,t,0) = #(1,5,0)m+1xe) = {} (Om €EE(K'm): G E O’ , #(K'm,P,0 m) ) -

If m=1

Vi(t) = Vi(Omr1.xe) = Vil@1) U (Vi(@)-{X1}) ;
Vu(0) = VoDt 1xe) = {X1} U Vo(@1) U V(@) .

If m>1

Vi) = V(O mr1xe) = Vi(@1) U (Vi(@2)-{x1}) U ... U (VHOm)-{X15:Xm1}) U (VH(@)-{X1,....Xm}) 5
V() = Vo(Omt1xe) = {X1.Xm} U V(@1) U .. U Vi(Om) U Vi(0) .

Finally, for each ce Z(x), pe E(x): p £ o it results p=c and obviously #(x, t, 6) = #(x, t, p) .

Since k £ « there is nothing else to prove.

Proof of 2.1.6 :

Let 1,k in K(n+1) such that for each x in dom(x)Ndom(k) k(x)=k(x). Let t € E(n+1,Kx)NE(n+1,k).
Let o€ Z(x), pxe E(k) such that Vxe (dom(kx)Ndom(k)) o(X) = pk(X).
We need to show that #(i,t,6,) = #(k,t,px) -

We have proved 2.1.7 is true at level n+1, so
- te E(n+1,x) implies one of five alternative situations is verified ,
- te E(n+1,k) implies one of five alternative situations is verified .

Suppose situation a is the true situation caused by t € E(n+1,x). We have
te C, #(x,t,0,) = #(t).

This entails situation a is also the true situation caused by t € E(n+1,k). So
te C, #(k,t,px) = #(t) = #(1,1,6,) .

The same kind of reasoning applies for other situations. We now analyze the case where situation b
is the true situation caused by t € E(n+1,x). We have

te dom(x), #(x,t,0,) = 6 (t);
te dom(k), #(k,t,px) = px(t);
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Since te (dom(x)Ndom(k)) o (t) = px(t), and #(x,t,0,) = #(k,t,px) .
We turn to examine the case where situation c is the true situation caused by t € E(n+1,x). We have

JheK(n):h=E«x, 3 ¢, 91, .., pm € E(n,h) :

t=(Q)@1; --. , Pm), te E(n+Lh),

for each o€ E(h) #(h,,0) is a function with m arguments,
(#(h, @1, 0), ..., #(h, o, ©) ) is a member of its domain,
#(h, t, o) = #(h,0,0) (#(h,01,0), ..., #(h,Qn,0) ),

for each e E(h): 0 C o, it results

#(, t,00) =#(, t,0) ;

JdgeKn): g =k, vy, yi,..,yp € E(n,g):

t=)W1, ..., yp), te E(n+1,g),

for each pe Z(g) #(g,v,p) is a function with p arguments,
(#(g, v1, p), ... , #(g, yp, p) ) is a member of its domain,

#(g, t, p) = #(gW.p) (HEY1.p). -, HZVYp.p) )
for each pe Z(g): p E px it results

#k, t,p)=#g, t,p) .

Of course p=m, y=¢ and y;=@; for i=1..m .

Let 6 = 6 /dom(h) and p = px/dom(g) . We have proved 2.1.8 is true at level n+1, so ce Z(h) and
pe E(g) . Therefore

#(x, t, o) = #(h, t, 6) = #(h,,0) ( #(h,0,0), ... , #h,pn,0) ) ;
#(k, t, p) =#(g, t, p) =#(g,0.p) (#(2,01,0), .. , #(Z,Om,p) ) .

Now h,geK(n), for each xedom(h)ndom(g) xedom(x)ndom(k) so h(x)=«(x)=k(x)=g(x) and
o(X)=0(X)=px(x)=p(x). By assumption 2.1.6 #(h,p,0) = #(g,p,p) and for each i=1l.m
#(h,0i,06) = #(g,0i,p) hence

#(c, t, o) =#(h, t,0) =#(g, t, p) =#(k, t, px) .

Next we examine the case where situation d is the true situation caused by t € E(n+1,x). We have

JheK(n):hc k,3IfeF, ¢y, .., o € E(n,h) :

t= (o1, ..., Om), te E(n+1,h),

for each oe Z(h) A¢( #(h, ¢y, ), ..., #(h, on, 0) ),
#(h, t, ) = P¢ (#(h,0,,0), ... , #(h,pm,0) )

for each ce 2(h): ¢ E o, it results

#(, t, 00 =#(h, t, 0) ;

JgeKmn): g=k, IfeF, vy, .., y, € E(ng):
t= W1, ..., yp), te E(n+1,g),
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for each pe E(g) Al #(g, W1, p), ..., #(&, Yp. P) ),
#(g, t, p) = Pr (#(gy1.p), .., #(Yp,p) )

for each pe Z(g): p E px it results

#(k, t, pr) =#(g, 6, p) -

Of course p=m and y;=¢; for i=1..m .

Let 6 = 6 /dom(h) and p = pi/dom(g) . We have proved 2.1.8 is true at level n+1, so ce Z(h) and
pe E(g) . Therefore

#(x, t, o) = #(h, t, 6) = Py (#(h,01,0), ..., #(h,0m,0) ) ;
#(k, t, p) =#(g, t, p) = Pr (#(g,01.p), ... , #(Z,0m,p) ) .

Now h,geK(n), for each xedom(h)ndom(g) xedom(x)ndom(k) so h(x)=«(x)=k(x)=g(x) and
o(X)=0(X)=px(x)=p(x). By assumption 2.1.6, for each i=1..m #(h,¢;,0) = #(g,p;,p) hence

#(c, t, 00) =#(h, t,0) =#(g, t, p) =#(K, ¢, px) -

We still need to examine the case where situation e is the true situation caused by t € E(n+1,x). We

have

JheK(n):h = «, 3 ¢, @1, .. , o € E(n),
3Ixy, ..., Xm distinct € V-dom(h) :

t: {}(Xl:(Pl’ sy Xm:(Pm, (P), te E(n+1’h)’

@1 € E(n,h) ;
if m>1 for each i=1..m-1 if we define h’; = hll(x;,@)Il .. ll(x;,¢;) it follows
h’; € K(n) A ¢i11€E(n, b)) ;

if we define h’y, = hll(x1,@)Il .. I(Xm,¢m) it follows h’,e K(n) A e E(n,h’y) ;

for each ce Z(h)
#(h’t76) = {}(G’m G E(h’m) c E G’m 9 #(h’m’q),c’m) ) ’

for each ce 2(h): 6 E o, it results #(k, t, o) =#(h, t, 0) ;

dgeKm): g Ek, vy, yi, .., yp € E(n),
dyi, ..., yp distinct € V-dom(g) :

t={}yrvi, ... s ¥piWp, W), te E(n+1,g),

¢1 € Ey(n,g) ;
if m>1 for each i=1..m-1 if we define g’; = gll(y;,w)ll .. lI(yi,y;) it follows

g’i€ Kn) A yini€Es(n, g7 ;
if we define g’p = gll(y,woll .. lI(yp,yp) it follows g’,e K(n) A yeE(n,g’p) ;

for each pe Z(g)
#HEtp) ={}Pnme€EEm): PEP m, HE mY.p'm) ) ;
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for each pe Z(g): p E px it results #(k, t, px) =#(g, t, p) .
Of course p=m, y=¢ and y;=X;, yi=; for i=1..m .

Let 6 = 6 /dom(h) and p = pi/dom(g) . We have proved 2.1.8 is true at level n+1, so ce Z(h) and
pe Z(g) . Therefore

#(c, t,00) =#(h, t,0)={}(c’'meZE(’n): 6 E 6"y, #N'1,0,6'm) ) ;
#(k7 t7 pk) = #(g’ t’ p) = {}(p’m EE(g,m): p E p,m 2 #(g,m,(P,p’m) ) .

Now h,geK(n), for each xedom(h)ndom(g) xedom(x)ndom(k) so h(x)=x(x)=k(x)=g(x) and
o(X)=0(X)=px(x)=p(x). So we can apply consequence 2.1.12 and get

{(}(meEh n): 0 Ec’n , # W m0,6'm) ) ={}(P'm €E(Em):PE P'm, #(E m,P:P m) )

In other words #(x, t, o) = #(k, t, px) .

We have finished with definition 2.1. We now prove a result that is closely related to the definition.
Lemma 2.2: for each positive integer n and te E(n,k) (Vi(t) < dom(k) A Vu(t) € V-dom(k)).
Proof:

We use induction on n.

Initial step:
For each te C Vi(t) = @ < @ =dom(e); Vp(t) =F < V =V —dom(e) .

Inductive step:

Let ke K(n+1), te E(n+1,k). We have seen that

E(n+1,k) = E’(n,k) U E’y(n+1,k) U E’py(n+1,k) U E’c(n+1,k) U E’4(n+1,k) U E’c(n+1,k) .
If te E’(n,k) then te E(n,k) and by induction our statement holds.

If te E’4(n+1,k) then we have ke K(n)*, so k =h Il (y,p) where he K(n) , pe E(n,h), ye (V-dom(h)),
and we also have te E(n,h), ye Vy(t),
V(t) < dom(h) < dom(k); Vp(t) € V — dom(h), y& Vi, (t) so Vu(t) < V — dom(k) .

If te E’y(n+1,k) then we have ke K(n)", so k =h Il (y,¢) where he K(n) , o€ E(n,h), ye (V-dom(h)),
and we also have t=y, Vi(t) = Vi()m+1xp) = {y} < dom(k), Vi(t) = Vo(Or1xp) =D < V — dom(k).

If te E’.(n+1,k) then there exist @, @y, .. , € E(n,k) such that t = (¢)(¢4, ... , Pm),
Vf(t) = Vf(t)(n+1’k’c) = Vf((P) U Vf((pl) U... U Vf((pm) (- dom(k)
V() = Vb(Oms1.k0) = V(@) U Vp(91) U ... U V(@) < V — dom(k) .
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If te E’ 4(n+1,k) then there exist fe F, ¢y, .. , ome€ E(n,k) such that t = (f)(¢y, ... , Om),
Vi(t) = ViO@r1xa) = V(@) U ... U V(@) < dom(k)
V() = Ve(Oms1 k0 = Vo(@1) U ... U Vy(om) € V —dom(k) .

If te E’c(n+1,k) then there are a positive integer m, xy, ... , Xn, € V and @, ¢4, .., o € E(n) such
that t = { }(X1:0Q1, ... , Xm:@Pm, ¢). Furthermore

- X{, ..., Xy distinct € V-dom(k) ;
- @1 € E(n,k), for each oe Z(k) #(k,;,0) is a set ;
- if m>1, for each i=1..m-1 if we define k’; = kll(x;,@)Il .. ll(x;,05) it follows
k’; € K(n) A ¢ir1€E(n, kK’;) A for each 6°i€ Z(k’;) #(K’;, ¢it1, 0'1) 1S a set ;
- if we define k', = kll(x1,@ Il .. I(Xm,Pm) it follows k’,e K(n) A e E(nk’) .

If m=1

Vi(t) = Vi mr1 k) = Vi@1) U (V(@)-{X1}) 5
V(1) = Vo(Om1.ke) = {X1} U Vi(91) U V(@) .

If m>1

Vi) = V(D @r1ke) = V(@) U (Vi(@2)-{x1}) U ... U (VHOm)-{X15:Xm-1}) U (VH(@)-{X1,....Xm}) 5
V(1) = Ve(Dmt1 ke) = {X1,. Xm} U Vi(01) U .. U Vp(Om) U Vi(9) .

Let’s consider the case where m=1.
By the inductive hypothesis
Vi(e1) € dom(k); Vi(¢) € dom(k’y,) = dom(k) U {x;} ; so VKt) < dom(k) ;

V(@) < V-dom(k); V(@) < V-dom(k’y,) = V- (dom(k) U {x;}) € V - dom(k) ; therefore
V(D) = {X1} U Vi(@1) U V(@) = V - dom(k) .

We now turn to examine the case where m>1 .

By the inductive hypothesis

Vi(e1) < dom(k) ;

for each i=1..m-1 V{i;;) € dom(k’;) = dom(k) U {x, .., Xi} ,
s0 VH(@is1) — {X1, .., Xi} < dom(k) ;

Vi(¢) < dom(k’y) = dom(k) U {Xy, .., Xm} ,
so VHo) — {xy, .. , X} < dom(k) .

It follows

Vi(t) = V(o) U (Vi(@2)-{x1}) U ... U (VH(@m)-{X1,e0sXm-1}) U (VH(@)-{X1,....Xm}) < dom(k) .

And also by the inductive hypothesis
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V(1) < V-dom(k) ;
for each i=1..m-1 Vy(9i11) < V-dom(k’;) € V-dom(k) ;
V(@) < V-dom(k’y,) < V-dom(k) .

Therefore
V() = {X1..Xm} U Vp(@1) U .. U V(@) U Vu(e) < V-dom(k) .
O

This result ensures that Vi(t) and V(t) are always disjoint, so a variabile cannot have both bound
and free occurrences in the same expression.
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3. Introduction to the deductive methodology

In this section we will cover some fundamental principles that underlie our inferences. An
important target will be achieved with the proof of theorem 3.5, which is a simple but significant
step to justify our deductive methodology.

Some preliminary definitions. Let K = Unzl K(n), for each ke K let
Ek) = Unzlz ke K(n) E(n,k).

LetE = UkeK E(k); E is the set of all expressions in our language.

One expression te E(k) is a ‘sentence with respect to k> when
for each oe Z(k) #(k,t,0) is true or #(k,t,0) is false.

We define S(k) = {tl te E(k), t is a sentence with respect to k}.

At the beginning of section 2 we have introduced the logical connectives. In our deductions,
expressions will make an extensive use of the logical connectives, so we assume that all of these
symbols: A, v, —, =, V, T are in our set F. For each of these operators f A¢(xy,...,X,) and Pg(Xxj,..,X,)
are defined as specified at the beginning of section 2.

For each te E(g) we define #(t) = #(¢, t, €) .

On the way to theorem 3.5 we need some other preliminary work, beginning with the following
lemma 3.1.

Lemma 3.1:
Let he K, pe E(h), ye (V-dom(h)) such that Vpe E(h) #(h,p,p) is a set. If k =h Il (y,p) then we have
- keKk;
- IfyeS(k) then
o {}(y:¢,v) € E(h)
o (V) ({}(y:9, 7)), Q) ({}(y:0, V) € S(h)
o VpeE(h) #(h, (V) ({}(y:0, 1), p) =Py ({}(c€E(K): p=o, #(k, v, 6)) )
o VpeE() #(h, Q) ({}(y:9, ), p) =P3 ({ }(ce E(k): pEo, #(k, v, 0)) )

Proof:

Since @€ E(h) there is a positive integer n such that he K(n), o€ E(n,h). This implies that
hil (y,p) € K(n)" cK(n+l) cK.

Let ye S(k). There is a positive integer m such that ye E(m,k). We define p=max{n+1,m}, then we
have

- heK(p)

- ye(V-dom(h));

- @€E(p,h), Vpe E(h) #(h,p,p) is a set;

- keK(p), ye E(p,k) .

54



This implies that { }(y:¢, v) € Ec(p+1, h) € E(p+1,h) c E(h) .

Moreover for each pe Z(h) #(h, {}(y:¢, V), p) = #h, {}(y:0, V), P)p+ihe =
={}(ceEk):pEoc ,#k,v,0)).

For each pe E(h) Ay(#(h, {}(y:,7), p)) =
=#(h, {}(y:0, V), p) is a set, for each u in #(h, {}(y:0, ), p) (u is true or u is false) .

Clearly #(h, {}(y:0, v), p) is a set, furthermore for each u in #(h, {}(y:o, y), p) there is ce Z(k):
pCo, u=#(k, v, 6), and since ye S(k) u must be true or false.

Therefore for each pe E(h) Ay( #(h, {}(y:9, ), p) ) holds, so (V) ({ }(y:0, 7)) € E(p+2, h).

And for each pe E(h) As( #(h, {}(y:9, ). p)) = Av(#(h, {}(y:9, 7). p) ) holds,

s0 ) ({}(y:0, 7)) € E(p+2, h).

For each pe E(h)

#(h, (V) ({}(y:0. 7)), p) = #(h, (V) ({}(y:9, V), P)ps2he) = Py ((h, {}(y:0,7),p)) =
=Py ({}(ce E(kK): pEo, #(k,7,0)) ) ;

#(h, (3) ({}(y:0, ), p) = #(h, ) ({}(¥:9, 1)), P)p+2ne) = P3 (#(h, {}(y:0,7),p)) =
=P3 ({}(ce E(k): pEo, #(k, v,0)) ).

Finally, for each pe Z(h) #(h, (V) ({ }(y:0, 7)), p) = Pv ({ }(ce E(k): pEo, #(k, v, 6)) ), and
Py ({}(ce&(k): pEo, #(k, v, 6)) ) is clearly true or false, hence (V) ({}(y:9, v)) € S(h) . And
similarly we obtain that (3) ({ }(y:¢, v)) € S(h) .

O

Definition 3.2:

Let m be a positive integer. Let Xy, ... , Xm € V, with xi#x; for i#j. Let @1, .. , opn€E .

Let kg = € € K. Let ;€ E(¢) such that #(¢,) is a set. We define k; = (x1,9;), so k;e K.
If m>1 for each i=1..m-1 suppose we have defined ki = (x1,¢1) Il .. Il (x;,9;) € K. Let @€ E(kj) such
that Vpe Z(k;) #(ki,0i+1,p) 1s a set. We define ki = ki Il (Xi41, Qis1), SO ki1 €K .

We indicate this situation with H[x;:@;, ... , Xn:@n] and in this case we indicate k,, with

K[X1:01, .. ) Xm:Qm] -
O

Definition 3.3:

Let m be a positive integer. Let Xy, ... , Xm € V, with xi#x; for i#. Let ¢y, .. , pme E and assume
H[x1:01, ... , Xm:Om]. Let @ € S(K[X1:01, .. , Xm:Qm]).

Define

Y[Xm:Om, 0] = (V) ({ }(Xm:®Pm, ©)) . By 3.1 we have y[Xm:Qm, ¢] € S(kpm-1) -
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If m>1 for each i=2..m suppose we have defined y[X;:@;, ... , Xm:@Pm, ®] € S(kj.1), and define

VX1 :@it, -v s Xmi®m, O] = (V) ({ }(Xi-1:@i-1, Y[Xit @i, .. s Xmi@m, @]))

By lemma 3.1 y[Xi.1:0i.1, ... s Xm:@m, ¢©] € S(Ki2) .

Lemma 3.4:

Let m be a positive integer. Let Xy, ... , Xm € V, with xi#x; for i#. Let ¢y, .. , pme E and assume
H[x:01, ... , Xm:@m]. Let ¢ € S(k[X1:91, .. , Xm:@m]), m>1, j=2..m .

We have y[X;:0j, ... , Xm:@m, @] € S(kj.1). We can show that for each i=1..j-1
YIXiiQis oo s Xmi@m, O] = VIXii @iy oov s Xjo1:Qj-1, VX Pjs -oe s X i@y @] ]
Proof:

We show this by induction on i. First we show the property for i =j-1.

YL Xi1:95.15 oo s Xini®m, @] = (V) ({ J(Xj1:05-1, YIXj:95, oo s Xmni@m, @) =
= Y[ Xj-1:0j-1, Y[Xj: 95, oo s Xmi@Pm, @] ] .

Now we assume j-1 > 2 and i between 2 and j-1. We assume the property is true for i and want to
show it holds also for i-1. We have

Y[Xi1:@icts oo s Xmi@m, @] = (V) ({ J(Xi-1:@i-1, Y[Xii @i, ov y Xmi@Qm, @])) =
= (V) ({ }(Xic1:@i-15 YIXi @iy ooe s Xi-12Q5-1, YIX}iQ5, cov s Xmi@m, @] 1)) =
= Y[Xi1:Qic1s oov s Xj-1:Q5-1, VX105, oo s XmiOm, @] ] .

Theorem 3.5:

Let m be a positive integer. Let Xy, ... , xm € V, with x;#xj for i#. Let @1, .. , pmeE and assume
H[x1:01, ... , Xm:Om]. Let ¢ € S(k[X1:91, .. , Xm:®m]). Then

#(Y[X1:01, .. s XmiQm, ©]) >
Py ({} (¢’ € E(K[X1:Q1, .. , Xm:@m]) , #(K[X1:01, .., Xni@m], @, G57) ) ) .

Proof:

We’ll use the symbols ko, .., ki, with the same meaning they have in the former definitions 3.2 and
3.3.

So we need to show that
#OY[X1:01, oo s Xmi@m, ©]) <> Py ({} (67 €E(km) , #( km, 9,07) ) ) .
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To this end we need to show that for eachi =m .. 1 and for each o€ E(k;.;)

#kio, YIXii@i, oo s Xmi@m, @], 0) <> Py ({} (6’ €E(kpn): 6 E 0", #(km, 9,067) ) ).

We prove this by induction on i, starting with the case where i=m. Here we need to show that for
each ce E(kp-1)

# K1, Y[Xm:Qm, @], 0) < Py ({} (6" €E(kn): 6 E 0", #(km, 9,07) ) ) .
Actually

# K1, Y[Xm:Pm, @], 6) = #(km-1, (V) ({}Xmi@m, @) , 0) =
=Py ({} (0’ €E(kn): 6 EG ", #(Km, 9,57)) ).

Now suppose m>1, let i=2..m and suppose the property holds for i, we show it also holds for i-1.
We have

#(Ki2, V[Xi1:Qi-1, o s Xmi®m, @] 5 6) = #(Ki2, (V) ({}(Xi1:0i-1, VXt @iy oo s XmiPm, ©])) , 0) =
=Py ({}(c’eE(ki.1): 60, #(Ki.1, Y[Xi:0is - » XmiOm, @] ,G") ) ) &>

=Py ({}(c’eE(ki1): 650", Py ({} (6" €E(km): 6" E 6”7, #(Km, ©,067))) ) ).

So it comes to showing that

Py ({}(o’eE(ki.1), 650", Py ({} (6”7 € Elkm): 6" E 07, #(km, 9,67)) ) ) ) <

Py ({} (6" €E(km): 6 E 0", #(km, 9,067)) ).

Suppose Py ( {}(c’€ E(ki.1): 6=0°, Py ({} (67 €E(kn): 6" E 67, #(kn, ¢,67))) ) ).
This means that for each 6’e Z(k;.1): 6=0’ and 6” € Z(ky): 6° & ¢ #(kpn, ¢, 6”) holds.

Let 6” € Z(kn): 6 & 67, we need to prove #(kn, ¢, 6”). Let 6’ = 6”/dom(k;.;). We have ¢’ E(k;.y),
since 6 = o’/dom(c) = ¢”/dom(kj,) then ¢ E &’, moreover it’s clear that ¢’=c”, therefore
#(km,,0”") holds.

Conversely suppose Py ({} (6”7 €Z2(kn): 6 E 67, #(kn, ¢, 67) ) ) holds, and so that for each
0’eZ(kp): 6 & o” #(km, ¢, 6”) is true. Let 6’e E(k;.1): 0=0” and 6” € E(ky): 6° E ¢”, we wonder if
#(km, @, 6”) holds. The answer is yes, because of 6’ E(k,,) and 6 & ™.

We conclude that

#(Ki2, Y[Xi1:9i1, - » XmiQm, @] , ©) >

Py ({}(c’€E(ki.1), 6=0", Py ({} (6" €E(km): 6 E 07, #(km, 0,67))))) <

Py ({} (6” €Ekp): 6 E 0”7, #(kmn, 9,67)) ).

And clearly the proof is finished, since
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#OY[X1:01, - s XmiQm, ¢]) <> #(Ko, Y[X1:Q1, ... s Xmi@m, @], €) <>
Py ({} (¢’ €E(kn) , #(Kkm, 9,067) ) ).

We will soon apply theorem 3.5 to show its importance. First of all we need to prove lemma 3.6,
which in some way is similar to 3.1 but involves other logical connectives.

Lemma 3.6

Let he K, @1, > € S(h). Then

- (AQ1.e2) € S(h)
- VpeE(h) #(h, (A) (@1, 92), p) = Pu (#(h, @1, p), #(h, 92, p))

- (M(Q1.2) € S(h)
- VpeE(h) #(h, (V) (@1, 92), p) = Py (#(h, @1, p), #(h, 92, p))

- (2)@12) € S(h)
- VpeE(h) #(h, (=) (@1, 92), p) =P, (#(h, @1, p), #(h, 92, p))

- (M1)€ S(h)
- VpeE(h) #(h, (7) (91), p) =P (#(h, @1, p))

Proof:
For each pe Z(h) #(h, ¢, p) is true or #(h, @1, p) is false; #(h, @2, p) is true or #(h, ¢,, p) is false.

We recall that

AL (#(h,@1,p), #(h,@2,p) ) = Au(#(h,@1,p), #(h,02,p) ) = AL (#(h,01,p), #(h,02,p) ) =
= (#(h,01,p) is true or #(h,py,p) is false) and (#(h,p,,p) is true or #(h,p,,p) is false) ,

and A-(#(h,1,p) ) = (#(h,@1,p) is true or #(h,p1,p) is false) .

So AA(#(h,01,p), #(h,02,p) ), Av( #(h,@1,p), #(h,02,p) ), A(#(h,@1,p), #(h,02,p) ) and A_(#(h,91,p))
all hold true.

There exists a positive integer n such that ¢, ¢, € E(n,h), so

(N(@1,92), (V)(01,02), (=)(@1,92), (—)(¢1) € E(h).

Moreover for each pe Z(h)

#h, (A) (@1, 02), p) = P. (#(h, @1, p), #(h, 2, p)) ;
#(h, (V) (91, 02), p) =Py (#(h, @1, p), #(h, 2, p)) ;
#(h, (=) (01, 92), p) =P, (#(h, 01, p), #(h, @2, p)) ;
#(h, (=) (1), p) =P- (#(h, 01, p)) ;
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SO

#(h, (A) (@1, @2), p) is true or false ;
#(h, (V) (1, 02), p) is true or false ;
#(h, (=) (01, 02), p) is true or false ;
#(h, (4) (¢1), p) is true or false .

Therefore (A)(@1,92), (V)(@1,92), (=)(@1,¢2), (—)(@1) € S(h).

The following lemmas, 3.7 and 3.8, are examples of how theorem 3.5 is applied.

Lemma 3.7

Let m be a positive integer. Let Xy, ... , xm € V, with x;#x; for i#. Let @1, .. , pmeE and assume
H[x1:01, ... , Xm:@m]. Define k = k[X;:0, ... , Xm:@m] and let @, vy, yz € S(k).

Under these assumptions we have (=) (¢, y1), (=) (@, ¥2), (=) (@, (A) (Y1, ¥2) ) € S(K).
Moreover, if

#(Y[XI:(P17 cee s Xmi(Pm’ (_)) ((P, \Vl)])’ #(Y[XI:(P17 cee s Xmi(Pm’ (_)) ((P, \VZ)])

then

HOY[X1:01, oo s Xmi@m, (=) (@, (A) (w1, y2) )] -

Proof:

We need to show

#OY[X1, oo s Xm 5 Q1 - Omi (=) (@, (A) (i, w2))D),

that is

(=]

(k). #(k. (=) (9 (A) (w1, ¥2))0))
(o€ E(K).P= (#(k.0.0).#(k,(A) (yv2),0))))

P oe
(1) Pe((}(ce E(K),P(#(k0,6).Px(#(ky1,0).#(k.y2,0)))))

Pv({}(ce

But we have

#Y[X1:01, ... s Xm:Om, (—) (@, y1)]), from which we get

Po((}(ce E(k). #(k.(=)(9.1).0))) .
Po({}(ce E(k).P - (#(k.9.0).#(k.y1,0)))) -
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And we have

#Y[X1:01, ... s Xm:Om, (—) (@, Y2)]), from which we get

Po({}(ce E(K).#(k.(=)(9.y2).0))) .
Po({}(ce E(k).P- (#(k.9.0).#(k.y2.0)))) .

So for each oe Z(k) if #(k,p,0) holds true then both #(k,y;,6) and #(k,y,,6) hold. This implies (1)
holds true in turn.
O

Lemma 3.8

Let m be a positive integer. Let Xi, ... , Xms1 € V, with xi#x; for i#. Let @y, .. , ¢m+1€E and assume
H[x1:01, ... , Xm:@m+1]. Define k = k[X1:01, ... , Xme1:Qm+1]-

Of course H[x;:01, ... , Xm:@m] holds and we can define h = k[X;:¢, ... , Xn:Qm].

Let we S(h): Xm+1€ Vo(V), @€ S(k).

Under these assumptions we have ye S(k) and (—)(v,p)e S(k),
moreover (V) ( {}(Xm+1:@Pm+1, ©) ) € S(h), (=) (y, (V) ({}Xm+1:@me1, 9) ) ) € S(h) .

Finally,

#OY[X1Q1, o s Xmi@m, (=) (W, (V) ({} Xins1:0mse1, @) ) ) | )
#OY[X1Q1, oo s Xma1:Qma1, (D)W, ©) 1)

Proof:

There exists a positive integer n such that y,pns €E(nh). This implies that ke K(n)*. Since
Xm+1€ Vp(¥) we have yeE(n+1,k), moreover for each ce Z(k) we have 6 = p Il (Xp+1, S), With
pe E(h), se #(h,pm+1,p) and #(k,y,0) = #(h, v, p); #(h, y, p) is true or false, so #(k,y,o) also is true or
false. Therefore ye S(k) and (—)(v,p)e S(k).

By lemma 3.1, since ¢ S(k), we derive that (V) ( {}(Xm+1:0m+1, @) ) € S(h), and it immediately
follows that (=) (y, (V) ( {}Xm+1:0m+1, @) ) ) € S(h) .

We can rewrite
#VX1:Q1, - s XmiPm, (=) (W, (V) ({} Kms1:Qme1, 9) ) ) 1)
in these ways
Po((3(pe 2(0).#(1.(=2) (. (%) (1} (x01:0041,9))).p)))
Pv({}(pe E(h),P—>(#(h,w,p),#(h,(V)({}(xm+1:(pm+1,(p)),p)))) ,
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Pv({}(pe E(h),P> (#(h,w,p),Pv({ }(GE Z(k):pC 6,#(k,(p,6)))))) :
We can rewrite #( y[X1:01, ... , Xm+1:Pm+1, (—)(V, @) ] ) in these ways

Po({}(ce E(k).#(k.(=)(v.9).0))) .
Po({}(ce E(k).P- (#(k.y.0).#(k.9.0)))) .

So it comes to proving that

Pv({}(pe & (h).P - (#(h,y.p).P+({}(ce Ek):pE 6,#(k,(p,6)))))) and

Pv({}(se Z(k),P - (#(k,w,ﬁ),#(k@ﬁ))))

are equivalent .

Assume

Pv({}(pe Z(h).P - (#(h.w.p).Po((} (o€ Z(k):pE G,#(k,(p,c)))))) ,

let oe Z(k) such that #(k,y,c), we ask whether #(k,¢,c) holds true.

There exist pe E(h), se #(h,pm+1,p) such that 6 = p Il (Xm+1,8) ; #(k,yv,0) implies (h,y,p), and since
pEoc we have #(k,0,0) .

Conversely assume Pv({}(se E(k),P - (#(k,w,s),#(k,(p,c)))).

Let p’e Z(h) such that #(h,y,p’), let e E(k): p’=o, we wish to prove #(k, ¢, o) .
We’ve seen there exist pe Z(h), se #(h,m+1,p) such that 6 = p Il (xm+1,8) and #(k,y,c) = #(h, y, p).
Clearly p’ = o/dom(p’) = o/dom(h) = o/dom(p) = p, so both #(h, y, p) and #(k,y,5) hold, and
therefore #(k, ¢, o) also is true.

O

Next we list some other general results, similar to the ones we have just seen in this section.

Lemma 3.9

Let ke K, m positive integer, ¢, @1, ... , o € E(k). Suppose for each oe Z(k) #(k,p,0) is a function
with m arguments and ( #(k, @1, 0), ..., #(K, @, ©) ) is a member of its domain. Then

- (©)o1, ..., om) € E(k)

- for each oe E(k) #(k, (9)(@1, ... , Pm), 0) = #(K, 0, 6) (#(K, @1, 0), ... , #(K, m, 6))
- V(@015 .. Om)) = Vu(0) U Vi(91) U ... U V(o) .

- Vi(@)(@1, ..., om)) = Vi(0) U VHo1) U ... U VHQ) .

Proof:
There exists a positive integer n such that @, ¢y, ... , oy € E(n,k). This implies that

@)1, ..., om) € E(n+1,k), and for each ce E(k)
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#(Kk, (@)(@1, ..., om), 0) = #(k, ¢, 0) (#(k, 91, 0), ..., #(k, om, 0) ) .

Clearly the following also hold:

Vi((0)(@1, ..., om)) = V(@) U VH{@1) U ... U VH(Qu) ,
Vo(@)(@1, ..., Pm)) = V() U V(@) U ... U V(@) .

