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Preface 
This book presents a concise version of another book that also treats the 

Hilbert Book Model, but that in addition acts as a grab-bag of other 

subjects that are more or less related to the Hilbert Book Model. 

Only the tale is kept as well. It is contained in part three of this book. 

 

In fact I started the Hilbert Book Model during my studies in physics in 

the sixties on the Technical University of Eindhoven (TUE). 

 

In the first two years the lectures concerned only classical physics. In the 

third year quantum physics was introduced. I had great difficulty in 

understanding why the methodology of doing physics changed 

drastically. So I went to the teacher, which was an old nearly retired 

professor and asked him: 
"Why is quantum mechanics done so differently from classical mechanics?".  

 

His answer was short. He stated": 

"The reason is that quantum mechanics is based on the superposition principle".  

 

I quickly realized that this was part of the methodology and could not be 

the reason of the difference in methodology. So I went back and told him 

my concern. He told me that he could not give me a better answer and if I 

wanted a useful answer I should research that myself. So, I first went to 

the library, but the university was quite new and only contained rather 

old second hand books, which they got from other institutions. Next I 

went to the city’s book shops. I finally found a booklet from P. 

Mittelstaedt: (Philosophische Probleme der modernen Physik, BI 

Hochschultaschenbücher, Band 50, 1963) that contained a chapter on 

quantum logic. I concluded that this produced the answer that I was 

looking for. Small particles obey a kind of logic that differs from classical 

logic. As a result their dynamic behavior differs from the behavior of 

larger objects.  
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I searched further and encountered papers from Garret Birkhoff and John 

von Neumann that explained the correspondence between quantum logic 

and separable Hilbert spaces. That produced an acceptable answer to my 

question. 

 

The lectures also told me that observables were related to eigenvalues of 

Hermitian operators. These eigenvalues are real numbers. However, it 

was clearly visible that nature has a 3+1D structure. So I tried to solve that 

discrepancy as well. After a few days of puzzling I discovered a new 

number system that had this 3+1D structure and I called them compound 

numbers. I went back to my professor and asked him why such 

compound numbers were not used in physics. Again he could not give a 

reasonable answer.  

 

When I asked the same question to a much younger assistant professor he 

told me that these numbers were discovered more than a century earlier 

by William Rowan Hamilton when he was walking with his wife over a 

bridge in Dublin. He was so glad about his discovery that he carved the 

corresponding formula into the sidewall of the bridge. The inscription has 

faded away, but it is now molded in bronze and fixed to the same wall. 

The numbers are known as quaternions. So I went to the library and 

searched for papers on quaternions.  

 

In those years C. Piron wrote his papers on quaternionic Hilbert spaces 

that completed my insight in this subject. I finalized my physics study 

with an internal paper on quaternionic Hilbert spaces.  

 

The university was specialized in applied physics and not in theoretical 

physics. This did not stimulate me to proceed with the subject. Next, I 

went into a career in industry where I used my knowledge of physics in 

helping analyze intensified imaging and helping design night vision 

equipment and X-ray image intensifiers.  
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That put me with my nose on the notion of quanta. The image intensifiers 

did not show radiation. Instead they showed clouds of impinging quanta.  

 

In those times I had not much opportunity to deliberate on that fact. 

However, after my retirement I started to rethink the matter. That was the 

instant that the Hilbert Book Model continued further. 

 

Thus, in a few words: The Hilbert Book Model tries to explain the 

existence of quanta. It does that by starting from traditional quantum 

logic. 
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Part one 
PART ONE 

The fundaments 
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The Fundaments 

Abstract 
The fundaments of quantum physics are still not well established. This 

paper tries to find the cracks in these fundaments and suggests repair 

procedures. This leads to unconventional solutions and a new model of 

physics. The model is strictly based on the axioms of traditional quantum 

logic. However, in order to proceed from this point, it is necessary to 

extend this base, such that it also incorporates the equivalents of physical 

fields. This results in a model that can represent a static status quo of the 

whole universe. The most revolutionary introduction is the representation 

of dynamics by a sequence of such static models in the form of a sequence 

of extended separable Hilbert spaces. Together, this embodies a repair of 

fundaments that does not affect the building. 

Logic model 
The author has decided to base the Hilbert Book Model on a consistent set 

of axioms. It is often disputed whether a model of physics can be strictly 

based on a set of axioms. Still, what can be smarter than founding a model 

of physics on the axioms of classical logic?  

 

Since in 1936 John von Neumann1 wrote his introductory paper on 

quantum logic the scientific community knows that nature cheats with 

classical logic and in fact obeys traditional quantum logic.  

 

As a consequence the Hilbert Book Model will be strictly based on the 

axioms of traditional quantum logic. However, this choice immediately 

reveals its constraints. Traditional quantum logic is not a nice playground 

for the mathematics that characterizes the formulation of most physical 

                                                 
1http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics   

http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
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laws. Lucky enough, von Neumann encountered the same problem and 

together with Garret Birkhoff2 he detected that the set of propositions of 

quantum logic is lattice isomorphic with the set of closed subspaces of an 

infinite dimensional separable Hilbert space. Some decades later 

Constantin Piron3 proved that the inner product of the Hilbert space must 

by defined by numbers that are taken from a division ring. Suitable 

division rings are the real numbers, the complex numbers and the 

quaternions4. The Hilbert Book Model takes the choice with the widest 

possibilities. It uses quaternionic Hilbert spaces. Quaternions play a 

decisive role the Hilbert Book Model. Higher dimension hyper-complex 

numbers may suit as eigenvalues of operators or as values of physical 

fields, but for the moment the HBM can do without these numbers. 

Instead, quaternions will be used for those purposes. 

 

So, now we have a double model that connects logic with a flexible 

mathematical toolkit. But, this solution does not solve all restrictions. 

Neither quantum logic nor the separable Hilbert space can handle 

physical fields and they also cannot handle dynamics.  

 

An extension of the basic models helps cure the first restriction. In 

addition it also solves another problem. The separable Hilbert space only 

tolerates eigenspaces of operators that contain a countable number of 

eigenvalues. Thus, the Hilbert space does not know continuums. A 

solution can be found in the Gelfand triple5 of the Hilbert space. This 

sandwich contains the Hilbert space as a member and at the same time it 

provides operators that have a continuum as their eigenspace.  

 

This would introduce a new problem because the continuum fits far more 

eigenvalues than the eigenspace of the operator in the separable Hilbert 

                                                 
2 http://en.wikipedia.org/wiki/John_von_Neumann#Lattice_theory  
3 C. Piron 1964; _Axiomatique quantique_  
4 http://en.wikipedia.org/wiki/Quaternion  
5 http://en.wikipedia.org/wiki/Gelfand_triple  

http://en.wikipedia.org/wiki/John_von_Neumann#Lattice_theory
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Gelfand_triple
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space can offer. This problems makes think of a similar situation that 

occurs when the number N of linear equations that must be solved is 

larger than the number M of variables that are contained in these 

equations. Let the equations be available in the form: 

 

∑          

 

   

        

 

Usually, such situations are solved by assuming that a stochastic 

inaccuracy exists between the values    in the too large result set and the 

actual results. The actual results would offer a consistent set of equations. 

These actual results make the equations interdependent. Translated to our 

problem, this solution comes down to linking the eigenvalues of operators 

in the separable Hilbert space to corresponding values in the continuum 

eigenspace of operators in the Gelfand triple by using a quaternionic 

probability amplitude distribution (QPAD) as the connection between the 

source and the target. As will be shown, the choice for a QPAD has 

significant and favorable consequences. 

 

The attachment of QPAD’s extends the separable Hilbert space and 

connects it in a special way to its Gelfand triple. Due to the isomorphism 

of the lattice structures, the quantum logic is extended in a similar way. 

This leads to a reformulation of quantum logic propositions that makes 

them incorporate stochastically inaccurate of observations instead of 

precise observations. The logic that is extended in this way will be called 

extended quantum logic. The separable Hilbert space that is extended in 

this way will be called extended separable Hilbert space. 

 

The implementation of physical fields via the attachment of QPAD’s to 

eigenvectors in the separable Hilbert space is a crucial departure from 

common physical methodology. Common quantum physics uses complex 



20 

 

probability amplitude distributions (CPAD’s), rather than QPAD’s6. 

Quantum Field Theory7, in the form of QED8 or QCD9, implements 

physical fields in a quite different manner. 

 

The choice for QPAD’s appears very smart. The real part of the QPAD can 

be interpreted as a “charge” density distribution. Similarly the imaginary 

part of the QPAD can be interpreted as a “current” density distribution. 

The squared modulus of the value of the QPAD can be interpreted as the 

probability of the presence of the carrier of the “charge”. The “charge” can 

be any property of the carrier or it represents a collection of the properties 

of the carrier. In this way, when the wave function is represented by a 

QPAD the equation of motion becomes a continuity equation10. 

 

QPAD’s use a quaternion as their parameter. Usually these parameters 

are values of a quaternionic distribution that uses the quaternionic 

number space as its parameter space. In that way the quaternionic 

distribution can act as a curved coordinate system. 

 

In most cases where quaternionic distributions are used, the fact that 

quaternions possess two independent sign selections is ignored. The first 

sign selection, the conjugation, inverts the sign of all three imaginary base 

vectors. The second sign selection, the reflection, inverts the sign of a 

single imaginary base vector. The sign selections in a quaternionic 

distribution are all similar. Individually, the conjugation and the 

reflection switch the handedness of the external vector product in the 

product of two quaternions that are taken from the same quaternionic 

distribution.  

 

                                                 
6 http://en.wikipedia.org/wiki/Probability_amplitude  
7 http://en.wikipedia.org/wiki/Quantum_field_theory  
8 http://en.wikipedia.org/wiki/Quantum_electrodynamics  
9 http://en.wikipedia.org/wiki/Quantum_chromodynamics  
10 Also called balance equation. 

http://en.wikipedia.org/wiki/Probability_amplitude
http://en.wikipedia.org/wiki/Quantum_field_theory
http://en.wikipedia.org/wiki/Quantum_electrodynamics
http://en.wikipedia.org/wiki/Quantum_chromodynamics
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For each QPAD, the mixture of conjugation and reflection produces four 

different sign flavors. In quantum physics these sign flavors play a crucial 

role. In common physics this role is hidden in alpha, beta and gamma 

matrices and in spinors. 

 

The extension cured several restrictions, but one is left. Both the extended 

quantum logic and the extended separable Hilbert space can only 

represent a static status quo. The Hilbert space does not have an operator 

that delivers progression as an eigenvalue. Instead progression can be 

attached as a parameter to the whole Hilbert space including the Gelfand 

triple and the attached QPAD’s. 

 

Now implementing dynamics becomes a simple action. The whole Hilbert 

Book Model consists of an ordered sequence of sandwiches that each 

includes the Gelfand triple including its Hilbert space and the attached 

QPAD’s. The progression parameter acts as page number of the book. 

In the resulting Hilbert Book Model the progression is made in universe 

wide steps. 
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History 
In its first years, the development of quantum physics occurred violently. 

Little attention was paid to a solid and consistent foundation. The 

development could be characterized as delving in unknown grounds. 

Obtaining results that would support applications was privileged before a 

deep understanding of the fundamentals.  

 

The first successful results were found by Schrödinger and Heisenberg. 

They both used a quantization procedure that converted a common 

classical equation of motion into a quantum mechanical equation of 

motion. Schrödinger used a wave function that varied as a function of its 

time parameter, while operators do not depend on time. Heisenberg 

represented the operators by matrices and made them time dependent, 

while their target vectors were considered to be independent of time. This 

led to the distinction between the Schrödinger picture and the Heisenberg 

picture.  

 

Somewhat later John von Neumann and others integrated both views in 

one model that was based on Hilbert spaces. Von Neumann also laid the 

connection of the model with quantum logic. However, that connection 

was ignored in later developments. Due to the restrictions that are posed 

by separable Hilbert spaces, the development of quantum physics moved 

to other types of Hilbert spaces.  

 

After a while, it became clear that the Schrödinger picture and the 

Heisenberg picture represent two different views of the same situation. It 

appears to be unimportant were time is put as a parameter. The important 

thing is that the time parameter acts as a progression indicator. This 

observation indicates that the validity of the progression parameter 

covers the whole Hilbert space. With other words, the Hilbert space itself 

represents a static status quo. 

 

In those days quaternions played no role. The vector spaces and functions 

that were used all applied complex numbers and observables were 
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represented with self-adjoint operators. These operators are restricted to 

real eigenvalues. 

 

Quaternions were discovered by the Irish mathematician Sir William 

Rowan Hamilton11 in 1843. They were very popular during no more than 

two decades and after that they got forgotten. Only in the sixties of the 

twentieth century, due to the discovery of Piron that a separable Hilbert 

space ultimately uses quaternions for its inner product,  a short upswing 

of quaternions occurred. But quickly thereafter they fell into oblivion 

again. Currently most scientists never encountered quaternions. The 

functionality of quaternions is taken over by complex numbers and a 

combination of scalars and vectors and by a combination of Clifford 

algebras, Grassmann algebras, Jordan algebras, alpha-, beta- and gamma-

matrices and by spinors. The probability amplitude functions were taken 

to be complex rather than quaternionic. Except for the quaternion 

functionality that is hidden in the α, β, γ matrices, hardly any attention 

was given to the possible sign selections of quaternion imaginary base 

vectors and as a consequence the sign flavors of quaternionic distributions 

stay undetected. So, much of the typical functionality of quaternions stays 

obscured. 

 

The approach taken by quantum field theory departed significantly from 

the earlier generated foundation of quantum physics that relied on its 

isomorphism with quantum logic. Both QED and QCD put the quantum 

scene in non-separable Hilbert spaces. Only the wave function is seen as a 

(complex) probability amplitude distribution. Spinors and gamma 

matrices are used to simulate quaternion behavior. 

 

The influence of Lorentz transformations gives scientists the impression 

that space and time do not fit in a quaternion but instead in a spacetime 

quantity that features a Minkowski signature. Length contraction, time 

                                                 
11 http://en.wikipedia.org/wiki/William_Rowan_Hamilton  

http://en.wikipedia.org/wiki/William_Rowan_Hamilton
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dilation and space curvature have made it improbable that progression 

would be seen as a universe wide parameter. 

 

These developments cause a significant deviation between the approach 

that is taken in contemporary physics and the line according which 

Hilbert Book Model is developed. 
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Part two 
PART TWO 

The Hilbert Book Model 
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The Hilbert Book Model 

Abstract 
The extension of the separable Hilbert space by a set of QPAD’s enables 

the interpretation of equations of movement as continuity equations. 

Exploring this leads to a complete set of equations that describe all 

elementary particles that are contained in the standard model. The 

equations enable the computation of the coupling factors from the 

configuration of the constituting fields. The properties of the particles, 

including the coupling factors are related to the local curvature and in this 

way to the notion of mass. 

Role of the particle operator 
The particle operator is one of the operators for which the eigenvectors 

are coupled to a background continuum that is related to the eigenspace 

of a corresponding position operator that resides in the Gelfand triple. 

The background continuum may be curved. It means that this 

background continuum is a quaternionic function of the eigenvalues of 

that operator. This function has the same sign flavor as its parameter 

space. 

For each eigenvector of the particle position operator the background 

continuum acts as parameter space for the QPAD that connects this 

eigenvector with the eigenspace of the corresponding position operator 

that resides in the Gelfand triple. 

This position operator has a canonical conjugate, which is the 

corresponding momentum operator. A connection of the particle 

eigenvector with the eigenspace of the momentum operator runs via a 

different QPAD. Without any curvature the two QPAD’s would be each 

other’s Fourier transform. 
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Hyper-complex numbers 
Hyper-complex numbers form categories that are ordered with respect to 

their dimension. The dimension   takes the form     , where   is a 

non-negative integer. A hyper-complex number of dimension   can be 

obtained from a pair of hyper-complex numbers of dimension     via a 

construction algorithm. Several construction algorithms exist. The most 

popular is the Cayley-Dickson construction12. A less known construction 

algorithm is the 2n-on construction of Warren Smith13. This construction 

delivers numbers that in the higher dimensions retain better arithmetic 

capabilities. Up and including the octonions the two construction 

algorithms deliver the same numbers. The sedions differ from the 24-ons. 

 

In their lower m dimensions the 2n-ons behave similarly to the 2m-ons.  

The 2n-ons have n independent imaginary base vectors. As a consequence 

the 2n-ons feature n independent sign selections. 

Both construction methods ignore these sign selections. Sign selections 

play a crucial role in this paper. 

Quaternions 
A quaternion is a 1+3 dimensional hyper-complex number. It has a one 

dimensional real part and a three dimensional imaginary part. As a result, 

it can be seen as the combination of a real scalar and a three dimensional 

vector.  

 
                 

 

The quaternions form a division ring14. According to the Frobenius 

theorem15, the only finite-dimensional division algebras over the reals are 

the reals themselves, the complex numbers, and the quaternions. 

                                                 
12 http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction  
13 Appendix; 2n-ons, See http://www.math.temple.edu/~wds/homepage/nce2.pdf 
14 http://en.wikipedia.org/wiki/Division_ring  
15 http://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras)  

(1) 

http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
http://www.math.temple.edu/~wds/homepage/nce2.pdf
http://en.wikipedia.org/wiki/Division_ring
http://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras)
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The coefficients {  } are real numbers. Bi-quaternions exist that have 

complex coefficients, but these do not form a division ring. 

