
A superluminal effect with oscillating neutrinos

Eugene V. Stefanovich
2255 Showers Dr., Apt. 153, Mountain View, CA 94040, USA

eugene stefanovich@usa.net

October 21, 2011

Abstract

A simple quantum relativistic model of νµ − ντ neutrino oscillations in the
OPERA experiment is presented. This model suggests that the two components
in the neutrino beam are separated in space. Being created in a meson decay,
the µ-neutrino emerges 18 meters ahead of the beam’s center of energy, while
the τ -neutrino is behind. Both neutrinos have subluminal speeds, however the
advanced start of the νµ explains why it arrives in the detector 60 ns earlier than
expected. Our model does violate the special-relativistic ban on superluminal
signals. However, usual arguments about violation of causality are not applica-
ble here. The invalidity of standard special-relativistic arguments is related to
the inevitable interaction-dependence of the boost operator, which implies that
boost-transformed space-time coordinates of events with interacting particles do
not obey linear and universal Lorentz formulas.

1 Introduction

A recent preprint [1] published by the OPERA collaboration claims observation of a
superluminal effect in neutrino propagation. Muon-type neutrinos (νµ) with energies
of about 17 GeV were produced at the CERN site and captured by the OPERA neu-
trino detector 730 kilometers away. It is believed that in the course of propagation
the muon neutrinos partially converted to tau neutrinos (ντ ) due to the effect of neu-
trino oscillations. The carefully measured propagation time of the νµ beam was 60
ns shorter than that expected from the usual assumption about subluminal propaga-
tion speeds. There is a great deal of scepticism in the scientific community regarding
this remarkable result. However, in this paper we will assume that the superliminal
OPERA effect is valid, and offer a possible explanation, which, on one hand, is fully
within mainstream quantum relativistic physics, and on the other hand, challenges the
traditional interpretation of Einstein’s relativity theory.
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In section 2 we consider a simple but realistic model of νµ − ντ oscillations. The
model is formulated in one spatial dimension, but its generalization for the real 3D
world is not expected to bring any significant changes. The model is fully relativis-
tic, meaning that commutation relations of the Poincaré Lie algebra are explicitly
satisfied by operators of the total momentum, total energy and boost. The interac-
tion responsible for oscillations is fully controlled by a momentum-dependent function
f(p) ≡ |f(p)|eiα(p). The modulus |f(p)| of this function determines the frequency of
oscillations of neutrinos with momentum p. The phase factor eiα(p) plays a different
physical role: If the phase α(p) changes rapidly with p, then the two components (νµ
and ντ ) of the neutrino beam are separated by a certain distance χ. The theory does
not restrict the behavior of function α(p) and the numerical value of χ. Then it is pos-
sible to assume that the separation between neutrino components amounts to several
meters, so that the νµ neutrino moves ahead of the beam’s center-of-energy, while the
ντ neutrino lags behind. Note that both components are subluminal, as expected for
massive particles.

In section 3 we use this theory to explain the OPERA experiment. When the initial
µ-neutrino is created in a meson decay at the CERN site, this particle emerges not
from the interaction vertex, but 18 meters in the forward direction. This advanced
start explains the early arrival of muon neutrinos in the OPERA detector in spite of
the subluminal propagation speed.

Our proposed explanation requires instantaneous appearance of a decay product
(νµ) 18 meters away from the interaction vertex. This is in a sharp disagreement
with traditional special relativity, which claims that superluminal propagation of any
physical signal is inconsistent with the principle of causality. In section 4 we argue that
our model does not violate causality even in the moving reference frame. The key idea
is that transition to the moving frame should be performed by using a boost operator,
which depends on interaction. Therefore, transformations of observables (including
positions of particles) in the relevant interacting system (unstable meson plus muon
plus oscillating neutrino) are different from simple and universal Lorentz formulas of
special relativity. This allows us to reject the special-relativistic ban on superluminal
velocities and, at the same time, obey the causality principle. Finally, we use our
model to formulate a few predictions for future neutrino experiments.

2 Theory

We would like to describe a free neutrino system oscillating between two states: µ-
neutrino and τ -neutrino. For simplicity, we will ignore the possible effect of the third
(electronic) e-neutrino species. Then the Hilbert space can be constructed as a direct
sum of two one-particle subspaces
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H = Hµ ⊕Hτ (1)

This Hilbert space will be used for both non-interacting and interacting neutrino sys-
tems considered in this work.