Lemma 3.10

Let ke K, fe F, m positive integer, ¢, ... , on € E(K).
Suppose for each ce E(k) A #(k, @1, 0), ..., #(K, Om, ©) ) is true . Then

- (D@1, ..., Om) € E(K)
- for each ce E(k) #(k, (H)(o1, ..., Om), ) = Pr (#(k, @1, 0), ..., #(K, Om, 0) )

- Vo(D(@1, oo, 0m) = V(@) U ... U V(@) -
- Vi) (@1, ..., 0om) = V() U ... U Vi(@n) .

Proof:
There exists a positive integer n such that @y, ... , o, € E(n,k). This implies that
® (o1, ..., om) € E(n+1,k) , and for each ce E(k)

#(k, (D@1, ..., om), 0) =Pr (#(k, 91, 0), ..., #(k, om, 0) ) .

Clearly the following also hold:

V() (@1, -.. 5 Om)) = Vp(@1) U ... U Vi(Qm) .
Vi(D)(@1, ..., Om)) = V(@) U ... U V(Qn) .

Lemma 3.11

Letke K, ¢, @y, .., om € E, X1,...,X, distinct € V-dom(k)
- ¢1€E(k), for each ce E(k) #(k,01,0) is a set;
- if m>1 then for each j=1..m-1 if we define k’; = kll(x;,@)ll... lI(x;,9;) then
k’ie K A ¢j41 € E(K’j) A for each o’je E(k’;) #(K’j, @j+1, 07j) 15 a set;
- if we define k™, =kll(x1,0)Il... l(Xm,@m) then kK’ e K A pe E(K’ 1)

Define y = { }(X1:01, ., Xm:Qm, ¢), then
-y e E(k),

- foreachceZE(k) #k,y,0)={} (0'me€EK n): 6 E ' n , #K nm,¢,0'm) ),
- V() = {X1,. Xm} U V(@) U .. U V(@) U V() .
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Proof:

There exists a positive integer n; such that ¢,€ E(n;,k); if m>1 then for each j=1..m-1 there exists a
positive integer nj;; such that @€ E(nj,1, k’j); there exists a positive integer np.i such that
(Pe E(nm+1,k’rn) .

If we define n = max{ny, .., np41} then ke K(n) and
- ¢1€E(n,k), for each ce E(k) #(k,;,0) is a set;
- if m>1 then for each j=1..m-1 if we define k’; = kll(x;,@)ll... lI(x;,9;) then
ke K(n) A 9j11 € E(n,K’j) A for each 6’ Z(K’5) #(K';, ¢j+1, 675) 1s a set;
- if we define kK’ ,=kll(x1,0))Il... [(Xm,Pm) then k’ e K(n) A pe E(nk’p) .
Of course this implies that { }(x;:Q1, .., Xm:@m, ®) € E(n+1,k), for each ce E(k)
#k,y,0)={} (6'm €E(k'm): 6 E 6'm , #(K w,¢,6'm) ), and finally

Vo(p) = {X1,.Xm} U Vp(@1) U .. U Vi(m) U V(9) .

Lemma 3.12

Let ce C. For each positive integer n and ke K(n) ce E(n,k) and for each oe Z(k) #(k,c,0) = #(c).

Proof:

The proof is by induction on n.

For n=1 we have ce E(1,¢) and by definition #(g,c,e) = #(c) .

Let n be a positive integer and ke K(n+1) = K(n) U K(n)".

If ke K(n) then ce E(n,k) — E(n+1,k) and for each ce E(k) #(k,c,0) = #(c).

Otherwise ke K(n)* so there exist he K(n) , € E(n,h), ye (V-dom(h)) such that k = h Il (y,p).

We have ce E(n,h) and for each pe E(h) #(h,c,p) = #(c) .

It follows that ce E(n+1,k) and for each 6 = p Il (y,s) € Z(k) we have #(k,c,0) = #(h,c,p) = #(c) .
O

Lemma 3.13

Suppose the equality predicate symbol = we defined at the beginning of section 2 belongs to F.
Suppose @1, ¢2 € E(k). Then (=)(91,02) € S(k).

Proof:

For each oe E(k) A-( #(k, 1, 0), #(K, ¢2, 0) ) is true, so (=)(91,¢92) € E(k).
Moreover for each oe E(k) #(k, (=)(¢1,92), 6) = P= (#(k, ¢1, 0), #(K, ¢2,0) ) =
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=#(k, @1, 0) is equal to #(k, ¢z, 6) , so #(k, (=)(¢1,92), ) is true or false.

Therefore (=)(¢1,92) € S(k).

Lemma 3.14

Suppose the membership predicate symbol € we defined at the beginning of section 2 belongs to F.
Suppose t, ¢ € E(k) and for each oe Z(k) #(k,,0) is a set. Then (€ )(t,p) € S(k).

Proof:

For each ce E(k) Ac( #(k,t,0), #(k,0,0) ) = (#(k,0,0) is a set) is true.

So by lemma 3.10 (€)(t,p) € E(k),

for each oe Z(k) #(k, (€)(t,9), 6) = Pc( #(k,t,0), #(k,0,0) ) = (#(k,t,5) is a member of #(k,(,0)),

so #(k, (€)(t,p), o) is true or false and (€)(t,p) € S(k).

Lemma 3.15

Let m be a positive integer. Let Xy, ... , xm € V, with x;#xj for i#. Let @1, .. , pmeE and assume
H[x1:01, ... , Xm:@m]. Define k = k[x1:¢y, ... , Xm:@m]. Let i=0..m-1 and let ye E(k;) such that for each
j=i+1 .. m x;& Vy(y) .Then yeE(k) and for each ce E(k) there exists pe Z(k;) such that p=Ec and
#(k, v, o) =#(ki, v, p) .

Proof:

We prove by induction on j that for each j=i.m ye E(k;) and for each o€ E(k;) there exists pe Z(k;)
such that pC=o and #(k;, v, o) = #(k;, v, p) .

The initial step of the proof is obvious, so let j=i..m-1, and assume yeE(k;j) and for each ce Z(k;)
there exists pe E(k;) such that p=o and #(k;, vy, 6) = #(k;, v, p) -

Since Xj.1¢ Vp(y) by lemma 4.2 we have yeE(kj;1) and for each 6 = n Il (y,s) € E(kj1)
#(kjs1,v,0) =#(k;,y,n). Since neZ(k;) there exists peZ(k;) such that pEnE=c  and

#(ki, \V’ p) = #(k, \V’ n) = #(kj+17\|l,6)'
O
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4. Substitution

First-order logic features the notion of ‘substitution’ (see e.g. Enderton’s book [1]). Under
appropriate assumptions, we can apply substitution to a formula ¢ and obtain a new formula ¢*; by
replacing the free occurrences of the variable x by the term t. In our approach we’ll define a similar
notion, with the difference that for us t is a generic expression.

We begin with some preliminary definitions and results, and then substitution will be defined

through the complex definition process 4.6.

Lemma 4.1:
Let he K, ye V-dom(h), pe E(h): Vpe E(h) #(h,p,p) is a set, k =h Il (y,p). Then ke K .

Proof:

There exists a positive integer n such that g E(n,h). Of course he K(n), so ke K(n)" < K(n+1).
O

Lemma 4.2:

Let heK, ye V-dom(h), pe E(h): Vpe Z(h) #(h,p,p) is a set, k = h Il (y,p). Let ye E(h) such that
y& Vp(y). Then ye E(k) and for each 6 = p Il (y, s) € E(k) #(k,y,0) = #(h,y,p) .

Proof:
There exists a positive integer n such that e E(n,h), ye E(n,h). Of course he K(n), so ke K(n)*, and
yeEm+1,k). Leto =pll (y, s) € E(k), we have #(k,y,0) = #(K,W,0)n+1 k.2 = #(h,y,p) .

O

Lemma 4.3:
Let he K, ye V-dom(h), pe E(h): Vpe Z(h) #(h,¢,p) is a set, k = h |l (y,0). Then ye E(k) and and for
each o € E(k) #(k,y,0) = o(y) .

Proof:
There exists a positive integer n such that ¢eE(nh). Of course heK(n), so keK(n)", and
ye E(n+1,k). For each e Z(k) we have #(k,y,0) = 6(y) .

O

Definition 4.4

Let n be a positive integer, ke K(n), k#¢, n>1.
Let p be a positive integer with p <n, Xy, .., Xp € V: xi#x; for i#j, @1, .., ¢, € E.
We define ko=¢ and (when p>1) for each i=1..p-1 k; = (x1, @) Il .. Il (X;,9;) -
Suppose
- foreachi=l..p
o ki1 € K(n-1)
o ¢;€ E(n-1, ki)
o for each pi1e E(ki.) #(ki.1, @i, pi-1) 1S a set

65



- k= (Xl, (pl) .1 (Xp,(pp)

- for each ce ZE(k) if we define op=¢ and (when p>1) for each i=1..p-1 o; = 6/dom(k;) then

there exist s1€ #(Ko,91,00), ... , Sp€ #(Kp-1,9p,0p-1) such that 6 = (x1, sp) Il .. Il (Xp,Sp) .

We’ll indicate this situation with the expression K(n; k; xi, .. , Xp; @1, .., @p) .

Lemma 4.5

For each positive integer n and k in K(n) we have
k=¢or

(n>1 and there exist

- apositive integer p such that p<n,
- Xi, .., Xp € Vsuch that xi#x; for i#j,

- 0,..,.9€E
such that K(n; k; X1, .., Xp; @1, .., ¢p) ) .

Proof:

We prove this by induction on n.

The initial step is clearly satisfied because if ke K(1) then k=¢ .

Then suppose the statement holds for n and let’s see it holds also for n+1.
So let ke K(n+1) and k#¢. By assumption 2.1.2:

there exist ge K(n), ze V-dom(g), ye E(n,g): k= g Il (z,y) A Voe E(g) #(g,v,0) is a set A
Ek) ={ oll(z,;s) lo€E(g), se#(gy.0) } .

By the inductive hypothesis
g=gor
(n>1 and there exist

- apositive integer p such that p<n,
- X, .., Xp € Vsuch that xi#x; for i#j,

- 0,..,.9€E
such that K(n; g; X1, .., Xp; @1, .., @p) ) -
We first consider the case where g=¢.
Here we define p=1 < n+1, x;=ze V, ¢;=y€E.

We have ki =¢ € K(n), ¢;=y€ E(n,g)=E(n,e)=E(n,ky) ,
for each poe ZE(ko) #(ko, ¢1, po) = #(g, ¥, po) 1s a set .

Moreover k=(x1,¢1).
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Let o€ E(k) and define cp=¢. We need to show there exists s;€ #(ko,91,00) such that 6 = (xi, s1).

For each oe E(k) there exist pe Z(g), se #(g,y,p) such that 6 = p Il (z,5).
Since g=¢ then p=¢ and 6= (z,s) = (X1,8) and s € #(&,¢1,&) = #(ko,P1,00).

Therefore we have shown K(n+1; k; x1; ¢1) .
We now turn to consider the case where
n>1 and there exist

- apositive integer p such that p<n,
- Xi, .., Xp € Vsuch that xi#x; for i#j,

- 0,...9€E
such that K(n; g; X1, .., Xp; @1, .., @p) -

In this case p+1 is a positive integer and p+1 < n+1. We define X, =z €V, @p.1=y€E and need to
show that K(n+1; k; X1, .., Xp+15 @1, .. » Pp+1) holds.

We define ko=¢ and for each i=1..p k; = (xy, @) Il .. Il (xi, ¢)).
Since K(n; g; X1, .. , Xp; @1, .. , ®p) holds, for each i=1..p
- ki€ Kn-1) cK(n),
- ¢i€ E(n-1,ki.1) c E(n, ki) ,
- for each pi. 1€ E(ki.1) #(ki.1, @i, pi-1) 1s a set .
Moreover
- kp = g € K(n) 3
- @pr1 =y € E(n,g) = E(nky),
- for each ppe E(k,) we have pye Z(g) and #(Kp, Pp+1, Pp) = #(g, W, pp) is a set.
Of course it also holds

k=gl (zy) =&, @) Il I Xp,0p) Il (Xps1,Pp+1) -

Let ce Z(k). We define cp=¢ and for each i=1..p o; = o/dom(k;), and we need to show there exist
s1€#(kKo,91,60), ... , Spr1€#(Kp,Pp+1,0p) such that 6 = (X1, s1) Il .. | (Xps1,8p+1) -

There exist pe Z(g), se#(g,y,p) such that 6 = p Il (z,s) = p Il (Xp+1,5).
Clearly 6, = o/dom(k,) = 6/dom(g) = o/dom(p) = p, so se #(g,y,p) = #(Kp,Pp+1,0p)-

Since K(n; g; X1, .. , Xp; Q1 .. , ¢p) we also know that if we define po=¢ and (if p>1) for each i=1..p-1
pi = p/dom(k;) then there exist s;€ #(ko,@1,p0), ... , Sp€ #(Kp-1,9p,pp-1) such that

p =g, s I 1 (Xp,sp).
Of course py = € = 6p and if p>1 for each i=1..p-1 p; = p/dom(k;) = 6/dom(k;) = o; . Therefore
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SIE#(k()?(Pl’GO)’ e Spe #(kp-I’(Pp’Gp-1)7 S€ #(kp7(Pp+1’Gp) ’

6 =p Il (Xp+1,8) = (X1, s1) I .. 11 (Xp,8p) I (Xp+1,8) -

The former result is useful to the next definition. In fact suppose n is a positive integer, with n>2,
suppose ke K(n) and k#e. In this situation there exist a positive integer p such that p<n,
X1, .., Xp € Vi Xi#Xj for i#], @1, .. , ¢p € E such that K(n; k; X1, .., Xp; @1, .., @p) -

And of course p, Xi, .. , Xp; @1, .. , @p are univocally determined. In fact suppose
Kn; k; y1, .., Yq; W1, - » Yg) also holds. In this case clearly

(X1, @) 1. 1T (Xp,0p) =k = (y1, wi) I .. [ (yq,¥q) , therefore

g=p, for each i=1..p y; = xj, yi = ¢; .

Definition 4.6

For each positive integer n>2:
for each ke K(n), if k#¢ then there exist a positive integer p such that p<n, xi, .. , X, € V: x#x; for

i#j, Py, ..

, ¢p € E such that K(n; k; Xy, .., Xp; @1, .. , @p), and p, X1, .. , Xp; @1, .. , Qp are univocally

determined.
Given i=1..p, te E(kj.;) such that

Vpi-1€ E(ki-1) #(Kki-1,tpic1) € #(Ki1,9i,pi-1),
Vi=1..p: JA X;& V(1)
Vizit1.p Ve() O Vo(0) = D

what we want to do is:

If i=p we want to define k{x;/t} if not already defined.
If k{x;/t} is already defined we’ll verify it is k{xi/t} = kp.;, otherwise we’ll explicitly define
k{xi/t} =kp.1 .
If i<p we want to verify the following
o Kkp.1{xi/t} is defined and belongs to K;
o xpe V-dom(ky{xi/t});
o (Qpp-nixi/t} is defined and belongs to E(k,-i {xi/t});
o for each pe E(kp-i {xi/t}) #(Kkp-1{xi/t}, (Ppkep-nixi/t}, p)is aset;
Then if k{x;/t} is already defined we’ll verify it is
o) k{Xi/t} = kp_l{Xi/t} I (Xp, (([)p)k(p.l){Xi/t}) .
Otherwise we’ll explicitly define
o) k{Xi/t} = kp_l{Xi/t} I (Xp, (([)p)k(p.l){Xi/t}) .
In both cases i=p and i<p we’ll verify
o dom(k{xi/t}) =dom(k) — {x};
o k{xi/t}eK;
o for each pe E(k{xi/t}), if we define p;.; = p/dom(k;.;), and define ¢ as the soop
(x1,r1) Il .. 1l (xp,1p) Where Vj#i ri=p(x;) and 1; = #(ki.1,t,pi.1) then ce E(k) ;
for each e E(n,k), with V,(t) N V(@) =D
o we wish to define @y {xi/t}
o we wish to show that @i {xi/t}e E(k{xi/t})
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we wish to prove that for each pe ZE(k{xi/t}), if we define p;.; = p/dom(k;,), and

define 6 as the soop (x1,r1) Il .. Il (Xp,1p) Where Vj#i rj=p(X;) and r; = #(ki.1,t,pi.1) then
#(k, 9, o) = #(k{x/t}, oc{xi/t}, p) .

we wish to prove that V(o {Xi/t}) < V(@) U Vi(t) .

we wish to verify one of the following five conditions holds
e C Agfxilt} =0,

*  gedom(k) A (@=X; = Q{xi/t} =t) A (0£X; = @r{xi/t} = @)

= n>1, there exist ke K(n-1) such that kEk and v, vy, ... , v € E(n-1,x) such

that @ = (W)(V1, --- , Ym), € E(n,K),
for each pe E(x) #(k,y,p) is a function with m arguments and
(#(, y1, p), ... , #(K, Ym, p) ) is @ member of its domain,

if x;€ dom(k) then @y {xi/t} = (yi{xi/t}) ((W{Xi/t}, ..., (Wm{Xi/t}),
else ox{xi/t} =0 .

» n>1, there exist ke K(n-1) such that kEk and fe F, vy, ... , yn € E(n-1,x)
such that ¢ = (f)(yy, ... , Ym), 9€ E(n,x),
for each pe E(x) Al #(x, y1, p), ... , #(K, Y, p) ) is true,
if x;e dom(x) then @k {xi/t} = (f) ((w{xi/t}, ..., (Wmh{xi/t}),
else ox{xi/t} = 0.

= n>1, there exist ke K(n-1) such that kEk and v, v, .., y, € E(n-1),
Vi, ... , Ym distinct € V-dom(k) such that

¢ ={}yrvi, .o s Ym:Vms V), @€ E(n,x),

vy € E(n-1,x), for each oe E(k) #(K,y1,0) is a set ;

if m>1 then for each j=1..m-1 we define «’; = «ll(y,y)ll .. ll(y;y;) and we
have «’; € K(n-1), yjs1€E(n-1, «’;), for each ¢’je E(x’j) #(j, yj+1, 0°j) 1s a
set;

if we define k', = «ll(X, W)l .. I(Xm,¥m) then ¥’ e K(n-1) A yeE(n-1,x"y) ;
if x;€ dom(x) then we can observe that

i € E(m,x), Vu(t) N Vi(y1) € V() N Vi(p) = D, therefore () {xi/t} is
defined;

for each j=1..m-1 yj. € E(n, «’;), for each a=1..j y.€ V(@) 50 yo& Vi(t),
V(D) N V(W) € V(D) N V(@) = G, V() N Vi(yis) € V() N V(o) = O,
therefore (i, 1)e{Xi/t} is defined ;

ye E(n, k'), for each a=1..m y,e V(@) so yu& Vi(t),
V(1) N Vi(We) < V() N V(@) = D, V() N V(y) < Vi(t) N V() = O,
therefore W m){xi/t} is defined ;

it results @y {xi/t} =
= (Hyi: Quel/th, yor (W2de Xt} s oo s Yt (Wb (X3t} Wieam (Xi81);
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if x;¢ dom(x) then @y {xi/t} = ¢ .

o we wish to verify the following: let he K(n) such that k; = h.
There exists a positive integer q<n, yi, ... , Yq€ V: Yo#Yp for o#B, yi, .., yq € E such
that K(n; h; yi, .., Yoo Wi, - 5 Wg)-
Therefore h = (yi, yi) Il .. Il (yg.¥q), 1=q, for each j=1..1 yj = X;, yj=@; .
If i<q then assume for each j=i+1 .. q

"y V(D)
" V)N Vv =9.
Also assume @€ E(n,h).

Then @y {xi/t} = ep{xi/t}.
o we wish to verify the following: let he K(n) such that ¢€ E(n,h), x;& dom(h).

Then @{xi/t} = ¢ .

Our definition process uses induction on n>2, therefore in the initial step we have n=2.
If ke K(2) and k+#¢ then there exist x,€ V, @€ E such that K(1; k; x1, ¢1) .

It results k = (x1, ¢1) and ¢, € E(l,¢) .

Let te E(¢) such that #(t) € #(¢).

We can define k{x/t} =& € K(1); we have dom(e) = & = {x;} — {x1}, k{xi/t} =e=kp.1 .

For each pe Z(¢g), suppose we define py = p/dom(ky) = €, and define o = (x;,#(t)). We have
k = ¢l (x4, ¢1), where ee K(1), x; € V-dom(e), ¢, € E(1,¢), for each ope Z(¢) #(¢, @1, 6¢) is a set. So
ke K(1)" and since € Z(g), #(t)e #(£,91,8), then 6 = & Il (x1,#(1)) € Z(k).

Let g€ E(2,k) such that V,(t) N V(o) = &.
Of course
E2k) =E’(1,k) UE’,(2,k) UE’,(2,k) UE’.(2,k) UE’3(2,k) UE’(2,k) .

Suppose ¢ € E’(1,k), so pe E(1,k) and ke K(1), k=¢. This is against our assumption that k#e, so we
must exclude the case where ¢ € E’(1,k).

Now suppose @e E’,(2,k). This means @e E,(2.,k), ke K(1)". So there exist he K(1), y;€ (V-dom(h)),
y1€ E¢(1,h) such that (x;, ;) =k =h Il (y;,y;). This impliesh =€, y; = x;, y; = ¢; .
We have also pe E(1,¢) (which implies V(@)= and x;& V,(9)).

We define o{x,/t} = ¢ € E(¢) = E(k{x,/t}) .

For each pe E(¢), if we define py = p/dom(ky) = €, and define 6 = (X;,#(t)) then we have seen that
o€ Z(k), and furthermore ¢ = ¢ Il (x;,#(t)), where k = € Il (x;, 1), e€ E(¢), #(t)e#(€,01,€). So it must
be

#(k, @, o) = #(&,0,8) = #(k{xi/t}, o{xi/t}, p) .

Of course Vy(pr{Xxi/t}) = V(@) = @ < V(@) U Vi(t) .
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Let’s go on with the other verifications.
Suppose he K(2) such that k; = h. This implies h=k and so it’s obvious that @i {xi/t} = en{xi/t}.

Now let he K(2) such that o€ E(2,h), xi¢ dom(h). Actually these hypothesis are not needed to verify
that @i {x,/t} = @, since this is the definition of @y {x;/t}.

Finally, the condition e C A @x{xi/t} = @ is clearly satisfied.

Let’s examine the case where @€ E’,(2,k). This means @€ Ey(2.k), ke K(1)". So there exist he K(1),
yi1€ (V-dom(h)), y1€ E¢(1,h) such that (x;, ¢1) =k =h Il (y;,y;). This implies h =€, y; = x1, y; = @1 .
We have ¢ = x; and we define @x{x;/t} =t e E(¢) = E(k{x,/t}) .

For each pe E(¢), if we define py = p/dom(ky) = €, and define 6 = (X;,#(t)) then we have seen that
o€ Z(k), and furthermore #(k, ¢, 6) = 6(x;) = #(t) = #(&,t,&) = #(k{x/t}, o {xi/t}, p) .

Of course Vy(pk{xi/t}) = Vi(t) < V() U V(1) .
Let’s see the other points.
Suppose he K(2) such that k; = h. This implies h=k and so it’s obvious that @y{xi/t} = en{xi/t}.

Now let he K(2) such that pe E(2,h), x;j¢ dom(h). We have h = (y;, y;) where y;eV, y;#x; and
y1€E(1,¢). This implies ¢=y; or e E(1,)=C (we’ll see very soon there aren’t other possibilities).
In both cases ¢#x;, but this contradicts our hypothesis. So it is never the case there exist he K(2)
such that e E(2,h), x;¢ dom(h).

Finally, the following condition holds

o dom(k) A o=x; A @x{xi/t} =t, and therefore the following is satisfied:

eedom(k) A (@=X; = Or{xi/t} =t) A (0#£x; = Q{Xilt} =) .

Now suppose @eE’(2,k). This implies ¢eE (2, k)2, so ke K(1), k=e. This is against our
assumption that k#¢, so we must exclude the case where e E’(2,k), and the same way we have to
exclude the cases where e E’4(2,k), and e E’(2,k).

We’ve seen the only two ‘real’ cases are pe E’,(2,k) and ¢ E’,(2,k), and the definition of ¢y {x;/t}
depends on which case is verified. Clearly E’,(2,k) and E’,(2,k) are disjoint sets so the definition we
have set out is correct.

This wraps up the initial step of our definition process. To deal with the inductive step let n>2,
suppose we have given our definitions and verified the results at step n, and let’s go on with step

n+1.

Let ke K(n+1) such that k#¢. Let p be a positive integer such that p<n+1, xi, .. , X, € V: xi#x; for
i#, 91, .., ¢p € E such that K(n+1; k; X1, .., Xp; @1, .., Pp).
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Let i=1..p, te te E(kj.;) such that
- Vpiie Eki) #(ki,tpin) € #(Ki,00.pi-1),
- Vj=1.p: JA X;& V(1)
- Vj=it+l..p V() N V(@) =D

Consider the case where i=p.

If ke K(n) there exist a positive integer q<n, yi, ..,yq € V: yi#y; for i, yi, .., yq € E such that
Kn; k; yi, .., Yg; Wi, - » Yg). Therefore

(yYi.w) T 1 (yewe) =k = x1,01) I .. I (Xp,®p), SO q=P, yi=Xi, Wi=¢i and K(n; k; X1, .. , Xp; @1, .. , Pp).

For this reason, by the inductive hypothesis, k{xi/t} is already defined and k{xi/t} = kp.;
dom(k{xi/t}) = dom(k) — {x;}; k{xi/t}e K ; for each pe Z(k{xi/t}), if we define pi.; = p/dom(k;.),
and define ¢ as the soop (x1,r1) Il .. Il (Xp,rp) where Vj#i rj=p(Xx;) and r; = #(k;.1,t,pi.1) then ce E(k) .

If on the contrary ke K(n) then we define k{xi/t} =k,.; € K(n), of course
dom(k{xi/t}) = dom(k,.;) = dom(k) — {x;} .

Let pe E(k{x/t}), define p;.; = p/dom(ki.;), define o as the soop (xi,r1) Il .. Il (Xp,rp) where Vj#i
rj=p(x;) and r; = #(ki_1,t,pi.1). We have k = kp.1 Il (Xp, @p) € K(n)*,

c =p Il (Xp, #Kp-1,t,pi-1)) = p Il (Xp, #(Kp-1,t,p)), and also pe E(kp.1), #(kp-1,t,p) € #(Kp-1,¢p.p). This
implies ce Z(k).

Now we turn to examine the case where i<p.

If ke K(n) then K(n; k; X1, .., Xp; @1, .. , ¢p). By the inductive hypothesis,
Kp-1{xi/t} 1s defined and belongs to K;

xp€ V-dom(k,.-1 {xi/t});

(Pp)kp-nixi/t} is defined and belongs to E(k,-1{xi/t});
for each pe E(k,1{xi/t}) #(kp-1 {Xi/t}, (@pkp-n{Xi/t}, p)is a set ;

O O O O

k{xi/t} is already defined and k{xi/t} = kp-1{xi/t} Il (Xp, (@p)kp-niXi/t}) ;
dom(k{xi/t}) = dom(k) — {x;}; k{xi/t}e K ; for each pe E(k{xi/t}), if we define pi; = p/dom(k;.),
and define 6 as the soop (xi,r1) Il .. Il (Xp,rp) Where Vj#i rj=p(X;) and r; = #(ki.1,t,pi.1) then ce E(k) .

If on the contrary k¢ K(n) then k,.; € K(n) and there exist q<n, yi, ..,yq € V: yi#y; for i#,
V1, .., Wq € E such that K(n; kp-15 y1, .. 5 Yg5 Vis - » Wg). Therefore

(¥ T T (YeWe) =Kp = (X1,90) I I (Xp-1,9p-1), 80 q=p-1, yi=X;, yi=¢;, and
Km; kp-15 X1, o 5 Xp13 Q1 oo 5 @pei)-

By the inductive hypothesis k.1 {xi/t} is defined and k. {xi/t}e K,
dom(kp.i {xi/t}) = dom(kp.1) — {xi}.

We also consider that ¢, € E(n, kp.1), Vs(t) N Vi(@p) = D, so (@p)kp-nixi/t} is also defined and
belongs to E(kp-i {xi/t}) .
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We have kp_l {xi/t}e K, Xp€ V—dom(kp_l {xi/t}), ((pp)k(p_l){Xi/t}E E(kp_l {xi/t}).

We still need to prove that for each pe Z(k,.1 {xi/t}) #(kp-1{xi/t}, (Pp)ke-nixi/t}, p) is a set.

Let pi.i = p/dom(ki.;) and define ¢ as the soop (xi.r1) Il .. Il (Xp-1,1p-1) Where Vj# rj=p(x;) and
ri = #(ki,tpi). Since ¢, € E(, kpi), Vo) N Vi(pp) = D, we have oceZ(ky1),
#kp1 {xi/t), (Ppp-nixilt}, p) = #(kp1, ¢p, 6) . And since #(ky.1, ¢p, ©) is a set then also
#(kp1 {xi/t}, (@pe-1n{Xi/t}, p) is a set.

So we can define k{xi/t} = kp.1{xi/t} Il (Xp, (@p)kp-n{Xi/t}), and k{xi/t} € K.

Moreover dom(k{xi/t}) = dom(k,.i{xi/t}) U {Xp} = (dom(kp-1)—{x;}) U {xp} =
= (dom(ky1) U {Xp}) - {xi} =dom(k) - {xi} .

Let pe E(k{x/t}), define p;.; = p/dom(ki.;), define o as the soop (xi,r1) Il .. Il (Xp,rp) where Vj#i
rj=p(x;) and r; = #(ki_1,t,pi.1). We need to show that ce E(k).

Of course, there must exist pp.j€ E(kp-1 {xi/t}) and se #(Ky-1 {xi/t},(@p)kp-1»{Xi/t}, pp-1) such that
p = pp-1 Il (Xp, 8). We define 6,.1 = o/dom(kp.1).

It’s pretty obvious that pi.; = pp.i/dom(ki.;) .
To show this holds consider that pp.1€ E(kp-1{xi/t}), dom(pp.1) = dom(k,.1{xi/t}) = dom(kp-1) — {Xi};
dom(pi.1) = dom(k;_1) € dom(py.1). Since p,.1 E p, pi-1 E p, dom(pi.1) < dom(p,.1) we have pi E ppg

and so pi.; = pp-1/dom(pj.1) = pp-1/dom(k;.p) .

It’s also obvious that o1 = (X1,r1) Il .. I (Xp-1,1p-1), for each j=1..p-1 if jA then ri=p(x;)=pp-1(X;),
1; = #(ki.1,t,pic1).

So we can apply the inductive hypothesis to obtain that 6,.1€ Z(kp.1) .

To show that oe Z(k) we consider that k = k. Il (Xp, @p) € K(n)*, 6 = 6,1 Il (X5, p(Xp)). So, to say
that oe E(k) holds, we just need to show that p(x,) € #(Kp-1, @p, Cp-1).

We have p = pp.1 Il (xp, 8) € E(k{xi/t}) and p(xp) = s € #( k1 {xi/t}, (@pkep-n{Xi/t}, pp-1), if we apply
the inductive hypotesis to ky.1€ K(n), ¢, E(n, kp.1) (this is possible since Vy(t) N Vy(9p) = &) and
consider that py.1€ E(kp-1{xi/t}), pi-1 = pp-1/dom(ki.1), 6p-1 = (X1,11) Il .. Il (Xp-1,1p-1), for each j=1..p-1 if
j#1 then rj=p(Xj)=pp-1(X;), r; = #(K;.1,t,pi.1) it comes out that

#(Kp-1, Op, Op-1) = #( Kp 1 {Xi/t), (@pkp-n{Xi/t}, Pp-1),

and therefore p(xp) € #(kp-1, @p, Op-1).

Let e E(n+1,k) such that Vi (t) N Vu(¢) = . Remember that

E(n+1,k) =E’(n,k) U E’y(n+1,k) U E’p(n+1,k) U E’c(n+1,k) U E’4(n+1,k) U E’c(n+1,k) .
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The definition of @k{xi/t} depends on the set to which ¢ belongs to, actually ¢ may belong to more
than one of these sets, but this problem will be addressed later when we’ll show that the definitions
match each other.

Suppose ¢ is in E’(n,k). This means ¢ E(n,k), ke K(n). In this case, by the inductive hypothesis,
ox{xi/t} is already defined and has all the requested properties.
Now suppose @€ E’,(n+1,k). This implies g E,(n+1.k), ke K(n)".

We have k = k,.1 Il (Xp, ¢p), and there exist he K(n), ye V-dom(h), y such that k = h Il (y,y) ,
e E(n,h), y& V(). Of course h = k.1, y = Xp, ¥ = ¢p 50 9 E(n,kp.1), Xp& V().