Sign selections 
The quaternions possess two independent sign selections. The 

conjugation      inverts the sign of all imaginary base vectors. It acts 

isotropic.  

 
                  

 

The reflection      inverts a single imaginary base vector and for that 

reason it acts anisotropic.  

 

                  

 

Here, the base vector   is selected arbitrarily. 

These two sign selections can be mixed. They generate four sign states. 

Individually the conjugation and the reflection both flip the handedness 

of the external vector product of the imaginary part when both factors use 

the same sign selections. 

Habits 
The addition works as in all division rings, however the product of two 

quaternions does not commute. 

Product rule 

The product rule is best expressed in the form of real scalars and 3D 

vectors: 

 

        〈 ,  〉              
 

〈 ,  〉                 
 

     (         )   (         )   (         ) 
 

(1) 

(2) 

(1) 

(2) 

(3) 
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The norm or modulus is defined by: 

 

| |   √     〈 ,  〉  

Quaternionic probability amplitude distributions 
A quaternionic probability amplitude distribution (QPAD)16 is a 

quaternionic function. Its value can be split in a real part that can be 

interpreted as a charge density and an imaginary part that can be 

interpreted as a current density. The squared modulus of the value can be 

interpreted as the probability density of the presence of the carrier of the 

charge. The charge can be any property of the carrier or it stands for the 

ensemble of the properties of the carrier. 

Sign flavors 
The quaternions that form the values of a quaternionic distribution must 

all feature the same set of sign selections. This fact attaches a sign flavor to 

each quaternionic distribution. Quaternionic distributions come in four 

sign flavors17:   ,   ,          .  

 

We will use the symbol   or    for the sign flavor of the quaternionic 

distribution that has the same sign flavor as its parameter space. The 

superscripts indicate the number of base vectors that changed sign.  

We will use 

 

      

 

And with the same symbolic: 

                                                 
16 http://en.wikipedia.org/wiki/Probability_amplitude treats complex probability 

amplitude distributions. 
17 The notion of “sign flavor” is used because for elementary particles “flavor” already 

has a different meaning. 

(4) 

(5) 

(1) 

http://en.wikipedia.org/wiki/Probability_amplitude


30 

 

 

      
 

     
 

Often the symbols          will be used instead of the symbols    and 

  . 

QPAD multiplication 

What happens when quaternions from different sign flavors will be 

multiplied? 

 

1. First a reference sign flavor is selected.  

2. This sign flavor is taken to be the sign flavor of the distribution that 

will receive the result. 

3. The factors are first brought to this reference sign selection. 

4. In this process nothing changes in the values of the quaternions. 

5. After that the multiplication takes place. 

6. The result is delivered in the reference sign flavor. 

 

With other words the multiplication takes place with the handedness that 

is defined in the target distribution. 

Spinors and matrices 
In contemporary physics complex probability amplitude distributions 

(CPAD’s) are used rather than QPAD’s. Spinors and matrices are used to 

simulate QPAD behavior for CPAD’s. 

 

A spinor [ ] is a 1×4 matrix consisting of CPAD’s that represent the sign 

flavors of a QPAD. Sometimes the spinor is represented as a 1×2 matrix. 
 

The   and   matrices influence the elements of spinor [ ]. 

 

   [
  
   

] 

(2) 

(3) 

(3) 
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   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

 

 ,         represent imaginary base vectors of the simulated quaternion.   

represents the conjugation action for the spinor. 

 

A relation exist between   ,   ,    and the Pauli18 matrices    ,   ,   : 

 

   [
    
  
] ,    [ 

   
  

] ,    [
  
   

] 

 
    ,      ,      ,       

 

This combination is usually represented in the form of gamma matrices. 

In Dirac representation, the four contravariant gamma matrices are 

 

   [

    
    
     
     

] ,    [

    
    
     
     

],  

 

   [

     
    
    
     

] ,    [

    
     
     
    

]  

 

It is useful to define the product of the four gamma matrices as follows: 

 

                                                 
18 http://en.wikipedia.org/wiki/Pauli_matrices  

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

http://en.wikipedia.org/wiki/Covariance_and_contravariance
http://en.wikipedia.org/wiki/Pauli_matrices
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                 [

    
    
     
     

] 

 

The gamma matrices as specified here are appropriate for acting on Dirac 

spinors written in the Dirac basis; in fact, the Dirac basis is defined by 

these matrices. In the Dirac basis19: 

 

   [
  
   

] ,    [    

    
] ,     [

  
  
] 

 

This corresponds with     
 ,      . 

Apart from the Dirac basis, a Weyl basis exists 

 

       [
  
  
] ,    [    

    
] ,     [

   
  

] 

 

The Weyl basis has the advantage that its chiral projections20 take a simple 

form: 

 

     (    
 )[ ]  [

  
  
] [ ] 

 

     (    
 )[ ]  [

  
  
] [ ]  

 

[  ]  [
  
  
] [ ] 

Special QPAD’s 
We will consider a special ensemble of QPAD’s {   ( ,   )}.  

 The   ( ,  ) are normalized: ∫ |  ( ,  )|
      

 
  

 The   ( ,  ) must be spherically symmetric. 

                                                 
19 http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis  
20 http://en.wikipedia.org/wiki/Chirality_(physics)  

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

http://en.wikipedia.org/wiki/Chirality_(physics)
http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis
http://en.wikipedia.org/wiki/Chirality_(physics)
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 From a given minimal distance their modulus must decrease with 

radius   as    . 

 

The form of the QPAD relies on Bertrand’s theorem21. 

The average QPAD 

The ensemble {   ( ,  )} of the QPAD’s has an average  ( ,  ) 

The background QPAD 

The ensemble {   ( ,   )} is distributed randomly over the center points 

{  } in an affine parameter space. At a given point P in this space the 

superposition of all {   ( ,  )} will be constructed. 

This superposition will be renormalized and then indicated by  ( ,  ). 

Thus,  

 

∫| ( ,  )|      
 

 

 

In this superposition the largest contribution comes from the   ( ,   ) for 

which the    is farthest from P. Further the directions of the imaginary 

part are reversed with respect to the directions in the   ( ,   ). 

Especially at long distances, all differences are smoothed away via an 

averaging process. 

 

The result is that: 

 

 ( ,  ) =   ( ,  ) 

 

We will interpret  ( ,  ) as the background QPAD. 

The approach taken here, shows similarity with the approach of Denis 

Sciama in his paper: “On the origin of inertia”22. 

                                                 
21 http://en.wikipedia.org/wiki/Bertrand%27s_theorem  
22 See: http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 

(1) 

(2) 

http://en.wikipedia.org/wiki/Bertrand%27s_theorem
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
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Differentiation and Fourier transform 
A quaternionic distribution f(q) can be differentiated23. 

 

 ( )       ( )  〈 ,  ( )〉     ( )      ( )  (    ( )) 

 

The colored   and   signs refer to the influence of conjugation of  ( ) on 

quaternionic multiplication. The  sign refers to the influence of reflection 

of  ( ). 

In this section, the parameter q is supposed to be taken from a non-curved 

parameter space. With that precondition, in Fourier space differentiation 

becomes multiplication with the canonical conjugate coordinate   and 

therefore the equivalent equation becomes: 

 

 ̃( )    ̃( )

      ̃( )  〈 ,  ̃( )〉     ̃( )     ̃ ( )

 (    ̃( )) 

 

For the imaginary parts holds: 

 

 ( )       ( )      ( )  (    ( )) 

 

 ̃( )      ̃( )     ̃ ( )  (    ̃( )) 

Continuity equation 
When applied to a quaternionic probability amplitude distribution 

(QPAD), the equation for the differentiation leads to a continuity 

equation. 

 

When   ( ) is interpreted as a charge density distribution, then the 

conservation of the corresponding charge is given by the continuity 

equation: 

 

                                                 
23 For more details, see Appendix; Quaternionic distributions, 

(2) 

(3) 

(4) 
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Total change within V = flow into V + production inside V 

 
 

  
∫       

 

 ∮  ̂  
 

 
   

 

 ∫     

 

 

 

∫       

 

 ∫〈 ,  〉   

 

 ∫     

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding surface S, 

 ( ,  ) is the velocity at which the charge density   ( ,  ) enters volume V 

and    is the source density inside V. In the above formula   stands for 
          

 

It is the flux (flow per unit area and unit time) of    . 

 

The combination of   ( ,  ) and  ( ,  ) is a quaternionic skew field  ( ,  ) 

and can be seen as a probability amplitude distribution (QPAD). 

 
       

 

 ( ,  )  ( ,  ) can be seen as an overall probability density distribution of 

the presence of the carrier of the charge.   ( ,  ) is a charge density 

distribution.  ( ,  ) is the current density distribution. 

The conversion from formula (2) to formula (3) uses the Gauss theorem24. 

This results in the law of charge conservation:  

 

  ( ,  )      ( ,  )  〈 , (  ( ,  ) ( ,  )     ( ,  ))〉 

 
     ( ,  )  〈 ,  ( ,  )   ( ,  )〉 

 
     ( ,  )  〈 ( ,  ),    ( ,  )〉  〈 ,  ( ,  )〉   ( ,  ) 

 

                                                 
24 http://en.wikipedia.org/wiki/Divergence_theorem  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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 〈 , ( ,  )〉 
 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field  ( ,  ). The field  ( ,  ) is an arbitrary 

differentiable vector function. 

 
〈 ,    ( ,  )〉    

 

 ( ,  )      ( ,  ) is always divergence free. In the following we will 

neglect  ( ,  ). 

 

Equation (6) represents a balance equation for charge density. What this 

charge actually is, will be left in the middle. It can be one of the properties 

of the carrier or it can represent the full ensemble of the properties of the 

carrier. 

 

This only treats the real part of the full equation. The full equation runs: 

 
 ( ,  )    ( ,  )    ( ,  )   ( ,  ) 

 
      ( ,  )  〈 ,  ( ,  )〉     ( ,  )      ( ,  )

 (    ( ,  )) 

 
     ( ,  )  〈 ( ,  ),    ( ,  )〉  〈 ,  ( ,  )〉   ( ,  )  

 
    ( ,  )      ( ,  )      ( ,  ) 

 

 ( (  ( ,  )    ( ,  )   ( ,  )     ( ,  )) 

 
  ( ,  )       ( ,  )  〈 ( ),    ( ,  )〉  〈 ,  ( ,  )〉   ( ,  ) 

 
 ( ,  )      ( ,  )      ( ,  ) 

 

 ( (  ( ,  )    ( ,  )   ( ,  )     ( ,  ))) 

 

(7) 

(8) 

(9) 

(10) 
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The red sign selection indicates a change of handedness by changing the 

sign of one of the imaginary base vectors. Conjugation also causes a 

switch of handedness. It changes the sign of all three imaginary base 

vectors. 

Elementary particles 
Elementary particles appear to obey a special kind of continuity equation. 

In this continuity equation the source/drain term is represented by the 

coupled QPAD. 

Dirac equation 
The best known equation of motion for elementary particles is the Dirac 

equation. It is written using spinors and matrices. 

The Dirac equation for a free moving electron or positron is known as: 

 
  [ ]    [ ]    [ ] 

 

This can be converted to two quaternionic equations that act on QPAD’s: 

 

 
             

 
             

 

In the mass term the coupling factor   couples    and   . The fact     

decouples    and   . 

 
     

       
 

In the left term   and    represent the wave function of the particle. In 

that sense term   and    represent each other’s antiparticle. 

 

Equations (2) and (3) are each other’s quaternionic conjugate. 

 

(1) 

(2) 

(3) 

(4) 
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Reformulating these equations gives 

 

         
 

  (    )   (    )   (    ) 

 

For the conjugated field holds 

 

           

 
  (    )   (    )   (    ) 

 

This implements the reverse flip. The corresponding particle is the 

antiparticle. 

 

{  ,   }   {  ,   } 

 

Both flips switch the handedness. 

Summing the equations gives via 

 
        〈 , 〉 

 

the result 

 
      〈 , 〉        

 

The difference gives 

 
                  

 

Just reversing the sign flavors does not work. The corresponding equation 

contains extra terms: 

 

      (    )   (    )                  

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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 (     〈 , 〉)  (        )     

 (     〈 , 〉) 
 

      〈 , 〉       
 

Thus if the reverse equation fits, then it will concern another field 

configuration    that will not fit the original equation. 

The pair {   ,    } that fits equation: 

 

            

 

represents a different particle than the electron {  ,   }, which obeys 

equation (5). It also differs from the positron {  ,   }, which obeys 

equation (7).  

 

Where the electron couples to the background QPAD, the new particle 

couples to the conjugate of the background QPAD. 

The coupling factor 

Multiplying both sides of the equation of motion for the electron: 

 

         
 

with    and then integrate over the full parameter space gives: 

 

∫        
 

   ∫          
 

  ∫|  
 
|
 
     

 

  

 

Thus, the coupling factor   can be computed from the QPAD  . 

The Majorana equation 
The Majorana equation deviates from the Dirac equation in that is applies 

another sign flavor of QPAD   as the wave function. That other sign 

flavor is still coupled to the background field    . 

(14) 

(1) 

(2) 
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The conjugated equation defines the anti-particle. 

 

         
   

 

The particle is represented by the ordered pair {  ,   }. The 

corresponding flip does not switch the handedness. 

The Majorana equation is thought to hold for neutrinos, which are 

neutral. Equation (2) will then hold for the anti-neutrino. 

The coupling coefficient    for the neutrino follows from: 

 

∫        
 

    ∫ 
         

 

   ∫| 
 
 
|
 
     

 

   

 

The next particle 
We have exploited:  

 

         
 

and 

 

        
  

 

The next possibility would be: 

 

        
  

 

The conjugated equation is: 

 

         
   

 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 
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The particle is represented by the ordered pair {  ,   }. The 

corresponding flip does switch the handedness. 

Like the electron it will have charge, but its charge will be three times 

lower, because only one instead of three imaginary base vectors cause the 

switch in handedness. Of course, this is an opportunistic interpretation, 

but it seems to fit when we assume that the particle is a down quark with 

charge equal to -⅓e. 

 

The formula for the coupling factor    is: 

 

∫        
 

    ∫ 
         

 

   ∫| 
 
 
|
 
     

 

   

 

 

No coupling 
The last possible form in which the wave function couples to the 

background field is: 

 

         

 

The formula for the coupling factor   is: 

 

∫        
 

   ∫          
 

  ∫|  
 
|
 
     

 

  

 

∫        
 

  ∫ | |    
 

   

 

Presence does not leak. So, 

 

   . 

The free QPAD 
When for sign flavor    the coupling factor   is zero then: 

(5) 

(1) 

(2) 

(3) 

(4) 
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   〈 ,  〉 

 
        

     
     

 

It means that a change    
  in the speed of the current goes together with 

a rotation   of the current  

 
       

 

and/or a new field  : 

 
      

  

 

For comparison, in the equations of Maxwell25 the field   is defined as: 

 
      

     
       

  

 

In those equations   is the electric field and   is the magnetic field. 

However here these fields have a more general meaning. 

 

Thus equation (3) means: 

 
    

 

More interesting is the corollary  

 
        

 
         

                     

 

                                                 
25http://en.wikipedia.org/wiki/Maxwell%27s_equations#Potential_formulation   

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

http://en.wikipedia.org/wiki/Maxwell%27s_equations#Potential_formulation
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       〈 ,  〉            
  

 
          

    
    

 

Thus 

 

        
    

 

Or 

       

 

Further 

 

  
   
   〈 ,    

 〉   〈 ,    〉  〈 ,   
 〉       

  

 

Thus: 

 

       

 

With other words a free (= not coupled)    is harmonic. This holds for all 

QPAD’s. 

Reflection 
We have now exhausted all possibilities for coupling a QPAD sign flavor 

to the background field. We could link the analyzed particles to electrons, 

neutrinos, down quarks, photons and gluons. Their antiparticles fit as 

well. The free QPAD’s are bosons and corresponds to a photon or a gluon. 

The others are fermions.  

 

The ordered pair {ψˣ , ψʸ  } represents a category of elementary particle 

types. 

For antiparticles all participating fields and the nabla operator conjugate. 

Photons and gluons have a zero coupling factor. Apart from these bosons, 

the above treated particles appear to be fermions.  

We can now try to establish the apparent rules of the game. The rules are: 

(10) 

(11) 

(12) 

(13) 

(14) 
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 If the coupling takes place between two QPAD sign flavors with 

different handedness, then the corresponding particle is charged.  

 The charge depends on the number and on the direction of the base 

vectors that differ.  

 The count for each difference is ±⅓e. 

 

The scheme does not discriminate generations of elementary particles. 

 

No elementary particle exists that obeys the rules and features electric 

charge ⅔e. Such a particle may exist as a composite.  Thus, according to 

these rules the up-quarks are not elementary particles. For that reason, 

they do not belong to the standard model. 

 

The elementary particles that are not yet covered are    and    bosons 

and Z bosons. We like to proceed in a similar way, but the coupling with 

the background QPAD is used up. Now let us try other couplings.  

 

We already encountered one, the ordered pair of sign flavors {  ,   } 

that obeys 

 

          
 

The coupling changes the handedness, so the particle is charged. It has 

much in common with the positron. Still it is not the anti-particle of the 

electron. It might exist, but then it probably hides behind the positron. 

Anisotropic coupling fields 
We have explored all particles that make use of the isotropic background. 

