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Through a convenient mathematical approach for the Navier-Stokes equation, we obtain the
quadratic dependence v2 of the drag force FD on a falling sphere, and the drag coefficient, CD,
as a function of the Reynolds number. Viscosity effects related to the turbulent boundary layer
under transition, from laminar to turbulent, lead to the tensorial integration related to the flux
of linear momentum through a conveniently choosen control surface in the falling reference frame.
This approach turns out to provide an efficient route for the drag force calculation, since the drag
force turns out to be a field of a non-inertial reference frame, allowing an arbitrary and convenient
control surface, finally leading to the quadratic term for the drag force.

DEFINING THE MATHEMATICAL PROBLEM

Regarding the application of the Newton second law
to a small closed subsystem σ with boundary ∂(δV ) and
volume δV of a continuum fluid in an inertial reference
frame, one obtains at an instant t:∫

σ

d~Fext =
∫
δV

ρ(~r, t)~f(~r, t)dV +
∮
∂(δV )

T · n̂dS, (1)

where ~f(~r, t) is a locally external acceleration field, ρ(~r, t)
the scalar density field, and T is the most general tensor
due to the effects of the surrounding fluid on σ, being
given by:

Tik = −pδik + η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vλ
∂xλ

)
+ ζδik

∂vλ
∂xλ

,

(2)
where p is the local thermodynamic pressure field, being
T written in terms of its components under the sum-
mation convention on repeated indices and where T was
obtained from the combination of effects due to strain
and shear:

Γ = α(∇~v)ts+β(∇~v)c = α

[
(∇~v)s −

1
3
~∇ · ~v1

]
+ ζ ~∇·~v1,

(3)
from which one defines the viscosity coefficients, α =
2η (this latter relation following from the coupling to
the planar flow case, in which one defines the dynamical
viscosity η) and ζ, under an isotropic assumption. Back
to the Eq. (1), one obtains the Navier-Stokes equation:

ρ(~r, t)~̇v(~r, t)− ρ(~r, t)~f(~r, t) + ~∇p(~r, t)− η~∇2~v(~r, t) +

−
(

1
3
η + ζ

)
~∇
(
~∇ · ~v(~r, t)

)
= ~0.

(4)
Under a divergence-free hypothesis for the velocity field
(constant density turns out to be a sufficient condition),

one has got, hence, in the ground reference frame, the
following mathematical problem:

ρ~̇v − ρ~g + ~∇p− η~∇2~v = ~0, ~∇ · ~v = 0;

lim
|~r|→∞

~v = ~0, ~v (∂ sphere) = ḣ(t)êz nonslip,
(5)

where ~g is the local gravitational field and ḣ(t) is the
scalar velocity of the center of a falling sphere within the
fluid.

GEDANKENEXPERIMENT

One measures the local gravitational field in the non-
inertial frame attached to the falling sphere from the fol-
lowing gedankenexperiment: hollow sphere having got
mass m, with an internal weighing apparatus (with neg-
ligible mass) to measure the normal force ~N that the
ground of the hollow sphere exerts on a proof mass m0.
By isolating the system m + m0, and, subsequently, by
isolating the system m0, one obtains:

~N

m0
=

~F ′drag

(m+m0)
=

~Fdrag + δ ~Fdrag(m0)
(m+m0)

, (6)

where ~Fdrag is the force the fluid exerts on the hollow
sphere, without the proof mass m0, and δ ~Fdrag(m0) is
the increment to this force - due to the consideration of
the internal proof mass m0. Hence, the gravitational field
~g0 within the hollow sphere is given by:

~g0 = lim
m0→0

−
~N

m0
= lim
m0→0

−
~Fdrag + δ ~Fdrag(m0)

(m+m0)
= −

~Fdrag

m
,

(7)
from which the force we want to calculate turns out to
be a property of the non-inertial reference frame attached
to the sphere. Adopting this falling reference frame, we
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have got the mathematical problem:
ρ~̇v + ρ

~Fdrag

m
+ ~∇p− η~∇2~v = ~0, ~∇ · ~v = ~0;

lim
|~r|→∞

~v = −ḣ(t)êz, ~v (∂ sphere) = ~0 nonslip.
(8)

Comparing the Eqs. (5) and (8), one infers the force we
want to calculate (divided by the sphere mass m) turns
out to be an acceleration field in the adopted reference
frame, given by the Eq. (7). This turns out to be a field
at each point of the fluid in the falling reference frame
attached to the sphere, from which one may choose a
convenient control surface of integration surrounding the
sphere, not only the surface of the sphere. This provides
an identity, derived in the next section, from which one
may extract a convenient information from the adopted
control surface.