If i=p we define @i {xi/t} = ¢ € E(kp.1) = E(k{xi/t}) .

Let pe E(k{x/t}), define p;.; = p/dom(k;.;), define o as the soop (xi,r1) Il .. Il (Xp,rp) where Vj#i
rj=p(x;) and r; = #(ki_1,t,pi.1). We need to show that ce Z(k), #(k, ¢, 6) = #(k{xi/t}, e{xi/t}, p).

We have 6 = p Il (xp, #(Kkp-1,t,pi-1)) = p I (Xp, #(kp-1,t,p)), and also
pe E(kp-1), #(kp-1,t,p) € #(Kp-1,0p.p). This implies o€ Z(k). By lemma 4.2 we have also

#(k’(P’G) = #(kp-l’(p’p) = #(k{xi/t}7 (Pk{Xi/t}’ P)
Moreover V(@ {xi/t}) = V(@) C V() U V(1) .

If i<p we consider that k,; € K(n) and therefore K(n; ky.i; X1, .. , Xp-15 @1, .. , @p.1), and also
o€ E(n.kp.1). This implies @yp-1){Xi/t} is defined and belongs to E(kp.i {xi/t}) .

So we can define Qi {xi/t} = Qxp-n{xi/t} € E(kp1{xi/t}) .
We need to show that ¢ {xi/t} € E(k{xi/t}). We consider that

- kp.l{Xi/t}G K;

- xp€ V-dom(kp.1 {xi/t});

- (@pke-nixi/t} € Ekpi{xi/t});

- for each pe E(kp-1{xi/t}) #(kp-1 {xi/t}, (@pkp-n{Xi/t), p)is a set ;
- k{xi/t} = kpa{xi/t} I (Xp, (@p)kp-»{Xi/t}) .

Moreover we can show that X,& Vi(Qkp-1){ Xi/t}).
In fact, by the inductive hypothesis, Vp(Qrp-n{xi/t})) < V(@) U V(). We know that
Vi(9) < V-dom(k), so x,& Vu(9); and we know also x,& Vi (t), hence xpe Vi(Qrp-1){ Xi/t}).

Therefore by lemma 4.2 we obtain that @i {xi/t} = Qip-1){xi/t} € E(k{xi/t}) .
Let pe E(k{x/t}), define p;.; = p/dom(k;.;), define o as the soop (xi,r1) Il .. Il (Xp,rp) where Vj#i

rj=p(x;) and r; = #(ki_1,t,pi.1). We have shown that ce Z(k) and we need to show that
#(k, 9, o) = #(k{xi/t}, ex{xi/t}, p).
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We can use the proof of ‘ceZ(k)’ as a reference. In that proof we have seen there must exist
pp-1€ E(kp-1{xi/t}) and se#(kp-1 {xi/t},(@p)p-1{Xi/t}, pp-1) such that p = pyy Il (Xp, s). We have also
defined o,.; = o/dom(k,.1). We have seen that p;.; = py.i/dom(k;.;) and that

Op-1 = (X1,11) I .. Il (Xp-1,1p-1), for each j=1..p-1 if j£i then rj=p(X;)=pp-1(X;), r; = #(Ki_1,t,pi-1).

By lemma 4.2 we have #(k{xi/t}, oi{xi/t}, p) = #(Kp-1 {Xi/t}, Q- {Xi/t}, pp-1) -

We can apply the inductive hypothesis to obtain that 6,.1€ E(K-1) and

#(kp-1 {xi/t), Qrp-nixi/t}, pp-1) = #(Kp-1, @, Op-1) -

It remains to show that #(k,,.1, ¢, 6,.1) = #(k, 9, ©).

This holds because of k = kp.1 Il (Xp, ¢p), p€ E(Kp-1), Xp& Vi(@), 6 = 6p.1 Il (Xp,p(Xp)) and lemma 4.2 .

Finally we have Vi(@k{xi/t}) = Vi(@kep-1{Xi/t}) € V(@) U Vi(t) .

Consider the case where @€ E’,(n+1,k). This implies g€ Ey(n+1,k), ke K(n)*.

We have k = kp.1 Il (Xp, 9p), and there exist he K(n), ye V-dom(h), y such thatk =h Il (y,y), 0 =y,
for each oe Z(k) #(k,p,0) = o(y) .
Of course h =k.1, y = Xp, ¥ = @p 50 ¢ =X, , #(k,0,0) = 6(Xp) .

If i=p we define Qi {xi/t} =t e E(ky.1) = E(k{xi/t}) .

Let pe E(k{x/t}), define p;.; = p/dom(ki.;), define o as the soop (xi,r1) Il .. Il (Xp,rp) where Vj#i
rj=p(x;) and r; = #(ki_1,t,pi.1). We need to show that ce Z(k), #(k, ¢, 6) = #(k{xi/t}, e{xi/t}, p).

We have 6 = p Il (Xp, #(Kkp-1,t,pi-1)) = p Il (Xp, #(kp-1,t,p)), and also
pe E(kp-1), #(kp-1,t.p) € #(Kp-1,9p,p). This implies oe E(k).

We have also #(k, ¢, 0) = o(xp) = #(kp-1,t,pi-1) = #(kp-1, t, p) = #K{xi/t}, e{xi/t}, p) .
Moreover V(@ {xi/t}) = Vu(t) C V(9) U V(1) .

If i<p we define @ {xi/t} =@ =X, .

We consider that

- kp_l{Xi/t}E K;

- xp€ V-dom(kp.1 {xi/t});

- (epkep-nixi/t} € E(ky1{xi/t});

- for each pe E(kp-1{xi/t}) #(kp-1 {xi/t}, (@pkp-1H{Xi/t}, p) is a set ;
- k{xi/t} = ko {xi/t} I (Xp, (@pxp-n{Xi/t}) .

Therefore @ {xi/t} = x, € E(k{xi/t}) .
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Let pe E(k{x/t}), define p;.; = p/dom(ki.;), define o as the soop (xi,r1) Il .. Il (Xp,rp) where Vj#i
rj=p(x;) and r; = #(ki_1,t,pi.1). We have shown that ce Z(k), we also need to show that
#(k, 9, o) = #(k{xi/t}, ex{xi/t}, p).

By lemma 4.3 we have
#(k, ¢, o) = #(k, Xp, 0) = 0(xp) = p(xp) = #(k{xi/t}, Xp, p) = #(k{xi/t}, oi{xi/t}, p) .

Finally Vy(@k{xi/t}) = V(@) € V(@) U V(D) .

We turn to the case where g€ E’(n+1,k). This implies g€ E.(n+1,k), ke K(n).
There exist a positive integer m and y, i, .. , ym € E(n,k) such that
- (P = (W) (Wl? se s \Ifm) 5
- for each ce E(k) #(k,y,0) is a function with m arguments and
(#(Xk, yi, 0), ..., #(k, ym, 0) ) is a member of its domain.
Since ke K(n) we have K(n; k; xi, .. , Xp; @1, .. , §p). We have

Vu(0) = Vo(y) U Vi(y1) U ... U V(ym) ,
and since Vy(t) N Vy(@) = & we have

- V()N Vu(y) =9,

- for each j=1.m Vy(t) N Vp(yj) =D .

By the inductive hypothesis y{x;/t} is defined and belongs to E(k{x;/t}), and for each j=1..m
(y;k{xi/t} is defined and belongs to E(k{x;/t}), so we can define

Pri{xi/t} = (wi{xi/t}) ((wo{xi/t}, .., (Ymk{xi/t}) .
We need to show that ¢ {xi/t} € E(k{xi/t}).

Let pe E(k{xi/t}), we want to show that #( k{xi/t}, yx{xi/t}, p) is a function with m arguments and
#H(k{xi/t}, (w{xi/t}, p), .., #(k{xi/t}, (ymk{xi/t}, p)) is a member of its domain.

We define p;.; = p/dom(k;.1), and define o as the soop (xi,r1) Il .. Il (Xp,1p) where Vj#i ri=p(x;) and
1; = #(ki.1,t,pi.1). By the inductive hypothesis o€ Z(k) and

#(k, vy, o) = #(k{xi/t}, yx{xi/t}, p), and for each j=1..m #(k, y;, o) = #(k{xi/t}, (ypi{xi/t}, p) .
So #(k{xi/t}, y{xi/t}, p) = #(k, v, o) is a function with m arguments and

#HCk{xi/t}, (wk{xi/t}, p), .., #(k{xi/t}, (ym{xi/t}, p)) = (#(K, y1, ©), ..., #(K, Y, ©) ) is a member
of the domain of #(k{xi/t}, yx{xi/t}, p) .

Therefore, by lemma 3.9, ok {xi/t} € E(k{xi/t}).

Moreover if, as defined above, pe E(k{xi/t}), pi-1 = p/dom(ki.;), and & is the soop (xi,r1) Il .. Il (Xp.rp)
where Vj#i rj=p(x;) and r; = #(ki_1,t,pi.1) we have
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#K, (v) (Y1, .., Ym), 0) =#(K, y, 6) (#(K, y1,0), ... , #(K, ym, 0) ) =

= #(k{xi/t}, yil{xi/t}, p) HCk{xi/t}, (wk{xi/t}, p), .., #( k{xi/t}, (ym{xi/t}, p)) =
= #(k{xi/t}, (pi{xi/t}) ((wordxi/th, .., (ymi{xi/t}), p) = #( k{xi/t}, pu{xi/t} , p).
Finally

Vi(@i{xi/t}) = Vo(yi{xi/t}) U Ve((wi{xi/t}) U ... U Ve((ymh{xi/t}) <

C Vo(y) U V() U Vp(y1) U V() U ... U Vi(ym) U V(D) =

= Vp(y) U Vp(y1) U ... U Vp(ym) U V(1) = V(@) U V(1) .

We examine the case where g€ E’4(n+1,k). This implies ¢ E4(n+1,k), ke K(n).
There exist fin F, a positive integer m and vy, .. , Y, € E(n,k) such that
- o=MW1, -, Ym)
- for each ce E(k) A #(k, vy, 0), ... , #(k, ym, 0) ) is true.
Since ke K(n) we have K(n; k; X1, .. , Xp; @1, .. , §p). We have
Vu(0) = Vo(y1) U ... U V(yn) ,

and since Vy(t) N V(@) = & we have
- foreach j=1.m Vy(t) N Vp(yj)) = .

By the inductive hypothesis for each j=1..m (y;)«{xi/t} is defined and belongs to E(k{xi/t}), so we
can define

o{xi/t} = () ((wor{xi/t}, .., (Wm{xi/t}) .
We need to show that @y {xi/t} € E(k{xi/t}).
We have k{xi/t}eK, fe F, for each j=1..m (yj{xi/t} € E(k{xi/t}).

Let pe E(k{xi/t}), we want to show that A« #(k{xi/t}, (Wi)k{xi/t}, p), ... , #K{xi/t}, (ym{xi/t}, p))
is true.

We define p;.; = p/dom(k;.1), and define o as the soop (xi,r1) Il .. Il (Xp,1p) where Vj#i ri=p(x;) and

1; = #(ki.1,t,pi.1). We have already shown that 6e K, moreover, by the inductive hypothesis, for each
J=1.m #(k, yj, o) = #(k{xi/t}, (Wk{xi/t}, p) .

So AL #(k, y1, 0), ..., #(k, ym, 0) ) is true, and consequently

AR/, (ORI, p),s —on s #K{X), (padi{Xi/t), p) ) is true,

So by lemma 3.10 it is proved that ¢k {xi/t} € E(k{xi/t}).
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Moreover if, as defined above, pe E(k{xi/t}), pi.1 = p/dom(ki.;), and o is the soop (xi,r1) Il .. I (Xp,1p)
where Vj#i rj=p(x;) and r; = #(ki_1,t,pi.1) we have

#(k, () (y1, .., Ym), 0) = Pr (#(K, y1, 0), ..., #(k, ym, 0) ) =

=Py #(k{xi/t}, (y{xi/t}, p), .., #(K{xi/t}, (ym{xi/t}, p)) =
=#(k{xi/t}, () ((wo{xilt}, .., (ym{xi/t}), p) = #(k{xi/t}, e{xi/t} , p) .
Finally

Vi(@{xi/t}) = Vo((wifxi/t}) U ... U Ve((ymi{xi/t}) <

(- Vb(\lfl) U Vb(t) U... U Vb(\lfm) U Vb(t) =

= V(Y1) U ... U V(W) U Vip(t) = V(@) U V(D) .

Finally let’s consider the case where @€ E’.(n+1,k). This implies g€ E.(n+1,k), ke K(n).

There exist a positive integer m, yj, .., yn distinct € V-dom(k), v, yi, .. , ym € E(n) such that
o= {}(Yi:¥1, ..., Ym:Wm, ¥). Moreover we have

- vy € E(nk), for each ce E(k) #(k,y;,0) is a set ;
- if m>1, for each i=j..m-1 if we define k’; = kll(y,y)Il .. lI(y;, ;) it follows
k’; € K(n) A yjri€E(n, k') A for each 6°;€ 2(K’;) #(K’j, yj41, 075) is a set ;
- if we define kK, = kllI(y,y)Il .. I(Ym,Wm) it follows k’,e K(n) A ye E(n,k’) .
If m=1 we define
or{xi/t) = {}(yi: (Wdxit), yieay{xi/t}) ;
if m>1 we define
orfxi/t} = {J(yi: (wodxi/t}, y2: (Wl xilt) , .o s Ym: (Wmdem-niXi/t}, Yieam{xi/t}) .

We need to verify these definitions are correct, in the sense that they rely on well defined concepts.

So we need to verify that (yi){xi/t} is defined, if m>1 then for each j=2.m (y;);-1){xi/t} is
defined, and finally that yi-m){xi/t} is defined.

Since ke K(n) we have K(n; k; X1, .., Xp; @1, .. , @p).

It results y; € E(n,k), and since Vy(y;) < Vu(9) we have Vy(y;) N Vu(t) = & . This ensures
(vk{xi/t} is defined, and belongs to E(k{x;/t}).

Suppose m>1 and let j=2..m, we want to verify that (yj) -1 {xi/t} is defined. We have k’;.; € K(n),

and K(n; K’i.15 X1, o, Xps V1o« 5 Yi-15 @t o« 5 §p, W1, . , Wj-1). For each u=1..j-1 y, € Vi(9), 50 yu& Vi(t).
Moreover for each u=1..j-1 Vy(yu) < Vi(@), so Vi(t) N Vy(y,) = &. We have yje E(n,k’;.;), and
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also Vi(yj) < Vp(9), so V() N Vi(yj) = . Therefore (yj)i-1{xi/t} is defined, and belongs to
E(k’j.l{Xi/t}).

To verify that yim){xi/t} is defined we consider that k’,e K(n) and

Km; K'm; X1, o5 Xps Y15 o 5 Ymd @15 - 5 @ps V1, .., Ym). For each u=1..m y, € Vi(9), so yu& Vp(t).
Moreover for each u=1..m Vy(y,) < Vp(@), so Vu(t) N Vu(yy) = . We have ye E(n,k’,,), and also
V(W) € Ve(@), so V() N Vu(y) = . Therefore (y)em{xi/t} is defined, and belongs to
EK’ n{xi/t}).

At this point we have verified the definition of @{x;/t} is an acceptable definition, but we need to
prove ox{xi/t} € E(k{xi/t}). We try to apply lemma 3.11 to show this.

We see that k{xi/t}e K, for each j=1..m y; € V - dom(k) c V - dom(k{xj/t}).

We also see (y)k{xi/t} € E(k{xi/t}). Let pe E(k{x;/t}), by the inductive hypothesis we know that if
we define p;.; = p/dom(k;.;), and define ¢ as the soop (x;,r1) Il .. Il (Xp,rp) Where Vj#i rj=p(x;) and
1; = #(ki.1,t,pi-1) then oe E(k) and #(k{xi/t}, (i {xi/t}, p) =#(Kk, yi, o) is aset .

If m>1 we know that for each j=2..m (yj)-n{xi/t} € E(K’i.1{xi/t}). Let p’;.1e E(K’j.1{xi/t}), by the
inductive hypothesis we know that if we define p;.; = p’;.1/dom(k;.1), and define 6’;.; as the soop
x,r) I IF Xporp) T (yg) T o I (yj1,G5-1) where Vu=1.j-1 qu=p’j-1(yu), Vj# 1j=p’j.1(x;) and
1; = #(ki.1,t,pic1) then o’5.€ E(K’5.) and #(K . {xi/t), (e g-nixi/t}, p’i1) = #(K'j.1, yj, 075.1) 1s a set.
We also know that (y)im){xi/t} € E(K’m{xi/t}).

In order to apply lemma 3.11 we still need to know that for each j = 1..m
K {xi/t} = k{xi/t} Il (y1, (W {x/tH) Il ... 11 (yj, (Weg-n{xi/t})

(where we adopt by convention that k’( = k)
In fact k' {xi/t} = k{xi/t} Il (y1, (y){xi/t}).

If m>1, for each j=1..m-1 if we assume
Ki{xi/t} =k{xi/t} I (y1, (woeotxi/t) ... 11 (yj, (Wi g-nixi/t}) then

K {xi/t} = Ki{xi/t} I (yje1, (Wi ixilt}) =
=k{xi/t} Il (y1, (W {xi/tH) ... (v, (WisDeg{xidt}) .

By lemma 3.11 we conclude that @x{xi/t} € E(k{xi/t}).

Another point we have to verify is the following. Let pe Z(k{xi/t}), define p;.; = p/dom(k;.;), and
define 6 as the soop (x1,11) Il .. Il (Xp,1p) Where Vj#i ri=p(x;) and r; = #(ki_1,t,pi.1). It has been shown
that oe Z(k), and we need to prove #(k, ¢, o) = #(k{xi/t}, ox{xi/t}, p) .

Of course we have

#k,0,0)={} (0'meEK n): 6 E G n , #K mV,0' m) ), and, since

orixi/t} = {J(yi: (wordxi/t}, y2: (Wl xilt) , .oy Ym: (Wmdem-niXi/t}, Yiea{xi/t}) ,
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by lemma 3.11

#(k{Xi/t}, (pk{Xi/t}, p) =
={} (P'm €EK n{xi/t}): p E p'm, #FK n{xi/t},yicaxi/t},p’m) ) .

So we need to show

{} 0’meEK n): 0 E 0’y , #K m,y,0'm) ) =

={} (P'm €EK n{Xi/t}): p E p’m» #K m{Xi/t},Wica {Xi/t}.p"m) ) -

Supposeuisin {} (6’ €E(K'1): 0 E 6’y , #(K m,,6'1m) ), there exist
o’'m€E(k’n) such thato = 6’y and u = #(K’ 1, y,6' ) -

We define p’y, as the soop p Il (y1, 6" m(y1)) Il .. I (Ym, 6’ m(Ym)) and we’ll show that p’ e E(K’ n{xi/t}),
#K m {Xi/t} Wi {Xi/t},p"m) = #(K'm,y,0"m) .

To show that p’,e E(k’ i {xi/t}) we need to define for each j=1..m-1

co’i=0o ll (y1, 6’m(yn) Il .. I (yj, 0" m(y;)) and

Pi=p Il (yi, 6'm(y)) Il .. 11 (yj, 6'm(y}) »

and then we need to show by induction on j that for each j=1..m p’;e 2(k’;{xi/t}) .

Since o’ €E(k’n) we have o’1€E(k’;). Given that k, k’1eK(n), k’; = kll(y;,¥1), oeZ(k),
o’ 1€ E(k’;) we can apply consequence 2.1.10 to obtain that 6’ (y)e#(k,y1,0) .

We have applied the inductive hypothesis to show (y)x{xi/t} is defined, of course we have also

#k{xi/t}, (w{xi/t}, p) =#(K, y1, 6), s0o o'm(y1) € #EK{xi/t}, (w)k{xi/t}, p) .

Given that k{xi/t}e K, kK’ {xi/t}e K, kK’ {xi/t} = k{xi/t} Il (y1, (y1){xi/t}), pe E(k{xi/t}),
p’1=p Il (yi, o’m(y1)), o’m(y1) € #&{xi/t}, (vi)k{xi/t}, p), we can apply consequence 2.1.11 to
obtain that p’ 1€ ZE(k’ | {xi/t}) .

If m>1 we need an inductive step in which j=1.m-1, we assume p’je E(k’j{xi/t}) and show
p’ir1€ E(K 1 {xi/t}).

We have G’j+1€E(k’j+1). Given that k’j, k’j.,.]EK(Il), k’j_,.] = k’j||(yj+1,\|lj+1) , G’j (S E(k’J)
6'+1€2(K’j41), 0’541 = o’ I (Y1, 6'm(yj+1)) we apply consequence 2.1.10 to obtain that
S m(yj+)DE#K 1, Wjr1,075)

We have applied the inductive hypothesis to show that (.1 )i {xi/t} is defined, of course we have
also

#K 5 {xilt), (WirDe@ixilt), p’y) =#K’j, Wir1, 675) , 50 6" m(yj+1) € #EK ' {xi/t}, (YirDeGixilt), p’)).
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Given that k’j{Xi/t}EK, k’j.,.l{Xi/t}G K, k’j+1{Xi/t} = k’j{Xi/t} Il (yj+1, (\I/j+1)k’(j){Xi/t}), p’je E(k’j{Xi/t}),
Plit1 = P’y I (¥jr1, O m(Yjr1)), 0 m(yje1) € #(K'{xi/t}, (yjrDeixi/t}, p’j), we can apply consequence
2.1.11 to obtain that p’j,1€ E(K’j1 {xi/t}) .

So it is proved that p’ e Z(K’ n{xi/t}).

We have applied the inductive hypothesis to show that yi-m){xi/t} is defined, of course we have
also

#EK m{xi/t},Wiem{xilt},p'm) = #K m,y,0'm) .

So u =#K n{xi/t} Wi m{xi/t},p’m), and therefore

ubelongs to {} (pP’'m € EK m{xi/t}): p E p'm , #FE m{Xi/t},Wem{Xi/t},p’m) ) -

For the converse implication suppose

uisin {} (p'm € 2K m{Xi/t}): p E p'm » #K m{Xi/t},Yicm {Xi/t},p'm) ) -

There exist p’m € E(K’m{xi/t}) such that p E p’p, and u = #(K n {Xi/t},Wiem{xi/t},p'm) ) -
We define ¢’ as the soop o Il (y1, p’m(y)) Il .. I (Y, P'm(Ym)) and we’ll show that

0'm € E(K'm) and #(K m,y,0'm) = #K m{Xi/t},Viem{xi/t},p'm) -

We’ve already seen that our assumptions ensure that (y)im{xi/t} is defined, and belongs to
E(K’m{xi/t}). The same assumptions, together with the definitions of p’,, and ¢’ ,,, ensure that

0'm € E(K'm) and #(K' m,y,0'm) = #K m{Xi/t},Wiem{xi/t},p’'m) -
Therefore u = #(k’ 1, y,06’m), and
ubelongsto {} (6’me€E(K’ n): 6 E ' , #K m,V,0'm) ).

This ends the proof that #(k, ¢, o) = #(k{xi/t}, ex{xi/t}, p) .

To finish with the case where e E’(n+1,k) we just need to show that

Vi(or{xi/t}) € Vi(e) U V(1) .

By lemma 3.11 and the inductive hypotesis
Vo(or{xi/t}) = {y1, ... ym} U Vo((yD{xi/t}) U .. U V(W) m-nixi/t}) U Vi(yiem{xi/t}) <
C{yn ... Ym} U (Ve(y) U V(D)) U ... U (V(ym) U V(D)) U (Vi(y) U V(D) ) =

={y1, ... ¥m} U Vp(y1) U ... U Vy(ym) U Vip(y) U V(1) = V(@) U Vi(D) .
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We have defined @x{xi/t} for each e E(n+1,k) such that Vy(t) N Vy(¢) = . Recall that
E(n+1,k) = E’(n,k) U E’y(n+1,k) U E’y(n+1,k) U E’(n+1,k) U E’4(n+1,k) U E’c(n+1,k),
and recall the definition of @k{x;/t} depends on the set to which ¢ belongs to. Actually ¢ may
belong to more than one of these sets. We need to check that, in every case in which ¢ belongs to
two of the six sets, the two definitions of @y {x;/t} match each other.
We split the task in two steps. The first step requires to verify that

- foreach we{ab,c,d,e}, ¢ in E’(n,k) N E’y(n+1,k) (@x{xi/t})w = Qr{xi/t} .

The second step requires to verify that

- foreach wy, wp € {a,b,c.d,e}: wi#wy, ¢ in E’y1(n+1,k) N E’y(n+1,k)
(Q{xi/tDwi = (@{xi/t} w2 .

We begin with the first step and examine the case where ¢ is in E’(n,k) N E’;(n+1,k).
Of course ¢ € E(n,k) N E,(n+1,k).

We have k = k,.1 Il (Xp, ¢p), and there exist he K(n), ye V-dom(h), y such that k = h Il (y,y) ,
e E(n,h), y& V(). Of course h = k.1, y = Xp, ¥ = ¢p 50 9 E(n.kp.1), Xp& V().

Consider the case where i=p. Here we have (ox{xi/t}).=¢ .

We also see that k,.; € K(n), peE(nk;.1), X; ¢ dom(k,.1). Therefore @i{xi/t} = ¢ = (i{xi/t})a .

We now examine the case where i<p. Here we defined (@i {xi/t}). = Qrp-1{xi/t} .

It also holds true that k,.; € K(n), ki E kp.1 , o€ E(nkp.1), K(n; K13 X1y oo 5 Xp-13 @1, o 5 @p-1)-
Therefore @ {Xi/t} = Qrp-nixi/t} = (Q{xi/t})a .

Let’s turn to examine the case where ¢ is in E’(n,k) N E’,(n+1,k).

Of course ¢ € E(n,k) N Ey(n+1,k).

We have k = kp.1 Il (Xp, 9p), and there exist he K(n), ye V-dom(h), y such thatk =h Il (y,y), 0 =y,
for each oe Z(k) #(k,0,0) = o(y) .

Of course h =k.1, y = Xp, ¥ = @p 50 ¢ =X, , #(k,0,0) = 6(xp) .

Since @€ E(n,k) the following condition holds:

eedom(k) A (0=X; = r{xi/t} =t) A (0#£x; = o{Xilt} = ¢ ) .

Consider the case where i=p. Here we defined (i {xi/t}), = t, since ¢ = X, = x; we have

P{xi/t} =t = (Qr{xi/t})y .
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Turn to the case where i<p. Here we defined (i {xi/t}), = ¢, and since ¢ = X, # X; we have
P{xi/t} = @ = (Qr{xi/t})y .
Let’s examine the case where ¢ is in E’(n,k) N E’.(n+1,k).
Of course ¢ € E(n,k) N Ec(n+1,k).
Since @€ E(n,k) the following condition holds:
n>1, there exist ke K(n-1) such that K=k, and y, vy, ... , yy € E(n-1,x) such that
0 =W\, ..., Ym), € E(n,x),
for each pe E(x) #(i,y,p) is a function with m arguments and ( #(x, yi, p), ... , #(, Ym, p) ) IS a
member of its domain,
if x;e dom(x) then @y {xi/t} = (y{Xi/t}) ((W{xi/t}, ..., (Wm){Xi/t}), else ox{xi/t} = .
Since ¢ € E.(n+1,k) the following condition holds:
there exist a positive integer q and ¥, X1, .. , Xq € E(n,k) such that
- (P=(X)(X1"-7X)q)’
- (xfxi/th)e = OQud xif/t}) (Quoxdxilt), .., Qdxift}) .
Clearly y =y, g=m, Y1 = V1, ... , {m = Wm (this has been shown within definition 2.1), therefore
(Ox{xi/t})e = (wi{xi/t}) ((wo{xi/t}, .., (Wm{Xi/t}).
Suppose xije dom(x), in this case
O {xi/t} = (yi{xi/t}) (WA xi/t), ..., (Y Xi/t}).
By one of our assumptions, since k;=x, it follows
Vi Xilt} = wie{ xilt), (wedxilt} = (w{xilt), ..., (Wm)e{Xi/t} = (Wm)k{xi/t} . Therefore
O {xi/t} = (i xi/t}) (WA xi/t), ..., (W Xi/t}) = (Wi xi/t}) ((wox{xi/t), .., (Wm{xi/t}) =
= (Px{xi/t})c .
Now suppose xi¢ dom(x). In this case @x{xi/t} = @.
Since ke K(n), ye E(n,x), yje E(n,x), x;¢ dom(x) we can apply one of our assumptions and get that
Vi xi/t} = v, (W {xi/t} = 5, so

(Qr{xi/t})e = (widxi/t}) (W xi/t], .., (WmdXi/t}) = (WY1, -.. s Ym) = @ = e[ xi/t]).

Let’s examine the case where ¢ is in E’(n,k) N E’q(n+1,Kk).

Of course ¢ € E(n,k) N Eq(n+1,k).
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Since @€ E(n,k) the following condition holds:

n>1, there exist ke K(n-1) such that kZk, and fe F, v, ... , yy, € E(n-1,k) such that
¢ =W, ..., Ym), 9 E(n,x),

for each pe E(x) Ad #(x, y1, p), ... , #(K, Y, p) ) is true,

if xie dom(x) then @ {xi/t} = () ((W{xi/t}, ..., (Wm{Xi/t}), else g{xi/t} = ¢ .
Since ¢ € E4(n+1,k) the following condition holds:

there exist g in F, a positive integer q and Y, .. , g € E(n,k) such that

- (P=(g)(X1’ ’X)q)’
- (xdxi/t)a = () (Quxlxilt}, .., Qu{xi/t}) .

Clearly g=f, g=m, 1 = 1, ... , Ym = ¥m (this has been shown within definition 2.1), therefore
(ox{xi/t})a = () ((wx{xi/t}, .., (Wm{xi/t}).

Suppose xije dom(x), in this case

or{xi/t} = () ((woklxifth, ..., (Wmh{xi/t}) .

By one of our assumptions, since k;=x, it follows

(WXt} = (WXt} ..., (Wmh{Xi/t} = (Wm)k{Xi/t} . Therefore

er{xift} = (O ((woedxith, ..., (Wmedxi/t}) = () ((wor{xift), ..., (Ym{xi/t}) = (Qi{xi/t})a .
Now suppose xi¢ dom(x). In this case @x{xi/t} = @.

Since ke K(n), yje E(n,x), X;¢ dom(x) we can apply one of our assumptions and get that
(Wpk{xi/t} =y;, so

(p{xi/t}a = @) ((wordxit), .., (Wkixi/t}) = O(y1, ..., Ym) = @ = ei{xi/t}.

We turn to the case where ¢ is in E’(n,k) N E’¢(n+1,Kk).
Of course ¢ € E(n,k) N Ec(n+1,k).
Since @€ E(n,k) the following condition holds:

n>1, there exist ke K(n-1) such that kZk and v, vy, .. , ym € E(n-1), yi, ... , yn distinct € V-dom(k)
such that @ = { }(y1:w¥1, ... 5 Ym:Wm, V), @€ E(n,x),

vy, € E(n-1,x), for each o€ E(k) #(x,y1,0) is a set ;

if m>1 then for each j=1.m-1 we define «’; = «ll(y;,y)Il .. ll(y;,y;) and we have «’; € K(n-1),
Vi€ E(n-1, ’;), for each 6’je E(x’;) #(K’j, Yj+1, 0') 1S a set;

if we define k', = wll(x, W)l .. I(Xm,¥m) then ¥’ e K(n-1) A ye E(n-1,x"y,) ;
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if x;e dom(x) then
orixi/t} = {J(yir (wodxilt), yar (Wo)e Xt} , ooy Ym: (Wmdem-niXi/t}, Yem{Xi/t});

if x;¢ dom(x) then Qx{xi/t} = ¢ .
Since ¢ € E.(n+1,k) the following condition holds:

there exist a positive integer q, zi, .., zq distinct € V-dom(k), %, %1, .. , % € E(n) such that
o= {}z1A -+ » ZgXgs X)- Moreover we have

-y € E(nk), for each ce E(k) #(k,x1,0) is a set ;
- if g>1, for each i=j..q-1 if we define k’; = kll(z1,)ll .. 11(z;,);) it follows
k’; € K(n) A yj+1€ E(n, K’;) A for each o’je E(k’;) #(K’j, Xj+1, 0°j) 1 a set ;

- if we define k’g = kll(z1,x)Il .. I(zg,)g) it follows k’qe K(n) A yeE(nk’y) .
and we define
(Qrixi/t)e = { J(z1: Qux{xi/t}, z2: Qe {Xilt) 5 ... 5 Zm: (e@-niXilt), xe@lxilt}) .
Clearly g=m, z; = y;, x; = V;, x = V (this has been shown within definition 2.1), therefore we have
(Qe{xi/t}e = { Jy1: (wodxi/t), y2: (WXt} , ..oy Ym: (Wmdem-niXi/t}, Yieam{xi/t}) .
Suppose xije dom(x), then

or{xi/t) = {}(y1: (wodxi/t}, yar (W) {Xift) 5 ..o ) Ym: (Wm)em-n{Xi/t}, Wiem{Xi/t}) .