2.1 Non-interacting system

Both Hµ and Hτ are Hilbert spaces carrying unitary irreducible representations of the
Poincaré group characterized by (non-observable) free neutrino masses mµ and mτ ,
respectively.1 In the absence of interaction responsible for neutrino oscillations the
noninteracting representation of the Poincaré group acting in the Hilbert space H can
be built as a direct sum of these two irreducible representations. To write explicit
formulas we will choose a convenient basis set in (1). For each momentum p we can
select two orthonormal basis states of definite flavor:

|νµ⟩ ≡
[

1
0

]

|ντ ⟩ ≡
[

0
1

]

Then each normalized state vector |ψ⟩ can be represented as a 2-component momentum-
dependent vector in this basis

|ψ⟩ ≡
[

Φµ(p)
Φτ (p)

]

where Φµ,τ (p) are complex wave functions satisfying the normalization condition

∫
dp
(
|Φµ(p)|2 + |Φτ (p)|2

)
= 1

Finite transformations from the Poincaré group (space translation, time transla-
tions and boosts) can be written as exponential functions of generators. They have
simple expressions in the flavor basis2

1In our 1-dimensional model neutrinos are spinless. For definiteness we will assume that mτ > mµ,
though this is not critical for our results.

2See section 2.5 in [2] and section 5.1 in [3]. In this paper we adopt Schrödinger representation: Any
inertial change of the observer is reflected in the change of system’s state vector (or wave function).
Different observers use the same Hermitian operator to describe a given observable.
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e
i
h̄
P0a|ψ⟩ =

[
e

i
h̄
paΦµ(p)

e
i
h̄
paΦτ (p)

]

e−
i
h̄
H0t

[
Φµ(p)
Φτ (p)

]
=

[
e−

i
h̄
ωµ(p)tΦµ(p)

e−
i
h̄
ωτ (p)tΦτ (p)

]

e
i
h̄
K0cθ|ψ⟩ =


√

ωµ(Λµp)
ωµ(p)

Φµ(Λµp)√
ωτ (Λτp)
ωτ (p)

Φτ (Λτp)


where

ωµ,τ (p) ≡
√
m2

µ,τc
4 + p2c2

Λµ,τp ≡ p cosh θ − ωµ,τ

c
sinh θ

and parameter θ is related to the boost velocity by formula v = c tanh θ.
The basis of the corresponding non-interacting representation of the Poincaré Lie

algebra is provided by Hermitian operators of total momentum P0, total energy H0

and boost K0. The explicit matrix form of these generators can be obtained by differ-
entiation

P0 = −ih̄ lim
a→0

d

da
e

i
h̄
P0a =

[
p 0
0 p

]
(2)

H0 =

[
ωµ(p) 0

0 ωτ (p)

]
(3)

K0 = −ih̄

 ωµ(p)
c2

d
dp

+ p
2ωµ(p)

0

0 ωτ (p)
c2

d
dp

+ p
2ωτ (p)

 (4)

2.2 Interaction

In the Dirac’s instant form of dynamics [2, 4], relativistically invariant description of
interaction is achieved by adding extra terms to both the energy operator H = H0 +V
and the boost operator K = K0+Z, while keeping the total momentum P0 unchanged.
The choice of interactions V and Z must ensure that Poincaré commutators remain
the same as in the non-interacting case

[H,P0] = 0 (5)
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[K,P0] = −ih̄
c2
H (6)

[K,H] = −ih̄P0 (7)

In the flavor basis we can write the full Hamiltonian as a 2×2 momentum-dependent
matrix

H = H0 + V =

[
ωµ(p) f(p)
f ∗(p) ωτ (p)

]
(8)

where f(p) is a complex function. For future use it will be convenient to write f(p) ≡
|f(p)|eiα(p), where α(p) is a real phase function.