These particles appear to be fermions. This means that they have half 

integer valued spin. What spin actually is, is not explained in this paper. 

Next we like to explore particles that couple to anisotropic fields. These 

(1) 
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particles will appear to be bosons. It means that they all have integer 

valued spin. 

The cross-sign flavor equations 

These equations describe the situation that a flip is made from a   
 

 field 

to a    
 

 field or vice versa. The direction   might or might not play a role. 

 

   
 
        

 
 

 

The conjugated equation is: 

 

    
 
        

 
 

 

Another form is 

 

   
 
        

 
 

 

The conjugated equation is: 

 

    
 
        

 
 

 

 

The sign flavor switch affects three imaginary base vectors and flips the 

handedness. As a consequence the particles have a full electric charge. It 

concerns two particles, the    and the    bosons. These bosons carry 

electrical charges. 

The    and    bosons are considered to be each other’s antiparticle. It is 

also possible that they hide between each other’s antiparticle. 

 

  
 
    
 
       

 
   
 

 

 

∫  (  
 
   
 
)    

 

     ∫ (  
 
   
 
)    

 

      

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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∫ (  
 
    
 
)    

 

     ∫ (  
 
   
 
)    

 

      

 

The Z boson 
The particle that obeys: 

 

         
  

 

Is a neutral boson. 

 

∫  (  
 
    )    

 

    ∫ (  
 
   
 
)    

 

      

 

Another possibility is: 

 

          
  

 

Again these particles may hide between each other’s anti-particle. 

General form 
The general form of the equation for particle {  ,   } is: 

 
         

 

For the antiparticle: 

 
            

 

For all particles holds: 

 

(7) 

(8) 

(1) 

(2) 
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      〈 , 〉       
 

        
     

        

 

∫        

 

 

 

∫         

 

 

 

The factor g is real and non-negative. 

Further, the equation for coupling factor   

 

∫ (      )   
 

   ∫(     )   
 

  ∫|  |    
 

 

 

An equivalent of the Lagrangian may look like 

 
                   

Higher order couplings 
Couplings that constitute composite particles from elementary particles or 

other composite particles are not treated here. It is assumed that during 

these couplings the constituting elementary particles keep their basic 

properties; 

 coupling factor,  

 electric charge  

 and angular momentum. 

 

The properties that characterize the coupling event are sources of 

secondary fields. These fields are known as physical fields. 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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It is thought that these secondary fields play a major role in the higher 

order couplings. The reason for this fact is that the mentioned coupling 

properties influence the curvature of the parameter space. 

This fact would mean that higher order coupling is not well described by 

a corresponding wave equation. Instead it is better described by an 

equation that describes the dependence of the local curvature on the 

locally existing coupling properties. An equation that does something like 

that is the Kerr-Newman metric equation.  

Curvature 

Hilbert Book Model ingredients 
Each page of the Hilbert Book Model consists of three quite independent 

ingredients. 

 

Ingredient 1: The quantum logic, or equivalently, its lattice 

isomorphic companion; the set of closed subspaces of an infinite 

dimensional separable Hilbert space 

 

Ingredient 2: A background coordinate system that is taken from 

the continuum eigenspace of an operator that resides in the 

Gelfand triple of the separable Hilbert space. 

 

Ingredient 3: A set of QPAD’s that each couple an eigenvector of a 

particle position operator that resides in the Hilbert space to the 

background coordinate system. 

 

Couplings between QPAD’s that lead to elementary particles are 

characterized by three categories of properties: 

 

 Coupling factor 

 Electric charge 

 Angular momentum 
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These properties influence the curvature that affects the third ingredient.  

The way that these properties influence curvature is described by metric 

equations, such as the Kerr-Newman metric formula. 

The three ingredients have their own properties and habits. For example 

the QPAD’s may feature a maximum speed of information transfer, while 

the curvature of the background coordinate system acts instantaneously 

on changes of the controlling properties. 

Black hole features 
A black hole can be considered as a geometric abnormality. Since light is 

the carrier of it, information can pass nor leave its skin. No distant 

observer can ever see that a black hole absorbs something. Still intelligent 

observers know that an observed BH has grown to its current size. The 

observer derives that information from features in the surround of the 

BH. However, these features must already have received enough 

information about the properties of the BH. Otherwise, the intelligent 

observer could not have derived his knowledge from those features. Thus 

the features got the message about the properties of the BH by a 

messenger that goes far faster than light. All this can be explained by the 

fact that the spread of the influence of the three properties; coupling 

factor, electric charge and angular momentum have on curvature acts 

instantaneously. This influence runs over the whole extent of the 

universe. 

In comparison the transport of information runs via QPAD’s and is 

limited by the maximum speed in that medium. These facts can be 

explained by the difference between the habits of the corresponding 

media. 

For a part, the features that are described here for black holes also hold for 

other geometric abnormalities that have a much smaller scale.  

Curvature 
The coordinate system that is taken from the eigenspace of an operator 

that resides in the Gelfand triple is not applied directly. Instead a 
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quaternionic distribution that uses the values of the flat coordinate system 

that is taken from the Gelfand triple as its parameters is used as the 

observed coordinate system. 

 

Curvature can be described by the combination of a preselected 

coordinate system that defines location in a non-curved space and a local 

metric that describes the curvature in terms of that coordinate system. As 

is described above, the flat coordinate system is taken from the Gelfand 

triple. 

Coordinate system 
Several coordinate systems are possible. The most common coordinate 

systems for a non-curved three dimensional space are: 

 

 Cartesian coordinates 

 Spherical coordinates 

 

Alternatives for spherical coordinates are: 

 

 Schwarzschild coordinates26 

 Kruskal-Szekeres coordinates27 

 Lemaitre coordinates28 

 Eddington–Finkelstein coordinates29 

 

The advantage of the alternative coordinates is that they avoid 

unnecessary singularities. However, these alternatives are only relevant 

for situations in which the Schwarzschild radius plays a significant role. 

This is certainly the case for black holes and their environment, but it 

becomes irrelevant in the realm of elementary particles. 

                                                 
26 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
27 http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates  
28 http://en.wikipedia.org/wiki/Lemaitre_coordinates  
29 http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates  

http://en.wikipedia.org/wiki/Schwarzschild_coordinates
http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates
http://en.wikipedia.org/wiki/Lemaitre_coordinates
http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates
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Metric 
The best suitable local metric equation for our purposes is the Kerr-

Newman metric30. It uses three local properties. These properties are: 

 

 The coupling factor   

 The electric charge   

 The angular momentum   

 

The angular momentum   includes the spin  . 

 

This metric uses the sum of a category of properties that are collected 

within the observed sphere. However, the summation produces different 

centers of activity for different property categories. Thus, these centers 

need not be at the same location. However, for large enough selected 

radius   and applied to black holes or single particles, these centers 

coincide.  

 

The simplest interpretation of the Kerr-Newman metric can be taken on 

the surface of a sphere that has a selected radius  . 

 

The formula uses three characteristic radii. The largest characteristic 

radius plays the most prominent role.  

 

This fact introduces the notion of geo-cavity. 

Scales 
The charge-to-mass ratio     is typically larger in smaller systems31. For 

most astrophysical systems, 

 

     ,  

 

                                                 
30 Appendix;Metric tensor field;Local metric equation 

31 For deeper investigation, see: http://arxiv.org/abs/0802.2914  

http://www.linkedin.com/redirect?url=http%3A%2F%2Farxiv%2Eorg%2Fabs%2F0802%2E2914&urlhash=-sLQ&_t=tracking_disc
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while for a Millikan oil drop,  

 

       .  

 

Going all the way down to elementary particles, the value for the electron 

is  

        .  

 

To achieve balance we require that Newton's gravitational force    has the 

same magnitude as Coulomb's force   , that is 

 
|  |  |  |  

 

To be more specific, let us assume that       where   is the elementary 

charge. We then adjust the mass   to the value for which the forces are 

balanced. This gives the Stoney mass  

 
                  

 

It is only one order of magnitude lower than the Planck mass  

 

   √          

The ratio between them is given by the square root of the fine structure 

constant,  

 
  
  
 √  √          

 

Thus, in case of electric charges, the Coulomb forces are nearly in balance 

with the gravitational forces at the Planck scale. However, at subatomic 

scale this picture is disturbed by the spin. 

 

For subatomic systems there is an additional phenomenon which comes 

into play. In fact, according to general relativity, the gravitational field 
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tends to become dominated by the spin at distances of the order of the 

Compton wavelength. The relevant quantity which governs this behavior 

is the ratio      where   is the (spin) angular momentum. For an 

electron, 

 

         .  

 

As a consequence, the gravitational field becomes dominated by 

gravitomagnetic effects in the subatomic domain. This fact has important 

consequences for the electromagnetic fields of spinning charged particles. 

 

The four known gravitational and electromagnetic multi-pole moments of 

the electron are:  

 the mass   ,  

 the spin       ,  

 the charge    

 the magnetic moment   
   

   
 

The spin is a gravitomagnetic dipole moment, i.e. a gravitational analogue 

of the magnetic dipole moment. 

 
  
   
      

 

The corresponding Kerr-Newman field is therefore dominated by the spin 

in the subatomic domain. In particular, it has no event horizon and it has 

no ergo-region. (The ergo-region is a region of space-time located outside 

the event horizon of a rotating black hole where no object even if traveling 

at the speed of light, can remain stationary.) 
 

An important conclusion is that gravity tends to become spin dominated in the 

subatomic domain. 
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Appendix 

Logic 

History of quantum logic 

Around 1930 John von Neumann and Garrett Birkhoff were searching for 

an acceptable explanation of the results of experiments that showed that 

the execution of an observation of a very small object can completely 

destroy the validity of an earlier observation of another observable of that 

object. The Schrödinger equation that agreed with the dynamic behaviour 

of the particles already existed. Not much later Heisenberg’s matrix 

formulation became popular as well. Quite soon the conclusion was made 

that something was fundamentally wrong with the logic behind the 

behaviour of small particles. These small objects show particle behaviour 

as well as wave behaviour and they show quantization effects. It was 

found that the distribution axiom of classical logic had to be changed. 

Soon it became apparent that the lattice structure of classical logic must be 

weakened from an ortho-complementary modular form to an ortho-

complementary weakly modular lattice. The quantum logic was born. The 

next step was to find a useful mathematical presentation of this new logic. 

A historic review of what happened can be found in: “Quantum Theory: 

von Neumann” vs. Dirac; http://www.illc.uva.nl/~seop/entries/qt-nvd/. It 

includes extensions of the concept of Hilbert space and application of 

these concepts to quantum field theory. Another source is: 

http://www.quantonics.com/Foulis_On_Quantum_Logic.html.  

Quantum logic 

Elementary particles behave non-classical. They can present themselves 

either as a particle or as a wave. A measurement of the particle properties 

of the object destroys the information that was obtained from an earlier 

measurement of the wave properties of that object.  

With elementary particles it becomes clear that that nature obeys a 

different logic than our old trusted classical logic. The difference resides 

in the modularity axiom. That axiom is weakened. The classical logic is 

congruent to an orthocomplemented modular lattice. The quantum logic 

http://www.illc.uva.nl/~seop/entries/qt-nvd/
http://www.quantonics.com/Foulis_On_Quantum_Logic.html
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is congruent to an orthocomplemented weakly modulare lattice. Another 

name for that lattice is orthomodular lattice. 
  

Lattices 

A subset of the axioms of the logic characterizes it as a half ordered set. A 

larger subset defines it as a lattice. 

A lattice is a set of elements  ,  ,  ,  that is closed for the connections ∩ 

and ∪. These connections obey: 

  

 The set is partially ordered. With each pair of elements  ,   belongs 

an element  , such that       and      .  

 The set is a ∩half lattice if with each pair of elements  ,   an 

element   exists, such that       ∩   .  
 The set is a ∪half lattice if with each pair of elements  ,   an 

element   exists, such that       ∪   .  
 The set is a lattice if it is both a ∩half lattice and a ∪half lattice. 

 

The following relations hold in a lattice:  

 

  ∩        ∩    
 

(  ∩   )  ∩        ∩  (  ∩   ) 
 

  ∩ (  ∪   )      

 

  ∪        ∪    
 

(  ∪   )  ∪        ∪  (  ∪   ) 
 

  ∪ (  ∩   )      

 

The lattice has a partial order inclusion  : 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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a   b   a   b = a 

 

A complementary lattice contains two elements   and   with each element 

a an complementary element a’ such that: 

 

  ∩        
 

  ∩        
 

  ∩        

 

  ∪         
 

  ∪        
 

  ∪        

 

An orthocomplemented lattice contains two elements   and   and with 

each element   an element    such that: 

 

  ∪         
 

  ∩         
 

(  )      
 

                
 

  is the unity element;   is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

  ∩ (  ∪   )    (  ∩   )  ∪  (   ∩   ) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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  ∪ (  ∩   )    (  ∪   )  ∩  (  ∪   ) 
 

A modular lattice supports: 

 

(  ∩   )  ∪ (  ∩   )      ∩ (  ∪  (  ∩   )) 
 

A weak modular lattice supports instead: 

 

There exists an element   such that 

 

        (  ∪   )  ∩        ∪ (  ∩   )  ∪ (  ∩   ) 
 

where   obeys: 

 

(  ∪   )  ∩        
 

  ∩        
 

  ∩        
 

[(     )     (     )          

 

In an atomic lattice holds  

 
                              

 
               (          ∩   )    (               ∩   )  

 

  is an atom 

 

Both the set of propositions of quantum logic and the set of subspaces of a 

separable Hilbert space Ң have the structure of an orthomodular lattice. 

In this respect these sets are congruent. 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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In Hilbert space, an atom is a pure state (a ray spanned by a single vector). 

 

Classical logic has the structure of an orthocomplemented distributive 

modular and atomic lattice. 

Quantum logic has the structure of an orthomodular lattice. That is an 

orthocomplented weakly modular and atomic lattice. The set of closed 

subspaces of a Hilbert space also has that structure.  

Proposition 

In Aristotelian logic a proposition is a particular kind of sentence, one 

which affirms or denies a predicate of a subject. Propositions have binary 

values. They are either true or they are false. 

Propositions take forms like "This is a particle or a wave". In quantum logic 

"This is a particle." is not a proposition. 

In mathematical logic, propositions, also called "propositional formulas" 

or "statement forms", are statements that do not contain quantifiers. They 

are composed of well-formed formulas consisting entirely of atomic 

formulas, the five logical connectives32, and symbols of grouping 

(parentheses etc.). Propositional logic is one of the few areas of 

mathematics that is totally solved, in the sense that it has been proven 

internally consistent, every theorem is true, and every true statement can 

be proved. Predicate logic is an extension of propositional logic, which 

adds variables and quantifiers. 

In Hilbert space a vector is either inside or not inside a closed subspace. A 

proper quantum logical proposition is “Vector |f> is inside state s”. 

In Hilbert space, an atomic predicate corresponds with a subspace that is 

spanned be a single vector. 

                                                 
32 http://en.wikipedia.org/wiki/Logical_connective  

http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective
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Predicates may accept attributes and quantifiers. The predicate logic is 

also called first order logic. A dynamic logic can handle the fact that 

predicates may influence each other when atomic predicates are 

exchanged. 

Observation 

In physics, particularly in quantum physics, a system observable is a 

property of the system state that can be determined by some sequence of 

physical operations. This paper distinguishes between measurements and 

observations. 

 

 With an observation the state is considered as a linear combination 

of eigenvectors of the observable. An observation returns the 

statistical expectation value of the eigenvalue of the observable.  

 A measurement transforms the observed state to one of the 

eigenvectors of the observable. What happens depends on the 

characteristics of the measuring equipment. The measurement can 

be seen as a combination of a transformation and an observation. 

 

Depending on the characteristics of the measuring equipment a 

measurement and a clean observation can give the same result. 

 

With this interpretation of the concept of observation it is possible to let 

states observe other states. A state might do a transformation before doing 

an observation but in general it fails the equipment to arrange that 

transformation. In nature observations are far more common than 

measurements. 

 

Numbers 

Sign selections 
Four possibilities exist due to the sign selections of the quaternions. One 

sign selection is covered by the conjugation a→a*. This selection switches 
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the sign of all three imaginary base vectors. The other is caused by 

switching the sign of a single binary base vector a→a⊗. For this sign 

selection one of the three available base vectors is selected. When 

relevant, then these choices are indicated by colors (r, g or b). Both 

methods switch the handedness (chirality). When both sign selections 

combine then the superscript a→a⊕ is used. This combination does not 
switch handedness. Also this selection is colored.  
 
It is also possible to use the extended quaternionic conjugation concept: 
 

       
 

 ⊗     
 

 ⊕     ⊗     

 

The encircled number stands for the number of switched base vectors. For 

the single sign switch   , three independent direction selections are 

possible. We indicate these choices with r, g and b. 

Similarly for the double sign switch   , three independent direction 

selections are possible. We indicate these choices also with r, g and b. This 

direction belongs to the non-switched direction. 

Without closer description the value of          . It means that the 

colors are suspected to be the same. 

The change from   to   or    cause a switch of the handedness of  . 

 

          (  )
 
   

 

          
 

           
 

The effects of the quaternionic conjugation are visible in the base numbers 

1, i, j, k: 

(1) 

(2) 

(3) 

(4) 

(5) 
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The blue colored sign selection is given by 

 

                   

 

                   
 

In the blue colored sign selection, k follows the rules of complex 

conjugation. This renders its direction to a special direction.  