Since keK(n), kiEx, y;€E(n,k), we can apply one of our assumptions and obtain that
(wk{xi/t} = (w{xi/t}.

If m>1 suppose j=1..m-1, we want to show that (yj. )G {xi/t} = (Yj+1)eGixilt}.
We have vy 1€Enk’)), ¥’j € Kn), ki E « E «’5, yjueE, «’j), for each a=1.;j y,e Vi(9) so

Vo Vu(1), Vu(t) N Vp(ye) < Vu(t) N V(o) = D. Therefore we can apply one of our assumptions (the
same we used for y) to obtain that

(Wi De@Ixit) = (WjrDeg{xilt).
We have also yeE(n,k’y), ¥’'m € K(n), ki & « & €'y, , yeE(n, K’), for each a=1..m y,e Vi(9) so

Va Vi(t), V() N Vi(ye) < Vi(t) N V(@) = . Therefore we can apply one of our assumptions (the
same we used for ) to obtain that

(Wiem{xi/t} = (W)em/xilt}.

Hence

e{xift} = {3y (wokxilt}, y2: (Wde{xi/t} , ... Ym: (Wme@m-n{Xift}, Wiea{xi/t}) =

= 3Oy (wordxift), yor (Waleap{xift} . ooy Ym: (Wmdiea-n{Xi/t}, Yiem){xit}) = (@k{xi/t})e -
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Now suppose x;¢ dom(x). In this case ox{xi/t} = ¢ = { }(Y1:¥1, .-+ » Ym:Wm, V).

Since ke K(n), x;¢dom(x), y€ E(n,x) we can apply one of our assumptions and conclude that
(WDr{xilt} =y .

If m>1 suppose j=1..m-1, we want to show that (Y1) {xi/t} = yjs1. This holds because the
following conditions hold: yj.1€ E(nk’;), «’; € K(n), x;¢ dom(x’;), yj+1€ E(n, ¥’;), and we can apply
the same assumption we used for ;.

Moreover we need to show yim{xi/t} = y. This holds because the following conditions hold:
yeE(nk’ ), K'n € K(n), xjgdom(x’y), yeE(n, k'), and we can apply the same assumption we

used for y;.

Therefore

or{xi/t} =@ = {}(yr:vi, ..., YmiWm, Y) =

= {}(y1: (Wkdxi/t}, y2: (W {Xilt} 5 ooy Ym: (W m-DAXi/t}, WiemiXi/t}) = (@x{xi/t})e .

We now turn to the second step of our task. This requires to verify that

- for each wy, wy € {a,b,c,d,e}: wiFwa, ¢ in B’ 1(n+1,k) N E’yo(n+1,k)
(Qe{xi/tHDwi = (@{xi/t} w2 .

In section two we have seen that for many values of wj;, w; it results
E’wi(n+1,k) N E’yo(n+1,k) = J. We used a table to list all cases where this happens (in the table we
have barred the cells which are duplicates or not of interest). Below we reproduce the table.

E’a(n+1,K) E’.(n+1,k)
E’.(n+1,k)

E’y(n+1,k) %

E’.(n+1,k)

E’4(n+1,k)

E’o(n+1,K)

The results E’y(n+1,k) N E’2(n+1,k) = & were discussed and proved in section 2. Therefore we
just need to examine three cases: ¢ in E’y(n+1,k) N E’.(n+1,k), ¢ in E’;(n+1,k) N E’4(n+1,k), ¢ in
E’.(n+1,k) N E’o(n+1,k).

We start with the case where ¢ belongs to E’,(n+1,k) N E’(n+1,k) . Clearly ¢ belongs to
E.(n+1,k) " E.(n+1,k) .

Since ¢ € E,(n+1,k) we have pe E(nk;.1), Xp& Vi(¢). We have to distinguish the case where i=p and
(pi{xi/t})a = ¢ from the case where i<p and (@ {Xi/t})a = Qrp-1H{xi/t}.

Since ¢ € E.(n+1,k) the following condition holds:
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there exist a positive integer m and v, vy, .., Yy € E(n,k) such that

- 0= (W15 5 Um)
- (exfxi/th)e = (Wi xi/t}) ((wox{xi/t}, .., (Um{xi/t}) .

Suppose i=p. In this case, given @€ E(n,k.1), we can apply assumption 2.1.7 to obtain that

n>1, there exist he K(n-1) such that h E k.1, %, %1, - » Xq € E(n-1,h) such that ¢ = (%) (., .- » %g)-
Clearly g=m, y=v, x; = y; therefore y, y1, .., ym € E(n-1,h).

Since x;¢ dom(h) we can apply one of our assumptions and conclude that

i xi/t} = v, (W {xi/t} = y; . Hence

(ox{xi/t})e = (wr{xi/t}) ((Wk{xi/t}, .., (Wm{xi/t}) = (W) (W1, -, Wm) = @ = (Qk{Xi/t})a -

Now suppose i<p. Since @& E(n,ky.1) we can apply one of our inductive assumptions and obtain the
following:

n>1, there exist ke K(n-1) such that xEkp.; and o, x1, ... , ¥q € E(n-1,x) such that ¢ = ()(x1, ... , Xg)s
¢eE(n,x), if xiedom(x) then @ypni{xilt} = Ouixi/t}) (OQlxit}, ... . Qu{xi/t}), else
Prp-n{xilt} =¢.

Clearly g=m, =y, %; = Vj, S0
if x;e dom(x) then @yp-n{Xi/t} = (Pie{xi/t}) (WA Xi/t), ..., (Wm){Xi/t}), else Qxp-n{xi/t} =@ .

Therefore
if x;€ dom(k) then (Qr{xi/t})a = (yi{xi/t}) ((WD{Xi/t}, ..., (Ym{Xi/t}), else (Px{Xi/t})a=¢ .

Suppose xjedom(k). By one of our inductive assumptions yi{xi/t} = y{xi/t},
(WXt} = (Wy)fxi/t}, therefore

(@r{xi/t})a = (g xi/t}) (WA Xi/t}, ..., (W) Xi/t}) = (uied xi/th) ((wo{xi/t), ..., (Wmk{xi/t}) =
= (Px{xi/t})c .

Suppose instead x;¢ dom(x). In this case (Qx{xi/t}). = ¢. Moreover y, vy, ... , Y, € E(n,x), so by
one of our inductive assumptions yi{xi/t} =y, (Wi {xi/t} = y; . Therefore

(Qr{xi/t}e = (widxi/t}) (Wl xi/t}, .., (W Xi/t}) = (y) (Y1, .., Ym) = @ = (P {Xi/t})a .

We now examine the case where ¢ belongs to E’,(n+1,k) N E’4(n+1,k) . Clearly ¢ belongs to
E.(n+1,k) N Eg(n+1,k) .

Since ¢ € E,(n+1,k) we have pe E(nk;.1), Xp& Vi(¢). We have to distinguish the case where i=p and
(pi{xi/t})a = @ from the case where i<p and (@i {xi/t})a = Qrep-1){Xi/t}.

Since ¢ € E4(n+1,k) the following condition holds:
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there exist f in F, a positive integer m and v, .. , Yy, € E(n,k) such that

- o=MWi, ..., Ym),
- (erdxi/tha = ) ((wodxift), .., (Wmkdxi/t}) .

Suppose i=p. In this case, given g€ E(n.k.1), we can apply assumption 2.1.7 to obtain that

n>1, there exist he K(n-1) such thath E k.1, ge F, yxi, .., % € E(n-1,h) such that ¢ = (g)(xi, .. , %g)-
Clearly g=m, g=f, x; = y; therefore y1, .. , Yy € E(n-1,h).

Since x;¢ dom(h) we can apply one of our assumptions and conclude that (y;)i{xi/t} = y; . Hence
(ox{xi/t})a = () ((wx{xi/t}, .., (Wm{xi/t}) = (©) (W1, -, Wm) = 0 = (Qx{Xi/t})a -

Now suppose i<p. Since @& E(n,ky.1) we can apply one of our inductive assumptions and obtain the
following:

n>1, there exist keK(n-1) such that «Zk,; , geF, yi, ... ., % € E(n-1,k) such that

¢ =(2)0Us --- » Xg)» PEE(n,x), if x;e dom(x) then @y {xi/t} = (2) ((e{xilt}, ..., Qme{Xi/t}), else
Pp-nixilt} =

Clearly g=m, g=f, x; = y;, so
if xie dom(x) then @yp-n{xi/t} = () (W{xi/t}, ..., (Wmh{Xi/t}), else Qrp-n{xi/t} = ¢ .

Therefore
if x;e dom(x) then (Qr{xi/t}). = () ((W{xi/t}, ..., (WmlXi/t}), else (P{xi/t})a=¢ .

Suppose x;e dom(k). By one of our inductive assumptions (y;){xi/t} = (yj){xi/t}, therefore
(Qr{xi/t})a = (O) ((wodxi/t}, ..., (Wmhdxi/t}) = (0) ((wordxi/t}, .., (Wok{xi/t}) = (Qr{xi/t})q .

Suppose instead x;¢ dom(x). In this case (Qx{xi/t}). = ¢. Moreover yi, ... , Y, € E(n,x), so by one
of our inductive assumptions (y;)x{xi/t} = y; . Therefore

(@i{xi/t}a = () ((wr{xi/t}, .., (Wm{xi/t}) = () (W1, .., Ym) = ¢ = (Qi{xi/t})a -
Finally we turn to the case where ¢ belongs to E’;(n+1,k) N E’«(n+1,k) . Clearly ¢ belongs to
E.(n+1,k) N Ec(n+1,k) .

Since ¢ € E,(n+1,k) we have pe E(nk;.1), Xp& Vi(¢). We have to distinguish the case where i=p and
(pi{xi/t})a = @ from the case where i<p and (@i {xXi/t})a = Qrp-1){Xi/t}.

Since ¢ € E.(n+1,k) the following condition holds:

there exist a positive integer m, yy, .., yn distinct € V-dom(k), vy, vy, .. , ym € E(n) such that
¢ ={}yr:V1, ..., Ym:¥m, V). Moreover we have

- vy € E(nk), for each ce E(k) #(k,y;,0) is a set ;
- if m>1, for each i=j..m-1 if we define k’; = kll(y,y)Il .. lI(y;,y;) it follows
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k’; € K(n) A yjri€E(n, K’j) A for each 6’je E(K’;) #(K';, yj+1, 67j) 1s a set ;
- if we define kK, = kll(y,y)Il .. I(Ym,Wm) it follows k’,e K(n) A ye E(n,k’) .

and we define
(ox{xi/t}e = { }(y1: (Wk{xi/t}, y2: (W {xi/t} 5 ..., Ym: (Wmdem-n{Xi/t}, Viean{xi/t}) .
Suppose i=p. In this case, given g€ E(n,k.1), we can apply assumption 2.1.7 to obtain that

n>1, there exists he K(n-1): h E ky.1, %, %15 - » %q € E(n-1), zy, ... , zq distinct € V-dom(h) :

o ={}Zix, ... » Zg:Yg X)> @€ E(n,h). Moreover
-y € E(n-1,h), for each pe Z(h) #(h,x;,p) is a set ;
- if g>1 for each j=1..q-1 if we define h’; = hll(z;,)Il .. li(z;,y;) it follows
h’; € K(n-1) A xj+1€ E(n-1, h’j) A for each p’je E(h’j) #(h';, xj+1, p’j) is a set ;
- if we define b’ = hll(y1,x)Il .. lI(yg.xg) it follows h’(e K(n-1) A xe E(n-1,h’y) .

Clearly g=m, y=v, =V, zj=y; .

We can see that he K(n-1) < K(n), y; € E(n,h), h E k;.; and so x;¢ dom(h). We can apply one of
our assumptions and determine (y)x{Xi/t} =y .

Suppose m>1, and let j=1..m-1. We can see h’;j € K(n), yj;1€E(n, h’j), x;¢ dom(h’;). We can apply
one of our assumptions and determine (Yj+1)ie ) { Xi/t} = Y1 .

Finally we can see h’,e K(n), ye E(n,h’,), x;¢ dom(h’,,). We can apply one of our assumptions and
determine i m){Xi/t} = v .

Therefore
(Q{xi/tHe = {J(y1: (wodxi/t), y2: (WXt} , .o s Ym: (Wmdkem-n{Xi/t}, Yiem{xi/t}) =
= 3w, o YmiWm, W) = 0 = (O{Xi/t})a -

Now suppose i<p. Since @& E(n,ky.1) we can apply one of our inductive assumptions and obtain the
following:

n>1, there exist ke K(n-1) such that kEkp.; and y, x1, .. , xq € E(n-1), zi, ... , zq distinct € V-dom(x)
such that ¢ = { }(zi:x1, ... » Zqi)g> X)> P€ E(n,K),

11 € E(n-1,x), for each oe (k) #(k,)1,0) is a set ;

if g>1 then for each j=1..g-1 we define «’; = «ll(z,x)Il .. ll(z;,);) and we have «’; € K(n-1),
yi+1€ E(n-1, «’;), for each 6’je E(x’;) #(x’j, Xj+1, 0'j) 1S a set;

if we define «K’q = «ll(z,x)Il .. I(zg,)q) then K’ qe K(n-1) A xe E(n-1,’y) ;

if x;e dom(x) then
Prp-niIXi/t} = {}(z1: (el Xift}, 2ot Qe iXilt) 5 ... 5 Zqt (U @-DIXit), e {Xi/t));

if x;¢ dom(x) then @yp-n{xi/t} =@ .

Clearly qg=m, y=v, 3=V, Z=Yy; » SO
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if x;e dom(x) then
(Qr{xi/t})a = Oxp-n{xi/t} = {J(y1: (Wok{Xi/t}, yor (W) {xi/t} 5 ..., Ym: (W @m-n{Xi/t}, Yiem{Xi/t});

if x;¢ dom(x) then (Qx{xi/t}), = (Pk(p—l){xi/t} =0.
Suppose xie dom(k).

Since keK(n), ki&x, y;€E(n,k), we can apply one of our assumptions and obtain that
(Wwk{xi/t} = (w{xi/t}.

If m>1 suppose j=1..m-1, we want to show that (yj. )G {Xi/t} = (Yj+1)eGixilt).
We have vy €E(nk’)), «’j € Kn), ki E « E «’5, yjeE, «’j), for each a=1.;j y,e Vi(9) so

Vo Vi(t), V() N Vi(ye) < V() N V(@) = . Therefore we can apply one of our assumptions (the
same we used for y) to obtain that

WisDe Xt} = (YirDe g {xilt}
We have also yeE(n, k'), ¥’'m € K(n), ki E « E €'y, yeE(n, k'), for each a=1..m y,e Vi(9) so

Vo Vu(t), Vu(t) N V(ye) < Vu(t) N V(o) = . Therefore we can apply one of our assumptions (the
same we used for y) to obtain that

(Wi {xi/t} = (W)em/xilt}.

Hence

(P{xi/t}a = {}(y1: (WXt} y2r (W) {xift} 5 ooy Ym: (Wmem-n{Xi/t}, Yiem{xi/t}) =
= {3y (wokdxi/t}, yo: (W {xift} , .. Y (Wmem-n{Xi/t}, Wiean{xi/t}) = (Qu{xi/t})e .
Now let xi¢ dom(k). In this case (Gx{Xi/t)a= @ = {}(Y1:W1s -+ » YmiWims V).

Since ke K(n), x;¢dom(x), y€ E(n,x) we can apply one of our assumptions and conclude that
(WDr{xilt} =y .

If m>1 suppose j=1..m-1, we want to show that (Y1) {xi/t} =y This holds because the
following conditions hold: yj.1€ E(nk’;), «’; € K(n), x;¢ dom(x’;), yj+1€ E(n, x’;), and we can apply
the same assumption we used for ;.

Moreover we need to show yim{xi/t} = y. This holds because the following conditions hold:
yeE(nk’ ), K'n € K(n), xjgdom(x’p), yeE(n, k'), and we can apply the same assumption we
used for y;.

Therefore

(Ox{xi/t})a= {3y -ov s YmiWm, W) =

= {J(yi: (wdxi/t), yar (Woeay(Xilt) 5 ooy Ym: (Wmiem-DiXi/t}, Wiea{Xi/t}) = (@r{xi/t})e .
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At this point we have completed the proof that ¢k{x;/t} is defined unambiguously. Our definition
process requires now to verify that (for ¢e E(n+1,k) such that Vy(t) N Vy(p) = &) one of the
following five conditions holds

al) e C A i{xilt} =@,
a2) pe dom(k) A (9=x; = @i{xi/t} =t) A (o#xi = ox{xi/t} = ¢)

a3) there exist ke K(n) such that kEk and v, vy, ... , ym € E(n,x) such that

(P = (\ll)(\ljl’ ey \Vm), (PE E(n+1’K)’
for each pe Z(k) #(x,y,p) is a function with m arguments and
(#(x, y1, p), ... , #(K, Ym, p) ) is @ member of its domain,

if x;je dom(k) then @y {xi/t} = (yi{xi/t}) ((W{Xi/t}, ..., (Wm{Xi/t}),
else ox{xi/t} = 0.

a4) there exist ke K(n) such that kEk and fe F, yy, ... , yn € E(n,x) such that
o =®dW1, ..., Ym), 9 E(n+1,x),
for each pe Z(x) Ad #(x, y1, p), .. , #(K, Ym, p) ) is true,

if x;e dom(x) then @k{xi/t} = (f) ((W{xi/t}, ..., (Um{Xi/t}),
else ox{xi/t} = 0.

a5) there exist ke K(n) such that kEk and vy, v, .., y, € E(n),
Y1, ... , Ym distinct € V-dom(k) such that

o ={}yyis -+, Ym!Vm, V), 9€ E(n+1,x),

vy € E(n,x), for each ce E(x) #(k,y;,0) is a set ;

if m>1 then for each j=1..m-1 we define «’; = «ll(y,y)Il .. ll(y;y;) and we
have «’; € K(n), yj+1€ E(n, «’j), for each ¢’je E(k’;) #(K'j, yj+1, 6°j) 1S a set;

if we define K’ = wll(x,W)Il .. I(Xm,Wm) then K’ e K(n) A ye E(n,k’y) ;

if x;e dom(x) then we can observe that

yi € E(n+1,x), Vu(t) N Vu(y1) < Ve(t) N V(@) = G, therefore (y){xi/t} is
defined;

for each j=1..m-1 yj, € E(n+1, «’j), for each a=1..J yo€ V() s0 yu& Vi (1),
V(1) N V(W) < Vi(t) N V(@) = D, V() N Vp(yir1) € V() N Vi(p) =3,
therefore (yj.1)e{xi/t} is defined ;

ye E(n+1, k'), for each a=1..m y,€ V(@) s0 yu& Vi (1),

V() N V(W) < Vi(t) N Vi(9) = G, Vi(t) N Vi(y) < V() N V() = I,
therefore W m){xi/t} 1s defined ;

it results ok {xi/t} =
= {J(y1i: (wedxift}, y2r (Wey{Xift) 5 oo s Ymd (Wmem-niXi/t}, Wem{Xi/t});

if x;¢ dom(x) then Qi {xi/t} = ¢ .
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In this case too we need to remember that
E(n+1,k) = E’(n,k) U E’y(n+1,k) U E’py(n+1,k) U E’c(n+1,k) U E’4(n+1,k) U E’c(n+1,k) .
Suppose ¢ is in E’(n,k) .
By the inductive hypothesis one of the following five conditions holds
bl) e C A oi{xilt} =0,
b2) pe dom(k) A ( o=xi = Q{Xi/t} =t) A (0#X;i = ok {Xi/t} =)

b3) n>1, there exist ke K(n-1) such that kEk and v, v, ... , y, € E(n-1,x) such that

(P = (\ll)(\ljl’ ey \Vm), (PE E(n7K)7
for each pe Z(k) #(x,y,p) is a function with m arguments and
(#(, y1, p), ... , #(K, Ym, p) ) is @ member of its domain,

if x;je dom(k) then @y {xi/t} = (yi{xi/t}) (WXt} ..., (Wm{Xi/t}),
else ok {xi/t} = 0.

b4) n>1, there exist ke K(n-1) such that kEk and fe F, vy, ... , y, € E(n-1,k) such

that ¢ = (D(y1, ... , Ym), € E(n,K),
for each pe E(x) Ad #(x, y1, p), ... , #(K, Y, p) ) is true,

if x;e dom(x) then @k{xi/t} = (f) ((W{xi/t}, ..., (Um{Xi/t}),
else ox{xi/t} = 0.

bS) n>1, there exist ke K(n-1) such that kEk and y, v, .., y € E(n-1),
Y1, ... , Ym distinct € V-dom(k) such that

o ={}yuvyi, ..., YmVm, ¥), € E(n,x),

vy € E(n-1,x), for each oe E(k) #(K,y1,0) is a set ;

if m>1 then for each j=1..m-1 we define «’; = «ll(y,y)Il .. ll(y;y;) and we
have «’; € K(n-1), yjs1€E(n-1, «’;), for each ¢’je E(x’j) #(iCj, yj+1, 0°j) 1s a
set;

if we define k', = «ll(X, W)l .. I(Xm,¥m) then ¥’ e K(n-1) A yeE(n-1,x"y) ;
if x;€ dom(x) then we can observe that

i € E(m,x), Vu(t) N Vi(yi) € V() N Vi(p) = D, therefore () {xi/t} is
defined;

for each j=1..m-1 yj. € E(n, «’;), for each a=1..j yo€ V(@) 50 yo& Vi(t),
V() N Vp(Wa) < Viu(t) N Vp(e) = G, V() N Vi(yir1) < V() N V(o) = I,
therefore (i, 1)e{Xi/t} is defined ;

ye E(n, k'), for each a=1..m y,e V() so yu& Vi(t),

V(1) N Vi(We) < V() N V(@) = D, V() N V(y) < Vi(t) N V() = O,
therefore W m){xi/t} is defined ;
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it results ok {xi/t} =
= {}(y1: (wedxi/t}, y2r (W y{Xift) 5 -o. s Ym! (Wmem-niXi/t}, Wem{Xi/t});

if x;¢ dom(x) then @ {xi/t} = ¢ .

Clearly if b1) holds then al) holds too, if b2) holds then a2) holds too. If b3) holds then a3) holds
too, if b4) holds then a4) holds too. Finally if b5) holds then a5) holds too.

We turn to the case where ¢ is in E’,(n+1,k) .

In this case we have e E(n,k;.1), Xp& V(). We have to distinguish the case where i<p from the one

where i=p.

First we suppose i<p. We can apply the inductive hypothesis to ¢ and obtain that one of the
following five conditions holds

e C A grp-nixiltl =0,
pedom(ky.1) A (9=X; = Qxp-n{Xi/t} = t) A (@FXi = Qrp-n{Xi/t} =)

n>1, there exist ke K(n-1) such that kEk,.; and y, yi, ... , Yym € E(n-1,x)
such that ¢ = (y)(y1, ... , Ym), 0 E(n,x),

for each pe Z(k) #(x,y,p) is a function with m arguments and

(#(<, y1, p), ... , #(K, Ym, p) ) 1S @ member of its domain,

if xie dom(x) then Qip-n{xi/t} = (Wi {xi/t}) ((WodXilt), ..., (Wm{Xi/t}),

else Qrp-nixi/t} =¢.

n>1, there exist k€ K(n-1) such that kEk,.; and fe F, vy, ... , ym € E(n-1,x)
such that ¢ = (H)(yy, ... , Ym), 9 E(n,x),

for each pe Z(x) Al #(x, y1, p), ... , #(K, Y, p) ) 1S true,

if xie dom(x) then @yp-n{xi/t} = (f) ((Wdxi/t), ..., (Wm){Xi/t}),

else Qrp-nixilt} = ¢.

n>1, there exist ke K(n-1) such that kEk,.; and y, yi, .., ym € E(n-1),
Vi, ... , Ym distinct € V-dom(k) such that

o ={}yrvi, ... s Ymi¥m, V), 0€ E(n,x),

vy € E(n-1,x), for each oe E(k) #(K,y1,0) is a set ;

if m>1 then for each j=1..m-1 we define «’; = «ll(y,yoll .. lI(y;,y;) and we
have «’; € K(n-1), yj.1€E(n-1, ’;), for each ¢’j€ E(x’j) #(ij, yj+1, 0°j) is a
set;

if we define k', = «ll(X, W)l .. I(Xm,¥m) then ¥’ e K(n-1) A yeE(n-1,x"y) ;

if x;e dom(x) then we can observe that

i € E(m,x), Vo) N Vi(yi) € V() N Vi(p) = D, therefore () {xi/t} is
defined;
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for each j=1..m-1 y;, 1€ E(n, «’;), for each a=1..j y,e V(@) 50 yu& Vi(t),
V(1) N V(W) < Vi(t) N V(@) =D, V() N Vp(yir1) € V() N Vi(e) =3,
therefore (yj,1)e{Xi/t} is defined ;

ye E(n, k'), for each a=1..m y,e V() s0 y& Vi(t),
V() N V(W) < Vi(t) N Vi(9) = G, Vi(t) N Vi(y) < V() N V(o) = I,
therefore W m){xi/t} is defined ;

it results Qxp-1H{Xi/t} =
= {3y (woedxi/t}, y2r (Wep{xilt} ... s Ym! (Wmdem-n{Xilt}, Wiem){Xi/t});

if x;¢ dom(x) then (Pk(p—l){xi/t} =0Q.

When i<p we defined @i {xi/t} = @xp-1){Xi/t}, therefore one of the following five conditions holds

» 9eC AQixilt} =0,
*  pedom(k) A (@=X; = Q{xi/t} =t) A (9FX; = O{xi/t} = @)

= there exist ke K(n) such that kEk and vy, vy, ... , Yy € E(n,x) such that

¢ =W, .- » Ym), € E(n+1,x),
for each pe E(x) #(k,y,p) is a function with m arguments and
(#(<, y1, p), ... , #(K, Ym, p) ) 1S @ member of its domain,

if xje dom(x) then Qi {xi/t} = (Y {xi/t}) ((Wlxi/t}, ..., (WmdXi/t}),
else ok {xi/t} =0 .

= there exist ke K(n) such that kEk and fe F, vy, ... , y, € E(n,x) such that
(P = (f)(\lll’ cee \I]m), (PG E(n+17K)7
for each pe Z(x) Al #(x, y1, p), ... , #(K, Y, p) ) 1S true,

if x;e dom(x) then @i {xi/t} = (f) ((wD{xi/t}, ..., (Um{Xi/t}),
else ok {xi/t} =0 .

= there exist ke K(n) such that xEk and v, vy, .. , Yy € E(n),
Vi, ... , Ym distinct € V-dom(k) such that

¢ ={}yrvi, - 5 Ym'Wm, W), @€ E(n+1,x),

vy, € E(n,x), for each o€ E(x) #(x,y1,0) is a set ;

if m>1 then for each j=1.m-1 we define «’; = «ll(y,yoll .. lI(y;,y;) and we
have «’; € K(n), yj.1€ E(n, «’j), for each o’je Z(k’;) #(K'j, Wj+1, 6°j) 1S a set;

if we define k', = (X, W)l .. I(Xm,¥m) then ¥’ e K(n) A ye E(n,x’y,) ;

if x;€ dom(x) then we can observe that

v1 € E(n+1,x), Vu(t) N V(y1) < V() N V() = G, therefore (yy){xi/t} is
defined;

94



for each j=1..m-1 y;. € E(n+1, «’j), for each a=1..J yo€ V(@) 50 yu& Vi (1),
Viu(t) N Vp(Wa) < Viu(t) N Vp(e) = G, V() N Vi(yir1) < V() N V(o) = I,
therefore (yj.1)e{xi/t} is defined ;

ye E(n+1, k'), for each a=1..m y,€ V(@) s0 yu& Vi (1),
V(1) N Vi(We) < V() N V(@) = D, V() N V(y) < Vu(t) N V() = O,
therefore Wy m){xi/t} 1s defined ;

it results ok {xi/t} =
= {J(y1: (wedxi/t}, y2r (Wey{Xift) 5 oo s Ymi (Wmem-niXi/t}, Wem{Xi/t});

if x;¢ dom(x) then Q{xi/t} = ¢ .

We now consider the case where i=p, in which we defined @y{xi/t} = ¢ .

Since ¢€E(nk, 1), we can apply assumption 2.1.7 to establish that one of the following five
conditions hold

cl) peC;
c2) n>1, pe dom(ky.1);

c3) n>1, Jhe K(n-1): h E kp.i, y, yi, .., ym € E(n-1,h) :

® =)W1, --. » Ym), 9€ E(n,h),
for each pe Z(h) #(h,y,p) is a function with m arguments,
(#(h, yy, p), ..., #(h, ym, p) ) is a member of its domain;

c4)n>1, Fhe K(n-1): h E k., Ife F, vy, .., ym € E(n-1,h) :

o =MW1, ..., Ym), € E(n,h),
for each pe Z(h) A¢ #(h, yi, p), ..., #(h, ym, p) ) ;

c5) n>1, Jhe K(n-1): h E kp., Iy, yi, .., ym € E(n-1),
3yy, ..., ym distinct € V-dom(h) :

o= {}(yivyi, - s YmiVUm, V), @€ E(n,h),
y; € E(n-1,h), for each pe E(h) #(h,y,p) is a set ;
if m>1 for each j=1..m-1 if we define h’; = hll(y;,y)Il .. lI(y;, ;) it follows
h’; € K(n-1) A yj1€ E(n-1, b’j) A for each p’je E(h’)) #(h', yji1, p°j) 1s a set ;
if we define h’y, = hll(y,y)Il .. I(ym,¥m) it follows h’ e K(n-1) A yeE(n-1,h’y,) .

If c1) holds then e C A @k{xi/t} = ¢, so al) holds.
If ¢2) holds then g dom(k), @#xi, ex{xi/t} = @, so a2) holds.
If c3) holds then he K(n), h E k, v, vy, .., vy € E(n,h), 0 = (W)(y1, ... , ¥m), 9 E(n+1,h), for each

pe E(h) #(h,y,p) is a function with m arguments, ( #(h, vy, p), ... , #(h, ym, p) ) is a member of its
domain, x;& dom(h), x{xi/t} = ¢. Therefore a3) holds.
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If c4) holds then he K(n), h © k, fe F, vy, .. , vy € E(n,h), ¢ = (D(yy, ... , ym), o€ E(n+1,h), for
each pe E(h) A{ #(h, y1, p), ... , #(h, v, p) ), x;¢ dom(h), @x{xi/t} = ¢@. Therefore a4) holds.

If ¢5) holds then heK(n), h © k, vy, yi, .. , ym € E(n), yi, ... , ym distinct € V-dom(h),
¢ ={}yuyi ..., Ym'Ym, ¥), 9€ E(n+1,h),
vy € E(n,h), for each pe E(h) #(h,y,p) is a set ;
if m>1 for each j=1..m-1 if we define h’; = hll(y;,y)Il .. lI(y;, ;) it follows
h’; € K(n) A yjr1€E(n, h’j) A for each p’je E(h’;) #(h’), yje1, p°j) 1s a set ;
if we define h’y, = hll(y,y)Il .. I(ym,¥m) it follows h’,e K(n) A ye E(n,h’y,) .

Moreover x;¢ dom(h), @x{xi/t} = ¢. Therefore a5) holds.

Let’s examine the case where ¢ is in E’p(n+1,Kk) .

We have ¢ = x, € dom(k). If ¢=x; then i=p and (as we defined) Qi {xi/t} =t.

If p#x; then i#p and (as we defined) ox{xi/t} = ¢ .

We now consider the case where ¢ is in E’.(n+1,k) .

In this case there exist a positive integer m and y, vy, .. , ym € E(n,k) such that
- 0=y (Wis o s Ym)

- for each ce E(k) #(k,y,0) is a function with m arguments and
(#(Xk, yi, 0), ..., #(k, ym, 0) ) is a member of its domain.

Moreover x;e dom(k) A @ {xi/t} = (wi{xi/t}) ((w{xi/t}, .., (Wm{xi/t}).

The case where @ is in E’4(n+1,K) is similar. In fact

there exist f in F, a positive integer m and v, .. , Yy, € E(n,k) such that
- (p=(f)(\|/1’ ’\Ilm)
- for each ce E(k) A #(k, vy, 0), ... , #(k, ym, 0) ) is true.

Moreover x;e dom(k) A @ {xi/t} = () ((y){xi/t}, .., (Wm{xi/t}) .

Finally we examine the case where ¢ is in E’¢(n+1,k).