2.3 Mass (energy) eigenstates

Our primary goal in this paper is to calculate the time evolution of neutrino states.
This can be done most easily if we find eigenvalues E1,2 and eigenstates of H. So, we
need to solve equation

0 =

[
ωµ(p) − E1,2(p) f(p)

f ∗(p) ωτ (p) − E1,2(p)

] [
Φ1,2

µ (p)
Φ1,2

τ (p)

]
(9)

together with normalization conditions (i = 1, 2)

|Φi
µ(p)|2 + |Φi

τ (p)|2 = 1 (10)

For the eigenvalues E1, E2 we obtain

|f(p)| =
√

(ωµ(p) − E1(p)) (ωτ (p) − E1(p))

=
√

(ωµ(p) − E2(p)) (ωτ (p) − E2(p)) (11)

A necessary requirement for this theory to be relativistically invariant is that energy
eigenvalues have the standard momentum dependence

E1,2(p) =
√
m2

1,2c
4 + p2c2 (12)

where m1,2 are neutrino mass eigenvalues.3 We suppose that these eigenvalues are
known and consider (11) as a definition of the modulus |f(p)| of the interaction func-
tion.4 Note that energy eigenvalues do not depend on the phase function α(p). So, we

3The operator of mass is defined as M = +
√
H2 − P 2

0 c
2/c2. Here we assumed that m2 > m1 > 0.

4A useful property ωµ(p) + ωτ (p) = E1(p) + E2(p) also follows from the definition (11).
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are free to choose any real function α(p) in our study. In the next subsection we will
build an interacting representation of the Poincaré group explicitly, thus showing that
(11) - (12) are also sufficient conditions for the relativistic invariance.

As can be verified by direct substitution in (9) - (10), the eigenvectors of the full
Hamiltonian are

|1, p⟩ =

[
A(p)

−B(p)e−iα(p)

]
(13)

|2, p⟩ =

[
B(p)eiα(p)

A(p)

]
(14)

where we introduced notation

A(p) ≡ +

√√√√ωτ (p) − E1(p)

E2(p) − E1(p)

B(p) ≡ +

√√√√ωµ(p) − E1(p)

E2(p) − E1(p)

A2(p) +B2(p) = 1

Note also that (13) - (14) are eigenvectors of the total momentum P0 and mass M .
Next we need to find a connection between the flavor and mass-energy bases. If

(Ψ1(p),Ψ2(p)) is a state vector written in the basis of mass eigenstates,5 then the
corresponding expansion in the flavor basis is obtained by a unitary transformation

[
Φµ(p)
Φτ (p)

]
=

(
A(p) B(p)eiα(p)

−B(p)e−iα(p) A(p)

)(
Ψ1(p)
Ψ2(p)

)
(15)

The transformation from the flavor basis to the mass basis is provided by the inverse
matrix

(
Ψ1(p)
Ψ2(p)

)
=

[
A(p) −B(p)eiα(p)

B(p)e−iα(p) A(p)

] [
Φµ(p)
Φτ (p)

]
(16)

5Here we use round parentheses to indicate that expansion coefficients refer to the mass basis.
Square brackets are used for the flavor basis.
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2.4 Interacting representation of the Poincaré group

The mass basis is useful because the interacting representation of the Poincaré group
takes especially simple form there

e−
i
h̄
Ht

(
Ψ1(p)
Ψ2(p)

)
=

(
e−

i
h̄
E1(p)tΨ1(p)

e−
i
h̄
E2(p)tΨ2(p)

)
(17)

e
i
h̄
Kcθ

(
Ψ1(p)
Ψ2(p)

)
=


√

E1(Λ1p)
E1(p)

Ψ1(Λ1p)√
E2(Λ2p)
E2(p)

Ψ2(Λ2p)


where Λip ≡ p cosh θ − (Ei/c) sinh θ is the usual boost transformation of momentum.

Interacting generators in the mass basis can be obtained by differentiation similar
to (3) - (4)

H = ih̄ lim
t→0

d

dt
e−

i
h̄
Ht =

(
E1(p) 0

0 E2(p)

)

K = −ih̄

 E1(p)
c2

d
dp

+ p
2E1(p)

0

0 E2(p)
c2

d
dp

+ p
2E2(p)

 (18)

By noticing the analogy of these formulas with the non-interacting representation in
subsection 2.1 one can convince oneself that commutators (5) - (7) are, indeed, satisfied.
So, our theory is relativistically invariant.

2.5 Time evolution

Obviously, the state vector with one µ-neutrino having a normalized momentum-space
wave function ψ(p)

|ψ⟩ ≡
[
ψ(p)

0

]
(19)∫

dp|ψ(p)|2 = 1

is not an eigenstate of the Hamiltonian (8). So, neutrino states with definite flavor are
not stationary. Our goal in this subsection is to calculate the time evolution of these
states.