 

The selected color direction is called the longitudinal direction. The the 

perpendicular directions are the transverse directions. Apart from that 

they are mutual perpendicular and perpendicular to the longitudinal 

direction, they have no preferred direction.  

Sign selections and quaternionic distributions 

Quaternionic distributions are supposed to obey a distribution wide sign 

selection. Thus, the distribution is characterized by one of the eight 

quaternionic sign flavors.  

 

  ,   ,   ,   ,   ,   ,   ,       

 

Many of the elementary particles are characterized by an ordered pair of 

two field sign flavors. These fields are coupled with a coupling strength 

that is typical for the particle type. These particles obey a characteristic 

continuity equation33. 

Product rule 

We use the quaternionic product rule.  

                                                 
33 Hilbert field equations; Continuity equation for charges 

(6) 

(7) 

(8) 

(9) 
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        〈 ,  〉              
 

〈 ,  〉                 
 

     (         )   (         )   (         ) 

Operators 

The sign selections of operator    (  ,  ) depend on the sign selections 

of position operator Q, which determines the sign selections for its 

eigenvalues    (  ,  ).  

 

Normally we consider the sign selection for operators Q and   fixed to 

operators    and   . Sometimes we chose    instead of operator  . 
 

Quaternionic sign selection are directly connected with the concepts of 

parity and spin. 

 

For quaternionic functions symmetry reduces the differences that are 

produced by conjugation and anti-symmetry stresses the differences. The 

same holds for operators. 

Matrices 

Another possibility is to present sign selections by matrices34. 

 

   [
    
  
] ,    [ 

   
  

] ,    [
  
   

] 

 

The    matrix switches the complex fields that together form the 

quaternion field. 

 

[
  
    
]  [
  
  
] [
  
    
] 

 

                                                 
34 http://www.vttoth.com/qt.htm  

(1) 

(2) 

(3) 

http://www.vttoth.com/qt.htm
http://www.vttoth.com/qt.htm
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The    matrix switches the real parts and the imaginary parts of the 

complex fields that together form the quaternion field and it switches 

both fields. 

 

 [
   
    
]  [
   
  

] [
  
    
] 

 

The    matrix switches the sign of the first complex field. 

 

[
   
    
]  [
   
  

] [
  
    
] 

 
  
             

 

The Pauli matrices are involutory. 

The determinants35 and traces36 of the Pauli matrices are: 

 
   (  )     

 
  (  )    

 

   [
   
    

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

                                                 
35 http://en.wikipedia.org/wiki/Determinant  
36 http://en.wikipedia.org/wiki/Trace_of_a_matrix  

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Trace_of_a_matrix
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Trace_of_a_matrix
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The    matrices together select the imaginary base vectors. The   matrix 

exchanges the sign of all imaginary base vectors. Thus the   matrix 

implements the quaternionic conjugate. The conjugation also exchanges 

right handedness against left handedness. 

 

Another way of exchanging right handedness against left handedness is 

the exchange of the sign of one of the imaginary base vectors. 

 

[
  
    
]  [
  
  
] [
  
    
] 

 

   [
  
  
]  

 

The gamma matrices37 translate directly from complex fields to fully 

featured quaternionic fields. In this way four sign flavors of quaternionic 

fields are constructed from four complex fields. This is represented by 

four dimensional matrices and four dimensional spinors. The equivalent 

of the   matrix is the    matrix. 

 

[

   
    
   
    

]  [

    
    
    
    

] [

   
    
   
    

] 

 

It is false to interpret the matrices as vectors. They form a shorthand for 

handling spinors. 

 

The Pauli matrix    represents the sign selection a→a⊗, while the   matrix 

represents the sign selection a→a*. The other Pauli matrices and the   

matrices implement the resulting part of the quaternion behavior for 

spinors. 

                                                 
37 Appendix; Gamma matrices 

(5) 

(6) 

(7) 
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Construction 
The Cayley-Dickson construction formula enables the generation of a 

quaternion from two complex numbers: 

 

p = a0 + a1k + i(b0 + b1k) 

 

q = c0 + c1k + i(d0 + d1k) 

 

 (a, b) (c, d) = (ac – db*; a*d + cb) 

 

r = pq 

 

r0= a0c0 – a1c1 – b0d0 – b1d1 

 

rk= a0c1 – a1c0 – b0d1+ b1d0 

 

ri= a0d0 + a1d1 + b0c0 – b1c1 

 

rj= –a1d0 + a0d1 + b0c1+ b1c0 

 

Apart from the Cayley-Dickson construction the 2n-on construction 

exists.38 

Colored signs 
In the following text, the consequences for the product of the sign choices 

of the conjugate    is indicated by blue color  . The extra consequence   

for the product of the choice of the handedness  of the cross product is 

indicated by red color  . The mixed sign selection   acts on both sign 

colors. 
The handedness can be switched by changing the sign of all imaginary base 
vectors. 
 

       (  )(  )        

                                                 
38 Appendix; 2n-on construction. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 
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The sign selections split the ring of quaternions in four different 

realizations. 

Warren Smith’s numbers 

2n-on construction 

The 2n-ons use the following doubling formula 

 
( ,  )( ,  )   (     (    ) , (    )  (  (  ((   )   ) ) ) ) 

 
Up until the 16-ons the formula can be simplified to 

 
( ,  )( ,  )    (          ,       (      ) (   )) 

 
Up to the octonions the Cayley Dickson construction delivers the same as 

the 2n-on construction. From n>3 the 2n-ons are ‘nicer’. 

2n-ons 

Table of properties of the 2n­ons. See 

www.math.temple.edu/~wds/homepage/nce2.ps.  
Type name Lose 

1­ons Reals.    

2­ons Complex 

numbers 

z
*
 = z (the * denotes conjugating);   

the ordering properties that both {z > 0, -z > 0, or z = 0}  

and {w > 0, z > 0 implies w + z > 0, wz > 0}. 

4­ons Quaternions commutativity ab = ba;  

the algebraic closedness property that every univariate 

polynomial  equation has a root.   

8­ons Octonions associativity ab · c = a · bc.  

16­ons (not 

Sedenions!) 

right­alternativity x · yy = xy · y;  

right­cancellation x = xy · y
-1

 ;  

flexibility x · yx = xy · x; left­linearity  (b + c)a = ba + 

ca;  

anti­automorphism ab = ba, (ab)
-1

 = b
-1

 a
-1

 ;  

left­linearity (b + c)a = ba + ca;  

continuity of the map x → xy;  

(1) 

(2) 

http://www.math.temple.edu/~wds/homepage/nce2.ps
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Moufang and Bol identities;  

diassociativity  

32­ons  generalized­smoothness of the map x → xy;  

right­division properties that xa = b has (generically) a 

solution x, and the uniqueness of such an x;  

the “fundamental theorem of algebra” that every 

polynomial having a unique “asymptotically  dominant 

monomial” must have a root; Trotter's formula: 

       [ 
       ]

 
        (  

   

 
)
 

       

 
Type name Retain 

2
n
­ons  Unique 2­sided multiplicative & additive identity elements 1 & 

0; 

Norm­multiplicativity |xy|
2
 = |x|

2
·|y|

2
 ;  

Norm­subadditivity |a + b| ≤ |a| + |b|; 

2­sided inverse a
-1

 = a
*
/|a|

2
 (a # 0);  

a
**

 = a;  

(x ± y)* = x
*
 ± y

*
; 

(a
-1

) 
-1

 = a;  

(a
*
) 

-1
 = (a

-1
)
*
 ;  

|a|
2
 = |a|

2
 = a

*
a;  

Left­alternativity yy · x = y · yx;  

Left­cancellation x = y
-1

 · yx;  

Right­linearity a(b + c) = ab + ac;  

r
th

 power­associativity a
n
 a

m
 = a

n+m 
;  

Scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s real); 

Power­distributivity  (ra
n
 + sa

m
)b = ra

n
 b + sa

m
 b (r, s real);  

Vector product properties of the imaginary part: ab - re(ab) of 

the product for pure­imaginary 2
n
­ons a,b regarded as  (2

n
  - 

1)­vectors; 

xa,b = a,x*b, xa,xb = |x|2·a,b and x,y 

= x*,y* 

Numerous weakened associativity, commutativity, distributivity, 

antiautomorphism, and Moufang and Bol  properties including 

9­coordinate ``niner'' versions of most of those properties; 

contains 2
n-1

­ons as subalgebra. 
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The most important properties of 2n-ons 

If a,b,x,y are 2n-ons, n ≥ 0, and s and t are scalars (i.e. all coordinates are 0 

except the real coordinate) then 

unit: A unique 2n-on 1 exists, with 1·x = x·1 = x. 

zero: A unique 2n-on 0 exists, with 0 + x = x + 0 = x and 0·x = x·0 = 0. 

additive properties: x+y = y+x, (x+y)+z = x+(y+z); 

 x exists with x + ( x) = x   x = 0. 

norm: |x|2 = xx* = x*x. 

norm-multiplicativity: |x|2·|y|2 = |x·y|2. 

scaling: s · x·y = s·x · y = x·s · y = x · s·y = x · y·s. 

weak-linearity: (x + s)·y = x·y + s·y and x·(y + s) = x·y + x·s. 

right-linearity: x·(y + z) = x·y + x·z. 

inversion: If x ≠ 0 then a unique x-1 exists, obeying x-1·x = x·x-1 = 1. It is x-1 = 

x·|x|-2. 

left-alternativity: x · xy = x2·y. 

left-cancellation: x · x-1·y = y. 

effect on inner products: x·a,b = a, x*·b, x,y = x*, y*,  x*·a, x-1·b = 

a,b,  

and x·a,x·b = |x|2·a,b. 

Conjugate of inverse: (x-1)* = (x*)-1. 

Near-anticommutativity of unequal basis elements: ek2 =  1 and ek·el* = 

 el·ek*  if k ≠ l.  

(Note: the case k; l > 0 shows that unequal pure-imaginary basis elements 

anticommute.) 

Alternative basis elements: ek·el · ek = ek · el·ek, el·ek · ek = el · ek·ek, and ek·ek 

·el = ek · ek·el. (However, when n ≥ 4 the 2n-ons are not flexible i.e. it is not 

generally true that x·y · x = x · y·x if x and y are 16-ons that are not basis 

elements. They also are not right-alternative.) 

Quadratic identity: If x is a 2n-on (over any field F with charF ≠ 2), then x2 

+ |x|2 = 2·x re x 

Squares of imaginaries: If x is a 2n-on with re x = 0 (“pure imaginary”) 

then x2 =  |x|2 is nonpositive pure-real. 

Powering preserves imx direction 
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Niners 

Niners are 2n-ons whose coordinates with index > 8 are zero. The index 

starts with 0. 

9-flexibility xp · x = x · px, px · p = p · xp. 

9-similitude unambiguity xp · x-1 = x · px-1, px · p-1 = p · xp-1. 

9-right-alternativity xp · p = x · p2, px · x = p · x2. 

9-right-cancellation xp-1 · p = x, px-1 · x = p. 

9-effect on inner products x, yp = xp, y, xp, yp = |p|2x, y. 

9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx. 

9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp). 

9-coordinate-distributivity ([x + y]z)0;:::;8 = (xz + yz)0;:::;8. 

9-coordinate-Jordan-identity [xy · xx]0;:::;8 = [x(y · xx)]0;:::;8. 

9-anticommutativity for orthogonal imaginary 2n-ons 

If p, x = re p = re x = 0 then px =  xp. 

9-reflection If |a| = 1 and the geometric reflection operator is defined 

below then  (refl[a](y))0;:::;8 = (a · y*a)0;:::;8, and  {refl[a](y)}*0;:::;8 = (a*y · a*)0;:::;8, 

and 

if either a or y is a niner then  refl[a](y) = a · y*a and  refl[a](y) = a*y · a*. 

 

    [ ⃗]( ⃗)     ⃗   
 〈 ⃗,  ⃗〉

| ⃗| 
 ⃗ 

What holds for the niners, also holds for the octonions. 

Quaternionic distributions 

Sign flavors 

Quaternionic distributions are quaternion valued functions of a 

quaternionic parameter. If not otherwise stated, the quaternionic 

parameter space is not curved. Quaternions feature sign selections. Inside 

a quaternionic distribution the quaternionic sign selections of the values 

are all the same. Due to the four possible sign selections of quaternions, 

quaternionic distributions exist in four sign flavors. 

Differentiation 

A quaternionic distribution f(q) can be differentiated. 

(3) 
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 ( )       ( )  〈 ,  ( )〉     ( )      ( )  (    ( )) 

 

The colored   and   signs refer to the influence of conjugation of  ( ) on 

quaternionic multiplication. The  sign refers to the influence of reflection 

of  ( ). 

Fourier transform 

In Fourier space differentiation becomes multiplication with the canonical 

conjugate coordinate   and therefore the equivalent equation becomes: 

 

 ̃( )    ̃( )

      ̃( )  〈 ,  ̃( )〉     ̃( )     ̃ ( )

 (    ̃( )) 

 

For the imaginary parts holds: 

 

 ( )       ( )      ( )  (    ( )) 

 

 ̃( )      ̃( )     ̃ ( )  (    ̃( )) 

 

By using39  

 
     ( )    

 

and 

 

〈 ,    ( )〉 = 0 

 

It can be seen that for the static part (   ( )   ) holds: 

 

 ( )      ( )  (    ( )) 

                                                 
39 http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf ;Formulas:F.104, F.105 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
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 ̃( )     ̃ ( )  (    ̃( )) 

Helmholtz decomposition 

Formula (7) of the last paragraph leads to the Helmholtz decomposition. 

The Helmholtz decomposition splits the static vector field   in a 

(transversal) divergence free part    and a (one dimensional longitudinal) 

rotation free part   .  

 
                

 

Here    is a scalar field and   is a vector field. In quaternionic terms    and 
  are the real and the imaginary part of a quaternionic field  .   is an 
imaginary quaternion.40 
 

The significance of the terms “longitudinal”and “transversal” can be 

understood by computing the local three-dimensional Fourier transform 

of the vector field  , which we call  ̃. Next decompose this field, at each 

point  , into two components, one of which points longitudinally, i.e. 

parallel to  , the other of which points in the transverse direction, i.e. 

perpendicular to  .  

 ̃( )   ̃ ( )   ̃ ( )  

〈 ,  ̃ ( )〉    

   ̃ ( )    

The Fourier transform converts gradient into multiplication and vice 

versa. Due to these properties the inverse Fourier transform gives: 

         

〈 ,   〉    

                                                 
40 See next paragraph 

(8) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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So, this split indeed conforms to the Helmholtz decomposition. 

This interpretation relies on idealized circumstance in which the 

decomposition runs along straight lines. This idealized condition is in 

general not provided. In normal conditions the decomposition and the 

interpretation via Fourier transformation only work locally and with 

reduced accuracy. 

 

Continuity equation 

When applied to a quaternionic probability amplitude distribution 

(QPAD), the equation for the differentiation leads to a continuity 

equation. 

 

When   ( ) is interpreted as a charge density distribution, then the 

conservation of the corresponding charge is given by the continuity 

equation: 

 

Total change within V = flow into V + production inside V 

 
 

  
∫       

 

 ∮  ̂  
 

 
   

 

 ∫     

 

 

 

∫       

 

 ∫〈 ,  〉   

 

 ∫     

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding surface S, 

 ( ,  ) is the velocity at which the charge density   ( ,  ) enters volume V 

and    is the source density inside V. In the above formula   stands for 
          

 

It is the flux (flow per unit area and unit time) of    . 

(7) 

(1) 

(2) 

(3) 

(4) 
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The combination of   ( ,  ) and  ( ,  ) is a quaternionic skew field  ( ,  ) 

and can be seen as a probability amplitude distribution (QPAD). 

 
       

 

 ( ,  )  ( ,  ) can be seen as an overall probability density distribution of 

the presence of the carrier of the charge.   ( ,  ) is a charge density 

distribution.  ( ,  ) is the current density distribution. 

The conversion from formula (2) to formula (3) uses the Gauss theorem41. 

This results in the law of charge conservation:  

 

  ( ,  )      ( ,  )  〈 , (  ( ,  ) ( ,  )     ( ,  ))〉 

 
     ( ,  )  〈 ,  ( ,  )   ( ,  )〉 

 
     ( ,  )  〈 ( ,  ),    ( ,  )〉  〈 ,  ( ,  )〉   ( ,  ) 

 
 〈 , ( ,  )〉 

 

The blue colored ± indicates quaternionic sign selection through 

conjugation of the field  ( ,  ). The field  ( ,  ) is an arbitrary 

differentiable vector function. 

 
〈 ,    ( ,  )〉    

 

 ( ,  )      ( ,  ) is always divergence free. In the following we will 

neglect  ( ,  ). 

 

In Fourier space the continuity equation becomes: 

 
 ̃ ( ,  )     ̃ ( ,  )  〈 ,  ̃( ,  )〉 

 

                                                 
41 http://en.wikipedia.org/wiki/Divergence_theorem  

(5) 

(6) 

(7) 

(8) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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Equation (6) represents a balance equation for charge density. What this 

charge is will be left in the middle. It can be one of the properties of the 

carrier or it can represent the full ensemble of the properties of the carrier. 