In this case ke K(n) and there exist a positive integer m, yj, .., ym distinct € V-dom(k),
W, V1, .. , Um € E(n) such that @ = { }(y1:y1, -.. , Ym:Wm, V). Moreover we have

- vy € E(nk), for each ce E(k) #(k,y;,0) is a set ;
- if m>1, for each i=j..m-1 if we define k’; = kll(y,y)Il .. ll(y;,y;) it follows

k’; € K(n) A yjr1€E(n, k') A for each 6°;€ 2(K’;) #(K’j, yj41, 075) is a set ;
- if we define kK, = klI(y,y)Il .. I(Ym,Wm) it follows k’,e K(n) A ye E(n,k’y) .
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Furthermore x;e dom(k) and we can observe that
y1 € E(n+1,k), V() N Vp(y1) < Vu(t) N V(@) = G, therefore () {xi/t} is defined;

for each j=1..m-1 yj. € E(n+1, k’j), for each a=1..J yo€ V() s0 yu& Vi (D),
V(1) N V(W) € V() N Vip(9) =D, Vi(t) N Vp(yjer) < Vi(t) N Vip(e) = I,
therefore (yjs1)i{xi/t} is defined ;

ye E(n+1, k'), for each a=1..m y€ Vu(9) 50 Yo Vi(t), Vu(t) N V(W) < Vu(t) N V(o) =G,
V() N V(w) < Vi(t) N V(@) = I, therefore yiem){Xi/t} is defined ;

or{xi/t} = {}(y1: (Wodxift}, y2: (W ixi/t} 5 ... ym: (W m-n{Xi/t}, Yiem{xit}) .

Another step has been completed. It’s always assumed that @eE(n+1,k) is such that
V(t) N V(o) = . To perform the next step we assume he K(n+1) is such that k; = h.

There exists a positive integer r<n+1, wy, ... , w,e V: wo#wg for a£B, 9y, .. , ¥, € E such that
K(n+1; h; wy, .., wg 9y, .., §). Therefore h = (wy, 9p) Il .. Il (W, 8), i<r, for each j=1..i wi=x;, ¥j=0;.

If i<r then we assume for each j=1i+1 .. 1
" Wi Vi(t)
= V()N Vb(ﬂj) =0.

We also assume ¢ E(n+1,h).

We need to show that @i{xi/t} = on{xi/t}. We have just seen that one of the following five
conditions holds:

al) e C A @i {xilt} = o,
a2) pedom(k) A (9=xi = Q{xi/t} =t) A (0#Xi = Oi{xi/t} = ¢)

a3) there exist ke K(n) such that kEk and v, vy, ... , ym € E(n,x) such that

(P = (\ll)(\ljl, ce \Vm), (PE E(n+1’K),
for each pe Z(k) #(x,y,p) is a function with m arguments and
(#(, y1, p), ... , #(K, Ym, p) ) is @ member of its domain,

if x;e dom(k) then @y {xi/t} = (yi{xi/t}) (WXt} ..., (Wm{Xi/t}),
else oy {xi/t} = 0.

ad) there exist ke K(n) such that kEk and fe F, yy, ... , yn € E(n,x) such that
(P = (f)(\ljl, ey \Vm), (PE E(n+1,K),
for each pe Z(x) Ad #(x, y1, p), ... , #(K, Ym, p) ) is true,

if x;e dom(x) then @i {xi/t} = (f) ((wD{xi/t}, ..., (Wm{xi/t}),
else ok {xi/t} = 0.

aS) there exist ke K(n) such that kEk and vy, vy, .., y, € E(n),
Vi, ... , Ym distinct € V-dom(k) such that

o ={}yvyi, ... s Ymi¥m, V), 0€ E(n+1,x),
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vy, € E(n,x), for each o€ E(x) #(k,y1,0) is a set ;

if m>1 then for each j=1.m-1 we define «’; = «ll(y,yoll .. lI(y;,y;) and we
have «’; € K(n), yj+1€ E(n, «’j), for each o’je Z(k’;) #(K'j, Wj+1, 6°j) 1S a set;

if we define k', = «ll(y,w)Il .. I(Ym,¥m) then ¥’ e K(n) A ye E(n,x’y,) ;

if x;€ dom(x) then we can observe that

v1 € E(n+1,x), Vu(t) N Vp(y1) < V() N V() = G, therefore (yy){xi/t} is
defined;

for each j=1..m-1 yj, € E(n+1, «’j), for each a=1..J yo€ V() s0 yu& Vi (D),
V() N Vp(Wa) < Viu(t) N Vp(e) = G, V() N Vi(yir1) < V() N V(o) = I,
therefore (i, 1) {Xi/t} is defined ;

ye E(n+1, k’y,), for each a=1..m y,€ V(@) so yu& Vi(t),
V(1) N Vi(We) < V() N V(@) = D, V() N V(y) < Vi(t) N V() = O,
therefore W m){xi/t} is defined ;

it results @y {xi/t} =
= {}(YI3 (W])K{Xi/t}’ ya: (\VZ)K’(I){Xi/t} s eee s Yme (\I’m)K’(m—l){Xi/t}’ \I’K7(m){xi/t});

if x;¢ dom(x) then @y {xi/t} = ¢ .

Given that pe E(n+1,h) we also have to accept one of the following five conditions holds
el) pe C A gu{xilt} = ¢,
e2) pedom(h) A ( @=Xx; = @u{xi/t} =t ) A (9#X; = gu{xi/t} = @)

e3) there exist ne K(n) such that nEh and y, x1, ... , xq € E(n,n) such that

¢ =000 - » X)» PEE(n+1,m),
for each pe E(n) #(n,,p) is a function with m arguments and
(#M, %1, p)s .- » #(, %> p) ) 1s @ member of its domain,

if x;e dom(n) then @n{xi/t} = (n{xi/t}) (un{xi/t}, ..., (In{xi/t}),
else op{xi/t} =0 .

e4) there exist ne K(n) such that nEh and geF, yi, ... , ¥q € E(n,n) such that
o =20, --- » %) P€E(n+1,1),
for each pe E(n) A ( #(M, %15 P), ... , #(M, %g» P) ) 18 true,

if xie dom(n) then en{xi/t} = (g) ((n{xi/t}, ..., (n{xi/t}),
else op{xi/t} =0 .

e5) there exist ne K(n) such that nEh and y, %1, .. , xq € E(n),
zi, ..., Zq distinct € V-dom(n) such that

o ={}zi, ... 5 Zq%g X)> P€E(n+1,1),

11 € E(nn), for each oe Z(n) #(n,x1,0) is a set ;
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if g>1 then for each j=1..q-1 we define n’; = nll(z1,x)ll .. I(z;,x;) and we have
n’j € K(n), x+1€ E(n, ’;), for each 6’5€ E(M’;) #(’;, ¥j+1, 075) 1s a set;
if we define n’q = nll(z,y)ll .. I(zg,)q) then n’qe K(n) A xe E(n,n’y) ;

if x;€ dom(n) then we can observe that

1 € E(m+1,m), Ve(t) N Vi(u) < Vu(t) N Vi(e) = G, therefore (y1)q{xi/t} is
defined;

for each j=1..9-1 yj1€ E(n+1, n’j), for each a=1..j z4e V(@) 50 z.& Vi (1),
V(1) N V() < V() N V(@) = G, Vi(t) N Vi(gi+1) S V() N V() = D,
therefore (¥j+1)ygy{xi/t} 1s defined ;

xe E(n+1, n’y), for each a=1..q z4€ V() 50 z,& Vi (1),
V() N V() S V() N V(@) = G, Vi(t) N V() < V() N V(o) = G,
therefore y, (o {Xi/t} is defined ;

it results Qp{xi/t} =
= {}z1: Qunixilt}, za: )y {xilt} 5 ..., 2q: Q@ n{Xilt)s Xy @xilt});

if x;¢ dom(n) then @p{xi/t} =0 .

If al) occurs then el) also occurs. So @x{xi/t} = ¢ = ep{xi/t}.

If a2) occurs then e2) also occurs. So @=x; = Qk{Xi/t} =t = @en{xi/t}; 0#x; = Qx{Xi/t} = @ = en{xi/t}.

We now consider the case where a3) occurs. In this case €3) also occurs.

There exists u=1..p such that k = (x1,01) Il .. Il (Xy,Pu),

and there exists v=1..r such that = (wy, 9p) Il .. Il (wy, %) .
We have
(X)(X17 cee Xq) = (P = (W)(Wh cee \Vm),

and therefore y = y, ¢ = m, for each j=1..m ;= ;.

We have to distinguish the following cases:

x;€ dom(x) A x;€ dom(n)
xi€ dom(k) A x;& dom(n)
xi¢ dom(x) A xje dom(n)
xi¢ dom(x) A x;& dom(n) .

Suppose xije dom(x) A x;€ dom(n). In this case:

Orixi/t} = (yiedxi/t}) (WA xilt}), ..., (W)l Xi/t}) ,
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Pui{xi/t} = (Wn{xi/t}) ((Won{xi/t}, ..., (Wmn{xi/t}) .
Clearly ke K(n) and u>i, ye E(n,x), Vp(t) N Vu(v) =, ne K(n), nEh, k;=h, x;e dom(n), therefore
Ki = ki © n. It results v>i and for each j=i+1 .. v
" Wig V(1)
= V()N Vb(ﬂj) =J.
Moreover ye E(n,n) and therefore, by the inductive hypothesis, y {xi/t} =y, {xi/t} .
Given a=1..m we can add the observations that y,€ E(n,«), Vu(t) N Vu(ye) = D, vee E(n,n).
Therefore (yo)c{xi/t} = (Wo)n{xi/t}, and
Pe{xi/t} = (Wied xi/t}) (W xilt}, ..o s (W Xilt}) = (yn{xi/t}) ((won{xit}, ..., (Wmn{xi/t}) =

= ([)h{Xi/t} .

Now consider the case where x;e dom(k) A x;¢ dom(n). In this case:
P{xi/t} = (iedxi/t}) (Wl xilt}, ..., (U Xi/t}),
(ph{Xi/t} =Q.

We have ke K(n) and u>i, ye E(n,k), Vy(t) N V() = G, ne K(n), ye E(n,n), xi¢ dom(n). Therefore
by the inductive hypothesis v, {xi/t} = y.

Given o=1.m we can add the observations that y,eE(n,x), Vp(t) N Vo(ye) =9, yeeE(nn).
Therefore (yo){Xi/t} =y, .

So the conclusion is

or{xift} = (wie xi/t}) ((Wo{xilt}, ... (WmefXi/t}) = (W1, ..., Ym) = @ = @nfxi/t} .

We turn to the case where x;¢ dom(x) A x;€ dom(n). This is similar to the former one, in fact
o{xit} =0,
Pu{xi/t} = (Yn{xi/t}) ((Wn{xit}, ..., (Wmn{xi/t}) .

We have ne K(n). Since nEh, k;=h, xje dom(n) it results ki = 1 and v>i, for each j=1..1 wi=x;, §i=;,
and for each j=i+1 .. r wjg Vi,(t), Vp(t) N V(8) =D .

We have n;.; = ki1, so
- Vpii€ EMic) #Mi,tLpic) € #Mi1,Y5,pic1),
- Vj=1.v: jA wie V()
- Vj=itl.v V() N V(9 =D .

We have ye E(n,n), Vp(t) N Vi(y) =D, ye E(n,x), xi¢ dom(x). So y,{xi/t} = y.
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Given a=1.m we can add the observations that y,eE(nn), Vu(t) N V(o) =9, yeeE(n,x).
Therefore (yo)y{xi/t} = Yo .

So the conclusion is

Pni{xi/t} = (ynixi/t})) ((Won{xi/t}, ..., (W ixi/t) = (W1, ..., Ym) = 0 = ei{Xi/t} .

Finally let’s see what happens when x;¢ dom(x) A x;&dom(n) .

It’s the simpler case, in fact @x{xi/t} = ¢ = en{xi/t} .

We turn to the case where a4) holds, and accordingly e4) holds too.

There exists u=1..p such that k = (x1,¢1) Il .. Il (Xy,Qu),
and there exists v=1..r such that n = (wy, 0;) Il .. [ (wy,9y) .

We have
(g)(XI, cee Xq) = (P = (f)(\ljla cee \Ifm),
and therefore g =1, q = m, for each j=1..m y; = y; .
We have to distinguish the following cases:

- xjedom(x) A x;e dom(n)

- xjedom(x) A x;¢ dom(n)

- xi¢ dom(x) A x;e dom(n)

- xj¢dom(x) A x;¢ dom(n) .
Suppose xije dom(x) A x;€ dom(n). In this case:
(Pk{Xi/t} = (f) ((WI)K{Xi/t}’ cee sy (\Vm)K{Xi/t}) s
en{xi/t} = () ((Won{xi/t}, ..., (Wmy{xi/t}) .
Let o=1..m, in order to show that (y,){xi/t} = (yo)y{xi/t} we consider that ke K(n) and u>i,
Vo€ E(n,x), Vp(t) N Vu(y,) = G, moreover ne K(n), nEh, ki=h, x;e dom(), therefore ; = k; E 1. It
results v>i and for each j =1+1 .. v

= w;g V(D)

" V(N V(=9 ;
and we have also y,e E(n,n). Therefore (yo){Xi/t} = (yo)y{xi/t} and i{xi/t} = en{xi/t}.

Now consider the case where x;e dom(k) A x;& dom(n). In this situation:

or{xift} = () ((woedxit), ..., (Wm)e{xi/t}),

101



en{xi/t} =@ =OW1, ..., Ym) .
Let a=1..m, in order to show that (y){xi/t} = y, we consider that ke K(n) and u>i, y,e E(n,x),

V() N Vu(ve) =D, and moreover ne K(n), x;¢dom(n), y.€E(nmn). This clearly implies that
(W) xi/t} = yq , and therefore

er{xift} = (O ((woedxi/t), ..., (W xi/t}) = D1, ... Ym) = Gn{xi/t} .

We turn to the case where x;& dom(x) A xj€ dom(n). This is similar to the former one, in fact
o{xi/t} = ¢ = Oy1, ..., Ym),

on{xi/t} = (F) ((Won{xit}, ..., (Wmy{xi/t}) .

Let a=1..m, in order to show that (y,),{xi/t} =y, we consider the following facts.

First of all we have ne K(n). Since n=h, ki=h, x;e dom(n) it results k; = n and v>i1, for each j=1..i
wi=x;, 9=¢j, and for each j=i+1 .. r wj& Vi,(t), Vp(t) N Vp(§) = .

We have Ni-1 = ki-l, SO
- Vpii€ EMir) #Mi-1,tpic1) € #Mia1,Bipii1)s
- Vj=1..v: JA wie V()
- Vj=i+l.v V() N Vp(9) =D .
We have y,e E(n,n), Vi(t) N V(o) = D, yee E(n,x), xig dom(x). So (Wo)n{Xilt} = W .

Therefore we conclude

ox{xi/t} = DWW, ..., Ym) = @) ((Wy{xit}, ..., (Wnn{xi/t}) = eu{xi/t} .

Finally let’s see what happens when x;¢ dom(k) A x;¢ dom(n) .

It’s the simpler case, in fact x{xi/t} = @ = en{xi/t} .

Finally we examine the case where aS) holds, and accordingly e5) also occurs.

There exists u=1..p such that k = (x1,¢1) Il .. Il (Xy,Pu),
and there exists v=1..r such that = (wy, 9p) Il .. I (wy, %) .

We have

@i, -0 2g%e: 0 = 0= v - YW, V)
therefore

q=m; foreachj=l.my =y, zj=y; 1=V .

We have to distinguish the following cases:
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- xjedom(x) A x;e dom(n)
- xjedom(k) A x;& dom(n)
- xij¢ dom(x) A x;e dom(n)
- xj¢dom(x) A x;¢ dom(n) .
Suppose xije dom(x) A xj€ dom(n). In this case:
er{xi/t} = {}(y1: (Wl xift}, y2: (W2e Xt} ... s Ym: (Wm)em-niXi/t}, Wiem{xi/t});
eni{xi/t} = {}(y1: (won{xi/t}, ya: (W {Xift} 5 ..., Ym! (Wm)ym-n{Xi/t}, W@ {xi/t}) .
Clearly ke K(n) and u>i, y,€ E(n,k), Vp(t) N Vu(yy) = F, ne K(n), nEh, ki=h, x;e dom(n)), therefore
Ki = ki E n. It results v>i and for each j=i+1 .. v
= w;g V(D)
= V()N Vb(ﬂj) =J.
Moreover y;€ E(n,n) and therefore, by the inductive hypothesis, (y1){xi/t} = (y1)y{xi/t} .

Suppose m>1 and let j=1..m-1. It results ¥’; € K(n), for each o=1..j y,e Vp(@) 5o y.& V(t),
V() N V(W) € Vo) N V(@) =G, i€ E(n, '), Viu(t) N V(i) = D.

Moreover n’; € K(n), (x’))i = ki E n E n’j . As we’ve just seen for each a=1.;j y.& Vy,(t) and
Viu(t) N V(o) =D, and yj,1€ E(n, n’y) also holds. Therefore (yj.1)e i {Xi/t} = (WirDn i {Xi/t}.

We still need to show that v, m){ Xi/t} = Yy @i Xi/t}.

To this end we see that k', € K(n), for each a=1..m y,e V() s0 yu& Vi(t),
V(1) N V(W) € Vo) N Vi(9) =D, yeE(n, k'), V() N Vi(y) =D.

Moreover N’y € K(n), (Km)i = ki E M E nN'm - As we’ve just seen for each a=1..m y.& V(t) and
Viu(t) N V(o) =D, and ye E(n, 1’ 1y) also holds. Therefore yiem){Xi/t} = W m{Xi/t}.

Finally we can establish

or{xi/th = {}(y1: (Wodxi/t), y2r (W)Xt} , ..., Ym: (Wmdem-n{Xi/t}, Yem{xi/t}) =
= {Hyr: (wonxi/t}, y2: (W2)p (Xt} .oy Ym: (Wmdy m-n{Xi/t}, Wy a {Xi/t}) = n{xi/t} .

Now consider the case where x;e dom(k) A x;¢ dom(n). In this case:
or{xi/t} = {}(y1: (wokdxift}, y2: (W2)e{Xi/t}, ... s Ym: (Wmem-niXi/t}, Ve {Xi/t});
en{xi/t} =@ ={}yryi, ..., YmYm, ) -

Clearly ke K(n) and u>i, yeE(n,k), V() N Vy(y) =. Moreover neK(n), y; € E(nn),
xij¢ dom(n). This implies (y){xi/t} =y, .

Suppose m>1 and let j=1..m-1. It results ¥’; € K(n), for each o=1..j y,e Vp(@) 5o y.& Vi(t),
Viu(t) N V(We) € V() N Vi(9) = D, yiri€ E(n, €75), Vi(t) N Vi(yin) = <.
Moreover n’; € K(n), yj-1€ E(n, n’;), x;¢ dom(n’;). This implies (Y1) {Xi/t} = Yjs1 -
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It also results k¥’ € K(n), for each a=1..m y,€ Vu,(¢) so y.& Vi(t),

V(1) N V(W) € Vo) N V(@) =, yeE(n, k'), V() N Vi(y) =D.
Moreover ', € K(n), ye E(n, n’m), Xi€ dom(n’1). This implies yem{Xi/t} =y .
Therefore

or{xi/t) = {}(y1: (Wodxi/t), y2r (W)Xt} , ..., Ym: (Wmem-n{Xi/t}, Yem{xi/t}) =

=}V, oo s YmiWm, W) = @ = op{xi/t} .

We turn to the case where x;¢ dom(x) A x;€ dom(n). This is similar to the former one, in fact
o{xi/th =0 = {}(yi:yi, ..o s YmiYm, ¥) 3
eni{xi/t} = {}(y1: (won{xi/t), ya: (W)Xt} , ooy Ym: Wy @m-nAXi/t}, Y@ {Xi/t})

Clearly neK(n) and v>i, y; € E(n,n), Vp(t) N Vy(y)) =D. Moreover ke K(n), y; € E(n,k),
xi¢ dom(x). This implies (y1),{xi/t} =y, .

Suppose m>1 and let j=1..m-1. It results n’; € K(n), for each o=1..J y.e Vp(@) 50 yu& Vi(1),
V(1) N Vu(ye) € Vo) N V(@) =D, yirie E(n, 1’5, V() N Vi(yjer) = .

Moreover «’; € K(n), yj:1€ E(n, ¥’j), xij& dom(x’;). This implies (Wi, )y {Xi/t} = Yijs1

It also results N’ € K(n), for each a=1..m y,€ Vu,(¢) so y.& Vi(t),

V(1) N V(W) € V() N V(@) =, yeE(n, n'w), V() N Vi(y) =J.

Moreover €', € K(n), ye E(n, K'n), X;& dom(k’,). This implies yypmy{Xi/t} = .

Therefore

ox{xi/t) = {}(yuvi, ooy YmiWm, V) =

= {Hyr: (wonxi/t}, y2: (W)p (Xt} 5 .oy Ym: (Wmdy m-n{Xi/t}, Wy a {Xi/t}) = en{xi/t} .

Finally let’s see what happens when x;¢ dom(x) A x;¢ dom(n) .

It’s the simpler case, in fact @x{xi/t} = ¢ = en{xi/t} .

Our definition process requires just a final step. This consists in proving that if there exists
he K(n+1) such that pe E(n+1,h), x;¢ dom(h) then it results @y {xi/t} = o.

Because of pe E(n+1,k), and ¢ is such that Vy(t) N Vp(9) = G, one of the following five conditions
holds:

al) e C A oi{xilt} =0,
a2) pedom(k) A ( @=x; = Qr{xi/t} =t) A (@#X; = Qi{Xi/t} = ¢)
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a3) there exist ke K(n) such that kEk and v, vy, ... , ym € E(n,x) such that

¢ =MW1, ... , Ym), 9 E(n+1,x),
for each pe Z(k) #(x,y,p) is a function with m arguments and
(#(, y1, p), ... , #(K, Ym, p) ) is @ member of its domain,

if xje dom(x) then Qi {xi/t} = (W{xi/t}) ((Wfxi/t}, ..., (Wm)e{Xi/t}),
else gx{xi/t} = 0.

ad) there exist ke K(n) such that kEk and feF, vy, ... , yn € E(n,x) such that

(P = (f)(\lll’ cee \I]m), (PG E(n+17K)7
for each pe E(x) Al #(x, y1, p), ... , #(K, Y, p) ) is true,

if x;e dom(x) then @k {xi/t} = (f) ((W{xi/t}, ..., (Wm{Xi/t})
else ox{xi/t} = 0.

a5) there exist ke K(n) such that kEk and vy, v, .., y, € E(n),
Y1, ... , Ym distinct € V-dom(k) such that

o= {}(yuvye, - s YmiVm, V), @€ E(n+1,K),

vy € E(n,x), for each ce E(x) #(x,y,0) is a set ;

if m>1 then for each j=1.m-1 we define «’; = «ll(y,,y)ll .. ll(y;,y;) and we have
K’; € K(n), yj+1€ E(n, «’j), for each 6’je E(k’;) #(K’;, yj+1, 675) 1s a set;

if we define k', = «ll(y, W)l .. I(ym,¥m) then k¥’ e K(n) A yeE(n,x’y) ;

if x;e dom(x) then we can observe that

y1 € E(n+1,x), V() N Vp(y1) < Vu(t) N V(@) = G, therefore (yy){xi/t} is defined;
for each j=1.m-1 vy, €EMm+1, «’j), for each a=1.j y.eVp(@) s0 yu& Vi(l),
V(1) N Vp(ye) © V() N V(@) = G, Vi(t) N Vi(yie) € Vo) N Vi(e) = G,
therefore (Yjs1)e{xi/t} is defined ;

ye E(n+1, k'), for each a=1..m y,€ V(@) s0 y& Vi(t),

V() N V(W) € V(D) N V(@) = G, V() N Vp(y) < V(1) N V(o) = &, therefore
Vi) { Xi/t} 1s defined ;

it results
or{xi/t} = {}(y1: (Wodxi/t}, yor (W2)e Xt} , ..., Ym: (W @m-n{Xi/t}, Yiem{ Xi/t});

if x;¢ dom(x) then Qx{xi/t} = ¢ .
Since @€ E(n+1,h), we can apply assumption 2.1.7 to establish that one of the following five
conditions holds:
dl) pe C;
d2) oe dom(h);

d3) IneKm):n Eh, 3%, %1, ... % € E(m,n) :
0= (X)(Xl? cee s Xq)’ ¢e E(n"‘lﬂl),
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for each pe Z(n) #(n,y,p) 1s a function with m arguments,
(#M, %1, p)s - » #(1, g, p) ) 1s @ member of its domain;

d4) IneKm):m Eh,3geF, y, ... % € E(nn):

o=@ ---» Xg)> P€E(n+1,n),
for each pe 2(m) Al #M, Y1, P)s - » #(M, Xg» P) ) 5

d5) n>1, IneKm): n E h, 3%, %1, .. . %q € E(n),
3z, ..., zq distinct € V-dom(n) :
o ={}zZix, - s Zghgs X)» PEEMm+1,1m),

11 € E(nn), for each pe E(m) #(n,x1,p) is a set ;
if g>1 for each j=1..q-1 if we define n’; = nll(z1,y)ll .. ll(z;,);) it follows
n’j € K(n) A y+1€ E(n, n’j) A for each p’;e 2(M’;) #(M’j, (j+1. p°j) 1S a set ;
if we define n’q = nll(z,x)ll .. 1(zg,xg) it follows n’qe K(n) A xe E(n,n’y) .
If al) occurs then clearly ox{xi/t} = ¢ .
If a2) occurs then d2) also occurs. If ¢=X; then ¢ dom(h), so we have ¢#x; and Qx{xi/t} = ¢ .
If a3) occurs then d3) also occurs. We have
WWL o W) =0 =0, - » Xg)- therefore
X =V, q=m, for each j=1..m y=y; .

We have to distinguish the following cases:

- Xj € dom(x)
- Xj ¢ dom(k)

Suppose x; € dom(x) . We have
(Pk{Xi/t} = (\VK{Xi/t}) ((WI)K{Xi/t}7 cees (Wm)K{Xi/t}),

¢= (\V)(\I’I, cee s \Vm) .

Clearly there exists u=1..p such that k = (x;,@1) Il .. Il (Xg,@u), u>i, ye E(n,x), Vu(t) N Vy(y) =3,
ne K(n), ye E(n,n), x;¢ dom(n), therefore y,{xi/t} =y .

Given o=1..m yu€ E(n,k), Vi(t) N Vu(yo) = D, yee E(n,n), therefore (yo){Xi/t} = vy .
So we conclude
Orixi/t} = (yiedxi/t}) ((Wdxit), ooy (Wl X/t = (W1, oo s Ym) =@ .

Now suppose x; ¢ dom(x). Here it’s easier, as we immediately see that ox{x;/t} = ¢.
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If a4) occurs then d4) also occurs. We have
OW1 oo s Ym) =0 = (2, --- » Xg)» therefore
g =1, g=m, for each j=1..m y=y; .

We have to distinguish the following cases:

- X;j € dom(x)
- Xj & dom(k)

Suppose x; € dom(x) . We have
or{xi/t} = () ((yoefxifth, ..., (ym{xi/t}),

(P:(f)(\V], ,\|’m) .

Let a = l.m. There exists u=l.p such that ¥ = (x;,01) I .. I (Xu,0u), =1, YeeE(n,x),

V() N Vi(Ye) = F, ne K(n), yoe E(n,n), x;& dom(n), therefore (yo){Xi/t} = Yo .
So we conclude
ex{xi/t} = (F) (WXt} ..., (WXt} = OW1, ..., Ym) =0 .

Now suppose x; ¢ dom(x). Here it’s easier, as we immediately see that ox{x;/t} = ¢.

If a5) occurs then d5) also occurs. We have

Devn, s YmiWm W) =@ = { Hzi, -, Zgi)g> X), therefore
q=m, for each j=1..m y=y;, x=v .

We have to distinguish the following cases:

- X;j € dom(x),
- X; ¢ dom(x) .

Suppose x; € dom(x) . We have
orixi/t} = {J(yi: (wodxilt}, yor (Woe Xt} , ooy Ymi (Wmdem-niXi/t}, Yem{Xi/t}) ;

O={}YrVe oo s YmiWm. V) -

There exists u=1..p such that k = (x;,¢1) Il .. Il (Xy,Qu), U>1.

Clearly y; € E(n,x), Vu(t) N Vu(yy) = G, y; € E(n,n), x;¢ dom(n), and therefore (yy){xi/t} =y .
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Suppose m>1 and let j=1..m-1. We have «’; = «ll(y,y)Il .. lI(y;,y;), for each o=1..j y.€ Vi(9) so
Ve Vo(D), VoD NVe(ye) < VNV = O, vyueEMmK;), Vi) N V(yj) =9,
i =nll(yLyo)ll .. lI(y;y;) € Kn), yi€ E(n, ’)), xi € dom(n’;). Therefore (yjri)wg{Xi/t} = Wjs1 -

We have also €', = «ll(y,wDIl .. I(ym,¥m), for each a=1..m y,e Vi (¢) s0 y& Vi (1),

V(D) N Vi(ye) € V(D) N V(@) = G, yeEM,K' 1), V(1) N Vo(y) =D, N'm =nli(yLy)ll .. 1(ym,Ym),
N'm € K(n), yeE(n, N’ m), X; € dom(n’ ). Therefore yiem){xi/t} =y .

We conclude

orixi/t} = {J(yi: (wodxilt), yar (W xilt), ooy Ymi (Wmdem-niXi/t}, Yem{xi/t}) =

=}V o YmiYm ) =0 .

Now suppose x; ¢ dom(x). Here we immediately see that @i {xi/t} = o.

The final step of our definition process has been completed.
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5. Proofs and deductive methodology

In section 2 we have seen that our language is identified by a 4-tuple (V, F, C, #). In section 3 we
have given some definitions which are important with respect to the deductive metodology. For
instance we have defined the set S(k) of sentences with respect to a context k. A sentence with
respect to € can be simply called a ‘sentence’.

At this point we need to define what is a proof in our language. To define this we need to define the
notions of axiom and rule.

An axiom is a set A such that
- AcS(e)
- for each g€ A #(¢) holds .

We’ll say that the property ‘for each e A #(¢) holds’ states the ‘soundness’ of A.

Given a positive integer n we indicate with S(¢)" the set of all n-tuples (¢i, .. , ¢,) for
¢1, .., Pn € S(€). An n-ary rule is a set R ¢ S(a)““L1 such that
- foreach (¢, .., ¢n, 9) € Rif #(¢)), ..., #(¢,) hold then #(p) holds.

We’ll say that the property ‘for each (@i, .. , ¢n, @) € R if #(y), ..., #(¢,) hold then #(¢) holds’
states the ‘soundness’ of R.

Both in the definition of axiom and rule we have included a requirement of soundness.

A deductive system is built on top of a language L = (V, F, C, #), and so it is identified by a 3-tuple
(L, A, R) where L of course is the language, A is a set of axioms in L, R is a set of rules in L.

Given a language L, a deductive system D = (L, A, R) and a sentence ¢ in L, a proof of ¢ in D is a
sequence of sentences (1, .. , Yn) such that

- there exists A€ A such that y€ A ;
- if m>1 then for each j=2..m one of the following hold

o there exists A€ A such that yj€ A

o there exist an n-ary rule R in R and ij, .., i, <j such that (i), .. , Wim), ¥j) € R
= UYm=0.

Suppose there exists a proof (yy, .. , ym) of @ in our system D. We can easily show that for each
i=1..m #(y;) holds.

In fact #(y1) holds. If m>1 suppose j=2..m. If there exists A€ A such that yje A then #(y;) holds,

otherwise there exist an n-ary rule R in R and iy, .., i, <j such that (yiq), .. , Wim), ¥j) € R. Since
#(Wi1)), --- » #(Yiw) all hold then #(y;) also holds.

Therefore #(¢) holds. This proves what is called the ‘soundness’ of our system: if we can derive ¢
in our system then #(¢) holds.
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In section 3 we have assumed all the logical connectives A, v, —, =, V, 3 are in our set F. This

assumption is still valid, and here we also add to F the membership predicate € and the equality
predicate = (which have been explained at the beginning of section 2).

We also add to F a new predicate <> to represent double logical implication which is described as
follows:

For n#£2 A (X1,...,X,) = false
AL (X1,X2) = (X1 true or x; false) and (X, true or X, false)
PH(XDXZ) = P—)(X17X2) and P—)(X27X1) .

We can apply the results of lemma 3.6 to this new predicate. In other words, if heK and
@1, ¢2 € S(h) we have

- ()(@1,92) € S(h)
- VpeE(h) #(h, (<) (@1, 92), p) = Pe; (#(h, @1, p), #(h, @2, p)) .

In fact for each pe Z(h) #(h, ¢, p) is true or #(h, @i, p) is false; #(h, @2, p) is true or #(h, ¢,, p) is
false. We also consider that

AH( #(h,(Pl,P)a #(h,(PZ,p) ) =
= (#(h,01,p) is true or #(h,p;,p) is false) and (#(h,p,,p) is true or #(h,,,p) is false) ,

s0 Ao (#(h,1,p), #(h,p2,p) ) holds true.

There exists a positive integer n such that @, @, € E(n,h), so (<3)(¢1,92) € E(h).