CALCULATING ~g0

Applying the continuity equation in its most general
form, calculating the instantaneous time rate of linear

momentum variation within an arbitrary control volume,
fixed and undeformable, one reaches the expression for
the calculation of ~g0:

−~g0 =
~Fdrag

m
=

1∫
ρdV

(∮
Π · n̂dS − ∂

∂t

∫
ρ~vdV

)
,

(9)

Π = [−1p+ Γ− ρ (~v ⊗ ~v)] , (10)

since ~g0 does not depend on the spatial coordinates
within the fluid, once this field equally permeates each
point of the fluid in the falling reference frame at any
given instant t.

OBTAINING THE DRAG FORCE FD AND THE
DRAG COEFFICIENT CD

Applying the Eqs. (9) and (10) to the control region
FGBAF depicted in the Fig. 1, at the stationary flow
regime t→∞, one obtains:

~F∞ =
m

m+mBL

{
−
[∫

FG

+
∫
GB

+
∫
BA

+
∫
AF

]
1p∞ · n̂dS −

∫
FG

[ρ (~v∞ ⊗ ~v∞)] · n̂dS
}
, (11)

where mBL is the mass of the boundary layer attached
to the sphere. The pressure field on FG can be obtained,
since this choosen surface (FG) does not violate the lam-
inarity condition for a sufficiently thin boundary layer
∂p/∂r ≈ 0, in relation to DC, in virtue of the inter-
nal confinement of turbulence within the region GBAFG
(AB touching the boundary layer).

Fig. 1: Figure for the integration.

Hence:

pFG∞ = − ρ

m
ϕ∞FG + p0

∞ −
9
8
ρ
(
ḣ∞(t)

)2

sin2 θ, (12)

where ϕ∞ is a scalar field due to the vanishing rotational
of the force the fluid exerts on the sphere. The pressure
field on AB (AB touching the wake, the rear region of
the flow) is obtained from the condition of broken equi-
librium at the separation point S ≈ B. The obtention
of the velocity field profile internal to the boundary layer
is accomplished by the time average on the ensemble of
turbulence within the boundary layer with the Fourier
representation of the velocity field on FG by the step
function, since we are firstly interested in the contribu-
tion term at high Reynolds number provided a full tur-
bulent flow within the boundary layer at the brink of the
drag crisis, where the drag force will suddenly decrease.
Hence:

pS∞ = − ρ

m
ϕ∞GBAF + p0

∞ −
9
16
ρ
(
ḣ∞(t)

)2

sin2 θS ,

(13)

〈(~v ⊗ ~v)FG · n̂〉t = (~v∞ ⊗ ~v∞)·n̂ =

〈
v2
FG (R+ δ′, θ, t)

(
cos2 α(t) êr + cosα(t) sinα(t) êθ

)〉
t

=
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9
16

(
ḣ∞(t)

)2

sin2 θ êr,

(14)
where θS is the separation angle, depicted in the Fig. 2.

Fig. 2: Depicted elements.

Using these results within the Eq. (11), one obtains the
quadratic contribution for the drag force via straightfor-
ward integration:(

1 +
mBL

m

)
~F∞ = Buoyancy +

mBL

m
~F∞+

+
9π
32
ρ
(
ḣ∞(t)

)2

R2 sin4 θS êz ⇒

~FD =
9π
32
ρ
(
ḣ∞(t)

)2

R2 sin4 θS êz. (15)

Renaming ḣ∞(t) ≡ v, knowing that the drag force points
along the êz direction, we simply write for the quadratic
drag force contribution, the quadratic scalar component:

FD =
9π
32
ρv2R2 sin4 θS . (16)

One should notice this contribution arises from our con-
sideration regarding the turbulent profile within the
boundary layer, from which we see there is not any linear
contribution arising at this flow regime. Writing the drag
force as a series on v:

FD (v) =
∞∑
k=0

akv
k, (17)

we know from the low Reynolds number regime that the
linear contribution is given by the Stokes force [4]:

a0 = 0, a1v = 6πηRv. (18)

Hence, up to the drag crisis, the drag force reads:

FD = 6πηRv +
9π
32
ρ
(
sin4 θS

)
R2v2. (19)

The drag coefficient, CD, and the Reynolds number, R,
are defined by:

CD =
2FD

πρR2v2
, R =

2ρRv
η

. (20)

Hence, from the Eqs. (19) and (20), one obtains the drag
coefficient as a function of the Reynolds number, up to
the drag crisis:

CD (R) =
24
R

+
9
16

sin4 θS . (21)

Fig. 3 shows the graph for the Eq. (21), for θS = 70.4◦.
This is the separation angle obtained from the Froessling
method [1]. One sees this dependence on the Reynolds
number agrees with the experimental one over the entire
range of Reynolds numbers up to the drag crisis, as one
verify, e.g., in [2] and [3].

Fig. 3: Drag coefficient vs. Reynolds number, Eq. (21).
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