 

This only treats the real part of the full equation. The full equation runs: 

 
 ( ,  )    ( ,  )    ( ,  )   ( ,  ) 

 
      ( ,  )  〈 ,  ( ,  )〉     ( ,  )      ( ,  )

 (    ( ,  )) 

 
     ( ,  )  〈 ( ,  ),    ( ,  )〉  〈 ,  ( ,  )〉   ( ,  )  

 
    ( ,  )      ( ,  )      ( ,  ) 

 

 ( (  ( ,  )    ( ,  )   ( ,  )     ( ,  )) 

 
  ( ,  )       ( ,  )  〈 ( ),    ( ,  )〉  〈 ,  ( ,  )〉   ( ,  ) 

 
 ( ,  )      ( ,  )      ( ,  ) 

 

 ( (  ( ,  )    ( ,  )   ( ,  )     ( ,  ))) 

 

The red sign selection indicates a change of handedness by changing the 

sign of one of the imaginary base vectors. Conjugation also causes a 

switch of handedness. It changes the sign of all three imaginary base 

vectors. 

The origin of physical fields. 

The Hilbert Book Model is a simple model of physics that is strictly based 

on traditional quantum logic and on the lattice isomorphic model; the set 

of subspaces of an infinite dimensional separable Hilbert space for which 

the inner product is specified by using quaternions42. 

                                                 
42 See: http://www.crypts-of-physics.eu/HilbertBookModelEssentials.pdf 

(9) 

(10) 

(11) 
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This restriction results in the fact that all sets of variables are countable. 

At the same time most observations are taken from a continuum. As a 

result the set of potential observations overwhelms the set of variables43. 

The situation is comparable to the situation in which the number of 

equations is far larger than the number of variables that should form the 

result. Probably, the set of equations will appear to be inconsistent. In 

order to cure the situation, it is common to assume that the observations 

are inaccurate. The inaccuracy must be stochastic or with other words the 

observation result must be blurred. 

Nature applies a similar solution, but instead of a simple spread function 

in the form of a probability density distribution, nature applies a 

quaternionic probability amplitude distribution (QPAD). This QPAD can 

be split into a real part that represents a “charge” density distribution and 

an imaginary part that represents a corresponding “current” density 

distribution. The “charge” represents the set of properties of the thing that 

is being observed. The parameter of the distribution represents the 

location at which the “charge” is observed. The squared modulus of the 

QPAD represents the probability density of the presence of the “charge” 

at the location that is specified by the parameter. 

This approach transfers the dynamics of the observation into a streaming 

problem. The equation of motion of the “charge” becomes a continuity 

equation44. 

The properties of particles move according to the above principle. With 

each elementary particle belong one or more QPAD’s that act as private 

fields of the particle and that determine its dynamic behavior when it 

moves freely. However, these fields overlap. In this way these fields and 

the corresponding particles interact. 

A subset of the elementary particles is massless. These particles 

correspond to a single QPAD. That does not say that their fields cannot 

overlap.  

                                                 
43 A continuum has a higher cardinality than a countable set.  
44 Another name for “continuity equation” is “balance equation”. 
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All other elementary particles are identified by an ordered pair of QPAD’s 

that are two field sign flavors of the same base field. The coordinate 

system, whose values are used as field parameter, has its own field sign 

flavor and acts as a sign flavor reference. 

Categories of fields 

Two categories of fields exist.  

Primary fields 

The first category consists of quaternionic probability amplitude 

distributions (QPAD’s). The QPAD’s may overlap and through this 

superposition they may form covering fields. The QPAD’s exist in four 

sign flavors. The same holds for the covering fields. The QPAD’s may 

interact. When different sign flavors interact the strength of the local 

interaction is characterized by a coupling factor. The members of this 

category will be called primary fields. 

Secondary fields 

The second category consists of administrator fields. These fields 

administer the effect of interactions on the local curvature of the 

positioning coordinate system. For all properties that characterize a 

coupling of sign flavors of primary fields an administrator field exist that 

registers the influence of that property during interactions on the local 

curvature.  

 

One of these administrator fields is the gravitation field. It administers the 

influence of the strength of the coupling between sign flavors of primary 

fields on the local curvature.  

 

The electromagnetic fields administer the influence of the electric charge 

on the local curvature. 

 

The angular momentum including the spin also influences the local 

curvature. Also this effect is administered.  
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The members of this category will be called secondary fields or 

administrator fields. 

 

All these influences can be administered by using the local metric. This 

generates a metric tensor field. 

Example potential 

The influence of local properties is represented by charges. The charge 

carrier may contain an assembly of charges. 

 

Spatial Harmonic functions45 are suitable charge spread functions. 
For a harmonic function  ( ) holds: 
 

  ( )      ( )     
 

If there is a static spherically symmetric Gaussian charge density ρ (r): 

 

 ( )   
 

√    
    ( | |

 (   )⁄ ) 

where Q is the total charge, then the solution φ (r) of Poisson's equation46, 

 

   ( )   
 ( )

 
 

 

is given by 

 

 ( )  
 

   | |
   (
| |

√  
) 

 

where erf(x) is the error function.  

 

                                                 
45 http://en.wikipedia.org/wiki/Harmonic_function  
46 http://en.wikipedia.org/wiki/Poisson%27s_equation  

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Harmonic_function
http://en.wikipedia.org/wiki/Poisson%27s_equation
http://en.wikipedia.org/wiki/Harmonic_function
http://en.wikipedia.org/wiki/Poisson%27s_equation
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In fact the quaternionic Poisson’s equation represents two separate 

equations: 

 

(  
    )  ( )   

  ( )

 
 

 

(  
    ) ( )   

 ( )

 
 

 

Note that, for | | much greater than σ, the erf function approaches unity 

and the potential φ (r) approaches the point charge potential 
 

   | |
, as one 

would expect. Furthermore the erf function approaches 1 extremely 

quickly as its argument increases; in practice for | | > 3σ the relative error 

is smaller than one part in a thousand47.  

 

The definition of the quaternionic potential ϕ(q) is based on the 

convolution of a quaternionic distribution ρ(q) with the real function  ( ) 

See Newton potential and Bertrand’s theorem in Wikipedia. The real part 

ρ0(q) of the distribution ρ(q) can be interpreted as a charge distribution. 

The imaginary part ρ(q) can be interpreted as a current distribution. 

The convolution blurs the distribution such that the result becomes 

differentiable. 

 

In configuration space holds: 

 

 ( )    ( )  
 

| |
  

 

Reversely, according to Poisson’s equation: 

 
 ( )        ( ) 

 

                                                 
47 http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density 

(5) 

(6) 

(7) 

(8) 

http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density
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The real part of ϕ(q) presents a scalar potential. The imaginary part 

presents a vector potential.  

 
 ( )     ( )   ( ) 

 

In the above section: 

The scalar potential is a blurred charge distribution.  

The vector potential is a blurred current distribution.  

Current is moving charge. 

Mass is a form of charge. 

 
(The selected blurring function has striking resemblance with the ground state of the 

quantum harmonic oscillator48). 

 

In Fourier space holds: 

 

 ̃( )    ̃( )  
 

| |
    ̃ ( )   ̃( ) 

 

In Fourier space the frequency spectrum of the Hilbert distribution is 

multiplied with the Fourier transform of the blurring function. When this 

falls off when the frequencies go to infinity, then as a consequence the 

frequency spectrum of the potential is bounded. This is valid independent 

of the fact that the frequency spectrum of the Hilbert distribution is 

unbounded. 

Continuity Equations 
The equation for the conservation of charge: 

 
  ( )      ( )  〈 ,  ( )〉 

 

We can define  ( ): 

                                                 
48 Functions and fields:Functions invariant under Fourier transformation:Ladder 

operator:Ground state 

(9) 

(10) 

(11) 
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 ( )    ( ) 

 
  ( )       ( )  〈 , ( )〉 

 
 ( )     

 
( )     ( )     ( )   ( )   ( ) 

 
 ( )     

 
( )     ( ) 

 
 ( )      ( ) 

 

The definition of  ( ) and  ( ) have the freedom of the gauge 

transform49 

 

 ( )   ( )      
 

 ( )   ( )   (    ( )) 

 

   
 
   
  
 
 

 

This translates in the source free case   ( )    into: 

 
    ( )   〈 ,  ( )〉 

 
  ( )       ( )  〈 , ( )〉    

 

In the source divergence free case    ( )    this means: 

 
     ( )    〈 , ( )〉 

 
     ( )    〈 , ( )〉 

 

                                                 
49 http://en.wikipedia.org/wiki/Gauge_fixing 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

http://en.wikipedia.org/wiki/Gauge_fixing
http://en.wikipedia.org/wiki/Gauge_fixing
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 〈 , ( )〉       ( )     ( ) 
 

Due to the fact that there are other charges present, the divergence of the 

scalar potential need be in the direction of the current ρ(q), which for a 
spherical symmetric blur is also in the direction of the vector potential ϕ(q). 
However, a tendency exists to minimize that difference. Thus      ( ) is 

parallel to  ( ).  With other words: 
 

 ( )   〈 , ( )〉    

 

Reckoning the sign selections for the sign ± of the conjugation and the 

handedness ± of the cross product will provide four different sets of 

equations. This will provide four different Hilbert fields.  

Discrete distribution 

If ρ(q) is discrete, such that  

 
  ( )  ∑       (    ) 

 

where   
  is a point charge at location q′, then the contribution to the field 

E(q) that is generated by a point charge at location qi is given by: 

 

   ( )      
    

|    |
         

 

|    |
 

Differential potential equations 

The gradient and curl of ϕ(q) are related. In configuration space holds: 

 

  ( )       ( )  〈 , ( )〉     ( )      ( )  (    ( )) 

 
 ( )       ( ) 

 
 ( )       ( ) 

 
 ( )    ( )     ( )   ( )    ( )     ( ) 

 

(24) 

(25) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 
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  ( )       ( )  〈 , ( )〉 
 

 ( )     ( )    ( )     ( ) 
 

When the field  ( ) is split into a private field   ( ) and a background 

field   ( ), then   ( ) corresponds to the private field of the uniform 

moving item. When this item accelerates, then it goes together with an 

extra term     ( ). This is the reason of existence of inertia50. 

 
〈 , ( )〉        ( )      ( ) 

 

   ( )   ; Rotation free field 

 

〈 , ( )〉    ; Divergence free B field  

 

   ( )   〈 , ( )〉     ( )   〈 , ( )〉   ( )    
  ( ) 

 

   ( )        ( )   ( )    
  ( ) 

 

     ( )   ( )    
  ( ) 

 

Since    ( )is supposed to be parallel to    ( ), it is sensible to define 

 ( )as the total field in longitudinal direction: 

 
 ( )      ( )     ( )   ( )     ( ) 

 

And 

 
 ( )   ( ) 

 

With this definition: 

 
   ( )       ( ) 

                                                 
50 Influence; Inertia 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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〈 , ( )〉    

 
   ( )    ( )     ( ) 

In Fourier space 

In Fourier space holds: 

 

 ̃( )      ̃ ( )  〈 ,  ̃( )〉     ̃( )     ̃ ( )     ̃( ) 
 

 ̃( )    ̃( )     ( )   ̃( )    ̃( )     ̃( ) 

 

 ̃ ( )      ̃ ( )  〈 ,  ̃( )〉 
 

 ̃( )     ̃ ( ) 

 

 ̃( )     ̃ ( )     ̃( ) 
 

 ̃( )      ̃( ) 

 

 ̃( )     ̃( )    ̃( )     ̃( ) 

 

〈 ,  ̃( )〉       ̃ ( )     ̃ ( ) 

 

   ̃( )   ; Rotation free field 

 

〈 ,  ̃( )〉    ; Divergence free B field  

 

   ̃( )   〈 ,  ̃( )〉     ̃( )   〈 ,  ̃( )〉   ̃( ) 

 

 

   ̃( )       ̃ ( )   ̃( )      ̃( )   ̃( ) 

 

(15) 

(16) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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If the distribution ρ(q) is differentiable, then the same equations that hold 

for fields ϕ(q) and  ̃( ) hold for the non-blurred distributions ρ(q) and 

 ̃( ). 

Maxwell equations 

First it must be noted that the above derived field equations hold for 

general quaternionic fields. 

The resemblance with physical fields holds for electromagnetic fields as 

well as for gravitational fields and for any fields whose blurring function 

approximates  

 

 ( )   
 

| |
.  

 

In Maxwell equations, E(r) is defined as: 

 

 ( ,  )       ( ,  )  
  ( ,  )

  
  ( ,  )  

  ( ,  )

  
 

 

Further: 

 

〈 ,  ( ,  )〉        ( ,  )  
 〈 ,  ( ,  )〉

  
 

 

 
  ( ,  )

  
 
 〈 ,  ( ,  )〉

  
 

 

In Maxwell equations, B(r) is defined as: 

 
 ( ,  )      ( ,  )   ( ,  ) 

 

Further: 

 

   ( ,  )    
  ( ,  )
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〈 , ( ,  )〉    
 

   ( ,  )     (    
  

  
) 

 

Differentiable distribution 

If the distribution ρ(q) is differentiable, then the same equations that hold 

for fields ϕ(q) and  ̃( ) hold for the non-blurred distributions ρ(q) and 

 ̃( ). 

Using: 

 
       (         )   (         )   (         ) 

 

gives 

 
    ( )       ( ) 

 

    ( )    (    ( )      ( )) 

 

    ( )    (    ( )      ( )) 

 
    ( )  〈 , ( )〉      ( )      ( )      ( ) 

 

And correspondingly in Fourier space 

 

   ̃ ( )      ̃ ( ) 

 

   ̃ ( )    (   ̃ ( )     ̃ ( )) 

 

   ̃ ( )    (   ̃ ( )     ̃ ( )) 

 

   ̃ ( )  〈 ,  ̃( )〉     ̃ ( )     ̃ ( )     ̃ ( ) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Conservation laws 

Flux vector 

The longitudinal direction k of  ( ) and the direction i of  ( ) fix two 

mutual perpendicular directions. This generates curiosity to the 

significance of the direction    . With other words what happens with 

 ( )   ( ).   
 

The flux vector   ( ) is defined as: 

 
  ( )    ( )   ( ) 

 

Conservation of energy 

Field energy density 

 
〈 , ( )〉  〈 ( ),    ( )〉  〈 ( ),    ( )〉 

 
  〈 ( ),    ( )〉  〈 ( ), ( )〉  〈 ( ),    ( )〉 

 
     (〈 ( ), ( )〉  〈 ( ),  ( )〉)  〈 ( ), ( )〉 

 

The field energy density is defined as: 

 
      ( )   (〈 ( ), ( )〉  〈 ( ),  ( )〉)     ( )    ( ) 

 

 ( ) can be interpreted as the field energy current density. 

The continuity equation for field energy density is given by: 

 
        ( )  〈 , ( )〉    〈 ( ), ( )〉      ( )〈 ( ),  ( )〉 

 

This means that 〈 ( ), ( )〉 can be interpreted as a source term. 

  ( ) ( ) represents force per unit volume. 

(1) 

(1) 

(2) 

(3) 
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  ( )〈 ( ),  ( )〉            work per unit volume, or, in other words, 

the power density. It is known as the Lorentz power density and is 

equivalent to the time rate of change of the mechanical energy density of 

the charged particles that form the current  ( ). 

 
        ( )  〈 , ( )〉                ( ) 

 
              〈 ( ), ( )〉    ( )〈 ( ),  ( )〉 

 

  (       ( )              ( ))   〈 , ( )〉 

 

Total change within V = flow into V + production inside V 

 
 ( )        ( )             ( )    ( )    ( )             ( ) 

 

                                       ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂,  〉  
 

 ∫     

 

 

 

Here the source s0 is zero. 

How to interprete Umechanical 

            is the energy of the private field (wave function) of the 

involved particle(s). 

Conservation of linear momentum 

Field linear momentum 

 ( ) can also be interpreted as the field linear momentum density. The 

time rate change of the field linear momentum density is: 

 
   ( )        ( )      ( )   ( )   ( )     ( ) 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 
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 (   ( )   ( ))    ( )   ( )     ( ) 

 
 ( )    (     )  〈   ,  〉  〈 , 〉    〈  ,  〉  〈 ,  〉 

 
   (  )    〈  ,  〉  〈  ,  〉  

 
   (      〈  ,  〉)  〈  ,  〉  

 
 ( )    (     )    (      〈  ,  〉)  〈  ,  〉  

 
 ( )     (      〈  ,  〉) 

 
   ( )   ( )   ( )   ( )    ( ) 

 
  ( )   ( )   ( )    ( )  〈  ,  〉  〈  ,  〉  

 
  ( )   ( )   ( )    ( )    ( )  ( ) 

 
  ( )   ( )   ( )   ( )   ( ) 

 

 ( ) is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V surrounded by 

surface S is: 

 

       ∫         

 

 ∫        

 

 ∫  〈  ,  〉    ∮〈 ̂,   〉  
 

 

 

 
 ( )   ( )    ( )    ( )  ( ) 

 

Physically,  ( ) is the Lorentz force density. It equals the time rate change 

of the mechanical linear momentum density            . 

 
           ( )      ( ) ( ) 

 

The force acted upon a single particle that is contained in a volume V is: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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  ∫    
 

 ∫(         )   
 

 

 

Brought together this gives: 

 

  (      ( )             ( ))    〈 , ( )〉 

 

This is the continuity equation for linear momentum. 

The component     is the linear momentum in the i-th direction that passes 

a surface element in the j-th direction per unit time, per unit area. 