Moreover for each pe Z(h)

#(h, (<) (@1, 92), p) = Po, (#(h, @1, p), #(h, 92, p)) , 50

#(h, (<) (1, ¢2), p) is true or false .

Therefore (<>)(91,02) € S(h).

We now need to list a set of axioms and rules which can be used in every language with the
aforementioned symbols within the set F. For every axiom/rule we first prove a result which
ensures the soundness of the axiom/rule and then define properly the axiom/rule.

We begin with a simple rule.

Lemma 5.1

Let m be a positive integer. Let Xy, ... , xm € V, with x;#xj for i#. Let @1, .. , pmeE and assume
H[x1:01, ... , Xm:@m]. Define k = k[X;:Q1, ... , Xm:@m] and let @, y € S(k).

Under these assumptions we have (<>)(,y) and (—)(,y) € S(k),

110



YIX1:Q1, o s XmiQm, () (@, W], Y[X1:01, oo s Xini@m, (=) (@, W],
Y[XI:(PI’ ceo s XmiQm, (_>) (\V’ (P)] € S(S) .

Moreover if #(Y[X1:Q1, ... , Xm!Pm, (<) (¢, V)]) then
#(Y[XI:(PI’ oo s Xm:Qm, (_)) ((P’ W)]) and #(Y[XI:(PI’ coe s XmiQm, (_>) (\V’ (P)])

Proof:

We suppose #(Y[X1:01, ... , Xm:®Pm, (<) (¢, V)]) and therefore

Pv({}(ce Z(k ,#(k,(—>)(<P,\I’)’G)))

and #(y[X1:Q1, .. , Xm:®m, (=) (@, W)]) .

We have also

Pv({}(se Z(k),P - (#(k,w,ﬁ),#(k@ﬁ))))
Pv({}(ce E(k),#(k,(—>)(\|f’(P)’G)))

and #(y[X1:91, .., Xm!Om, (=) (v, 9)]) .

O
This lemma allows us to create a unary rule Rs ; which is the union of two sets of couples:
the set of all couples

(Y[XI:(PI’ oo s Xm:Qm, (H) ((P’ W)]’ Y[XI:(PI’ oo s Xm:Pm, (_)) ((P’ W)] )

such that
- mis a positive integer, Xy, ... , Xm € V, Xi#X| for i#j, @1, .. , om€ E, H[X1:01, ... , Xm: Q]
- if we define k = k[X:9y, ... , Xm:Qm] then @, y € S(k);

and the set of all couples

(Y[XI:(PI’ oo s Xm:Qm, (H) ((P’ W)]’ Y[XI:(PI’ oo s Xm:Pm, (_)) (\V’ (P)] )

with the same requirements for their components.
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Lemma 5.2

Let m be a positive integer. Let Xy, ... , Xm € V, with xi#x; for i#. Let ¢y, .. , pme E and assume
H[x;:01, ... , Xm:@m]. Define k = k[X;:1, ... , Xm:@m] and let @, y € S(k).

Under these assumptions we have (A)(@,y) € S(k), (=) (A)(o,y), ¢) € S(k), and
YIX1:Q1, <o s XmiOm, (=) (A@,9), @)1, YIX1:01, v s XmiPm, (=) (A)(@,W), W)] € S(e) .

Moreover #( Y[X1:Q1, ... , Xmi@m, (—) (A)(@,y), @)]) and #( y[X1:Q1, ... , Xni@Pm, (=) (A)(Q,y), Y)])
are both true .

Proof:

#(Y[X1:01, . s Xm:®Pm, (—) (A)(@,y), ©)]) can be rewritten as

P((}(ce 2(K).#(k.(=)((~)(9.¥).9).0)))
Pv({}(ce (k),Pﬁ(#(k,(A)((P,\V)’G)’#(k’@’c))))

Po((}(c€ E(k),P (P~ (#(k.0.0). #(ky.0)).#(k.0,0))))

[x]

This can be expressed as ‘for each e Z(k) if #(k,p,0) and #(k,y,c) then #(k,,0)’.

This condition is clearly true, and in the same way we can show that

#FOY[X1:01, ooy XmiQm, (=) (A)(@,y), W)]) is true .
O

Lemma 5.2 allows us to create an axiom As, which is the union of two sets of sentences:
the set of all sentences Y[Xi:Q1, ... , Xm:Pm, (—) (A)(Q,y), ¢)] such that

- mis a positive integer, Xy, ... , Xm € V, Xi#X| for i#, @1, .. , om€ E, H[X1:01, ... , Xm: Q]
- if we define k = k[X:9y, ... , Xm:Qm] then @, y € S(k);

and the set of all sentences y[X;:Q1, ... , Xm:QPm, (—) (A)(P,V¥), ¥)] with the same requirements for
their components.

Lemma 5.3

Let m be a positive integer. Let Xy, ... , xm € V, with x;#xj for i#. Let @1, .. , pmeE and assume
H[X1:@1, ... , Xm:@m]. Define k = k[X1:¢1, ... , Xm:@m] and let ¢, y, x € S(k).

Under these assumptions we have (—=)(o,y), (—=)(y,x), (—=)(@,x) € S(k), and
YIX1:@15 o s X Om, ()(@W)], YIX1:01, v s X Omy ()W YIX1O1, - s Xini@m, ()(@,0)] € S(€).
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Moreover if #(Y[X1:01, ... , Xm:Pm, (—)(@,¥)]) and #(y[X;:01, ... , Xm:Pm, (—)(y,x)]) then
#(Y[XI:(PI’ oo s Xm:Qm, (_))((P’X)]) .

Proof:

We can rewrite #(Y[X1:Q1, ... , Xm:®m, (—)(@,¥)]) as follows:

[x]

Pv({}(ce
PV({}(oe

(K).#(k.(=)(9.¥),9)))
(k).P - (#(k.9.0).#(k.y.0)))) .

[x]

And we can rewrite #(Y[X1:01, ... , Xm:®m, (—=)(W,%)]) as follows

[x]

Po({}(ce
Py({}(ce

(k). #(k.(=) (w.%).0)))
(k).P - (#(k.y.0).#(k.x.0)))) -

[x]

In other words for each ce Z(k) if #(k,¢,0) then #(k,y,0) and if #(k,y,0) then #(k,x,0), so if #(k,,0)
then #(k,y,0). This can be written like this

[x]

Py({}(ce
Po({}(oe

(K).P - (#(k.0.0).#(k.2.0)))
(k). #(k.(=)(9.x).5)))

[x]

And so we have #(Y[X1:01, .. s Xm:@m, (—=)(@,0)]) -

Lemma 5.3 allows us to create a rule Rs 3 which is the set of all 3-tuples

(Y[Xl:(Pl’ ey Xm:(Pm, (_>)((P’\|])], Y[Xl:(Pl, ey Xm:(Pm, (%)(W’X)]’ Y[Xl:(Pl’ ey Xm:(Pm, (_>)((P’X)] )

such that
- mis a positive integer, Xy, ... , Xm € V, Xi#xj for i#j, @1, .. , om€ E, H[X1:01, ... , Xm:@m]
- if we define k = k[x;:Q1, ... , Xm:Qm] then @, v, x € S(k) .

Lemma 5.4

Let m be a positive integer. Let X1, ... , Xms1 € V, with xi#x; for i#. Let @y, .. , ¢m+1€E and assume
H[x1:01, ... , Xm+1:0m+1]. Define k = K[X1:01, ... , Xmt1:Qm+1]. Of course H[X;:1, ... , Xm:@m] also holds
and we define h = k[x;:01, ... , Xm:@m]. Let xe S(h).

Let te E(h) such that Vpe Z(h) #(h,t,p) € #(h,Qm+1,p)-

Let t’e E(h) such that Vpe Z(h) #(h,t’,p) € #(h,Qm+1,p).

Let e S(k) such that Vi(t) N V(@) =, V(') N V(o) =D .

Then we can define Qx{Xm+1/t’ }€ S(h) and therefore
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YIX1Q1, v s Xmi@m, ()OO Xmet/tD] S YIX1:@15 ooe s XmiPm, (—)(L(E)(G,E))],
YIX1:01, -t s Xmi®m, (—)(L0k{Xm+1/t })] all belong to S(g), and moreover

if #(y[X1:01, -+ » Xm:Qm, (—=)OL0k{ Xm+1/t})]) and #(y[X1:01, ... , Xm:®Pm, (=), (=)(t,t7))]) then
#OX1:01, v s Xmi@m, (D)OGOK{ Xm1/U )]) .

Proof:

There exist a positive integer n such that pe E(n k).
By lemma 4.5 there exist a positive integer p such that p<n, yi, .. , ¥ € V such that yi#y; for i#j,

Vi, .., Wp € E such that K(n; K yi, .., ¥p; Wi, -, Wp).
Since (y,yi) Il ... I (yp.wp) =k = (X1,00) I ... Il (Xms1,Pm+1) 1t follows
p=m+1, yi=x;, ¥j=0j, and K(n; k; X1, .. , Xm+1; Q15 - » Pma1) -

Since te E(h) we have Vy,(t) < V-dom(h), so for each j=1..m x;& Vy,(t), and similarly for each j=1..m
Xj¢& V().

Therefore we can define @x{xm+1/t}€E(h), ox{Xm+1/t’ }€E(h) .

By definition 4.6 for each pe Z(h) we can define ce E(k) such that

#(h, ox{Xm+1/t}, p) = #(k, @, ), and since #(k, ¢, o) is true or false we have @x{xm+1/t}€ S(h).
Similarly @x{Xm+1/t’ }€S(h) .

Suppose the following both hold:

a) #Y[X1:01, ..., Xm!Om, (—=)OLOk{ Xme1/t})])
b) #(y[X1:@1, ..., Xmi@m, (—=)(L(E)(,T))])

We can rewrite a) like this:
Po((}(pe Eh).#(h, (=) (% 0c{xn1/1}).p)))

Pe((}(pe Eh).P - (#(h,7,p). #(h, c{xn1/1},p))))

And we can rewrite b) like this:

Pe((}(pe (). #(h.(=) (x.(=)(1.1).p)))
Po((}(pe Eh).P - (#(h,7.p). #(h,(=) (1, 1).p))))
Po(1)(pe 2P~ (#(h.1p).P - (#(htp) #(n.1'p))))

We need to show #(Y[X1:01, ... s Xm:Qm, (—)(L0k{Xm+1/t’ })]), which can be rewritten
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Pv({}(pe E(h),P—>(#(h,x,p),#(h,(pk{xm+1/t'},p)))) .

In other words we need to show that for each pe E(h) if #(h,y,p) then #(h, Qx{Xm+1/t’},p).

Let pe E(h) and assume #(h,y,p).

Define o to be the soop (x1,p(x1)) Il ... Il Xmp(Xm)) | Xm+1, #(h,t",p)) .

From definition 4.6 follows that o€ Z(k) and #(h, @x{xm+1/t’ },p) = #(k, @, ©).

So we need to show that #(k, ¢, ) holds.

Because of b) we have #(h,t,p) = #(h,t’,p), so 6 = (x;,p(x)) Il ... I Xm,p(Xm)) Il (Xm+1, #(h,t,p)) .
From definition 4.6 follows that #(h, ox{xm+1/t},p) = #(k, ¢, ©).

Because of a) we have #(h, ox{xm+1/t},p), so #(k, ¢, o) holds as we needed to show.

Lemma 5.4 allows us to create a rule Rs 4 which is the set of all 3-tuples

(Y[X1:01, wov s Xmi@m, (=) OLPk{ Xmar/tP]
YIX1:Q15 ov s Xmi@m, (=)(L(E)(EE))],
YIX1:Q15 v s Xmi@m, (—)OLOK{ Xme1/t" })])

such that
- m is a positive integer, Xi, ... , Xms1 € V, With Xi#x; for i#j, @1, .., @m+1€E, H[X1:01, ... Xme1:Qm+1].
- if we define k = K[X1:Q1, ... , Xm+1:@m+1] and h = k[X;:Q1, ... , Xm:@m] then

o yxe€S(h)

o teE(h), VpeE(h) #(h,t,p) € #(h,Ome1,p);

o t'eE(h), VpeE(h) #(h,t',p) € #(h,Pm+1,p);

o e S(Kk), Vu(t) N V(@) =D, Vp(t') N V(@) =D .

Lemma 5.5

Let m be a positive integer. Let Xy, ... , Xm € V, with xi#x; for i#. Let @1, .. , pme E and assume
H[x;:01, ... , Xm:@m]. Define k = k[x;:01, ... , Xm:@m] and let @, y € S(k).

Under these assumptions we have (—)(y,p) € S(k) and

YIX1:01, v s Xmi®m, O], Y[X1:01, ... , Xmi®Pm, (=) (W, ®)] € S(e) .

Moreover if #(Y[X1:Q1, ... , Xm:@m, ¢]) then #(yY[X;:01, ... , Xm:®Om, (—) (W, ®)]) also holds.
Proof:

#Y[X1:01, ... s Xm:Om, (—) (W, ©)]) can be rewritten as
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[x]

Py({}(ce E(k).#(k.(=)(v.9).0)))
Ps({}(ce E(k).P- (#(k.y.0).#(k.0.0)))) .

Y[X1:01, ... , Xm:@Pm, @] can be rewritten as
Pv({}(oe Z(k).#(k.9.0)))

So if #(y[X1:01, ... , Xm:@m, @]) then for each ce EZ(k) #(k,p,0) holds, and therefore
#OY[X1:01, ... s Xm:Qm, (—) (v, ©)]) also holds.

Lemma 5.5 allows us to create a rule Rs s which is the set of all couples

YIX1:@1, v s Xmi@m, L, Y[X1:Q1, oot s Xmi@m, (=) (W, 9)])

such that
- mis a positive integer, Xy, ... , Xm € V, Xi#xj for i#j, @1, .. , om€ E, H[X1:01, ... , Xm:Qm]
- if we define k = k[X:Qy, ... , Xm:@m] then @, y € S(k).

Lemma 5.6

Let m be a positive integer. Let Xy, ... , xm € V, with x;#xj for i#. Let @1, .. , pmeE and assume
H[X1:01, ..., Xm:@m]. Define k = K[x1:91, ... , Xm:@m] and let @, y, x € E(k), 3e S(k) .

Under these assumptions we have (—)(8, (=)(o,v)), (=), =)(y.x), (=), (=)(9,x)) € S(k) and
YIX1:Q15 v s XmiOm, (=), (5)(0,¥)) ] € S(e),
YIX1:Q15 v s XmiOm, (=), E)(W,0) 1 € S(e),
YIX1:Q15 oo s Xmi@m, (=), (=)(@,0) 1 € S(e) .

Moreover if #( y[X1:Q1, ... , Xm:@m, (=)(0, (=)(@,y)) 1) and #( y[X1:@1, ... , Xm:Pm, ()8, E)(y.)) 1)
hold then #( Y[X1:01, ... , Xm:Pm, (—)(3, (=)(,))) ] ) also holds.

Proof:

We rewrite #( Y[X1:Q1, ... , Xm:@m, (=), =)(@,y)) ]) as

(k). #(k.(=)(8.(=)(@.)).0)))
(k),P_>(#(k,ﬁ,c),#(k,(:)((P"V)’G))))

(k).P - (#(k,9,0).P - (#(k, (p,G)’#(k,\V,G)))))

=]

Pv({}(ce
Pv({}(ce
Pv({}(ce

[x]

]

Similarly we rewrite #( Y[X1:Q1, ... , Xm:@m, (=), (=)(y,x)) 1) as
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PV({}(oe E(k),P—>(#(k,ﬁ,c),P:(#(k,W,G)’#(k’X’G)))))

Therefore for each ce Z(k) if #(k,8,0) then #(k,p,0) equals #(k,y,0), and #(k,y,0) equals #(k,y,0), so
#(k,p,0) equals #(k,y,0) .

Since #( Y[X1:01, - » Xm:Pm, (=), (=)(,x)) ] ) can be rewritten as
P+((}(ce E(K).P - (#(k.9.0).P-(#(k.0.0).#(k.x.0))))

it clearly holds true.

Lemma 5.6 allows us to create a rule Rs ¢ which is the set of all 3-tuples

(Y[X1:01, oo, Xmi@Qm, (=), =)(@,¥)) 1,
YIX1:Q1, oov s Xmi@m, (=), =)y, 0)) 1,
YIX1:@1, oo s Xmi@m, (=), (=)(@,0)) 1)

such that

- mis a positive integer, Xy, ... , Xm € V, Xi#Xj for i#, @1, .. , om€ E, H[X1:01, ... , Xm: Q]

- if we define k = k[X:1, ... , Xm:@m] then @, v, x € E(k), e S(k) .
Lemma 5.7
Let m be a positive integer. Let Xi, ... , Xms1 € V, with xi#x; for i#. Let @y, .. , ¢m+1€E and assume
H[X1:01, ... , Xm+1:@m+1]. Define k = K[X1:Q1, ... , Xmt1:Qm+1]. Of course H[X;:1, ... , Xm:@m] also holds
and we define h = k[x;:01, ... , Xm:@m]. Let xe S(h).

Let te E(h) such that Vpe Z(h) #(h,t,p) € #(h,Qm+1,p).
Let e S(k) such that Vi (t) N Vy(9) = .

We can define @x{xm+1/t}e S(h) and (I)({ } (Xm+1:Pm+1, @) ) € S(h) .

Therefore y[X1:01, ... , Xm:®Pm, (—)(Ok{Xm+1/t})] and
YIX1:Q1, oo s Xmi@m, (=) D} Xm+1:@m+1, ©) ) )] both belong to S(¢) and

if #(Y[X1:01, vov s XmniQms (2)OLOk{ Xm+1/t})] ) then
#OY[X1O1, - s XmiOm, ()6 (DU} Xt 1:Pme1, 9) ) )] )

Proof:
It’s easy to see that @i {xm+1/t}€ S(h) (this has been shown in lemma 5.4).
By lemma 3.1 we get (I)({ } (Xm+1:Qm+1, @) ) € S(h) .

Suppose #( Y[X1:01, -+ » Xm:®Pm, (—)(0k{Xm+1/t})] ) holds, it can be rewritten as
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Pv({}(pe Z(h),P (#(h,x,p),#(h,(pk{xm+1/t},p)))) .

We need to prove #( y[X1:01, ... , Xm:®m, (=) (@){ }Xm+1:Om+1, @) ) )] ), and this can be rewritten
as

Pv({}(pe E(h),P - (#(h,x.p). # (0. (3) ({}(xn1: (pm+1,(p)),p))))

Po((}(pe (), P~ (#(h,x.p). Ps({} (o€ EK) :p = 0, #(k,0,0))))) -

Let pe E(h) and suppose #(h,y,p). We need to show there exists o€ Z(k) such that p=c and #(k,0,0).
We have #(h,px{Xm+1/t},p) and by definition 4.6 we can define o€ Z(k) such that p & ¢ and

#(h, ex{Xm+1/t}, p) = #(k, ¢, 6). This completes the proof.

Lemma 5.7 allows us to create a rule Rs 7 which is the set of all couples

(YX1:01, v s Xmi@m, ()OLOK{ Xmet/tD], YIX1:Q15 o s X @ms ()G (D} Xt 1:@ms1, ©) ) )] )

such that
- m is a positive integer, Xi, ... , Xm+1 € V, With Xi#x; for i#], @1, .., Om+1€E, H[X1:01, ... Xme1:Qm+1].
- if we define k = kK[X:Qy, ... , Xm+1:0m+1] and h = k[X;:0Q1, ..., Xm:@mn] then

o xeS(h)

o teE(h), VpeE(h) #(h,t,p) € #(h,Pm+1,p);

o @eS(k), Vu(t) N V(@) =D .

Lemma 5.8

Let m be a positive integer. Let Xy, ... , xm € V, with x;#xj for i#. Let @1, .. , pmeE and assume
H[X1:@1, ... , Xm:@m]. Define k = k[X1:¢1, ... , Xm:@m] and let ¢, y, € S(k) .

Under these assumptions we have (—)(¢,y), (—=)(y,x), (—=)(@,x) € S(k) and

YIX1:@1, oo s Xmi@m, (—)(@,¥) ] € S(e),
YIX1:Q15 oov s Xmi@m, (=)W, 1 € S(e),
YIX1:Q15 ov s Xmi@m, (=)(@,%) 1 € S(€) .

Moreover if #( Y[X1:01, ... , Xm:®m, (—=)(@,¥)] ) and #( Y[X1:Q1, ... , Xm:Om, (—)(¥,)] ) then
#( Y[XI:(PI’ cor s XmiQm, (_>)((P’X)] ) .

Proof:

We rewrite Y[X1:Q1, ... , Xm:Qm, (—)(Q,V) ] as
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Po({}(ce E(k).P- (#(k.9.0).#(k.y.0)))) .
VIX1:@1, s Xmi@m, (=2)(w) ] as
Po({}(ce E(k).P- (#(k.y.0). #(k.x.0)))) .
VIXEQL oo s XmiQm, (=)(@)) ] as
Py({}(ce E(k).P- (#(k.9.0).#(k.x.0)))) -

If #(y[X1:Q15 oo s Xmi@Qm, (—=)(@, )] ) and #( Y[X1:Q1, ... , Xmi@m, (—)(y,))] ) then

for each oe Z(k) if #(k,p,0) then #(k,y,0) and so #(k,x,0), in other words we have

#( Y[XI:(PI’ cee s XmiQm, (_>)((P’X)] ) .

Lemma 5.8 allows us to create a rule Rs g which is the set of all 3-tuples

(VX115 oo s Xmi@m, (—)(Q9)]
YIX1:Q1, v s XmiQm, ()WL
Y[XI:(PI’ cee s XmiQm, (_>)((P’X)] )

such that
- mis a positive integer, Xy, ... , Xm € V, Xi#Xj for i#j, @1, .. , om€ E, H[X1:01, ... , Xm: Q]
- if we define k = k[X;:01, ... , Xm:@m] then o, v, x € S(k).

Lemma 5.9

Let m be a positive integer. Let Xy, ... , Xm € V, with xi#x; for i#. Let ¢y, .. , pme E and assume
H[x;:01, ... , Xm:@m]. Define k = k[x;:1, ... , Xm:@mn] and let @, y, x € S(k) .

Under these assumptions we have (—)((A)(Q,y),x), (—=)(@,(—=)(v,x)) € S(k) and

YIX1:Q1, oo s Xmi@m, ()((A)Q ), 0] € S(e),
YIX1:Q1, oo s Xmi@m, (—)(@,(=2)(w,x)] € S(e) .

Moreover if #( y[X1:01, .. » Xm:@m, (—=)(A)(@,y),x)] ) then
#Y[X1P15 e s XmiPm, (2)(Q,(2)(W,0)]) -

Proof:

We assume #( y[X1:01, ... » Xm:@m, (—=)(A)(@,¥),x)] ), which can be rewritten as
Pe((}(0e 2(K).#(k.(=)((A)(0.w).x).0)))

119



Po((}(c€ B (k)P (#(k.(n)(9.W),0).#(k.x.0))))

Po((}(ce 2(K).P = (P (#(k.0.0).#(kv,0)). #(k.%.0)))) .
We try to show #( Y[X1:01, ... s Xm:Qm, (—)(9,(—)(y,x))] ) which in turn can be rewritten

Pv({}(ce E(k),#(k,(—>)((P’(—>)(W,X))’°)))
P(1}(c€ E(K).P - (#(k.9.0).#(k.(=) (w.1).))))

Po(1}(ce E(K).P - (#(k.9.6).P - (#(kv.0). #(k.x,0))))) -

[x]

[x]

Let o€ E(k), suppose #(k,p,0) and #(k,y,0), then we have #(k,x,0) and this completes the proof.
]

Lemma 5.9 allows us to create a rule Rs ¢ which is the set of all couples

(VX115 oo s Xmi@m, ()(A(@,W),0], YIX1:@1, wv s Ximi@ms ()(@,()(w50)])

such that

- mis a positive integer, Xy, ... , Xm € V, Xi#xj for i#j, @1, .. , om€ E, H[X1:01, ..., Xm: Q]

- if we define k = k[X;:0y, ... , Xm:Qm] then @, v, x € S(k).
Lemma 5.10
Let m be a positive integer. Let X1, ... , Xms1 € V, with xi#x; for i#. Let @y, .. , ¢m+1€E and assume
H[x1:01, ... , Xm+1:0m+1]. Define k = K[X1:Q1, ... , Xm+1:Qm+1]. Of course H[X;:01, ... , Xm:@m] also holds
and we define h = K[X:01, ... , Xm:@m]. Let y € S(h)nS(k) and ¢e S(k) .
Then (—=)(y,¢) € S(k) and y[Xm+1:Qm+1, (—=)(y,9)] € S(h), and (=), V[Xm+1:@m+1, @]) € S(h).

Therefore

YIX1Q1, oo s Xmi®Pm, V[ Xmt1:Pme1, (=)(W,0)]] € S(e),
YIX1:01, oo s Xmi@m, (=)W, Y[Xmt1:@m+1, @])] € S(€) , and

i #CY[X1:01, oo s XmiQm, Y[ Xme1:Pm+1, (=) (W,0)]])
then #( Y[X1:01, ... , Xm:Qm, (=), Y[Xm+1:@me1, @D] ) -

Proof:

We can rewrite #( Y[X1:01, .- » Xm:®m,» Y[ Xm+1:Pm+1, (—)(W,0)]] ) as

Pv({ Hpe ). #(h.y[xn cpmﬂ,(%)(w,(p)lp)))

Pv({}(pe 2(h). #(h,(9)((} (xn 1 <Pm+1’(—>)(W,(P)))’p)))
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PV({}(pe E(h),Pv({ }(GE Ek):pE G’#(k’(ﬁ)(‘l”@)’s)))))

Pv({}(pe E(h).Pv({}(ce E(K):pE0,P - (#(ky.0). #(k, (p,G))))))
#(Y[X1:01, - s XmiOm, ()W, Y[Xm+1:@m+1, ©])] ) in turn can be rewritten

Pv({}(pe =(h), #(h, (=) (. y[xn 12 (pm+1,(p]),p)))
Pv({ }(pe E(h),P - (#(h.w.p). #(h, y[xm+1: (pm+1,(p],p))))

Pv({}(pe 2(h).P - (#(h.y.p).Pe({}(ce E(k) :pC 6,#(k,(p,6)))))) .

We suppose #( Y[X1:01, - » Xm:Oms Y[ Xm+1:Pm+1, (—=)(W,0)]] ) holds and try to show
#FOY[X1:Q1, oo s Xmi@m, (=), Y[Xme1:Pms1, @])] ) holds too.

To this purpose let pe E(h) such that #(h,y,p), let ce E(k) such that p=c. We want to show that
#(k,p,0) holds.

Since ye E(k) Vy(y) € V-dom(k) and so X412 Vu(W).
Given that ye E(h) there exists a positive integer n such that ye E(n,h) and therefore ye E(n+1,k),
and #(k,y,0) = #(h,y,p).

Since #(h,y,p) holds then #(k,y,c) holds too, and this of course means that #(k,¢,c) holds.
]

Lemma 5.10 allows us to create a rule Rs ;o which is the set of all couples

(Y[X1:01, oo s Xmi@ms V[ Xme1:Qmet, ()W, YIX1:Q1, ov s Xmi@Pmy ()Y, Y[ Xt 1:@met, @] )

such that
- m is a positive integer, Xi, ... , Xms1 € V., xi#x; for i#, ¢, .. , @mu€E,
H[X1:01, - s Xme1:Qme1];
- if we define k = k[X;:Qy, ... , Xm+1:0m+1] and h = K[X1:@y, ... , Xn:@m] then y € S(k)MS(h),
0eS(k) .

Lemma 5.11

Let m be a positive integer. Let X1, ... , Xms1 € V, with x#x; for i#. Let @y, .. , ¢m+1€E and assume
H[X1:01, ... , Xm+1:@m+1]. Define k = K[X1:01, ... , Xmt1:Qm+1]. Of course H[X;:1, ... , Xm:@m] also holds
and we define h = k[X;:01, ... , Xm:@m]. Let xe S(h), ye S(k) and ¢ € S(k)nS(h) .

Under these assumptions we have

(=)(v,0) € S(K), Y[Xm+1:Qm+1, (=)(W,0)] € S(h), (=) Y[Xm+1:Qm+1, (—)(y,9)]) € S(h) ;
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y[m:(pl,...,xm:(pm,(e)(x,y[xmﬂ:(pm+1,(—>)(\|f,(P)])}€ S(e)
(@ ({} Xme1:Pms1, W) € S(h), (—>)(x,(—>)((5|)({}(Xm+1:(pm+1,\|f)),(p))e S(h) ;
y[m:(pl,...,xm:(pm,(e)(x,(—>)((3)({}(xm+1:(pm+1,\|f)),(p))}e S(e) .

Moreover if #(Y[XII(PI,...,Xm:(Pm (X 'Y[Xm 12 Pm +1, :I)J)
then #(y[xu(pl,...,xm:(pm,(—>)(x,( )(( )} (xm+1: 1, ) )})

Proof:

Suppose #(y[m S @l,..., Xm (pm,(e)(x,y[xmﬂ : (pm+1,(—>)(1p,(p):|)}) :

This can be rewritten

Pv({}(peE(h),#(h,(ﬁ)(x,v[xw:<pm+1,(—>)(w,<p)]),p))) ,
Po((}(pe )P (#(h1p). # (b ¥ xn 1 9nn(=) (w.9)].0))))
Pv({} (e =), P (#(hx.p).Pe((}(ce E(K):p EG,#(k,(ﬁ)(w,cp),G)))))) :
Po(()(pe 2P~ (#(h.2p). Po((}(0€ 2 (K):p= P (#(k w.0) #(k.0.0))))) ).
In turn #(y[m:q»,...,Xm:<pm,<e>(x,<+>(<a>({}(Xmﬂ:@ml,w))«p)ﬂ) can be rewriten
Po(11(pe 2. # (0 () ((=2) () (1 (31 01 ) 0)) ) )
Po( (3o 2.2~ (#(.2p).# (0 () (B)(1) (xo1:001¥)).0).p) )
Po((1(pe 2. P (#(020). P (#(0 () (1) (30 1:001w)).0) (0. 0p)))) )
[

Pv{}pe~<h)P #(h,x.p).P (Pa({}(ceE(k):pE6,#(k,w,c))),#(h,w,p)))))-

To prove the last statement we suppose pe Z(h), #(h,y,p) and suppose there exists o€ E(k) such that
pEo and #(k,y,0).
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We know that #(k,p,0) holds, but we need to show #(h,o,p) .

There exists a positive integer n such that hk € K(n). By consequence 2.1.10 there exists
Sm+1€ #(h,@m+1,p) such that 6 = p Il (Xm+1,Sm+1)-

Since e S(k) we have Vy(¢) < V-dom(k), so Xm1€ Vu(@). We can apply lemma 4.2 to determine
that #(k,p,0) = #(h,p,p) . This completes the proof.

O
Lemma 5.11 allows us to create a rule Rs j; which is the set of all couples
(
y[m:(pl,...,xm:(pm,(e)(x,y[xmﬂ:(pm+1,(e)(\|l,(p)])} ,
'Y[Xl:(pl,...,Xm:(pm,(%)(x,(—>)((5|)({}(xm+1:(pm+1,l|l)),(p)ﬂ
)
such that
- m is a positive integer, Xi, ... , Xms1 € V., Xxix; for i#, ¢, .. , @mu€E,

H[X1:01, -.. s Xm41:Qme1]5
- if we define k = K[X:Q1, ... , Xm+1:0m+1] and h = k[X;:9y, ... , Xn:@m] then ye S(h), wye S(k)
and ¢ € S(k)nS(h) .

We can now state a rule which is very similar to the former one, but simpler. Of course we start
with the related lemma.

Lemma 5.12

Let m be a positive integer. Let X1, ... , Xm+1 € V, with xi#x; for i#. Let @y, .. , ¢m+1€E and assume
H[x1:01, ... , Xm+1:0m+1]. Define k = K[X1:Q1, ... , Xm+1:Qm+1]. Of course H[X;:01, ... , Xm:@m] also holds
and we define h = K[X:01, ... , Xm:@m]. Let ye S(k) and ¢ € S(k)nS(h) .

Under these assumptions we have
(=2)(v,0) € SK), V[Xm+1:@m+1, (2)(y,0)] € S(h),

VX1 Qs Xt @, Y[ X1 O, (=) (W, 9) ] |€ S (€)
@ (et @met, W) € S, (=) ((I) ({3 (xm+1:Qu1,y)).9)e S(h)
y[m:(pl,...,xm:(pm,(e)((ﬂ)({}(xmﬂ:(pm+1,\|1)),(p)}e S(e) .