Let us now make further simplifications by assuming that the initial wave function
ψ(p) is localized in a narrow region ∆p of the momentum space. We will also assume
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that in this region the modulus |f(p)| of the interaction function varies slowly, while
its phase changes as a linear6 function of p

α(p) ≈ χp

h̄
(20)

where χ is a yet unspecified parameter with the dimensionality of length. In the region
∆p the quantities A(p) and B(p) can be assumed smooth as well. Moreover, in cases
of practical interest neutrinos are ultrarelativistic, so we can set

p ≫ m1,2c

E1(p) =
√
m2

1c
4 + p2c2 ≈ cp

E2(p) =
√
m2

2c
4 + p2c2 ≈ cp+ γ(p)

γ(p) ≈ (m2
2 −m2

1)c
3

2p

Next we use (16) to expand the initial state vector (19) in the basis of eigenvectors
of the full Hamiltonian

|ψ⟩ = ψ(p)

(
A

Be−
i
h̄
χp

)

The time evolution of this state vector is obtained from (17)

|ψ(t)⟩ ≡ e−
i
h̄
Ht|ψ⟩ = ψ(p)

(
Ae−

i
h̄
E1(p)t

Be−
i
h̄
χpe−

i
h̄
E2(p)t

)

Its components in the flavor basis can be found using transformation (15)

|ψ(t)⟩ = ψ(p)

(
A Be

i
h̄
χp

−Be− i
h̄
χp A

)(
Ae−

i
h̄
E1(p)t

Be−
i
h̄
χpe−

i
h̄
E2(p)t

)

≈ ψ(p)e−
i
h̄
cpt

 (
A2 +B2e−

i
h̄
γt
)

ABe−
i
h̄
χp
(
e−

i
h̄
γt − 1

) 
To switch to the position representation we perform a Fourier transform

6More generally, one can write α(p) ≈ 1
h̄ (β + χp), where β is a real constant, but the constant

unimodular factor exp( i
h̄β) is irrelevant for our discussion, so we set β = 0.
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1

2πh̄

∫
dpe

i
h̄
pxψ(p)e−

i
h̄
cpt

 A2 +B2e−
i
h̄
γt

ABe−
i
h̄
χp
(
e−

i
h̄
γt − 1

) 
≈ ψ

 (
A2 +B2e−

i
h̄
γt
)
δ(x− ct)

AB
(
e−

i
h̄
γt − 1

)
δ(x− χ− ct)

 (21)

Here we took into account that the support ∆p of the smooth wave function ψ(p) is
much larger than the period of oscillations of imaginary exponents, so we can treat
A(p), B(p) and γ(p) as constants and move out of the integral some average value
of the smooth wave function ψ. Due to the normalization of ψ(p), this value has to
be unimodular |ψ|2 = 1. By doing these approximations, we also neglected the wave
function “spreading” effect, which is known to be superluminal, but negligibly small
[5, 6, 7, 8, 9, 10].

2.6 Oscillations and the neutrino “size”

Equation (21) is our main result, and in this subsection we will analyze physical impli-
cations of this formula. The probabilities for finding µ-neutrino and τ -neutrino change
with time as

ρµ(t) =
∣∣∣A2 +B2e−

i
h̄
γt
∣∣∣2 = A4 +B4 + 2A2B2 cos

(
γt

h̄

)
ρτ (t) = A2B2

∣∣∣e− i
h̄
γt − 1

∣∣∣2 = 2A2B2
(

1 − cos
(
γt

h̄

))
ρµ(t) + ρτ (t) = 1

In the ultrarelativistic limit the oscillation period is7

T =
2πh̄

γ
≈ 4πh̄p

(m2
2 −m2

1)c
3

In the particular case of “full mixing” (A2 = B2 = 1/2) both probabilities oscillate
between two extremes 0% and 100%

ρµ(t) =
1

2

(
1 + cos

(
2πt

T

))
ρτ (t) =

1

2

(
1 − cos

(
2πt

T

))
7For a review of neutrino oscillations see [11].
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T

0

x

ct

χ

νμ

ντ
c.
e
.