 

Total change within V = flow into V + production inside V 

 
 ( )        ( )             ( ) 

 

                     ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂, 〉  
 

 ∫     

 

 

 

Here the source sg = 0. 

Conservation of angular momentum 

Field angular momentum 

The angular momentum relates to the linear momentum. 

 
 (  )  (    )   ( ) 

 
      (  )  (    )        ( ) 

 
           ( )  (    )             ( ) 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(1) 

(2) 

(3) 
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 (  )  (    )   (q) 

 

This enables the balance equation for angular momentum: 

 

  (      (  )             (  ))    〈 , (  )〉 

 

Total change within V = flow into V + production inside V 

 

                     ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂, 〉  
 

 ∫     

 

 

 

Here the source sh = 0. 

 

For a localized charge density contained within a volume V holds for the 

mechanical torsion: 

 

 (  )  ∫(     )   (  )  

 

 

 

 ∫(     )  (ρ (  ) (  )    (  )     (  ))  

 

 

 
  (    )  ( ( )    ( )     ( )) 

 
      (  )        ( )      ( ) 

 

Using 

 

〈  ,  〉    
   

   
   

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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〈 ,   〉    
   

   
   

 

holds 

 

      ( )  ∫ 
   (  )  

 

 ∫    (  )     (  )   

 

 

 

 ∫(   〈(  ),  〉  〈    , (  )〉)   

 

 

 

 ∫   〈(  ),  〉  
 

 

 

 ∫      

 

 ∫〈 ,     〉  
 

 ∫(    )〈 ,  〉  
 

 

Spin 

Define the non-local spin term, which does not depend on qʹ as: 

 

       ∫ ( )   ( )  

 

 

 

Notice 

 

 ( )     ( )       ( )    (  ( ) ( )) 

 

And 

 

      ( )  ∫ 
  〈(  ),  〉  

 

 ∫        
 

 

(11) 

(12) 

(13) 

(14) 
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Using Gauss: 

 

∫〈 ,  〉   
 

∮〈 ̂,  〉  
 

 

And 

 
   〈 ,  〉 

 

Leads to: 

      ( )               ( )  ∮〈 ̂,   
   〉  

 

 

Spin discussion 

The spin term is defined by: 

 

       ∫ ( )   ( )  

 

 

 

In free space the charge density ρ0 vanishes and the scalar potential ϕ0 

shows no variance. Only the vector potential ϕ may vary with q0. Thus: 
 

               
 

       ∫(   ( ))   ( )  

 

 

 
Depending on the selected field Σfield has two versions that differ in their sign. 
These versions can be combined in a single operator: 

 

        [
       
       

] 

 

(15) 

(16) 

(17) 

(1) 

(2) 

(3) 

(4) 
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If 
 ( )

| ( )|
 can be interpreted as tantrix (  ) ) and 

   ( )

|   ( )|
 can be interpreted as 

the principle normal  (  ), then 
(   ( ))  ( )

|(   ( ))  ( )|
 can be interpreted as the 

binormal  (  ).  
From these quantities the curvature and the torsion51 can be derived. 

 

[

 ̇( )

 ̇( )

 ̇( )

]   [

  ( )  

  ( )   ( )
   ( )  

] [

 ( )

 ( )
 ( )
] 

 

Metric tensor field 
The metric tensor is an example of a tensor field. This means that relative 

to a locally non-affected coordinate system52 on the manifold, a metric 

tensor takes on the form of a symmetric matrix whose entries transform 

covariantly under changes to the coordinate system. Thus a metric tensor 

is a covariant symmetric tensor53. From the coordinate-independent point 

of view, a metric tensor is defined to be a non-degenerate symmetric 

bilinear form54 on each tangent space that varies smoothly from point to 

point. 

Curved path 

In a Riemannian manifold55 M with metric tensor56  , the length of a 

continuously differentiable curve   [ ,  ]    is defined by 

 

 ( )  ∫ √  ( )( ̇( ), ̇( ))   
 

 

 

The distance  ( ,  ) between two points   and   of   is defined as the 

infimum57 of the length taken over all continuous, piecewise continuously 

                                                 
51Path characteristics  
52 http://en.wikipedia.org/wiki/Local_coordinate_system  
53 http://en.wikipedia.org/wiki/Symmetric_tensor  
54 http://en.wikipedia.org/wiki/Symmetric_bilinear_form  
55 http://en.wikipedia.org/wiki/Riemannian_manifold  
56 http://en.wikipedia.org/wiki/Metric_tensor  

(5) 

(1) 

http://en.wikipedia.org/wiki/Riemannian_manifold
http://en.wikipedia.org/wiki/Metric_tensor
http://en.wikipedia.org/wiki/Infimum
http://en.wikipedia.org/wiki/Local_coordinate_system
http://en.wikipedia.org/wiki/Symmetric_tensor
http://en.wikipedia.org/wiki/Symmetric_bilinear_form
http://en.wikipedia.org/wiki/Riemannian_manifold
http://en.wikipedia.org/wiki/Metric_tensor
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differentiable curves   [ ,  ]    such that  ( )    and  ( )   . With 

this definition of distance, geodesics in a Riemannian manifold are then 

the locally distance-minimizing paths, in the above sense. 

The minimizing curves of L in a small enough open set58 of M can be 

obtained by techniques of calculus of variations59. Typically, one 

introduces the following action60 or energy functional61 

 

 ( )   ∫   ( )( ̇( ), ̇( ))   
 

 

 

 

It is then enough to minimize the functional E, owing to the Cauchy–

Schwarz inequality62 

 
 ( )   (   )  ( ) 

 

with equality if and only if |     | is constant. 

The Euler–Lagrange63 equations of motion for the functional   are then 

given in local coordinates by 

 

    

   
      

  
   

  
 
   

  
   

 

where    
 are the Christoffel symbols64 of the metric. This is the geodesic 

equation. 

                                                                                                                                     
57 http://en.wikipedia.org/wiki/Infimum  
58 http://en.wikipedia.org/wiki/Open_set  
59 http://en.wikipedia.org/wiki/Calculus_of_variations  
60 http://en.wikipedia.org/wiki/Action_(physics)  
61 http://en.wikipedia.org/wiki/Energy_functional  
62 http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality  
63 Appendix; Derivation of the one dimensional Euler Langrange equation  
64 Equations of motion; Path through field; Christoffel symbols 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/Action_(physics)
http://en.wikipedia.org/wiki/Energy_functional
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Infimum
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Calculus_of_variations
http://en.wikipedia.org/wiki/Action_(physics)
http://en.wikipedia.org/wiki/Energy_functional
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
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Calculus of variations 

Techniques of the classical calculus of variations65 can be applied to 

examine the energy functional E. The first variation66 of energy is defined 

in local coordinates by 

 

  ( )( )  
 

  
|
   
 (     ) 

 

The critical points67 of the first variation are precisely the geodesics. The 

second variation is defined by 

 

   ( )( ,  )  
  

   
|
   

 (        ) 

 

In an appropriate sense, zeros of the second variation along a geodesic γ 

arise along Jacobi fields68. Jacobi fields are thus regarded as variations 

through geodesics. 

By applying variational techniques from classical mechanics69, one can 

also regard geodesics as Hamiltonian flows70. They are solutions of the 

associated Hamilton–Jacobi equations71, with (pseudo-)Riemannian metric 

taken as Hamiltonian72. 

Affine geometry 

A geodesic on a smooth manifold M with an affine connection73   is 

defined as a curve  ( ) such that parallel transport74 along the curve 

preserves the tangent vector to the curve, so 

                                                 
65 http://en.wikipedia.org/wiki/Calculus_of_variations  
66 http://en.wikipedia.org/wiki/First_variation  
67 http://en.wikipedia.org/wiki/Critical_point_(mathematics)  
68 http://en.wikipedia.org/wiki/Jacobi_field  
69 http://en.wikipedia.org/wiki/Classical_mechanics  
70 http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows  
71 http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation  
72 http://en.wikipedia.org/wiki/Hamiltonian_mechanics  
73 http://en.wikipedia.org/wiki/Affine_connection  
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  ̇ ̇( )    

 

at each point along the curve, where  ̇ is the derivative with respect to t. 

More precisely, in order to define the covariant derivative of  ̇ it is 

necessary first to extend  ̇ to a continuously differentiable imaginary 

Hilbert field in an open set75. However, the resulting value of the equation 

is independent of the choice of extension. 

Using local coordinates76 on M, we can write the geodesic equation (using 

the summation convention77) as 

 

    

   
      

  
   

  
 
   

  
   

 

where xμ(t) are the coordinates of the curve  ( ) and    
  are the 

Christoffel symbols78 of the connection  . This is just an ordinary 

differential equation for the coordinates. It has a unique solution, given an 

initial position and an initial velocity.  

From the point of view of classical mechanics, geodesics can be thought of 

as trajectories of free particles in a manifold. Indeed, the equation 

  ̇ ̇( )    means that the acceleration of the curve has no components in 

the direction of the surface (and therefore it is perpendicular to the 

tangent plane of the surface at each point of the curve). So, the motion is 

completely determined by the bending of the surface. This is also the idea 

of the general relativity where particles move on geodesics and the 

bending is caused by the gravity. 

                                                                                                                                     
74 http://en.wikipedia.org/wiki/Parallel_transport  
75 http://en.wikipedia.org/wiki/Open_set  
76 http://en.wikipedia.org/wiki/Local_coordinates  
77 http://en.wikipedia.org/wiki/Summation_convention  
78 http://en.wikipedia.org/wiki/Christoffel_symbol  
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Christoffel symbols 

If xi, i = 1,2,...,n, is a local coordinate system on a manifold M, then the 

tangent vectors 

 

     
 

   
,      ,  ,  ,   

 

define a basis of the tangent space of M at each point. The Christoffel 

symbols    
  are defined as the unique coefficients such that the equation 

 

           
     

 

holds, where    is the Levi-Civita connection79 on M taken in the 

coordinate direction   . 

The Christoffel symbols can be derived from the vanishing of the 

covariant derivative of the metric tensor gik: 

 

            
    

   
        

 
          

 
   

 

By permuting the indices, and re-summing, one can solve explicitly for 

the Christoffel symbols as a function of the metric tensor: 

 

   
 
         (

    

   
   
    

   
   
    
   
)  

 

where the matrix (   ) is an inverse of the matrix (   ), defined as (using 

the Kronecker delta, and Einstein notation for summation)  
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Although the Christoffel symbols are written in the same notation as 

tensors with index notation, they are not tensors, since they do not 

transform like tensors under a change of coordinates. 

Under a change of variable from (x1, …., xn) to (y1, …., yn), vectors 

transform as 

 
 

   
   
   

   
 
 

   
 

 

and so 

 

   
   
   

   
 
   

   
    
  
   

   
 
   

   
 
    

      
 

 

where the underline denotes the Christoffel symbols in the y coordinate 

frame. Note that the Christoffel symbol does not transform as a tensor, 

but rather as an object in the jet bundle. 

At each point, there exist coordinate systems in which the Christoffel 

symbols vanish at the point. These are called (geodesic) normal 

coordinates, and are often used in Riemannian geometry. 

The Christoffel symbols are most typically defined in a coordinate basis, 

which is the convention followed here. However, the Christoffel symbols 

can also be defined in an arbitrary basis of tangent vectors    by 

 

           
     

Local metric equation 

The local metric equation relates the local value of the metric tensor field 

to the influence of the properties of the local particles on the local 

curvature.  

 

In order to do this it requires a non-affected coordinate system and a way 

to qualify the influence that the local value of the particle properties have 

on the resulting curved coordinate system.  

(6) 

(7) 

(8) 
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For example the Kerr Newman metric equation uses the per category 

summed property values of the local coupling factors, the electric charges 

of the local particles and the angular momenta of the local particles in 

order to relate these to the local curvature80.  

Kerr-Newman metric equation 

The Kerr–Newman metric equation describes the geometry of spacetime 

in the vicinity of a rotating mass M with charge Q. The formula for this 

metric depends upon what coordinates or coordinate conditions are 

selected.  

 

It uses three local properties. These properties are: 

 

 The coupling factor   

 The electric charge   

 The angular momentum   

 

The angular momentum   includes the spin  . 

 

In most cases, the simplest interpretation of the Kerr-Newman metric can 

be taken on the surface of a sphere that has a selected radius  . This metric 

uses the sum of a category of properties that are collected within the 

observed sphere. However, the summation produces different centers of 

activity for different property categories. Thus, these centers need not be 

at the same location. However, for large enough selected radius   and 

applied to black holes or single particles, these centers coincide. 

The formula uses three characteristic radii, whose prominence usually 

differs with the content of the investigated sphere. 

 

                                                 
80 See next part. 
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The metric uses a non-curved coordinate system to start with. Several 

coordinate systems can be used. The most common coordinate systems 

for a non-curved three dimensional space are: 

 

 Cartesian coordinates 

 Spherical coordinates 

 

Alternatives for spherical coordinates are: 

 

 Schwarzschild coordinates81 

 Kruskal-Szekeres coordinates82 

 Lemaitre coordinates83 

 Eddington–Finkelstein coordinates84 

 

The advantage of the alternative coordinates is that they avoid 

unnecessary singularities.  

Spherical coordinates 

The line element    in spherical coordinates is given by: 

 

        (
   

 
    )   (           ( )   ) 

 

  
 

 

 ((     )          )
 
 
    ( ) 

  
 

 

where the coordinates  ,       ϕ are the parameters of the standard 

spherical coordinate system. The length-scales α, ρ       have been 

introduced for brevity. 

 

                                                 
81 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
82 http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates  
83 http://en.wikipedia.org/wiki/Lemaitre_coordinates  
84 http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates  
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              ( ) 

 
            

    
  

 

   is the Schwarzschild radius85 (in meters) of the massive body, which is 

related to its mass   by 

 

   
   

  
 

 

where   is the gravitational constant86. In case of a single encapsulated 

elementary particle,   stands for the coupling constant m. 

 

Compare this with the Planck length,     √       

The Schwarzschild radius is radius of a spherical geo-cavity with mass  . 

The escape speed from the surface of this geo-cavity equals the speed of 

light. Once a stellar remnant collapses within this radius, light cannot 

escape and the object is no longer visible. It is a characteristic radius 

associated with every quantity of mass. 

 

   is a length-scale corresponding to the electric charge   of the mass 

 

  
  
   

      
 

 

where 
 

    
 is Coulomb's force constant87. 

                                                 
85 http://en.wikipedia.org/wiki/Schwarzschild_radius  
86 http://en.wikipedia.org/wiki/Gravitational_constant  
87 http://en.wikipedia.org/wiki/Coulomb%27s_law  
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Cartesian coordinates 
The Kerr Newman metric can be expressed in "Kerr Schild" form, using a 
particular set of Cartesian coordinates  
 

                
 

  
    

        
[        ] 

 

   
       

     
 

 

   
       

     
 

 
     

 

Notice that   is a unit vector. Here   is the constant mass of the spinning 

object,   is the constant charge of the spinning object,   is the Minkowski 

tensor, and   is a constant rotational parameter of the spinning object. It is 

understood that the vector   is directed along the positive z-axis. The 

quantity   is not the radius, but rather is implicitly defined like this: 

 

  
     

     
 
  

  
 

 

Notice that the quantity   becomes the usual radius   √         

when the rotational parameter   approaches zero. In this form of solution, 

units are selected so that the speed of light is unity (   ).  

 

In order to provide a complete solution of the Einstein–Maxwell 

Equations, the Kerr–Newman solution not only includes a formula for the 

metric tensor, but also a formula for the electromagnetic potential:  
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At large distances from the source (R>>a), these equations reduce to the 

Reissner-Nordstrom metric88 with: 

 

   (  ,   ,   ,   ) 

 

The static electric and magnetic fields are derived from the vector 

potential and the scalar potential like this: 

 
      

 
      

Schwarzschild metric 

Schwarzschild coordinates 

Specifying a metric tensor89 is part of the definition of any Lorentzian 

manifold90. The simplest way to define this tensor is to define it in 

compatible local coordinate charts and verify that the same tensor is 

defined on the overlaps of the domains of the charts. In this article, we 

will only attempt to define the metric tensor in the domain of a single 

chart. 

In a Schwarzschild chart91 (on a static spherically symmetric spacetime), 

the line element    takes the form 

 

     ( ( ))
 
   ( ( ))

 
     (        ( )  ϕ ) 

 
      ,         ,      ,   ϕ    

 

In the Schwarzschild chart, the surfaces     ,      appear as round 

spheres (when we plot loci in polar spherical fashion), and from the form 

                                                 
88 http://en.wikipedia.org/wiki/Reissner%E2%80%93Nordstr%C3%B6m_metric  
89 http://en.wikipedia.org/wiki/Metric_tensor  
90 http://en.wikipedia.org/wiki/Lorentzian_manifold  
91 http://casa.colorado.edu/~ajsh/schwp.html 
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of the line element, we see that the metric restricted to any of these 

surfaces is 

 
     

 (        ( )  ϕ ),      ,   ϕ    

 

That is, these nested coordinate spheres do in fact represent geometric 

spheres with 

surface area 

 
      

  

 

And Gaussian curvature 
      

  

 

That is, they are geometric round spheres. Moreover, the angular 

coordinates  ,   are exactly the usual polar spherical angular coordinates: 

  is sometimes called the colatitude and   is usually called the longitude. 

This is essentially the defining geometric feature of the Schwarzschild chart. 

