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Preface 

This book presents a concise and upgraded version of another book that also treats the Hilbert 

Book Model, but that in addition acts as a grab-bag of other subjects that are more or less related 

to the Hilbert Book Model. Only the tale is kept as well. It is contained in part IV of this book. 

 

I started the Hilbert Book Model during my studies in physics in the sixties on the Technical 

University of Eindhoven (TUE). 

In the first two years the lectures concerned only classical physics. In the third year quantum 

physics was introduced. I had great difficulty in understanding why the methodology of doing 

physics changed drastically. So I went to the teacher, which was an old nearly retired professor 

and asked him: 

"Why is quantum mechanics done so differently from classical mechanics?".  

His answer was short. He stated": 

"The reason is that quantum mechanics is based on the superposition principle".  

 

I quickly realized that this was part of the methodology and could not be the reason of the dif-

ference in methodology. So I went back and told him my concern. He told me that he could not 

give me a better answer and if I wanted a useful answer I should research that myself. So, I first 

went to the library, but the university was quite new and its library only contained rather old se-

cond hand books, which they got from other institutions. Next I went to the city’s book shops. I 

finally found a booklet from P. Mittelstaedt: (Philosophische Probleme der modernen Physik, BI 

Hochschultaschenbücher, Band 50, 1963) that contained a chapter on quantum logic. I concluded 

that this produced the answer that I was looking for. Small particles obey a kind of logic that dif-

fers from classical logic. As a result their dynamic behavior differs from the behavior of larger ob-

jects. 

I searched further and encountered papers from Garret Birkhoff and John von Neumann that 

explained the correspondence between quantum logic and separable Hilbert spaces. That produced 

an acceptable answer to my question. 

 

The lectures also told me that observables were related to eigenvalues of Hermitian operators. 

These eigenvalues are real numbers. However, it was clearly visible that nature has a 3+1D struc-

ture. So I tried to solve that discrepancy as well. After a few days of puzzling I discovered a new 

number system that had this 3+1D structure and I called them compound numbers. I went back to 

my professor and asked him why such compound numbers were not used in physics. Again he 

could not give a reasonable answer.  

When I asked the same question to a much younger assistant professor he told me that these 

numbers were discovered more than a century earlier by William Rowan Hamilton when he was 

walking with his wife over a bridge in Dublin. He was so glad about his discovery that he carved 

the formula that treats the multiplication of these numbers into the sidewall of the bridge. The in-

scription has faded away, but it is now molded in bronze and fixed to the same wall. The numbers 

are known as quaternions. So, I went to the library and searched for papers on quaternions.  

In those years C. Piron wrote his papers on quaternionic Hilbert spaces. That information com-

pleted my insight in this subject. I finalized my physics study with an internal paper on quaterni-

onic Hilbert spaces.  

 



 

15 

 

The university was specialized in applied physics and not in theoretical physics. This did not 

stimulate me to proceed with the subject. Next, I went into a career in industry where I used my 

knowledge of physics in helping to analyze intensified imaging and in assisting with the design of 

night vision equipment and X-ray image intensifiers. That put me with my nose on the notion of 

quanta.  

 

The image intensifiers did not show radiation. Instead they showed clouds of impinging quan-

ta. In those times I had not much opportunity to deliberate on that fact. However, after my retire-

ment I started to rethink the matter. That was the instant that the Hilbert Book Model continued 

further. 

 

Thus, in a few words: The Hilbert Book Model tries to explain the existence of quanta. It does 

that by starting from traditional quantum logic. 

 

The Hilbert Book Model is a Higgsless model of physics. It explains how elementary particles 

get their mass. 