Figure 1: Space-time diagram for a free oscillating neutrino system. The two com-
ponents νµ and ντ have different trajectories separated by the distance |χ|. Varying
line densities indicate the oscillating probabilities ρµ,τ (t) for finding the two particles.
“c.e.” is the center-of-energy trajectory.

This example is shown in Fig. 1.
From arguments of delta functions in (21) we can find classical trajectories of the

two neutrino species

xµ(t) = ct (22)

xτ (t) = χ+ ct (23)

We see that both neutrinos move with (almost) the speed of light, as expected. The
remarkable property is the presence of parameter χ in (23). This means that the
two neutrino components do not overlap in space.8 They have different trajectories
separated by the distance χ. Recall that χ is a free and unrestricted real parameter in
our theory. In the example shown in Fig. 1 this parameter has been chosen negative.

2.7 Conservation laws

The behavior of the neutrino system described above is rather peculiar: The system
oscillates not only between two flavor states, but also between two different trajectories.

8The idea that two components of the neutrino beam can be separated in space was widely discussed
in the literature. See, for example, [12] and references therein.
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In a sense, this object has a non-vanishing size |χ|, and nothing in the theory forbids this
size to be macroscopically large, e.g., several meters. In order to convince ourselves
in the validity of this solution, let us check that conservation laws have not been
violated. Our solution is not an eigenvalue of any physical observable (like flavor
number, momentum, energy, position, etc.), so, we can only verify the conservation of
certain expectation values.

First, let us check that the total momentum of the system is conserved. In the
mass basis the operator of total momentum P0 is “p times unity operator”, i.e., the
same as in the flavor basis (2). Then it is easy to show that the expectation value of
P0 does not depend on time

⟨P0(t)⟩ ≡ ⟨ψ(t)|P0|ψ(t)⟩

=
∫
dp
(
Aψ∗(p)e

i
h̄
E1(p)t, Be

i
h̄
χpψ∗(p)e

i
h̄
E2(p)t

)( p 0
0 p

)(
Aψ(p)e−

i
h̄
E1(p)t

Be−
i
h̄
χpψ(p)e−

i
h̄
E2(p)t

)

=
∫
dpp

(
A2|ψ(p)|2 +B2|ψ(p)|2

)
=
∫
dpp|ψ(p)|2 = ⟨p⟩

Similarly, we demonstrate the time independence of the total energy

⟨H(t)⟩ ≡ ⟨ψ(t)|H|ψ(t)⟩

=
∫
dp
(
Aψ∗(p)e

i
h̄
E1(p)t, Be

i
h̄
χpψ∗(p)e

i
h̄
E2(p)t

)( E1 0
0 E2

)(
Aψ(p)e−

i
h̄
E1(p)t

Be−
i
h̄
χpψ(p)e−

i
h̄
E2(p)t

)

=
∫
dp(E1A

2 + E2B
2)|ψ(p)|2 ≈ c⟨p⟩

Another less known conservation law says that the center of energy of any isolated
physical system moves with constant velocity along a straight line. This law follows
from the definition of the center-of-energy position9

R = −c
2

2
(KH−1 +H−1K)

and the relationship10

K(t) ≡ e
i
h̄
HtKe−

i
h̄
Ht = K − P0t

9See [13] and section 4.3 in [3].
10This formula is written in the Heisenberg representation.
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which is a direct result of the basic commutators (6) - (7). Using the matrix form of
the boost operator (18) and taking into account that11

∫
dp
E1(p)

c2
ψ∗(p)

dψ(p)

dp
=
∫
dp
E1(p)

2c2
d

dp
|ψ(p)|2 = −

∫
dp

d

dp

(
E1(p)

2c2

)
|ψ(p)|2 ≈ − 1

2c

we calculate

⟨K(t)⟩ ≡ ⟨ψ(t)|K|ψ(t)⟩

= −ih̄
∫
dp
(
Aψ∗(p)e

i
h̄
E1(p)t, Be

i
h̄
χpψ∗(p)e

i
h̄
E2(p)t

)
 E1(p)

c2
d
dp

+ p
2E1(p)

0

0 E2(p)
c2

d
dp

+ p
2E2(p)

( Aψ(p)e−
i
h̄
E1(p)t

Be−
i
h̄
χpψ(p)e−

i
h̄
E2(p)t

)

≈ −ih̄
(
− iA

2

h̄
pt− i

h̄
χ
B2E2(p)

c2
− iB2

h̄
pt

)
= −χB

2E2

c2
− pt = ⟨K⟩ − ⟨p⟩t

The center-of-energy trajectory is then obtained as

⟨R(t)⟩ = −c
2⟨K(t)⟩
⟨H(t)⟩

≈ χB2E2

c⟨p⟩
+ ct ≈ χB2 + ct

This means that the center-of-energy moves with the light speed c, as expected. This
imaginary trajectory lies between real trajectories (22) - (23) of the two neutrino
components. In the case of full mixing (B2 = 1/2) the center of energy is right in the
middle between νµ and ντ , as shown in Fig. 1.