 

With respect to the Schwarzschild chart, the Lie algebra of Killing vector 

fields is generated by the time-like irrotational Killing vector field    and 

three space-like Killing vector fields 
  ,    ( )       ( )    ( )    ,    ( )        ( )    ( )     

Here, saying that    is irrotational means that the vorticity tensor of the 

corresponding time-like congruence vanishes; thus, this Killing vector 

field is hyper-surface orthogonal. The fact that our spacetime admits an 

irrotational time-like Killing vector field is in fact the defining 

characteristic of a static spacetime. One immediate consequence is that the 

constant time coordinate surfaces        form a family of (isometric) 

spatial hyper-slices. (This is not true for example in the Boyer-Lindquist 

chart for the exterior region of the Kerr vacuum, where the time-like 

coordinate vector is not hyper-surface orthogonal.) 

 

(2) 
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It may help to add that the four Killing fields given above, considered as 

abstract vector fields on our Lorentzian manifold, give the truest expression 
of both the symmetries of a static spherically symmetric spacetime, while the 
particular trigonometric form which they take in our chart is the truest 
expression of the meaning of the term Schwarzschild chart. In particular, the 
three spatial Killing vector fields have exactly the same form as the three 
non-translational Killing vector fields in a spherically symmetric chart on E3; 
that is, they exhibit the notion of arbitrary Euclidean rotation about the 
origin or spherical symmetry. 
However, note well: in general, the Schwarzschild radial coordinate does not 
accurately represent radial distances, i.e. distances taken along the space-
like geodesic congruence which arise as the integral curves of   . Rather, to 
find a suitable notion of 'spatial distance' between two of our nested spheres, 
we should integrate  ( )   along some coordinate ray from the origin: 
 

   ∫  ( )  
  

  

 

 
Similarly, we can regard each sphere as the locus of a spherical cloud of 
idealized observers, who must (in general) use rocket engines to accelerate 
radially outward in order to maintain their position. These are static 
observers, and they have world lines of form       ,       ,       , 
which of course have the form of vertical coordinate lines in the 
Schwarzschild chart. 
In order to compute the proper time interval between two events on the 
world line of one of these observers, we must integrate  ( )   along the 
appropriate coordinate line: 
 

   ∫  ( )  
  

  

 

Schwarzschild metric 

In Schwarzschild coordinates92, the Schwarzschild metric has the form: 
 

       (  
  
 
)        (  

  
 
)
  

      (        ( )  ϕ ) 

                                                 
92 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
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where: 

   is the proper time (time measured by a clock moving with the 
particle) in seconds, 

   is the speed of light in meters per second, 
   is the time coordinate (measured by a stationary clock at infinity) in 

seconds, 
   is the radial coordinate (circumference of a circle centered on the 
       v     by   )          , 

   is the colatitude (angle from North) in radians, 
   is the longitude in radians, and 
    is the Schwarzschild radius (in meters) of the massive body. 

Lemaître coordinates 
In Schwarzschild coordinates the Schwarzschild metric has a singularity. 
Georges Lemaître was the first to show that this is not a real physical 
singularity but simply a manifestation of the fact that the static 
Schwarzschild coordinates cannot be realized with material bodies inside 
the gravitational radius93. Indeed inside the gravitational radius everything 
falls towards the center and it is impossible for a physical body to keep a 
constant radius. 
A transformation of the Schwarzschild coordinate system from   ,    to the 
new coordinates   ,   , 
 

      
√    

(  
  
 )
    

 

      
√    

(  
  
 )
    

 
leads to the Lemaître coordinate expression of the metric, 
 

        
  
 
      (        ( )    ) 
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Where 
 

    
 [
  (   )

 
]

 

 

 
In Lemaître coordinates there is no singularity at the gravitational radius, 

which instead corresponds to the point 
  (   )

 
   . However, there remains 

a genuine gravitational singularity at the centrum, where      , which 
cannot be removed by a coordinate change. 
The Lemaître coordinate system is synchronous, that is, the global time 
coordinate of the metric defines the proper time of co-moving observers. The 
radially falling bodies reach the gravitational radius and the center within 
finite proper time. 
Along the trajectory of a radial light ray, 
 

   (   √    )    

 
therefore no signal can escape from inside the Schwarzschild radius, where 
always        and the light rays emitted radially inwards and outwards 
both end up at the origin. 

  

(4) 

(5) 
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The action along the live path 
The integrated action Sab is performed over a distance along the action 

trail or equivalently over a period of coordination time 

 

        ∫    
    

 

 

              

 

    ∫      √    (
 

 
)
 

                
  

  

 

 

  ∫     
  

  

 

 

m is the mass of the considered item.  

v is the speed in Q space.  

  is the Lagrangian. 

 

The first line of this formula can be considered as an integral along the 

trail in coordinate space or equivalently over the trail in Hilbert space. 

The next lines concern integrals over the corresponding path in observed 

space combined with coordinate time. It must be noticed that these spaces 

have different signature. 

 

          
  

  
 + matter terms 

 

In general relativity, the first term generalizes (includes) both the classical 

kinetic energy and interaction with the Newtonian gravitational potential. 

It becomes: 

 

     
  

  
      √      ̇    ̇  

 

(1) 

(2) 

(3) 
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    is the rank 2 symmetric metric tensor which is also the gravitational 

potential. Notice that a factor of c has been absorbed into the square root. 

The matter terms in the Lagrangian   differ from those in the integrated 

action Sab. 

 

               ∫        
 

 

 

                    

 

The matter term in the Lagrangian due to the presence of an 

electromagnetic field is given by: 

 

          
  

  
     ̇     + other matter terms 

 

   is the electromagnetic 4-vector potential.  

Black hole 

Classical black hole 
According to classical mechanics the no-hair theorem94 states that, once a 

black hole achieves a stable condition after formation, it has only three 

independent physical properties:  

 mass,  

 charge, and  

 angular momentum.  

 

The surface gravity95   may be calculated directly from Newton's Law of 

Gravitation96, which gives the formula 
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where   is the mass of the object,   is its radius, and   is the gravitational 

constant97. If we let         denote the mean density of the object, we 

can also write this as 

 

  
  

 
 ρ  

 

For fixed mean density ρ, the surface gravity   is proportional to the 

radius  . 

Sciama98 relates   to the potential that is raised by the community of 

particles. For fixed mean density   this is shown by 

 

 

    ∫
 

 
  

 

    ∫
  

  
       

 

  
   

 
 
   

     
 

 

Here   is the current radius of the universe. 

Simple black hole 
The Schwarzschild radius    for a non-rotating spherical black hole is 

 

   
   

  
 

 

General black hole 
More generally holds 

                                                 
97 http://en.wikipedia.org/wiki/Gravitational_constant  
98 Influence;Inertia 
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where  

   is the mass/energy,  

   is the horizon area, 

   is the angular velocity,  

   is the angular momentum,  

   is the electrostatic potential,  

   is the surface gravity,  

   is the electric charge. 

 

For a stationary black hole, the horizon has constant surface gravity. 

It is not possible to form a black hole with surface gravity.    . 

Quantum black hole 
When quantum mechanical effects are taken into account, one finds that 

black holes emit thermal radiation (Hawking radiation) at temperature 

 

   
 

  
 

 

A quantum black hole is characterized by an entropy   and an area  . 

The entropy of a black hole is given by the equation: 

 

  
    

   
 

 

The Bekenstein-Hawking Entropy of three-dimensional black holes 

exactly saturates the bound 
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where    is the two-dimensional area of the black hole's event horizon in 

units of the Planck area,  

 

     
  

  

  
. 

 

In the Hilbert book model this equals the number of granules that covers 

the horizon of the black hole. 

The horizon of the black hole is an event horizon because information 

cannot pass this horizon. (Near the horizon the speed of light goes to 

zero.) 

Holographic principle 
The holographic principle99 states that the entropy contained in a closed 

surface in space equals the entropy of a black hole that has absorbed 

everything that is contained in this surface.  

In the Hilbert book model it means that if the surface is considered as a 

sparsely covered horizon, then that sparse horizon contains as many 

granules as the densely covered horizon of the corresponding black hole. 

It also means that the maximum entropy that can be contained inside a 

surface corresponds to a dense coverage with granules of that surface. 

In the Hilbert book model, any dense or sparse horizon reflects via its 

contained entropy the number of granules that are contained in the 

corresponding volume. 

 

We might extend this picture by stating that the number of granules in a 

volume corresponds with the entropy in the volume. In the Hilbert book 

model the number of granules corresponds to the number of Hilbert 

vectors that are attached to a QPAD. It also corresponds to the number of 

anchor points of the primary physical fields. 

 

The eigenvectors of the strand operator correspond to quantum logical 

propositions that represent physical particles. These propositions have a 

                                                 
99 http://en.wikipedia.org/wiki/Holographic_principle  
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binary yes/no value. In the extended model these propositions get extra 

content via the attached QPAD’s. 

Chandrasekhar limit 
The Chandrasekhar limit100 is an upper bound on the mass of a stable 

white dwarf star: 

 

       
  
 √  

 
(
  

 
)

 
 ⁄  

(    ) 
 

 

where: 

 is the reduced Planck constant 

 c is the speed of light 

 G is the gravitational constant 

 μe is the average molecular weight per electron, which depends 

upon the chemical composition of the star. 

 mH is the mass of the hydrogen atom. 

   
           is a constant connected with the solution to the 

Lane-Emden equation. 

Approximately: 

 

       
  
 

  
 . 

 

Where 

 

   √
  
 ⁄  is the Planck mass 
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Birth of the universe 
The unit sphere of the separable Hilbert space Ң is an affine space. All 

unit size eigenvectors end in this sphere.  

The eigenvectors of the strand operator are exceptional. They are 

surrounded by a QPAD that installs the tendency to keep these vectors 

together. The parameter of these distributions is taken from a background 

coordinate system. This means that also the eigenvectors of the strand 

operator possess a position in this background coordinate system. The 

background coordinate system is formed by the eigenspace of an operator 

that houses in the Gelfand triple Ħ of the Hilbert space Ң. The coupling 

between the eigenvectors of the strand operator and the eigenspace of the 

operator in the rigged Hilbert space that provides the background 

coordinate system is not precise. It is stochastic and of the order of the 

Planck-length. That is why the granules have this size. 

 

The eigenvectors of the strand operator all touch a granule. The relation 

with quantum logic means that the Hilbert vector stands for a proposition 

that has a yes/no value. In case of the Hilbert vectors that are attached to 

the granules the yes/no value represents group membership. Thus each 

granule represents a bit of information. 

 

For the eigenvectors vectors of the strand operator a densest packaging 

exists. It means that in that condition the QPAD’s have shrunk to their 

smallest possible location difference. 

 

Assumption 1: In that condition, due to the properties of the QPAD’s, the 

mutual tension works asymmetrically.  

 

This asymmetry means that in a surface that is formed by a set of densely 

packed granules the tension on one side is stronger than the surface 

tension at the other side. As a consequence the final configuration of a 

densest packaging becomes an empty bubble. 
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In the starting condition all eigenvectors of the strand operator are 

densely packed in one assembly.  

 

Assumption 2: After that moment the packaging density relaxes.  

 

The number of granules does not change. Thus, during this spreading the 

total entropy does not change.  

 

The package may fall apart in several separated subassemblies and a large 

series of single or more loosely packed granules. For the single and the 

more loosely packed granules the corresponding QPAD’s fold out. The 

densely packed subassemblies take again a bubble shape.  

 

This process may occur instantly or gradually, but most probably it will 

be done in a sequence of these two possibilities.  

 

First occurs a sudden change of scale between the strand operator in the 

separable Hilbert space Ң and the GPS operator that delivers the 

background coordinate system and that resides in the rigged Hilbert 

space Ħ. It is possible that originally the bubble covered the whole of the 

unit sphere of the Hilbert space Ң, or it may just cover a finite 

dimensional subspace of Ң. This means that the bubble contains an 

infinite or a finite amount of granules, which suddenly get diffused in a 

much larger space. That space is affine like the unit sphere of the Hilbert 

space Ң. The diffusion takes place at every occupied location in the 

background coordinate system.  

 

This kind of universe has no spatial origin or it must be the center of the 

outer horizon. With the aid of the background coordinate system, it will 

be possible to indicate a center of that universe. Each item in this universe 

has its own private information horizon. This horizon is set by the reach 

of the light that has been travelling since the birth of the universe. As long 

as this light does not reach the outer horizon that sub-universe looks 

isotropic. A multitude of such sub-universes exist that need not overlap. 
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However, they all look at their border at an image of part of the start 

horizon. Such, sub-universes obey the cosmological principle101. 

 

In the next phase the further expansion occurs gradually. Because the 

QPAD’s that are attached to the granules install a tendency for the 

granules to stay together, a different motor must be present behind this 

expansion. This motor can be found in the fact that with increasing radius 

the number of pulling granules grows faster than the decrease of the 

forces that are executed by the fields of these granules that is caused by 

the increasing distance. In an affine space this is always and everywhere 

true. This effect is also the source of inertia. 

 

Due to local attraction, loosely packed and single granules may 

reassemble in bubble shaped subassemblies. These subassemblies are 

known as black holes. Single granules and small aggregates of granules 

are known as elementary particles, nuclei or atoms.  

 

Much larger aggregates may be formed as well but these are not densely 

packed. Elementary particles can be categorized according to the 

configuration of their private fields. The private fields determine whether 

the particle is matter, with other words whether it has mass or not. 

 

Inside the bubble the fact that the granule represents matter is not 

recognizable. It is only recognizable when the attached QPAD gets the 

chance to unfold. That condition is true when the granule is not part of a 

densely packed subassembly. 

 

The requirements for the birth of the universe are: 

1. The existence of a strand operator 

2. The existence of QPAD’s that install the tendency to keep these 

eigenvectors of the strand operator together 

                                                 
101 http://en.wikipedia.org/wiki/Cosmological_principle  

http://en.wikipedia.org/wiki/Cosmological_principle
http://en.wikipedia.org/wiki/Cosmological_principle


117 

 

3. When the large numbers of eigenvectors are densely packed, then 

the assembly forms a bubble, because due to the properties of the 

QPAD’s, the mutual tension works asymmetrically 

4. In advance the eigenvectors of the strand operator are densely 

packed in one bubble. 

5. A non-zero probability exists that the package density will be 

relaxed and the package falls apart. This may happen in a two 

stage process 

a. A sudden reduction of scale occurs 

b. Next a force that pulls the granules further away from each 

other exists 

 

In the first episode of the universe the sudden scale change took place. 

This ripped the original bubble apart. Next a gradual further expansion 

took place.  

 

The granules that move freely can at the utmost take one space step at 

every progression step. When the ratio of the space step and the 

progression step is fixed, then this determines a maximum speed of 

granules. A certain type of granules takes a space step at every 

progression step. That type transports information at the maximum 

possible speed.  

 

When the path of these information transmitting particles is a straight 

line, then after a while, the other types of granules no longer get messages 

from the birth episode of the universe. But this need not be the case. 

 

Since the messenger has a finite speed, it brings information from the 

past. First of all the speedy messenger and the slow addressee may have 

started from different locations. Further, due to curvature of space the 

path of the speedy messenger may take much longer than the duration of 

the much straighter path that the much slower addressee has taken. The 

information about the past that is included in the message might be close 

to the episode in which the granules were combined in one large bubble. 
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Thus despite the fact that most of the information that is generated during 

the birth of the universe is long gone, still some of that information may 

reach particles long after the instance of birth. When this information is 

interpreted it gives the impression of a metric expansion of the 

universe102.  

 

 

  

                                                 
102 http://en.wikipedia.org/wiki/Metric_expansion_of_space 

http://en.wikipedia.org/wiki/Metric_expansion_of_space
http://en.wikipedia.org/wiki/Metric_expansion_of_space
http://en.wikipedia.org/wiki/Metric_expansion_of_space
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Part three 
PART THREE 

A Tall Quantum Tale 
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A Tall Quantum Tale 

 

I state you a proposition 

and that proposition indicates  

how the world works 

 

 

 

Story 

Prelude  
A group of elderly Magi sit in a circle and discuss what happens around 

them. That is not much. The youngest of them gets bored and starts 
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considering their discussion. The chat appears regulated, because if they 

start from a false proposition they will be able to draw any inference, 

whether true or not true, and then the conversation ends only in 

balderdash ad infinitum.  

 

After some time, he has collected the rules. These rules prevent the 

conversations from getting out of control. He proposes these rules to his 

companion discussers. They are very pleased. From this moment on, 

every conversation runs fluently. The inventor writes his finding in a 

book and calls that book "Logic".  

 

However, in their environment still little occurs that is worth a proper 

discussion. Since the talks no longer get out of control, most of the time 

passes in silence. The inventor feels bored again and therefore he tries to 

invent something else. He realizes that if he changes the rules in his book 

a little, then as a result, the discussions could be become much more 

interesting. He writes a new book that contains the changed rules. Next 

he changes the forest that exists in their neighbourhood in order to reflect 

the discussion rules.  

 

After finishing this book and the forest, the situation has completely 

changed. Continuously, things appear in the forest around them that keep 

their conversations for ever alive. The writer calls the second book 

“Quantum Logic” and he renames his first book “Classical Logic”. The 

toolkit that he uses to create the new structure of the forest also has a 

name. It is called “Mathematics”. 