 

Before you start reading the book, as a challenge, you may try to solve the QPAD game. It is 

located in part V. 
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PART I 
The fundaments 

Abstract 

The fundaments of quantum physics are still not well established. This book tries to find the 

cracks in these fundaments and suggests repair procedures. This leads to unconventional solutions 

and a new model of physics. The model is strictly based on the axioms of traditional quantum log-

ic. However, in order to proceed from that point, it is necessary to extend this base, such that it al-

so incorporates the equivalents of physical fields. This results in a model that can represent a stat-

ic status quo of the whole universe.  

The most revolutionary introduction is the representation of dynamics by a sequence of such 

static models in the form of a sequence of extended separable Hilbert spaces. Together, this em-

bodies a repair of fundaments that does not affect the building. 

The model reveals the reason of existence of fields. This starts with fields that nature uses in 

order to couple observations to the items that are observed. These fields are quaternionic probabil-

ity amplitude distributions (QPAD’s). The coupling of QPAD’s is the reason of existence of parti-

cles.  

The properties of the particles act as sources for another kind of fields. These are the fields that 

are known as physical fields. These secondary fields act in the next level of binding. 

In this way the QPAD’s and the elementary particles form the fundament of the whole building 

that we call physics. The QPAD’s also form the base of the explanation of the origins of curvature 

and inertia. 

  



 

 

1 FUNDAMENTS 

The most basic fundaments consist of quantum logic, its lattice isomorphic companion, the 

separable Hilbert space and the extensions of these basic models such that they incorporate fields. 

1.1 Logic model 

The author has decided to base the Hilbert Book Model on a consistent set of axioms. It is of-

ten disputed whether a model of physics can be strictly based on a set of axioms. Still, what can 

be smarter than founding a model of physics on the axioms of classical logic?  

 

Since in 1936 John von Neumann1 wrote his introductory paper on quantum logic the scientific 

community knows that nature cheats with classical logic. Garret Birkhoff and John von Neumann 

showed that nature is not complying with the laws of classical logic. Instead nature uses a logic in 

which exactly one of the laws is weakened when it is compared to classical logic. As in all situa-

tions where rules are weakened, this leads to a kind of anarchy. In those areas where the behavior 

of nature differs from classical logic, its composition is a lot more complicated. That area is the 

site of the very small items. Actually, that area is in its principles a lot more fascinating than the 

cosmos. The cosmos conforms, as far as we know, nicely to classical logic. In scientific circles 

the weakened logic that is discussed here is named traditional quantum logic. 

 

As a consequence the Hilbert Book Model will be strictly based on the axioms of traditional 

quantum logic. However, this choice immediately reveals its constraints. Traditional quantum log-

ic is not a nice playground for the mathematics that characterizes the formulation of most physical 

laws. Lucky enough, von Neumann encountered the same problem and together with Garret 

Birkhoff2 he detected that the set of propositions of quantum logic is lattice isomorphic with the 

set of closed subspaces of an infinite dimensional separable Hilbert space. Some decades later 

Constantin Piron3 proved that the inner product of the Hilbert space must by defined by numbers 

that are taken from a division ring. Suitable division rings are the real numbers, the complex 

numbers and the quaternions4. The Hilbert Book Model takes the choice with the widest possibili-

ties. It uses quaternionic Hilbert spaces. Quaternions play a decisive role in the Hilbert Book 

Model. Higher dimension hyper-complex numbers may suit as eigenvalues of operators or as val-

ues of physical fields, but for the moment the HBM can do without these numbers. Instead, qua-

ternions will be used for those purposes. 

 

So, now we have a double model that connects logic with a flexible mathematical toolkit. But, 

this solution does not solve all restrictions. Neither quantum logic nor the separable Hilbert space 

can handle physical fields and they also cannot handle dynamics.  