3 OPERA experiment

3.1 Neutrino creation reaction

In the OPERA experiment, CERN accelerator supplies high energy protons, which
fall on a graphite target and produce multiple secondary particles, including charged
π± and K± mesons. The mesons decay in-flight and emit muon neutrinos, which are
eventually captured by the OPERA detector. In Fig. 2 we sketch a space-time diagram
for the π+ → µ+ + νµ decay process.

In subsection 2.6 we have established that the neutrino system may have a large
size (|χ| = several meters). So, it is important to understand the location of this object

11Here we assumed that ϕ(p) is a real function and performed integration by parts.
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χ
π+

00

Figure 2: Space-time diagram for the neutrino creation reaction π+ → µ+ + νµ. The
center-of-energy trajectory emerges directly from the decay interaction vertex W , while
νµ and ντ trajectories are displaced.

at the point of its creation. Here we will be helped by the law of continuity of the
center-of-energy trajectory mentioned above. This law should remain valid even in the
pion decay process. But it cannot be satisfied if νµ is emitted directly from the decay
interaction vertex, as is usually assumed. As shown in Fig. 2, for the conservation law
to be valid, the decay point (marked “W” in the figure) should lie on the imaginary
line representing the neutrino center-of-energy trajectory (the thin dashed line in the
figure). In this case, the µ-neutrino component at time t = 0 is displaced from W by
the distance of |χ|B2 in the forward direction, while ντ is |χ|A2 meters behind.

3.2 Neutrino detection

Now we can collect all the results obtained so far in order to suggest a realistic picture
of the OPERA experiment and explain the superluminal behavior of the neutrinos.
We will use our theory described above and assume full mixing12 and the value χ =
−36m. According to this model, the imaginary trajectory of the neutrino center-
of-energy emerges directly from the decay interaction vertex W , as shown in Fig.
2. This imaginary trajectory arrives in the OPERA detector “on schedule” without
superluminal suprises. The µ-neutrino emitted in the meson decay event has a position,
which is advanced by |χ|/2 = 18m with respect to the center of energy. On the other
hand, the τ -neutrino component of the beam trails 18m behind the center of energy.

12This assumption is not essential for our argument, but, experimentally, the νµ − ντ pair is close
to the full mixing situation [14].
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x

ct

CERN OPERA

Figure 3: Schematic representation of the OPERA neutrino experiment. The 60 ns
advance in the µ-neutrino arrival time is explained by their creation 18 meters away
from the meson decay point at time t = 0.

The speed of all three points is very close to the speed of light. So, naturally, µ-
neutrinos arrive in the detector 60 ns ahead of schedule, while τ -neutrinos are 60 ns
late. This is illustrated in Fig. 3.

4 Discussion

In this article we have formulated a simple model of oscillating neutrinos. This model
satisfies all requirements of relativistic quantum theory: An unitary representation
of the Poincaré group is constructed explicitly in the neutrino Hilbert space, and this
representation takes into account interaction responsible for neutrino oscillations. This
simple model predicts a peculiar property: the two components of the neutrino beam
may not overlap in space. They can be separated from each other by a macroscopically
large distance |χ| without violating any conservation law. This property can naturally
explain the superluminal effect seen in the OPERA experiment if we assume that χ =
−36 meters for neutrinos with energies about 17 GeV. Unfortunately, our simple model
cannot predict how parameter χ depends on the neutrino energy, but it is reasonable to
assume that macroscopic separations between different neutrino flavors can be found
at other energies too. The observed independence of the neutrino arrival time on its
energy [1] suggests that χ remains nearly constant within the energy interval 13.6 -
42.9 GeV. This confirms the validity of our approximation (20), i.e., the approximate
linearity of the function α(p).