Moreover if #('y[m:(pl,...,xm:(pm,'y[xmﬂ:(pm+1,(%)(\|l,(p)]])
then #(y[m:(pl,...,xm:(pm,(%)((EI)({}(Xm+1:(pm+1,\|f)),(p)J) :
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Proof:

Suppose # (y[m L Q... Xm : Qum, y[xm w12 @m1, () (v, (p):l]) )

This can be rewritten

Pe((}(pe Eh), #(n, 7 X 1:0me 1 (=) (w,0) ].0)))

Po((}(pe ). Pe((}(0e E(K):pE 0. # (k. (=) (.0).9))))) -

P.((}pe 2, P(1} (o€ E(K):p =0, P (#(kv,0).#(K.0.0)))))

I turn #(y] %120 X @, (=) ((3) (11 (041 @n1.)) . @) |) can be rewritten as
Po((}(pe 2. # (0, (=) (D1} (xm1:0m1w))0).p)))

Po((}(pe 2. P~ (#(0. (I (1} (xns1:9n 1 w)).p) #(00.p)) )

Po((}(pe 2P (Ps((}(0€ E(K):pE 0.4 (k.¥.0))) #(h.0.p))))

To prove the last statement we suppose pe E(h) and suppose there exists ce Z(k) such that p=c and
#(k,y,0).

We know that #(k,p,c) holds, but we need to show #(h,o,p) .

There exists a positive integer n such that hk € K(n). By consequence 2.1.10 there exists
Sm+1€ #(h,Qm+1,p) such that 6 = p Il (Xm+1,Sm+1)-

Since @e S(k) we have Vy(¢) < V-dom(k), so Xm1€ Vp(@). We can apply lemma 4.2 to determine
that #(k,p,06) = #(h,p,p) . This completes the proof.
O

Lemma 5.12 allows us to create a rule Rs ;> which is the set of all couples

(
'y[)u Q... Xm: (pm,'Yl:Xm+l:(Pm+l,(_>)(llf,q)):|:| ,

y[m L Pl Xm (pm,(%)((ﬂ)({}(xmﬂ : (pm+1,\|l)),(p)}

)
such that
- m is a positive integer, Xi, ... , Xms1 € V, xi#%; for i#, ¢, .. , Omu€E,
H[X1:01, «.. s Xm+1:Qme1]5
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- if we define k = k[X1:Q1, ... , Xm+1:@m+1] and h = k[X;:01, ... , Xn:@m] then yeS(k) and
¢ € S(k)NS(h) .
The next rule features the one commonly referred as ‘modus ponens’.

Lemma 5.13

Let m be a positive integer. Let Xy, ... , xm € V, with x;#xj for i#. Let @1, .. , pmeE and assume
H[x1:01, ... , Xm:@m]. Define k = k[X;:1, ... , Xm:@m] and let @, y, x € S(k).

Under these assumptions we have (—)(¢,y), (—=)(@,(—=)(y,x)), (=)(9,y) € S(k), and
YIX1:@15 oo s XmiQm, (—)(@,9)] € S(e) ,

YIX1:Q1, - s XmiOm, (2)(@,(=)(y, 0] € S(e),

YIX1:Q1, e s XmiOm, (—)(@,0)] € S(e) .

Moreover if #( y[X1:Q1, ... , Xmi@m, (—=)(@,y)] ) and #( Y[X1:Q1, ... , Xni@Pm, (—=)(@,(=)(y,x)] ) then
#OY[X1Q1, o s XmiPm, ()(@,0]) -

Proof:

We can rewrite #(Y[X1:Q1, ... , Xm:®m, (—)(@,¥)]) as follows:

[x]

Po({}(ce (k). #(k.(=)(9.¥).0)))
Ps({}(ce E(k).P- (#(k.9.0).#(k.y.0)))) .

And we can rewrite #( Y[X1:Q1, ... , Xm:Qm, (—)(0,(—)(v¥,0)] ) as follows

Pe((}(ce 2(K).#(k.(=)(0.(=)(v.x).0)))
Po(1)(ce E(K).P - (#(k.0.0).#(k.(=)(v.1).0)))) -

Po((}(ce 2(K).P - (#(k.9.6).P - (#(kv.0). #(k.1.0))))) -

[x]

Therefore, for each oce E(k) if #(k,,0) then
- #(k,y,0) holds, and

- if #(k,y,0) then #(k,x,0) .

- hence #(k,y,o) holds .

This can be formally rewritten as

Po((}(ce E(k).P - (#(k.0.0).#(k.x.0)))) .

Po((}(ce E(k).#(k.(=)(0.%).0))) .
#( Y[XI:(PI’ cor s XmiQm, (_>)((P’X)] ) .
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Lemma 5.13 allows us to create a rule Rs ;3 which is the set of all 3-tuples

YIX1:Q15 oo s Xmi@m, ()@,W)], VX 1:01, ooy Xini@my ()(@,(=)W01, YIX1:Q15 oov s Xmi@m, (—)(@,0)])

such that

- mis a positive integer, Xy, ... , Xm € V, Xi#xj for i#, @1, .. , om€ E, H[X1:01, ..., Xm:Qm]

- if we define k = k[x;:91, ... , X;m:Qm] then @, v, x € S(k) .
Lemma 5.14
Let m be a positive integer. Let X1, ... , Xms1 € V, with xi#x; for i#. Let @y, .. , ¢m+1€E and assume
H[x1:01, ... , Xm+1:@m+1]. Define k = K[X1:01, ... , Xmt1:Qm+1]. Of course H[X;:1, ... , Xm:@m] also holds
and we define h = k[x;:01, ... , Xm:@m]. Let xe S(h).

Let te E(h) such that Vpe Z(h) #(h,t,p) € #(h,Qm+1,p)-
Let e S(k) such that V,(t) N Vy(9) = .

We can define @x{xm+1/t}eS(h) and (V)({ }(Xm+1:Qm+1, @) ) € S(h) .

Therefore y[X1:01, ... , Xm:@m, (—)(6Pk{Xms1/t})] and
YIXEQ1 o s Xmi@my () (V) } Xm+1:@m+1, @) ) )] both belong to S(e) and

if #(Y[X1:01, vov s XmiQm, () (V) } Xmt1:0m+1, ©) ) )] ) then
#Y[X1:01, - s Xmi®m, ()L Xme1/t})] )

Proof:
It’s easy to see that @i{xm+1/t}€ S(h) (this has been shown in lemma 5.4).
By lemma 3.1 we get (V)({ }(Xm+1:Qm+1, @) ) € S(h) .

Suppose #( Y[X1:01, - » Xm:®Pm, () (V){ } Xm+1:9m+1, @) ) )] ) holds, it can be rewritten as

Pe((}(pe Z(h).P - (#(h. ) # (1. (9) (0} (xn-1:0m-10) )

Pv({}(pe 2(h).P - (#(h.x.p).P+({}(ce E(k) :pC 6,#(k,(p,6)))))) .
We need to prove #( y[X1:01, .. , Xm:®m, (—)(%Pk{Xm+1/t})] ), and this can be rewritten as
Pv({}(pe Z(h),P (#(h,x,p),#(h,(pk{xm+1/t},p)))) .

Let pe Z(h) and suppose #(h,x,p). We need to show #(h,px{xm.i/t},p). By definition 4.6 we can
define e Z(k) such that p & o and #(h, @x{xm+i/t}, p) = #(k, ¢, o).
By our hypothesis we have #(k, ¢, ) and so #(h, ex{Xm+1/t}, p) holds. This completes the proof.

]
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Lemma 5.14 allows us to create a rule Rs ;4 which is the set of all couples

YIX1:01, o s Xmi@m, (=)0 (VD Ximne1:0me1, ©) )], YIX1EQ1, oo s Xmi@my (=) QLPk{ Xme1/t])])

such that
- m is a positive integer, Xi, ... , Xms1 € V, With Xi#x; for i#], @1, .., @m+1€E, H[X1:01, ... Xme1:Qm+1].
- if we define k = K[X1:Q1, ... , Xm+1:@m+1] and h = k[X;:Q1, ... , Xm:@m] then

o yxeS(h)

o teE(h), VpeE(h) #(h,Lp) € #(h,Oms1p);

o @eS(k), Vu(t) N V(@) =D .
Lemma 5.15
Let m be a positive integer. Let X1, ... , Xms1 € V, with x#x; for i#. Let @y, .. , ¢m+1€E and assume
H[x1:01, ... , Xm+1:0m+1]. Define k = K[X1:Q1, ... , Xm+1:Qm+1]. Of course H[X;:01, ... , Xm:@m] also holds
and we define h = K[X:01, ... , Xm:®m]. Let xe S(h), te E(h).
Let o€ E(h) be such that for each pe E(h) #(h,p,p) is a set and Xy+1€ V(@) .

Under these assumptions

(€)Xm+1,9) € S(K), (V)({ } Xm+1:0m+1, (€)(Xm+1,0) ) ) € S(h),

VX101, o s XmiPm, ()6 (VE} X1 :0m+1, (€)(Xme1,0) ) ) )] € S(e),
(€)(t.om+1) € S(h),

YIX1:01, oo s XmiQm, (=) (€)(L,Pme1) )] € S(e) ,

(e)tp) € S(h)

YIX1:@1, oo s XmiPm, ()X (€)(t,9) )] € S(e) .

Moreover if

#(Y[X1:Q1 - s Xmi@m, () (V) K1 :@me1, (€)(Xme1,9) ) ) )] ) and
#Y[X1:Q1, - s XmiPm, ()X, (€)(,@me1) )] ) then

#Y[X1QL s XmiPm, () (€)(69))]) -

Proof:

Clearly xm+1 € E(k), and for each e Z(k) #(K, Xim+1, 0) = 6(Xm4+1) -

There exist a positive integer n such that ¢e E(n,h) and x+1¢ Vp(9), therefore e E(k) and for each
o =p Il (Xms1,8) € E(k) #(k, @, 6) =#(h, ¢, p) is a set.

This implies (€ )(Xm+1,9) € S(k), and by lemma 3.1 (V)({} (Xm+1:@m+1, (€)(Xm+1,9) ) ) € S(h).
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Clearly y[x1:@1, ... s Xm:@m, (=) (V)({ } Xm+1:@mer1, (€)(Xm+1,9) ) ) )] 18 in S(e).

Furthermore we have ¢ns; € E(h) and for each peZ(h) #(h, ¢omn, p) 1S a set, therefore
(E)(t,0ms1) € S(h), Y[X1:@1, .. s Xini®Pm, (=) (€)(L,Qms1) )] € S(e) .

We have also ¢ E(h) and for each pe E(h) #(h,o,p) is a set, therefore (€)(t,p) € S(h) and
YIX1:Q1, oo, XmiPm, () (€)(t,9) )] € S(e) .

We now assume
#YX1Q15 e s XmiPm, ()06 (V) Xme1:Pmet, (€)(Xm+1,9) ) ) )] ) and
HY[X101 o s X Oy ()% (€)(LOms1) )] ) both hold and we try to prove
#Y[X1:Q15 e s XmiQm, () (€)(69) )] ) .

We can rewrite #( Y[X1:01, ... » Xm:@m, (=) (V){} Xm+1:0m+15 (€)Xme1,0) ) ) )] ) as

Pv({}(pe E(h),P_>(#(h,x,p),#(h,(‘v’)({}(xm+1:(pm+1,(e)(xm+1,(p))),p)))) :
Pv({}(pe E(h),P - (#(h,x.p). P+({}(ce E(k):pEG,#(k,(e)(xm+1,(p),6)))))) :

Pv({ }(pe Z(h),P > (#(h,x,p),Pv({ }(oe E(k):pEo,Pe (#(k,xm+1,G),#(k,(p,6))))))) .
We can rewrite #( y[X1:01, ... , Xm:®Pm, (=) (€)(t,0m+1) )] ) as

Pe((}(pe Sh).P - (#(h2.p).#(h.(€)(t.gon-1).p)))) .

Po((}(pe E(), P (#(n,x.p). P (#(h,t,p). #(h,n+1.p)))))
We can rewrite #( Y[X1:Q1, ... , Xm:Qm,» (=) (€)(t,0) )] ) as

Pe((}(pe Sth).P - (#(h.1.p).#(h.(€)(1.9).p)))) -

Pv({}(pe E(h),P - (#(h,%,p).P< (#(h,t,p),#(h,(p,p))))) .

Let pe E(h) and assume #(h, i, p). We need to show that #(h,t,p) belongs to #(h,o,p).

Let o =p Il Xm+1, #(h,t,p) ) .

Since k = h I Xm+1, Om+1) and #(h,t,p) € #(h, omi1, p) we have oceZ(k). We have also
#(k’Xm+17G) € #(k’(P,G)’ bUt #(k’Xm+17G) = G(Xm+1) = #(h7t’p)’ SO #(h7t’p) € #(k7(P’G) = #(h7 (P, p) .

O

Lemma 5.15 allows us to create a rule Rs ;5 which is the set of all 3-tuples

(
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YIX1:@1, o s XmiQmy ()06 (VDU Kt 1:0me1s (€)Ximr1,0) ) ) )],
YIXEQ1, ooe s Xmi@m, (=) (€)(E,0me1) )],

YIX1:Q15 ooe s Xmi@m, (=) (€)(1,0) )]

)

such that
- m is a positive integer, Xi, ... , Xms1 € V, With Xi#x; for i#], @1, .., @m+1€E, H[X1:01, ... Xme1:Qm+1].
- if we define k = K[X1:Q1, ... , Xm+1:@m+1] and h = k[X;:¢1, ... , Xm:@m] then
o yxe€S(h)
o teE(h),
o @€E(h), for each pe E(h) #(h,p,p) is a set and Xp11€ V() .
Lemma 5.16

Let m be a positive integer. Let Xy, ... , xm € V, with x;#xj for i#. Let @1, .. , pmeE and assume
H[x;:01, ... , Xm:@m]. Define k = k[X;:Q1, ... , Xm:Qm].

Let i=1..m such that for each j=1.m x; ¢ Vp(¢;) .

Then (€)(Xi,91) € S(K), Y[X1:@1, ..., Xm!Pm, (€)(Xi,9i) ] € S(€) and
#(Y[X1:015 - s XmiQm, (€)(Xi,0i) ] ) holds.

Proof

By lemma 4.3 we have x;e E(k;) and for each pe Z(k;) #(k;, X, p) = p(Xi)-
If i=m then x;e E(k) and for each pe E(k) #(k, x;, p) = p(Xj).

If i<m, since for each j=i+1..m Xx;& V(X;), by lemma 3.15 x;e E(k) and for each o€ Z(k) there exists
pe E(k;j) such that p=oc and #(k, xj, o) = #(k;, xi, p) = p(xj) .

It also results @; € E(ki.1) and for each pe Z(k;.;) #(ki.i, @i, p) 1s a set, and for each j=i.m x; & Vy(;).

We can apply lemma 3.15 and obtain that ¢;€ E(k) and for each ce Z(k) there exists pe Z(kj.) such
that p=o and #(k, ¢;, o) = #(ki.1, ¢i, p), so #(k, @i, 0) is a set.

By lemma 3.14 we derive that (€)(x;,9;) € S(k), and consequently

YIX1Q1, e s XmiPm, (€)(X1,¢1) 1 € S(e) .

Moreover we can rewrite

#(Y[X1:01, .. s Xm:®m, (€)(Xi,0i) ] ) as follows

Po((}(ce E(k).#(k.(€)(x.9).0))) .
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Ps({}(ce E(K).P< (#(k.x.0).#(k.¢.0)))) -

Given ce E(k) there exists pe Z(k;) such that p=c and #(k, xj, o) = #(k;, xi, p) = p(Xj) -
There also exists p’e E(k;.;) such that p’=c and #(k, ¢i, 6) = #(ki.1, ¢i, p°).

There exists a positive integer n such that k;.; € K(n), so kie K(n)" and since pe Z(k;) there exist
ne Z(ki.1), se #(ki.1,0;,n) such that p =n Il (x;,5) .

Clearly p(x;) = s € #(ki.1,91,n), and p’ = o/dom(p’) = 6/dom(k;.;) = 6/dom(n)) = n, thus
p(x;) € #(ki.1,0i,p’), in other words #(k, x;, o) belongs to #(k, ¢, ©) .

At this point we have shown that #( y[X1:Q1, ... , Xm:Qm, (€ )(X;,i) | ) holds .

Lemma 5.16 allows us to create an axiom As ;¢ which is the set of all sentences

YIX1:Q1s wov s Xmi@m, (€)(Xi,®i) ]

such that

- mis a positive integer, Xy, ... , Xm € V, Xi#X| for i#j, @1, .. , om€ E, H[X1:01, ... , Xm: Q]
- i=l..m and for each j=i.m x; ¢ V(9;) .

We can also use lemma 3.7 (from section 3 of course) to create a rule which we call rule Rs 7. This
is the set of all 3-tuples

(

YIX1:Q1, o s XmiQm, (=) (@, W1,
YIX1:Q1, o s XmiQm, (=) (@, W2)] ,
YIX1:Q1, oo s Xmi@Qm, (=) (@, (A) (W1, y2) )]

)

such that
- mis a positive integer, Xy, ... , Xm € V, Xi#xj for i#j, @1, .. , om€ E, H[X1:01, ... , Xm:Qm]
- if we define k = k[X:y, ... , Xm:Qm] then @, i, yp € S(k).

Lemma 5.17

Let m be a positive integer. Let Xy, ... , xm € V, with x;#x; for i#. Let @1, .. , pmeE and assume
H[x1:01, ... , Xm:@m]. Define k = k[X;:Q1, ... , Xm:@m] and let @, y € S(k).

Under these assumptions we have (—=)( @, (A)(y, (—)(v)) ) and (—)(p) € S(k),
VX101, o s Xmi@m, (=)(@, (MY, ()W) ) 1, YIX1:@1, -, XmiPm, (F)(@) ] € S(e) .

Moreover if
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#YX1Q1, e s Xmi@m, ()@, (AW, (4)(y)) ) 1) then
#( Y[XI:(PI’ coo s XmiQm, (_')((P) ] )

Proof:

We can rewrite #( Y[X1:Q1, ... , Xm:Qm, (=)@, (AW, (4)(y))) ]) as

Po((}(0e 2(K).P - (#(k.0.0). P (#(k.v,0).P-(#(k.v.0))))))

This can be expressed as

‘for each oe E(k) #(k,p,0) is false or both #(k,y,5) and (#(k,y,0) is false) are true’
Since #(k,y,0) and (#(k,y,0) is false) cannot be both true we have that

for each o€ E(k) #(k,,0) is false.

This can be formally expressed as

Po({} (o€ E(k).P-(#(k.0.0)))) .
Po((}(oe 2(K).#(k(-)(9).0)))

[x]

which we can finally rewrite as

#( ’Y[XII(PI, cor s XmiQm, (_')((P) ] ) .

Lemma 5.17 allows us to create a rule Rs ;7 which is the set of all couples

(VIX1:@1, oo s Xmi@m, ()@, (AW, (W) ) 1L YIX1:@1, oo s X P, (F)(@) 1)

such that

- mis a positive integer, Xy, ... , Xm € V, Xi#xj for i#j, @1, .. , om€ E, H[X1:01, ... , Xm:Qm]

- if we define k = k[X:1, ... , Xm:Qm] then @, ¢y € S(k).
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Lemma 5.18

Let m be a positive integer. Let xy, ... , xm € V, with xi#x; for i#. Let ¢y, ..

H[x;:01, ... , Xm:@m]. Define k = k[X;:1, ... , Xm:@m] and let @, y € S(k).

Under these assumptions we have (—)( (A)(@Q,y) ), (—=)( o, (—)(y) ) € S(k) ,

VIX1:@1, ooy Xmi@m, (DC(A@W) ) I, VIX1:Q1, oo s XimiOm, (2)( 9, (7)(W) ) [ € S(e) .

Moreover if

#Y[X1Q1, o s XmiPm, (F)((A)(@,y) ) ]) then
#(Y[X1Q1, - s XmiPm, (2)(0, ()W) ) 1)

Proof:

We can rewrite #( y[X1:01, ... , Xm:®m, () (A)(@,y) ) ]) as

(K)-#(k. () () (0¥)).0))) -
(k). P-(#(k.(A)(@.¥).0)))) .

(k). (P~ (#(k.0.0).#(k.v,0)))))

[x]

Pv({}(ce
Pv({}(ce
Pv({}(ce

[x]

[x]

We can rewrite #( y[X1:01, ... » Xm:Om, (—=)( @, (—)(y) ) ]) as

[x]

Pe(()(ce 2 (k). #(k.(=)(0. () (w)).0))) -

P+((}(ce E(K).P - (#(k.9.0).P-(#(k.v.0))))) -

Thus if #( Y[X1:01, ... , Xm:@m, () (A)(®,¥) ) ] ) we have that
for each ce Z(k) it is false that #(k,p,0) and #(k,y,0) are both true.

In other words for each ce Z(k) (#(k,p,0) is false) or (#(k,y,0) is false) .

In other words for each e Z(k) P - (#(k,(p,G),Pﬁ(#(k,qI,G))) ,
And this condition clearly implies #( y[X1:01, ... , Xm:@m, (=)( @, ()(y) ) ]) .

Lemma 5.18 allows us to create a rule Rs ;s which is the set of all couples

(YIX1Q1, o s XmiQm, (DCAN@W) ) I, ¥IX1:@1, oo s XiniPm, ()@, ()W) ) ] )

such that

, om€ E and assume
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- mis a positive integer, Xy, ... , Xm € V, Xi#x; for i#j, @1, .. , om€ E, H[X1:01, ... , Xm:Qm]
- if we define k = k[X:Qy, ... , Xm:@m] then @, y € S(k).

Lemma 5.19

Let m be a positive integer. Let X1, ... , Xms1 € V, with xi#x; for i#. Let ¢y, .. , m+1€E and assume
H[x1:01, ... , Xm+1:0m+1]. Define k = k[X1:01, ... , Xme1:Qm+1]. Of course H[X;:01, ... , Xn:@m] also holds
and we define h = kK[X;:01, ... , Xm:®m]. Let e S(k).

Under these assumptions we have (by lemmas 3.1 and 3.6)

V) ({3 Em1:@ms1, 9)) € S(h), ()((V) ({ } Xm+1:Pme1, 9)) ) € S(h),
YIX1:@1, e s Xmi@m, (DY) ({J Xt 1:Qme1, 9)) ) 1 € S(€) ;

(@) € SK), @) ({}Xms1:Qm+1, (4)(@) ) € S(h),
YIX1Q1, v s Xmi@m, (3) ({} (Xmt1:@me1, (4)(@) ) ] € S(e) .

Moreover if #( y[X1:0Q1, ... , Xm:@m, () (V) ({ }Xm+1:Qm+1, @) ) 1) then
#OY[X1:01, oo, Xmi@m, () ({ Xt 1:@me1, (@) ) 1) .

Proof:

We can rewrite #( y[X1:01, ... » Xm:®m, (T)( (V) ({ }Xm+1:QPm+1, ¢)) ) ] ) as follows:

Pv({}(pe z(h),#(h,(ﬁ)((v)({}(xmﬂ:cpm+1,<P))),P))) :
Pv({}(pe E(h),Pﬁ(#(h,(V)({}(Xm+1:(pm+1,(p)),p)))) ,
Po((}pe E(h).P-(Pe((}(0€ E(K):p 0. (K 9.0)))))) -

In words this can be expressed as:
‘for each pe Z(h) it is false that (for each e Z(k) such that p=o #(k,0,0))’, or also
‘for each pe E(h) (there exists ce Z(k) such that p=o and (#(k,0,0) is false))’ .

We can rewrite #( y[X1:01, ... » Xm:®m, (F) ({ }Xm+1:QPm+1, (4)(®) )) ]) as follows:

Pv({}( E(h),#(h,(ﬂ)({}(xm+1 Qm+1,(— )((p))),p))),
PV({}( e Z(h),Ps({}(o pEG,#(h,(—')((p),G))))),

Let pe E(h), we need to show that there exists ce Z(k) such that p=c and #(h,,c) is false.
We have seen this directly follows by our hypothesis.
O
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Lemma 5.19 allows us to create a rule Rs ;9 which is the set of all couples

(’Y[XI:(PI, coo s XmiQm, (_')( (V) ({ }(Xm+1:(Pm+1, (P)) ) 1,
YIX1:Q15 v s Xmi@m, () ({3 Xims1:Pme1, )(@) ) 1)

such that
- m is a positive integer, Xi, ... , Xms1 € V, With Xi#x; for i#], @1, .., @m+1€E, H[X1:01, ... Xme1:Qm+1].
- if we define k = K[X1:¢1, ... , Xm+1:Qm+1] then o€ S(k) .

The following rule is a degenerate case of rules Rs; and Rs j».

Lemma 5.20

Let x,€ V, ¢1€E and assume H[x;:¢]. Define k = k[x1:¢1]. Let ywe S(k) and ¢e S(k)NS(¢).
Under these assumptions we have

(=)(v,9) € SK), Y[x1:91, (=)(y,9)] € S(e),

@ (Y xionw) € S@, (=)((A)((H(x:00w)),0)e S(e) :

Moreover if # (Y[ x1:1.(—)(v.9)]) then #((=)((3)((}(x1: 91)).0)) .
Proof:

Suppose #(y[m : (p1,(—>)(l|!,(p)]) . We can rewrite this as

P ({}(pe 2. #(k.(—) (v.9).p))) -
Po({}(pe E(K).P - (#(k.y.p). #(k.9.p)))) -

In turn # (—>)((EI)({}(X1:(p1,\|I)),(p)) can be rewritten as

Po(#(@)(0(xi:9u.w))).#(9)) -

P%(Pa({}(peE k\y,p))),#((p)) .

To prove the last statement we suppose there exists pe Z(k) such that #(k,y,p). This implies #(k,o,p)
holds, but we need to show that #(¢) holds.

Since pe S(k) Vu(9) < V-dom(k), so x1& Vu(¢). So by lemma 4.2 #(k,¢,p) = #(&,0,&) = #(¢) .
This completes the proof.

O

Lemma 5.20 allows us to create a rule Rs,p which is the set of all couples
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(
Y xi: (=) (v.0)].

(=) () (B (x1:0n)).0)
)

such that
-x1€V, ¢:€E, H[x;:¢1];
- if we define k = k[x;:¢;] then ye S(k) and pe S(k)NS(g).

Lemma 5.21
Let ¢, y, x € S(g). We have (=) (@, (=)(y,x) ) € S(¢) and (=) ((A)(Q,y), ) € S(¢) .

Moreover if  #( (=) (@, (=)(y,x) ) ) then #( (=) ((A)(Q,¥), 1) )

Proof:

Suppose #( (—) (¢, (—=)(y,x) ) ) holds. It can be rewritten

P (#(9).#((=)(v.1)) -
P (#(9).P - (#(w).#(x)))

In turn, #( (=) ((A)(0,y), x ) ) can be rewritten

P (#((n)(0.9)).#(x)
P (Pa(#(0).#(v)-#(x)) -

Suppose #(¢) and #(y) both hold, we need to show that #() holds. This is granted by
P (#(0).P - (#(w).#(x))) -

Lemma 5.21 allows us to create a rule Rs,; which is the set of all couples

(
(=) (@, (=)(y.0) ),

(=) ((A(Q.v), 1)
)

such that ¢, y, x € S(¢) .

We have listed a set of axioms and rules that we need to complete the deduction examples in the
next sections. Actually there is one rule, rule Rs 14, which will not be used in our examples, but it is
listed since I perceive it as an important and useful rule.
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In all our deductions we can assume our language extends the one we are using, so these (‘general-
purpose’) axioms and rules can be applied in all our deductions. Often in a deduction we need also
to apply rules which are more context-specific, in fact our first deduction example will require
additional rules, and we’ll see those rules in the next section.

For each axiom and rule we have checked its soundness. In fact, in our definition, axioms and rules
are not such if they aren’t sound. As we saw at the beginning of this section, thanks to the
soundness of axioms and rules, the soundness of the deductive system is granted.

We can now ask ourselves if we defined all the ‘general-purpose’ (axioms and) rules we could need
in a deduction. It seems an interesting question, but its meaning is unclear. It’s unclear what is the
‘completeness’ property we wish to verify with respect to our set of rules.

For instance consider the following property: with our set of rules for each ¢e S(¢) if #(¢) holds
then we can derive ¢ in our system.

This condition states the actual completeness of the system, but I'm not sure there exists a somehow
enumerable set of (axioms and) rules which is able to ensure this kind of completeness. It seems
that discussing this form of completeness (with respect to our system) could require a lot of further
study and work. As we know Godel has proved an incompleteness theorem that (under appropriate
conditions) states more or less the negation of the completeness condition, and in Cutland’s book
([3]) there is an interesting discussion about this. In this paper I don’t want to discuss if and how
Godel’s theorem applies to our system, though (based on some past work) I suspect under certain
conditions it could apply to our system.

We may try to look for a weaker completeness property. To this end it could be useful if we had
defined a notion of ‘validity’ similar to the one of standard logic (see Enderton’s book [1]).
However, to define a notion of validity of this type our system should feature a notion of ‘structure’
and an independence between the meaning of symbols and the set of expressions. For now these
aren’t requirements to our system and we have motivated in the introduction why they are not.
Among other things we do not know if this notion of validity would be truly useful to us.

In absence of a much better (but, if possible, probably not easy) knowledge with respect to the
system completeness, the question of whether we have defined ‘all the rules’ does not make much
sense.

So we can add rules because while performing a deduction we discover we need them, or because
common sense tells us they can be useful.

With respect to the existential quantifier , we have introduced a rule Rs; which permits to introduce
it and two similar rules Rs;; and Rs, allowing to exploit it, and so to eliminate it. As for the
universal quantifier, a rule permitting the introduction seems not make sense, while it seems
appropriate to introduce a rule, in some way related to rule Rs;, allowing the elimination, and this is
rule Rs 14 we have introduced though it was not required in our examples.
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6. A deduction example

For each x, y natural numbers we say that x divides y if there exists a natural number a such that
y=x*a.

In our example we want to show that for each x, y, z natural numbers if x divides y and y divides z
then x divides z.

Of course, we first need to build an expression in our language to express this. To build that
expression we must extend our language with two other constant symbols:

- aconstant symbol N to represent the set of natural numbers N, so that we have #(IN) =N ;
- a constant symbol | to represent the ‘divides’ relation, so that #(I) is a function defined on
NXN and we have #(I)(a,) = (IneN: B =aen) .

The statement we wish to prove is the following:

[ Ny N.z: N, (=) () (0) (%) 0)(5.2)- () (x.2)) ] D).

where x,y,z of course are variables in our language.

First of all we need to know this is a sentence in our language and we need to see its meaning is as
expected. To this purpose we’ll use the following technical lemma.

Lemma 6.1

Let m be a positive integer, Xi, .., Xm € V, with xi#x; for i#j.
We have H[x;:N, .., x:N] and we define k= k[x;:N, .., xm:N].

Then for each i=1..m x; € E(k) and for each ce E(k) #(k, x;, 6) = 6(x;) € N.

Moreover for each ay, .., o, €N if we define 6 = (xq,0¢) Il ... Il (Xi,01n) then ce E(K) .
Proof:

We first need to show H[x;:N, .., x,»:N] holds.

First consider that Ne E(g) and #(N)=N is a set, so we can define k; = (x;,N).
If m>1 then for each i=1..m-1 we suppose to have defined k; = (x;,N) Il .. Il (x;,N). By lemma 3.12
Ne E(k;) and for each pe E(k;) #(k;,N,p) = #(N) is a set, so we can define ki1 = k;j Il (Xj41,N).

This proves that H[x;:N, .. , x,:N] holds.
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We have k; = ki, Il (x;, N). There exists a positive integer n such that ki.;€ K(n), so ke K(n)" and
xi€ E(n+1,k;) < E(k;), for each o = p Il (x3,8) € E(k;) #(ki, X;, 6) = 0(Xj) =s € #(ki1, N, p) =#({N) =

If i<m then for each j=i..m-1 we can assume x;e E(k;) and for each pe Z(k;) #(k;, x;, p) = p(x;) € N.

There exists a positive integer n such that x; € E(nk;). Moreover kj, 1€ K(n)*, Xj+1€ Vp(Xi), so
xi€ E(n+1.kj1) € E(kj1) , and for each 6 = p Il (xj11,8) € E(Kj+1) #(Kj11,X1,0) = #(kj,xi,p) = p(x;) =

= o(xj), and o(x;) = p(x))e N .

Let ay, .., am €N and let 6 = (x,00) I ... 1| (Xm,0lm).

We define 6 = € and so we have oo Z(g)=Z(Ko).

Given i=0..m-1 we assume we have defined o; = (x1,00) Il ... Il (x;,04) and proved that ;e Z(k;).
We define oi1 = o; Il (Xit1,04541). We know that k;e K, so there exists a positive integer n such that

kie K(n), and ki;; = k; Il (xi41, N) € K(n)*. Moreover a;;1€ N=#(N), so 6;;1€ E(kis1).

To show that expression (S1) belongs to S(¢) we define k = k[x:N, y:N, z:N]. By 6.1 we obtain that
x,y,z€ E(k), and for each oe Z(k) #(k,x,0) = o(x)e N, #(k,y,0) = 6(y)e N, #(k,z,6) = 6(z)e N.