 

 
  



122 

 

 

 M                       S  
 

The encounter 
An old, very experienced senior meets a young curious guy, which is full 

of questions about the things that he has observed during his trip through 

his world. The youngster asks the elder whether he can ask him a few of 

his most urging questions. The senior reacts positively by nicking shortly. 

However, already the first question of the studious guy startles him: 

 

S: Mister, can you explain me how the world works? 

 

The elder thinks a while very deeply and comes then with his answer: 

 

M: That would be a hell of a job, but I can at least give it a try. Please, sit 

down on that stone, because this will take some time. 

 

The lad sits down and looks expectantly to his narrator. The old man 

takes a breath and starts: 

 

M: This can be done in the form of a tale. It could be done better in the 

form of a truck load of formulas, but I doubt that you would understand 

these formulas. Do you accept that I pack the story in a tale? 
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S: Well I like a tale much better than a truck load of formulas. I probably 

would not understand one of them. So please start with your tale. 

 

The elder takes a breath and starts his tale. 

 

 

 

M: The world is governed by a book of laws. It must conform to these 

laws. There is no punishment in not following the laws, but the world 

cannot do anything else then operate according to the rules that are 

written in the book of laws. 

 

S: Where is that book and how is it called? 

 

M: It is in the possession of the governor of Hilbert’s bush. The book’s 

name is “The rules of quantum logic”. 

 

S: What is in that book? 

 

M: The book contains a small set of rules that regulate what the relations 

are between propositions that can be made about things that live in our 

world. 

 

S: What things? 

 

M: Well, anything that has an identity and that stores the condition it is 

in. Let us call such a thing an item or a particle and let us use the name 

state for the condition it is in. Mostly the concerned things are very small. 

However, these things can be very large. 

 

S: What is different with that logic? I know only one kind of logic. 
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M: You know the kind of logic that humans base their reasoning on. They 

use the rules of logic in their discussions when they start with truth and 

want to stay with truth. Nature uses a kind of logic that has a much richer 

structure. However, in that logic only one rule is different. 

 

S: How many rules contains the book and what do these rules mean? 

 

M: The book contains somewhat more than twenty rules and they specify 

the structure of the relations between the allowable propositions. 

 

S: There are not much rules in the book! How can that book rule the 

world? 

 

M: You are right about this, but these rules are very powerful. 

 

S: Please explain that. 

 

M: Well, the structure of the propositions is reflected in the structure of 

Hilbert’s bush. Hilbert’s bush is a huge and dense forest and is connected 

to our world. Via these connections Hilbert’s bush controls how the world 

works. 

 

S: Thus, if I visit Hilbert’s bush, then I can see how the world works? 

 

M: No, if you visit Hilbert’s bush, then you can see how the world is 

controlled.  

 

S: How, can I visit Hilbert’s bush? 

 

M: Well, you can join me on a virtual trip to Hilbert’s bush. I will be your 

guide. 

 

S: Fine. How does Hilbert’s bush look? 
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The man describes a very strange environment. The chap follows the old 

man in his mind and shows astonished. However, in advance his guide 

warned that he would present a tale. So, he must belief what the man 

tells. 

 

M: It is like a huge forest of poles. All poles have the same length and the 

feet of all poles are hooked at the same point in the centre of the bush. In 

this way the poles form an enormous sphere. 

 

S: Where do these poles stand for? 

 

M: The poles are the axes of a multidimensional cube that has an 

enormous dimension. First think of a three dimensional cube. Take a 

corner of it and take the three axes at that corner. You can identify the 

position of all points in the cube by three positions on rulers that are taken 

along the three axes.  

Now, as in an umbrella, fold these axes together, such that they form a 

small bundle. Next add a large amount of axes to that bundle. Give every 

axis a unique label in the form of one or more numbers. Add a ruler to 

each of these axes. You can still define the position of each point in the 

multidimensional cube by stating the corresponding positions on the 

rulers. Next increase the number of dimensions until it reaches infinity.  

The axes now form a dense ball and they all are numbered with a unique 

label. Finally unfold in your imagination the “umbrella” again until all 

axes are again perpendicular to each other. You can start counting the 

dimensions of the cube, but you will never finish counting. 

 

S: Thus the poles are a plain set of axes. 

 

M: Yes, but the space between the perpendicular axes can also be filled 

with poles. In this way several sets of mutually perpendicular axis poles 

can be found.  

 

S:What is the function of these axis poles? 
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M: The axis poles have colours. Some axis poles are green poles. Together 

they form a base in which the position of all other poles can be expressed. 

Another set of axis poles are red. Also they form a base. Some of the poles 

are silver white. They are not necessarily axis poles. The silver white poles 

appear in bundles. 

 

S: That is a strange kind of forest! 

 

M: Indeed, but it is not the only thing that is strange about Hilbert’s bush. 

Let me tell more about the silver white poles. The bundles of white poles 

represent and at the same time control the items in our world. 

 
S: How is that arranged? 

 

M: The items in our world are reflections of the bundles of white poles in 

Hilbert bush. What happens to the bundles will happen to the items. 

 

The student tries to imagine the strange situation. Apparently two worlds 

exist. One in which he lives and one from where his live is controlled. He 

visualizes the forest in his brain. 

 

S: What is the function of the green and red poles? 

 

M: At their top these other poles contain a data store in the form of a 

label. The data stores of the green poles contain position data. They are a 

kind of kilometre indications that you find along our roads. Instead of a 

single number the stores contain all three coordinates. It works like a kind 

of primitive GPS system.  

 

S: With some trouble I can understand what you paint for me. 
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M: The data stores of the red poles contain speed data, or better said 

momentum data. In this way a bundle of silver white poles can determine 

the current position and the momentum of the moves of its pupil in the 

real world. 

 

S: Why are there two types of data poles? 

 

M: The governor arranged it that way. In this way the bundle cannot 

determine both types of data at the same time. It is another detail of how 

the governor models our world. The stores of the poles contain the values 

of the properties of the type observation to which the pole belongs. 

Mathematicians call these values eigenvalues and the corresponding 

poles eigenvectors. With this trick the governor leaves us uncertain about 

our exact condition. 

 

S: What are mathematicians? 

 

M: Mathematicians are scientists that amongst other things study the 

mechanisms, which determine the structure and behaviour of Hilbert’s 

forest. The creator of the forest used mathematics to give it its 

functionality. 

 

S: Can white poles read data? 

 

M: No, in fact a shepherd that takes care of the silver white bundle does 

that. The forest is very dense. So, the shepherd can walk on top of these 

poles and guard his herd of sheep. From now on, I will call the silver 

white poles the shepherd’s sheep. 

 

S: How does the shepherd read the data? 

 

M: The shepherd must turn to the data pole in order to read its data. If he 

is close to a green pole, then he is rather far from a red pole. In fact he 
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may be at nearly the same distance from a series of red poles. He will 

usually read the nearest data pole. The same holds when the shepherd 

looks at other colours. Thus, the governor plays a strange trick with our 

world. 

For the insiders: This is the source for the existence of Heisenberg’s 

uncertainty principle. It is the cause of the quantum behaviour of small 

particles.  

 

S: I must say, that is a strange situation! 

 

M: Yes, let me proceed. It will become even much stranger. 

 

S: Please, go on. 

 

 
 

M: The shepherd drives his sheep through Hilbert’s bush. He does that 

guided by the smells that he receives from other silver white bundles. The 

smells are mixtures of perfumes that are attractive and perfumes that are 

repellent. The shepherd reacts on these smells. 
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S: What is causing these smells? 

 

M: These smells are caused by the properties of the sheep. They hang as a 

blurring mist around each white pole, thus around each individual sheep. 

The sheep may also move inside the scope of the herd. That movement 

may also be caused by the influence of the emitted smells. 

 

S: How does the shepherd keep his sheep together? 

 

M: Well, that happens in a particular way. The bush is so dense, that it is 

impossible to let the poles move. Instead at each of his steps the shepherd 

redefines the poles that belong to his herd. These poles turn silver white. 

The poles that get outside of the herd obtain their original green or red 

colour. The smells create a tendency to minimize action of the cheap. 

Further there exists another mechanism, which is called inertia. 

 

S: What is inertia? 

 

M: The smells invoke a sticky resistance of the system of all herds against 

change. Inertia represents the combined influence of all other herds. The 

most distant herds together form the largest part of the set of herds. So, 

they have the largest effect. The influence of each individual herd 

decreases with distance. However, the number of herds increases faster 

with distance. The difference between the distant herds averages away. 

As a consequence the distant herds form a uniform background influence. 

 

S: What is the effect of inertia on a herd? 

 

M: Locally the inertia produces an enormous smell pressure. A smooth 

uniform movement does not disturb this potential. When the herd 

accelerates it stirs the perfumes and in this way the inertia produces a 

smell that goes together with this movement. 
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S: I understand now how position is treated. What about time? 

 

M: The shepherd owns a simple clock. That clock counts his steps. His 

steps are all the same size. When he drives his sheep around, he follows a 

track in Hilbert’s bush. All shepherds take their steps in synchrony. In 

facts at each of their steps the complete forest is redefined. In this process 

the smells act as a guide. They store the current condition of the forest and 

these represent the preconditions for the new version of the forest. You 

can say that the smells represent potential versions of the forest. This 

includes potential versions of sheep. These potential sheep are virtual 

sheep. 

 

S: So, compared to space, time is handled quite differently. 

 

M: You understand it quickly and perfectly! You understand it better than 

the physicists of the last few centuries. Most of them were wrong with 

this subject. They think that time and space belong in one inseparable 

observable characteristic. 

 

S: How many of these herds exist? 

 

M: As many as there are particles in our world. So, there exist an 

enormous number of herds, but they are still countable. They can all be 

identified. All shepherds take their own track through Hilbert’s bush. 

 

S: That must make Hilbert’s bush very large! 

 

M: It is. Let me proceed. It must be obvious now that the herds influence 

each other’s movements via their smells. 

 

The lad reflects and pictures the forest in his mind as an enormous sphere. 

On top of that sphere a large number of shepherds push their own herd of 

silver white lights forward on curving tracks that are determined by the 

smells that other herds produce. At each of the shepherd’s steps Hilbert’s 
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forest is reconfigured. The old man must have a strange image of the 

world. Nonetheless, he must have his reasons. 

 

S: So, the shepherds play a crucial role! 

 

M: Yes, they manipulate their own herd. However, the smells of their 

sheep influence for other shepherds the observation of the position and 

momentum of other herds. 

 

S: How do the smells influence that observation? 

 

M: They give the data that are transmitted in the smell an extra turn. It 

means that other shepherds do not get a proper impression of the position 

and momentum data that are sent by other herds. 

 

S: Is there a good reason for this confusing behaviour? 

 

M: No, there is no reason. It is just a built in habit of all sheep. On the 

other hand, the governor established that habit when he designed 

mathematics. He designed mathematics such, that Hilbert’s bush and its 

inhabitants behave according to the rules in his book. 

 

S: What is the consequence of this strange behaviour? 

 

M: The consequence is that the particles in the world get the wrong 

impression of the position and momentum of other items. For them it 

appears that there exists a maximum speed. And these items think that 

they live in a curved space. 

For the insiders: This is the source of the existence of relativity as it was 

discovered, but not explained by Einstein. 

 

S: Do they think that? 

 

M: For them, it is the truth! 
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S: So, I live in a curved space and for me there exists a maximum speed. 

 

M: That is right. You properly understand how the world is controlled. 

As long as you do not interpret that maximum speed as the limit set by 

your local police officer. 

 

S: What happens inside a herd? 

 

M: The sheep inside a well-shaped herd perform rhythmic movements. 

You could say that they are dancing. Physicists call it harmonic 

movements. These dances occur under the control of the shepherd. He 

considers them as his own possession.  

 

S: What do you mean with a well-shaped herd? 

 

M: A well-formed herd represents in our world a well-formed object, such 

as an atom. 

 

S: Why is everything set up in such a strange way? 

 

M: The governor of Hilbert’s bush is very intelligent, but also very lazy. 

He does not want to create many rules, so that he does not have to write 

much in his law book. That is why he invented Hilbert’s bush. He builds 

the consequences of all his rules into the structure and the dynamics of 

Hilbert’s bush. That structure is in principle very simple. The same holds 

for the dynamics. In this way he does not have to take care on how the 

world evolves. However, this leaves an enormous freedom for what 

happens in the world that is controlled by Hilbert’s bush. That on itself 

results in an enormous complexity of the world we live in. That renders 

the governor very, very smart and very, very lazy. 

 

S: How did Hilbert’s bush get its name? 
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M: Hilbert was the first human that discovered the governor’s bush. So 

people give it his name. 

 

S: Can everybody visit Hilbert’s bush? 

 

M: In principle yes. Everybody that possesses sufficient imagination can 

visit Hilbert’s bush. There exist two guides. A mister Schrödinger tells the 

story as we did. He tells the story as if the bundle of silver white poles 

moves through the bush of green and red poles. The other guide, mister 

Heisenberg tells the story as if the bundle of white poles is stationary and 

the bush of green and red poles moves around. For the world it does not 

matter what moves. It only senses the relative motion. 

 

S: How did intelligent creatures like us enter that world? 

 

M: The governor installed a tendency to reduce complexity by means of 

modularization into his forest. When more compatible modules become 

available it becomes easier to construct more capable modules and more 

capable items from these modules. Given enough time, more and more 

capable items are created, which finally result in intelligent creatures. 

Scientists call this process evolution. It is a chaotic process, but it 

possesses a powerful tendency. 

 

S: Uch. Can I tell this to my friends? 

 

M: Yes, you can. And if you have learned to read formulas and work with 

them you can come back and I will tell you the same story in a cart load of 

formulas. 

 

S: Thanks. I will come back when I am grown up. Can I still ask a final 

question? 

 

M: You are a sauce-box, but you are smart. Go ahead. 

 



134 

 

S: What are you going to do after this? 

 

M: I will visit a very old and very wise scientist, called Mendel. He claims 

that he has a cohesive explanation for all smells that shepherds react to.  

 
 

 

S: Why is that important? 

 

M: If his claim is right, then he has found the Holy Grail of physics. 

 

S: Gosh! 

 

After this the boy departs. Later he will become a good physicist.  
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Interpretation 
The book of laws contains a number of axioms that define the structure of 

traditional quantum logic as an orthomodular lattice. 

 

Hilbert's bush stands for an infinite dimensional separable Hilbert space 

that is defined over the number field of the quaternions. The set of the 

closed subspaces of the Hilbert space has the same lattice structure as 

traditional quantum logic. 

 

The green poles represent an orthonormal base consisting of eigenvectors 

of the normal operator Q. This operator represents an observable 

quantity, which indicates the location of the item in space. 

 

The red poles represent an orthonormal base consisting of eigenvectors of 

the normal operator P. This operator is the canonical conjugate of Q and 

represents an observable quantity, which indicates the momentum of the 

item. 

 

The bundle of silver white poles and the herd of sheep represent a closed 

subspace of the Hilbert space that on its turn represents a particular 

quantum logical statement. This statement concerns a particle or a wave 

packet in our surroundings. Q describes the thing as a particle. P 

describes the thing as a wave packet. 

 

The shepherd represents a complicated operator Ut that pushes the 

subspace, which is represented by his herd, around in the Hilbert space. 

The operator Ut may be seen as a trail of infinitesimal unitary operators. It 

is a function of the trail progression parameter t. The progression 

parameter differs from our common notion of time, which is the 

coordinate time. 

 

Traditional quantum logic defines only the stationary structure of what 

happens in Hilbert’s bush. The dynamics are introduced by the shepherds 

that react on the smells. 
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The smells correspond to physical fields. The fields transport information 

about the conserved quantities that characterize the movements of the 

item and its elements. Each type of preserved quantity has its own field 

type. The operators Ut react on these fields. Inertia shows how these 

operators reflect the actions of the fields. Any acceleration of the item goes 

together with a reconfiguration of the fields. 

 

The operator Ut transforms the observation operators Q and P into 

respectively 

 

Qt = Ut-1·Q·Ut  

 

and  

 

Pt = Ut-1·P·Ut  

 

.This distorts the correct observation and ensures that the observer 

experiences a speed maximum and a curved space. 

 

The eigenvalues of Q and P and the trail progression parameter t 

characterize the space-time in our live space. As already indicated t is not 

the same as our common coordinate time. 

 

De eigenfunctions of Ut control the (harmonic) internal movements of the 

particles.  

 

The sheep represent the elements/properties of the particle. 

 

The effect of modularization is treated in http://www.crypts-of-

physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf.; 

part four of this book 

 

http://www.crypts-of-physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf
http://www.crypts-of-physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf
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This book starts from the axioms of traditional quantum logic and extends this model 

such that it incorporates physical fields as well as dynamics. 

It uses the isomorphism between the set of propositions of traditional quantum logic 

and the set of closed subspaces of an infinite dimensional separable Hilbert space that 

uses quaternions in order to specify its inner products. 

The book finds solutions for the anomalies that are raised by the countability of the 

eigenspaces of normal quaternionic operators. It also takes the consequence of the 

observation that all information about nature becomes available in the form of clouds 

of information carrying quanta. 

The book unifies all fields, such that except for the curvature field, all fields including 

the wave functions are considered as QPAD’s. The curvature field is derived from the 

curvature of the superposition of all these primary fields. The curvature follows from 

the decomposition of this covering field in rotation free and divergence free parts. 

In order to implement dynamics, the developed model applies a sequence of extended 
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of the members of the sequence represents a static status quo of the universe. This 

leads to a new model of physics:  
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