14



In our derivations we have assumed that the support (∆p) of the momentum-space
neutrino wave function ψ(p) is much larger that the period of oscillations of imaginary

exponents e−
i
h̄
χp and e−

i
h̄
Ei(p)t. This condition can be satisfied if the spatial extension

∆x ≈ h̄/∆p of the position-space wave function is much smaller than |χ| ≈ 36m, which
is definitely true. On the other hand, ∆p cannot be very large, so that we are allowed
to use the assumptions of the constancy of A(p), B(p) and γ(p) and the linearity of
α(p) and Ei(p). This condition can be satisfied if ∆p is not greater than few MeV,
which places the lower boundary for ∆x on the scale of the size of nucleus. This means
that our approximations are well justified.

In our model neutrinos are created at a distance of |χ|/2 = several meters from the
meson decay point. This is at odds with the traditional local quantum field theory,
which would insist that |χ| = 0.13 Thus, it would be extremely interesting to try to
measure this distance experimentally. Unfortunately, neutrinos do not leave tracks in
bubble chambers or emulsions, thus direct measurements of |χ| are going to be rather
challenging.

4.1 Comments on causality

According to our model, the OPERA result does not mean that neutrinos move faster
than light. Nevertheless, they violate the special-relativistic ban on superluminal prop-
agation in a different manner. The model presented above can be interpreted as a
statement that the νµ − ντ system has a large radius (≈18 meters). The violation of
special relativity occurs already at time t = 0, when such a big system is created in-
stantaneously in a meson decay, while according to the traditional concepts, its creation
must take at least 60 ns. Indeed, our model implies a superluminal signal propagation.
According to usual ideas, this is impossible, because the principle of causality would
be violated. The traditional argument invokes Lorentz transformations of special rel-
ativity. They say that if (x, t) are space-time coordinates of a physical event in the
reference frame at rest, then in the inertial frame moving with velocity v ≡ c tanh θ
space-time coordinates of the same event are given by formulas

x′ = x cosh θ − ct sinh θ (24)

t′ = t cosh θ − (x/c) sinh θ (25)

Special relativity postulates that these formulas remain valid in all circumstances, in-
dependent on the physical nature of the event occurring at (x, t) and on interactions
responsible for this event. The claim is that formulas (24) - (25) express fundamental
universal properties of the space-time. The tacit or explicit assumption used in most

13Note that the orthodox Standard Model assumes massless neutrinos, so neither oscillations no
space separation of neutrino flavors are allowed there.
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discussions of quantum superluminal effects is that space-time arguments of wave func-
tions must transform by the same formulas, i.e., that the position-space wave function
transforms to the moving frame as

ψ(x, t) → ψ(x cosh θ − ct sinh θ, t cosh θ − (x/c) sinh θ) (26)

If this were true, then the appearance of νµ at point 0 in Fig. 2 would be scandalous,
because, according to (24) - (26), one would be able to find a moving reference frame
in which event 0 (creation of the µ-neutrino) has happened before event W (decay of
the π-meson). So, in this moving frame the effect would occur before its cause, which
is impossible.

However, there is no reason to believe in the transformation law (26) if we use the
Newton-Wigner’s definition of the particle’s position [13] and Wigner-Dirac formulation
of quantum dynamics [4]. In this theory, formula (26) is not valid even in the case
of non-interacting particles. The correct transformation of the position-space wave
function to the moving frame is

ψ′(x, t) = ⟨x|e−
i
h̄
H0te

i
h̄
K0cθ|ψ⟩

which is not the same as (26). This fundamental difference is demonstrated by the
well-known effects of superluminal spreading of wave packets and the loss of particle
localization in the moving frame [5, 6, 7, 8, 9].

In the interacting case the picture is even more complicated as one needs to use
interacting energy and boost operators to find the wave function transformation

ψ′(x, t) = ⟨x|e−
i
h̄
Hte

i
h̄
Kcθ|ψ⟩

Let us consider the time evolution of the initial state (19) seen from the moving refer-
ence frame in the case of full mixing A = B = 1/

√
2

|ψ(θ, t)⟩ = e−
i
h̄
Hte

i
h̄
Kcθ|ψ⟩ =

1√
2

 e−
i
h̄
E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p)

e−
i
h̄
E2(Λ2p)t

√
E2(Λ2p)
E2(p)

e−
i
h̄
χΛ2pψ(Λ2p)