Moreover | € E(k), for each ce E(k) #(k, |, 6) = #(l) is a function with 2 arguments and
(#(k,x,0), #(k,y,0) ), (#(k,y,0), #(k,z,0) ), ( #(k,X,0), #(k,z,0) ) are members of its domain.

So, by lemma 3.9, ()(x,y), (N(y,z), (I)(x,z) belong to E(k).

Moreover, for each o Z(k) #(k, ()(X,y), 0) = #(I) (#(k,x,0), #(k,y,0) ) =#(l) (o(x), o(y) ) =
= (AneN: o(y) = a(x)*n) , so #(k, ((x,y), o) is true or false and (I)(x,y) € S(k). In the same way we
can show that (I)(y,z) € S(k), ()(x,z) € S(k) .

By lemma 3.6 we have

(’\)((U(X’Y) (')(y, ))G S(k),
(=) ((A)(()(x (v.2)).()(x.2))€ Sk).

By definition 3.3

YNy N2 N () (A (0)(569), (0(3:2)).() (5,2)) |e SCe) -

By theorem 3.5

#(y[x :N,y:N,z: N,(—>)((/\)((I)(X, y),(l)(y,z)),(l)(x,z))]) is equivalent to
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Po((}oe 2(1).#(k (=) (A (()(x:3).()(3.2)). () (x.2))..0)) )

And then this can be rewritten in the following ways:

Po((3(0e 2().P = (#(k.(A) () (x.¥), ()(3:2)).0) #(k. () (x.2).5)))) .
Pv({}(ce E(k),P—>(PA(#(k,(l)(x,y),G),#(k,(l)(y,z),G)),#(k,(l)(x,z),c)))) :
Pv({}(ce E(k),Pa(PA(#(I)(#(k,X,G),#(k,y,G)),#(I)(#(k,y,G),#(k,z,c))),#(I)(#(k,y,c),#(k,z,cs))))) ,

Pv({}(ce 3(k),Pﬁ(PA(#(')(G(X)»G(Y))»#(l)(G(Y),G(Z)))’#(l)(G(X),G(Z))))) ‘
The last statement can be rewritten

For cach o E(k) P~ (P4 (#(1)(o(x).0(y)). #() (0 (y).0(2))). #() (o (x).0(2)) -
Lemma 6.1 allows us to furtherly rewrite this:

for each a,00,05 € N P (Pa(#(1)(0u,0), #(1) (02, 03) ) #(1) (0, 0)) -

And finally this can be rewritten

for each oy,00,053 € N if #(I)(01,02) and #(1)(ap,03) then #(1)(oy,03) .

This is the meaning of sentence S1 and that meaning is exactly as expected.

Our proof of statement S1 will begin by trying to exploit the definition of symbol |. To this end we
need to add another constant symbol in our language. This is the symbol * that represents the

product operation in the domain N of natural numbers. Therefore #(*) is a function defined on NXIN

and for each a,fe N #(*)(a,p) is the product of a and B, in other words #(*)(a,p) = a*p. Given two
variables x and y we’ll abbreviate the expression (*)(x,y) with xy (as used in mathematics).

Consider the following lemma.
Lemma 6.2

Let m be a positive integer, X, .., Xm € V, with xi#x; for i#j.
We have H[x;:N, .., xn:N] and we define k= k[x:N, .., xn:N].
Suppose i, j = 1..m, i#j, suppose ce V-dom(k). Then

Y] %0 N N () () (360, (B) (0 (N (=) (% %)) [ St@)
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#(y[m 'N,..,Xm: N,((—))((I)(Xi,Xj),(EI)({ }(C N, (=) (x5, ch))))}) is true .
Proof:

We have also H[x:N, .., xu:N, ¢:NJ and we can define k> = k[x1:N, .., x:N, c:N].
By lemma 6.1 we obtain that x;, x;, ¢ € E(k’).
For each o’e E(k’) #(k’,*,06’) = #(*) is a function with two arguments; #(k’,x;,6’) = 6’(xj) € N;

#(k’,c,6’) = 6’(c) € N. Therefore (*)(x;,c) € E(k’), and (=)(xj, xic) € E(k’). By lemma 3.1

{}e:N, =)(x5,xi0) € E(k) ;
@ ({HeN, F)(xjxic))) € S(k) .

Lemma 6.1 also tells us that x;, X; € E(k) and for each ce Z(k)
#(k, xi, 0) = o(x;j) € N; #(k, xj, 6) = 6(x;) € N. For each oe Z(k) #(k,|,0) = #(I) is a function with two
arguments and ( #(k, x;, ©), #(k, xj, 6)) is a member of its domain, therefore (1)(x;,x;) € E(k) .

Moreover, for each oe E(k) #(k, (I)(xi.xj), o) = #(I) ( #(k.x;,0), #(k.x;,0) ) = #(I) ( o(xi), 6(Xj) ) =
= (IneN: o(x;) = o(x;))*n) , so #(k, (1)(x;,X;), 0) s true or false and (I)(x;,x;) € S(k).

From there follows that (H)((I)(Xi,xj'),(ﬂ)({ }(c N, (=) (xi, XiC)))) e S(k), and

y[m Noeeoxn s N () () (x0). 3) (0 (e N (=) (3 Xic))))}e S(e).

By theorem 3.5 we can rewrite

#(y[xl NN ()1 (x09). () }(C;N,(:)(Xj,m))))})

as follows

Pv({}(ce 3(k),#(k,(H)((l)(Xi,Xj),(ﬂ)({ He: N,(=)(xi, XiC)))),G)))

and this can be further rewritten

pv({ Hoe (k)P o (#(k.0)(xx).0).# (k.G () (e N.(=) (x Xic))),c))))

Pv({ }(Ge Z(k),P o (#(|)(G(Xi),G(XJ‘)),P3({ }(pe E(k"):o0C p,#(k',(=)(xj~,xic),p))))))
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pv({ }(Ge 2 (k).P o (#()(0(x).0(x)).P=((}(pe E(k):0=p.P- (p(Xj),#(k',Xic,p)))))))

Pv({}(ce Z(k),P o (#(|)(G(Xi),(5(Xj)),Pa({}(pe Z(k):6Ep,P- (p(Xj),p(Xi)'p(C)))))))

The final statement can be written as follows:
For each oe Z(k) #(1) (o(x;), o(x;)) if and only if
(there exists pe E(k’) such that 6Ep and p(x;) = p(x;) * p(c) ) .

By definition we have #(I) (o(x;), 6(xj)) = (Ane N: o(x;) = o(x;)*n) .
Suppose #(I) (o(x), o(x;)) holds. There exists ne N such that o(x;) = o(x;)*n.

By lemma 6.1 there exist a, .., 0, €N such that 6 = (xy,00) Il ... I (Xp,0m).
We define p = (x3,09) Il ... I (Xm,om) Il (¢,n), by 6.1 we have pe E(k’).

Moreover clearly 6Ep, and p(Xj) = 6(X;) = o(X;j)*n = p(X;)*p(c) .

Conversely suppose there exists pe Z(k’) such that 6Ep and p(x;) = p(x;) * p(c).
By 6.1 p(c)e N and o(xj) = p(xj) = p(xi) * p(c) = o(xi) * p(c) .

This lemma allows us to create an axiom which is the set Ag, of all expressions

y[m;N,..,xm;N,(H)((|)(Xi,xj-),(a)({}(C;N,(z)(xj-,m))))}

such that m is a positive integer, X, .., Xm € V, with x#xp for a#, i, j = 1..m, i#j, ce V-dom(k).

Lemma 6.3

Let m be a positive integer, X, .., Xm € V, with x#x; for i#j.
We have H[x;:N, .., xn:N] and we define k= k[x:N, .., xn:N].
Suppose 1; 1y, 13 distinct in {1, .., m}. Then

'Y|:X1 'N,.., Xm: N,(=)((*)((*)(Xi(1), Xi(Z)), Xi(3)),(*)(Xi(1), (*)(Xi(Z), Xi(3)))):| e S(e) ,
# ('Y|:Xl 'N,.., Xm: N, (=)((*)((*)(Xi(1), Xi(Z)), Xi(3)), (*)(Xi(1), (*)(Xi(Z), Xi(3)))):|) is true.

Proof:

By lemma 6.1 we obtain that for each j=1..3 x5 € E(k),
for each e E(k) #(k, x;j), 6) = o(Xij) € N .
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For each oe E(k) #(k,*,6) = #(*) is a function with 2 arguments so (*)(Xi(1), Xi2)) € E(k) and
for each o€ Z(K) #(k, (*)(Xi(1), Xi), 6) = #(*) (#(K, Xi1), 6), #(k, Xi2), ) ) € N, 50
(*)((*)(Xiﬂ),Xi<2>),Xi<3>) e E(k).

Similarly (*)(xin, (*)(xi@,xi®)) € B(k), so by 3.13
(=)((*)((*)(Xi(1), Xi(z)),Xi(3)),(*)(Xi(l),(*)(Xi(z), Xi(3))))€ S(k) and
'Y|:X1 'N,..,Xm: N, (=)((*)((*)(Xi(1), Xi(Z)), Xi(3)), (*) (Xi(l), (*)(Xi(Z), Xi(3)))):| € S(¢).

By theorem 3.5 we can rewrite

# ('Y|:Xl N, xm N, (=)((*)((*)(Xi(1), Xi(2)), Xi(3)), (*)(Xi(1), (*) (xic2), Xi(3)))):|)

as follows

Po(()(0e & (k). # (k. () () () (i xia). i), () (xin (4) (21 500)). o))
Po((1(0e 2 (k)P = (# (k. () () (ximxien) xin). 0 ) # (K, (4) (00, (5) (i xi)) o)) )
P (1} (o2 2 (K). P (#() (# (K. () (xi0 %), ), 0 (x100)) # () (0 (x00). # (K, () (x10, %0)..5)) )
Po(1}(oe B (k)= (#() (0 (xi0)-0 (x1), 0 (xi0)) #(*) (0 (xi0).0 (312} (1)) )

Pv ({ }(Ge C (k), P - ((G(Xi(l))'G (Xi(Z)))'G(Xi(3)), c (Xi(l))'(G(Xi(Z))'G(Xi(3)))))).

In words this can be expressed as:
for each oe Z(k) (G(Xi(l))-G(Xi<2)))-G (Xi(S)) =0 (Xi(l))-(c(Xi(z))-G(Xi<3)))

and this is clearly satisfied.

Lemma 6.3 allows us to create an axiom which is the set Ag 3 of all expressions

’Y|:X1 'N,.., xm: N, (=)((*)((*)(Xi(1), Xi(2)), Xi(3)), (*)(Xi(l), (*)(Xi(Z), X1(3))))}

such that m is a positive integer, X, .., Xm € V, with x#xp for a#f, i1 ip, i3 distinct in {1, .., m}.
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The proof

We can now proceed with the proof of statement S1. Let’s recap how our language is structured.

C={N,I, *}
F={Av,—>,1,V, 3, €e,= &}
V={xy,20c4de}.

The axioms and rules of our deductive system are the ones we’ve listed in sections 5 and 6.

The first step in our proof of statement S1 uses axiom Ag :

() A x:Ny:Nz:N () (0(x)- @) (1 e N () (vx¢)) ) |

Then we can use Rs; to derive a new statement from (1):

@ A[x:Ny:N2:N () ()(x9). @) (0(e:N.(5) (x0))))

In the next step we use axiom As:

) 5Ny Nz N ) (A(069). 0320 (x.9))]

At this point we can apply rule Rs 3 to (3) and (2) and obtain

@ A x My Nz ) (0 3).0(2)- B (e (=) ()

In much the same way we can obtain

) ANy Nz N S) (A0 ()0 32). B (1N ()30)

The next two statements are instances of Ag .

(6) y[x:N,y:N,z:N,c:N,d:N,(—>)((/\)((z)(y,xc),(z)(z,yd)),(:)(y,(*)(x,c))ﬂ

() A x:Noy: Nz Ne: NN (=) ((A) (=) (v:x0).(2) (23)).(2) (2 (4) (5.0)))

In fact if we define h = k[x:N, y:N, z:N, ¢:N, d:N] then x,y,z,c,d € E(h) and for each ce Z(h)

#(h, x, o), #(h, y, 0), #(h, z, 0), #(h, ¢, 6), #(h, d, ) € N.

For each ce E(h) #(h, *, 6) = #(*) is a function with two arguments and (#(h, x, o), #(h, ¢, 6)) is a
member of its domain, therefore (*)(x,c) € E(h), and similarly (*)(y,d)e E(h).

By lemma 3.13 it follows immediately that (=)(y,xc) € S(h), and similarly (=)(z,yd) € S(h).
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To proceed with our proof, our idea is to leverage rule Rs4 We notice we have just shown that

(A((=)(y2x¢).(=) (2. yd) )& Sh)

If we define k = k[x:N, y:N, z2N, c:N, d:N, e:NJ it is easy to see that (=)(z,(*)(e,d))e S(k) . In fact
e,de E(k), for each ce ZE(k) #(h, e, 0), #(h, d, 6) € N, therefore (*)(e,d) € E(k), moreover ze E(k), so
by 3.13 (=)(z(*)(e,d))e S(k).

With respect to Rs4 we want to use y as t and (*)(x,c) as t’. We have ye E(h) and for each pe Z(h)
#(h,y,p) € N =#(h,N,p). Moreover (*)(x,c)e E(h) and for each pe Z(h)

#(h, (*)(x,c), p) = #(*)( #(h,x,p), #(h,c,p) ) = p(x) * p(c) € N = #(h,N,p).
Furthermore to evaluate Vy(y) and Vp((*)(x,c)) we can apply assumption 2.1.7. That assumption

tells us that V,(y)=& and Vp((*)(x,¢)) = Vp(*) U Vp(X) U Vu(c) =D .
With respect to Rs4 in the role of ¢ we have (=)(z, (*)(e,d)), of course

Vo(y) N Ve(()(z, ()(e.d))) =D; Vo((*)(x,0)) N Ve((=)(z, ()(e.d) =D .

In order to calculate (=)(z, (*)(e,d)){e/t} and (=)(z, (*)(e,d))c{e/t’} we can exploit definition 4.6. In
it we have established one of five condition is true and a consequent calculation of @y {xi/t}. So

&z, *)e.dlely} = E)(zdely}, (F)e.dxlely} ) = =)z, ()(y.d)) ;
Sz, (e d){e/(*)x.0)} = (=E)(z{e/(*)(x,0)}, (F)e.du{e/(*)(x,0)} ) =
= (=) (z, ()(()(x.0), d)) .

(8) 7 x:N.y:N.z:Ne:N.d: N () {(A) (=) (). () 2)) . () () (4 .0).) )

The next statement is an instance of axiom Ag3:

© ¥[x:N,y:N,z:N,e:N,d:N,(=)((*)((*)(x,¢),d),(*)(x, (*)(c.d))) |

By rule Rs 5 we obtain

(10) o x: Ny Nz Ne: NN (=) () () 3:3). ()30 (A () ). (4 x4 )

We can apply rule Rs¢ to (8) and (10) to obtain

an y[x;N,y;N,z;N,c;N,d;N,(_>)((A)((=)(y,xc),(=)(z,yd)),(=)(Z,(*)(X,(*)(C,d))))}

We want to apply rule Rs 7 to obtain

144



Y XNy N2 e NN (5) () () (3:x0). () (2:30) () 06N () () (x.0))) |
With respect to that rule, the idea is to have
-k=k[x:N, y:N, zzN, c:N, d:N, e:N]

-h=k[x:N, y:N, z:N, c:N, d:N]
-1= (A)((=)(y:x¢).(=)(2.yd))
-t=(*)(c,d)
-0=(=)(z.(*)(x.¢))

It has been show above that ye S(h) .

We have c,de E(h), for each pe Z(h) #(h, c, p), #(h, d, p) € N, therefore (*)(c,d) € E(h),
for each pe E(h) #(h, (*)(c,d), p) = #(*) (#(h, c, p), #(h, d, p) ) =p(c) * p(d) € N=#(h, N, p).

Clearly (*)(x.e) € E(k), ze E(k) and (=)(z,(*)(x.e)) € S(K).

Since Vu((*)(c,d)) = & we also have Vi(t) N Vy(p) = .

Therefore we are able to obtain
(12 x: Ny Nz N NN ) () (=) x6). () z3) . G e () () ) )
We can use the following instance of axiom 6.2:
(13) V[X:N,y:N,z:N,c:N,d:N,(H)((I)(XIz),(EI)({}(e:N,(z)(z,(*)(x,e)))))} .
And we can use rule Rs  to derive
(14) y[x:N,y:N,z:N,c:N,d:N,(%)((E)({}(e:N,(z)(z,(*)(x,e)))),(l)(xIz))} .
We can apply rule Rs s to (12) and (14) and obtain
(15) 1] x: Ny Nz N e N N () () (2) (350). () (2 34) () (x12) ]

We now apply rule Rso using k = k[x:N, y:N, z:N, ¢:N, d:N] and considering that (=)(y,xc) € S(k),
(=)(z,yd) € S(k), (D(x,z) € S(k). We obtain

(16) Y[x:N,y:N,z:N,c:N,d:N,(—))((=)(y,xc),(%)((:)(z,yd),(l)(x,z)))} :

This can be rewritten
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(M)A x:Ny: Nz Ne: Ny d: N (5)((3) (3x0) () () (3d). (0 (x.2))) ]|

We can apply rule Rs o using k = k[x:N, y:N, z:N, c:N, d:N] and h = k[x:N, y:N, z:N, c:N]. We
consider that (=)(y,xc) € SK)NS(h), (=)((=)(z,yd),(1)(x,z)) € S(k) . We obtain

(18) 'y[x:N,y:N,z:N,c:N,(—))((:)(y,xc),'y[d:N,(—))((z)(z,yd),(l)(x,z))])} .

This can be rewritten

(19) y[x:N,y:N,z:N,y[c:N,(—))((z)(y,xc),y[d:N,(—))((z)(z,yd),(l)(x,z))])ﬂ :
We intend to apply rule Rs j, using

k =k[x:N, y:N, z:N, ¢:N],
h=k[x:N, y:N, z:N],

v = (=)(y.xc) € S(k),
0= Y[ d:N,(=)((=)(zyd),()(x.2) ] € Sk

To be able to apply that rule we need to show that pe S(h). Let x = k[x:N, y:N, z:N, d:N]J .
Bylemma 6.1 x, y, z, d € E(x), for each o E(x) #(k, x, ) € N, and the same for y,z,d .

Therefore (*)(y,d) € E(x), (=)(z,yd) € S(x), ()(x,z) € S(x), (—))((z)(z,yd),(l)(x,z))eS(K), and

finally y[ d:N,(=)((=)(zyd),()(x.2))] € S(h).
So we obtain

(20) 1] x:Ny:N2: N () (31N (=) (vx0))) o a: N () ()23 () (x2) ] |
Next we apply rule Rs 3 to (4) and (20). If h = k[x:N, y:N, z:N] then

(MO (x3):0)(3.2)) € S, BF)((}(e:N.(=)(v.x¢))) < S,
4N (=) () (2.3).()(x.2))] < SO

So we obtain

(@1) 7] x: Ny Nz N () () (0 (59)- 0 (:2) A @M () (D). () (2) ] .

At this point we need to apply rule Rs 1; using

k =k[x:N, y:N, z:N, d:N],

146



h=k[x:N, y:N, z:N],

1= (A)(()(x.y).()(y.2)) € S,
v =(=)(z,yd) € S(k) .
¢ =()(x,z) € S(k) .

Of course (I)(x,z) also belongs to S(h), therefore we obtain

221 x:Ny: Nz () (069032 B0 ) (x|

The final step in our proof consists in applying the ‘modus ponens’ rule 5.13 to (5) and (22). We
obtain

(23) 7] x:Ny: Nz:N (5 ((A) () (%), 0) (%:2)). ()(x.2)) | -
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7. Another example

We want to prove a form of the Bocardo syllogism. In Ferreiros’ referenced paper ([4]), on
paragraph 3.1, the syllogism is expressed as follows:

Some A are not B. All C are B. Therefore, some A are not C.
Suppose A, B, C represent sets, the statement we actually want to prove is the following:

If ( (there exists xe A such that x¢ B) and (for each ye C yeB) )
then (there exists ze A such that z¢C) .

In order to formalize this in our approach, our language must be as assumed in section 5, and in
addition we need

- 3 constants A, B and C, each representing a set

- 3 variables named X, y and z.

To recap, our language is as follows

C ={A,B,C}
F={/\,\/,%,_|,V,EI’G,=7H}
V={x,y,z}.

At this point we suppose we can formalize the statement as

@(0(x:A.()(()(x.B))).

(=)] (~)
(Y)({}(y:C.(e)(y.B)))

A0(z:AG)(E)(20) | 2.

We’ll now see a proof of this statement (within the proof we’ll also prove S2 is a sentence in our
language).

First of all we need a lemma that can be applied to the general language of section 5.

Lemma 7.1

Let m be a positive integer, Xj, .., Xm € V, with xj#x; for i#. Let Ay, .., An € C such that for each
i=1..m #(A)) is a set. We have H[x:A1, .., Xm:An] and we define k = K[x1:Aq, .., Xm:An] . Let De C
such that #(D) is a set. Then for each i=1..m (€ )(x;,D) € S(k) .

Proof:
First consider that A;€ E(g) and #(A,) is a set, so we can define k; = (x1,A).

If m>1 then for each i=1..m-1 we suppose to have defined k; = (x;,A1) Il .. Il (X;,A;). By lemma 3.12
Ai1€ E(k;) and for each pe Z(k;) #(ki,Air1,p) = #(Ais1) is a set, so we can define ki+; = ki Il (Xit1,Ai11)-
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This proves that H[x:A, .. , Xm:Ay] holds.

By lemma 4.3 we have x;e E(k;). If i=m this implies x;e E(k), otherwise for each j=i+1..m x;& Vy,(x;).
So by lemma 3.15 x;e E(k).

Moreover De E(k) and for each ce Z(k) #(k,D,0) = #(D) is a set. By lemma 3.14 (€ )(x;,D) € S(k).

]
So we have H[x:A] and we can define h = k[x:A]. Moreover (€)(x,B) € S(h), so also
(™((e)(x,B)) € S(h).
We also have H[x:A, y:C] and we define ky, = k[x:A, y:C]. We have (€)(y,B) € S(ky), and by
lemma 3.1 (V)({}(y:C.(€)(y.B))) € S(h).

Thus (A)((=)((€)(x.B)).(¥)({}(y:C.(€)(y.B)))) also belongs to S(h) .

We also have H[x:A, z:A] and we define k, = k[x:A, z:A]. We have (€ )(z,C) € S(k,), and by lemma
3.1 (V)({}(z: A (€)(2.C)))  S(h).

We can apply axiom As; to obtain the first sentence in our proof

()((E)(xB))
) v x:A ()] (A) (A)((V)({}(y Y B)))}’ ’(A){E;;(Ee}zyle’)(y B)))J
N0z A )(2.0)) |

By As, we also obtain

) y{x : A,(%)[(/\)ﬁv)(

By (1), (2) and Rs3

(A)[( (
@) v x: A=) (A)] L)
(1

We apply As, again to obtain
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(
@ 1] x: A (=)| (4) (A)[(v

By As 16 we obtain
(5) v[x:A.(€)(x.A)]

By (5) and Ass we also get

©) v x: A (=)] () (V)({}(y:C,(e)(y’B)))}’ (€)(x.A)

Since xe E(h), Ce E(h), for each pe E(h) #(h,C,p) = #(C) is a set, z¢ V(C) we can apply rule Rs ;5 to
(4) and (6) and obtain

D 1| x: A=) (4) (A)[(v

By A5.2

I =)((e)(x,B)),
<8>vx:A,(%){(A){( )(( )(_ ) . J,(V)({}(y:c,(e)(y,B)))H

) 7] x:A,(=)] (A) (V)({}(yzc,(e)(y,B)))}’ (9)((}(y:C.(e)(y.B)))

Since xe E(h), Be E(h), for each pe Z(h) #(h,B,p) = #(B) is a set, y¢ V,(B), we can apply Rs ;5 to (9)
and (7) to obtain

(
10 9 x:A(o)| () (A)((v
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By (10), (3) and R3;

(A)(( )(
1y x:A) (A LI

(
(12) Y| XA ()] () (A)((V

By R5,18 we obtain

=)((e)(x,B)),
. {X;A,M[w[( e )}H((w({}(z:A«e)(z,c))))ﬂ

We have seen that H[x:A, z:A], we have defined k, = k[x:A, z:A] and seen that (€ )(z,C) € S(k,).
So we can apply rule Rs ;9 and obtain

=)((e)(x,B)),
(14) {X:A,(—ﬁ{w{( )(E )(, ) J’(ﬂ)({}(z:A,(ﬂ)((e)(z,C))))H

By (14) and Rs 9

(V)({}(y:C.(e)(y-B))),
(15) x: A, (=) (5)((e)(x,B)),(—
{ ( ){( () B )[(3)({}(2:A’(ﬁ)((e)(z,c))))m

Remember we have seen that H[x:A] holds and defined h = k[x:A]. We have seen that
(=)((e)(x.B)) € S(h), (V)({}(y:C.(€)(y.B))) € S(h).

Our assumptions clearly imply that (3)({}(z: A.(=)((€)(z.C)))) € Sh.

It's also immediate that (€ )(y,B) € S(k[y:C]) so by lemma 3.1 (V)({}(y:C.(¢)(y.B))) € S(e).
Similarly (€)(z.C) € S(k[z:Al), (=)((€)(z.C)) € SkizAl). (3)({}(z: A.(=)((€)(z.C)))) € Se@.
(W)((H(y:C.(e)(y.B))),
@)(0(z: A () ((E)(=0)))

Therefore (%)[ ] e S(h)nS(g), and we can apply rule Rs. .
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By (15) and Rs 0 we obtain

(M) (y:C.(€)(y.B))),
(16) (a){(ﬂ)({}(x:A,(ﬂ)((e)(x,B)))),(ﬁ)[ ((y, »®)) B

By Rs,; we finally get

a7 (_))[(A)[(H)({}(x A(_l)((E)(XB)))) -

So we have proved statement (S2), and this also means that (S2) is a sentence in our language. It
seems quite evident that the statement’s meaning is as expected, anyway to complete the argument
we also want to prove this.

To this end we prove the following simple lemma.

Lemma 7.2

Let x;€ V, A€ C such that #(A) is a set. We have H[x;:A;]. Then
Ek[xi:ArD) = { (x1,81) I si€#(A1) } .

Proof

We have e€ K(1), Ai€E(1,¢), x;€ V-dom(g), #(¢,A1,e) = #(A,) is a set.
Therefore k[x1:A] = (x1,A;) € K(1)" and

Ekxp:AD) ={ el (x,81) I's; € #(e,Ar,e) } ={ (X1,81) | si€#(Ay) } .

We first examine the meaning of (EI)({ }(x : A,(_I)((G)(X,B)))) )

We can rewrite #((3)(1}(x: A.(=)((€)(x.B))))) as

Ps((}(ce 2 (k[x:A)). #( x:AL( )(( >(x,B>),6))) ,
P(()(cc E(k[x: A]).P-(#(k[x:A.(€) B),G)))),
Pa({}(ce: (k[x:A]),P- (PE x,0),#(k[x: A],B, c)))))
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P:((}(ce E(k[x: A]),P~(P<(o(x).#(B))))) .
P({}(cwee #(A),P~(Pe (o #(B))))) -

Similarly we can rewrite # ((V)( Hy:C.(e)(y, B)))) as

pv({}(se (k[y c)). (k[y cl.(e)(v:B).0))) .

Similary we can rewrite #(( )({}(z A, (= )(( €)(z, C)))))
Pa({}(cse E(k[z:A]), #( [z:A](= ))
P-(#(k[z: AL () (2:C).) )

At this point we can rewrite

#{(_))[(A)[(EI)({}(X:A,(_')((E)(X’B))))’J’(H)({}(Z; A,(ﬁ)((e)(z,c))))ﬂ as

P.|P. P0fae #(A)’Pﬁ(PE(ax’#(B)))))’},Pa({}(aze #(A),Pﬂ(Pe(az,#(C)))))} |
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Clearly the last statement can be expressed with the following words:

If ( (there exists axe #(A) such that a,¢ #(B)) and (for each aye #(C) aye #(B)) )
then (there exists a,€ #(A) such that a,& #(C)) .

This confirms that the statement we have proved has the desired meaning.
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8. Consistency and paradoxes

We have proved the soundness of our deductive system, i.e. if we can derive ¢ in our system then
#(p) holds. We now discuss the consistency of the system. We say our system is consistent if for
each sentence ¢ we cannot derive both ¢ and —¢.

Suppose our system is not consistent. In this case there exists a sentence ¢ such that we can derive
both ¢ and —¢. By the soundness property we have #(¢) and #(—¢), and

#(—) = #(&,m0,e) = P(#()) = #(o) is false.

So #(¢) is true and false at the same time. This is a plain contradiction, so soundness implies
consistency.

A paradox is usually a situation in which a contradiction or inconsistency occurs, in other words a
paradox arises when we can build a sentence ¢ such that both ¢ and —¢ can be derived. Since our
system is consistent it shouldn’t be possible to have real paradoxes in it, anyway it seems
appropriate to discuss how our system relates with some of the most famous paradoxical arguments.

We begin with Russell’s paradox. Assume we can build the set A of all those sets X such that X is
not a member of X. Clearly, if A€ A then A¢ A and conversely if A¢ A then Ae A. We have proved
both Ae A and its negation, and this is the Russell’s paradox.

It seems in our system we cannot generate this paradox since building a set is permitted only if you

rely on already defined sets. When trying to build set A in our language we could obtain something
like this:

H(()((e)(x.X)).X) .

But it is clear this isn’t a legal expression in our language, since in our language if you want to build
a context-independent expression using a variable X, then you have to assign a domain to X.

We now turn to Cantor’s paradox. Often the wording of this paradox involves the theory of cardinal
numbers (see Mendelson’s book [2]), but here we give a simpler wording.

First of all we prove for each set A there doesn’t exist a surjective function from domain A to
codomain P(A) (where P(A) is the set of A’s subsets).

Let f be a function from A to P(A). Let B = {xe Al x¢f(x)} .

Suppose there exists ye A such that B=f(y). If ye B then y¢f(y)=B, and conversely if y¢ B=f(y)
then ye B. So there isn’t ye A such that B=f(y), and therefore f is not surjective.

At this point, suppose there exists the set Q of all sets. Clearly Q and all of its subsets belong to Q,
so we can define a function f with domain Q and codomain P(Q) with this requirement: for each
XcQ f(X)=X. Obviously f is a surjective function, and this is a contradiction.
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The contradiction is due to having assumed the existence of Q. In this case too in our language we
cannot build an expression with such meaning. One expression like the following:

{}(set(X),X)

is not a valid expression in our language.

Finally we want to examine the liar paradox. Let’s consider how the paradox is stated in
Mendelson’s book.

A man says, “I am lying”. If he is lying, then what he says is true, so he is not lying. If he is not
lying, then what he says is false, so he is lying. In any case, he is lying and he is not lying.

Mendelson classifies this paradox as a ‘semantic paradox’ because it makes use of concepts which
need not occur within our standard mathematical language. I agree that, in his formulation, the
paradox has some step which seems not mathematically rigorous.

Let’s try to give a more rigorous wording of the paradox.

Let A be a set, and let 6 be the condition ‘for each x in A x is false’. Suppose d is the only member
of A. In this case if 0 is true then it is false; if on the contrary 9 is false then it is true.

The explanation of the paradox is the following: simply 6 cannot be the only item in set A. In fact,
suppose A has only one element, and let’s call it ¢. This implies d is equivalent to ‘“—¢’, so it seems
acceptable that d is not .

Another approach to the explanation is the following.

If o is true then for each x in A x is false, so d is not in A. By contraposition if d is in A then ¢ is
false.

Moreover if ¢ is false and the uniqueness condition ‘for each x in A x=0 is true then 9 is true, thus
if 9 is false then ‘for each x in A x=0’ is false too. By contraposition if ‘for each x in A x=3 then 6
18 true.

Therefore if o is the only element in A then d is true and false at the same time. This implies o
cannot be the only item in A.

On the basis of this argument I consider the liar paradox as an apparent paradox that actually has an
explanation. What is the relation between our approach to logic and the liar paradox?

Standard logic isn’t very suitable to express this paradox. In fact first-order logic is not designed to
construct a condition like our condition d (= ‘for each x in A x is false’), and moreover, it is clearly
not designed to say ‘0 belongs to set A’. These conditions aren’t plainly leading to inconsistency, so
it is desirable they can be expressed in a general approach to logic. And our system permits to
express them. The paradox isn’t ought to simply using these conditions, it is due to an assumption
that is clearly false, and the so-called paradox is simply the proof of its falseness.
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