Switching to the flavor basis by usual formula (15) we obtain

|ψ(θ, t)⟩

=

 e−
i
h̄
E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p) + e
i
h̄
χpe−

i
h̄
χΛ2pe−

i
h̄
E2(Λ2p)t

√
E2(Λ2p)
E2(p)

ψ(Λ2p)

−e− i
h̄
χpe−

i
h̄
E1(Λ1p)t

√
E1(Λ1p)
E1(p)

ψ(Λ1p) + e−
i
h̄
χΛ2pe−

i
h̄
E2(Λ2p)t

√
E2(Λ2p)
E2(p)

ψ(Λ2p)


(27)
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We will not analyze this result in detail here, just mention two remarkable features,
which disagree with traditional interpretations of special relativity. First, the oscil-
lation period observed from the moving frame does not scale with velocity according
to the usual Einstein’s time dilation formula: T ′ ̸= T cosh θ [15]. Second, even at
t = 0, the probability of finding µ-neutrino is less than 1 and the probability of finding
τ -neutrino is greater than 0. This means that definitions of the νµ and ντ states are
different for different observers. So, this oscillating system lacks clearly identified local
events, whose space-time coordinates could be used in a rigorous discussion of causal-
ity. These two unusual features are very similar to the properties of unstable particles
discussed in [16, 17, 18, 19].

Even if the above difficulty with event definitions is resolved, formula (27) can-
not provide a clear answer about causality in the moving frame, because in the real
experiment we are not dealing with free (albeit oscillating) neutrinos: The crucial
superluminal effect (an instantaneous creation of the macroscopic neutrino system)
occurs at the point of meson decay. Then, for a meaningful discussion, we need to
include in our description the unstable meson and its decay products as well as inter-
actions responsible for the meson decay and neutrino oscillations. These interactions
are fundamentally different from “normal” inter-particle interactions, e.g., between two
charges. Nevertheless, it is instructive to note that boost transformations of space-time
locations of events in relativistic Hamiltonian systems of interacting particles are dif-
ferent from Lorentz formulas (24) - (25) even in the classical (non-quantum) limit.14

This fact is essential for the proof that instantaneous action-at-a-distance potentials
remain instantaneous in all reference frames, so that causality is preserved.15 If we
assume that similar arguments hold for decay/oscillation interactions as well, then no
conflict with causality will be found in the OPERA superluminal results.

These arguments lead us to the conclusion that the system of oscillating neutrino
does not behave in a way expected from a näıve application of special relativity. How-
ever, this does not mean that the causality postulate is violated. A proper discussion
of causality requires more realistic modeling of the neutrino preparation event. Such a
modeling would be a promising line of further research, but it is beyond the scope of
the present paper.

4.2 Other experiments and predictions

When the OPERA results are discussed, two other neutrino observations are usually
mentioned. One of them is the MINOS experiment [23], which saw a hint of advanced
propagation of µ-neutrinos, however, large experimental uncertainties did not allow
the authors to make a definitive conclusion about superluminality. This experiment

14see [20, 21, 22] and section 11.2 in [3]
15see section 11.4 in [3]
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was different from OPERA16 in the sense that the propagation time was measured
between two neutrino detectors. In this case, according to our model, no superluminal
effects can be observed as neutrino’s speed does not exceed c. The other experiment
concerns observation of neutrinos originated from supernova SN1987A [24, 25, 26].
This observation confirmed that neutrino’s speed coincides with the speed of light to
a high precision, which is also consistent with our model.

Based on our study, three predictions can be formulated, which may be useful for
those designing future experiments measuring neutrino propagation speed:

1. We predict that a more thorough remake of the MINOS experiment will confirm
that the speed of neutrinos is not higher than the speed of light.

2. The observed superluminal effect in the OPERA setup is independent on the
distance traveled by the neutrino beam. If the neutrino energy is kept at 17 GeV,
then for any source-detector distance µ-neutrinos will arrive to the detector by
60 ns “too early”.

3. If τ -neutrinos (instead of νµ) are detected in the OPERA setup, then the superlu-
minal effect will disappear: ντ will be found in the detector later than expected.
In the case of full mixing, the delay time is going to be 60 ns (i.e., 120 ns later
than νµ).

The author would like to thank Dr. Robert Wagner for critically reading this
manuscript.
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