This is exposed by the fact that the Schrödinger picture and the Heisenberg picture are both 

valid views of quantum physical systems, despite the fact that these views attribute the time pa-

                                                           
1http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics   
2 http://en.wikipedia.org/wiki/John_von_Neumann#Lattice_theory  
3 C. Piron 1964; _Axiomatique quantique_  
4 http://en.wikipedia.org/wiki/Quaternion  

http://en.wikipedia.org/wiki/John_von_Neumann#Quantum_logics
http://en.wikipedia.org/wiki/John_von_Neumann#Lattice_theory
http://en.wikipedia.org/wiki/Quaternion
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rameter to different actors. It means that the progression parameter is a characteristic of the whole 

representation. 

 

An extension of the basic models helps cure the first restriction. In addition it also solves an-

other problem. The separable Hilbert space only tolerates eigenspaces of operators that contain a 

countable number of eigenvalues. Thus, the Hilbert space does not know continuums. A solution 

can be found in the Gelfand triple5 of the Hilbert space. This sandwich contains the Hilbert space 

as a member and at the same time it provides operators that have a continuum as their eigenspace.  

 

This would introduce a new problem because the continuum fits far more eigenvalues than the 

eigenspace of the operator in the separable Hilbert space can offer. This problem makes think of a 

similar situation that occurs when a number N of linear equations must be solved, while N is larg-

er than the number M of variables that are contained in these equations. Let the equations be 

available in the form: 

 

∑          

 

   

        

 

Usually, such situations are solved by assuming that a stochastic inaccuracy exists between the 

values    in the too large result set {  }       and the actual results {  }      . The actual results 

would offer a consistent set of equations that can be reduced to   equations. With other words 

these actual results make the original equations interdependent.  

Translated to our problem, this solution comes down to linking the eigenvalues of operators in 

the separable Hilbert space to corresponding values in the continuum eigenspace of operators in 

the Gelfand triple by using a probability amplitude distribution as the connection between the 

source and the target6. The HBM chooses a quaternionic probability amplitude distribution 

(QPAD), rather than a complex probability amplitude distribution (CPAD). As will be shown, the 

choice for a QPAD has significant and favorable consequences. 

 

The attachment of QPAD’s extends the separable Hilbert space and connects it in a special way 

to its Gelfand triple. Due to the isomorphism of the lattice structures, the quantum logic is extend-

ed in a similar way. This leads to a reformulation of quantum logic propositions that makes them 

incorporate stochastically inaccurate observations instead of precise observations. The logic that 

is extended in this way will be called extended quantum logic. The separable Hilbert space that is 

extended in this way will be called extended separable Hilbert space. 

 

The implementation of physical fields via the attachment of QPAD’s to eigenvectors in the 

separable Hilbert space is a crucial departure from common physical methodology. Common 

quantum physics uses complex probability amplitude distributions (CPAD’s), rather than 

QPAD’s7. Quantum Field Theory8, in the form of QED9 or QCD10, implements physical fields in a 

quite different manner. 

                                                           
5 http://en.wikipedia.org/wiki/Gelfand_triple  

6 The particle acts as the source of information, while the observer is the receiver. 

7 http://en.wikipedia.org/wiki/Probability_amplitude  

http://en.wikipedia.org/wiki/Gelfand_triple
http://en.wikipedia.org/wiki/Probability_amplitude


 

 

 

The choice for QPAD’s appears very advantageous. The real part of the QPAD can be inter-

preted as a “charge” density distribution. Similarly the imaginary part of the QPAD can be inter-

preted as a “current” density distribution. The squared modulus of the value of the QPAD can be 

interpreted as the probability of the presence of the carrier of the “charge”. The “charge” can be 

any property of the carrier or it represents a collection of the properties of the carrier. In this way, 

when the wave function is represented by a QPAD the equation of motion becomes a continuity 

equation11.  

 

Since the QPAD’s attach Hilbert eigenvectors to a continuum the carriers can be interpreted as 

tiny patches of that continuum. The transport of these patches can be responsible for the local 

compression or decompression of the continuum space. With other words, via this mechanism 

QPAD’s may influence the local curvature. 

 

QPAD’s use a quaternion as their parameter. Usually these parameters are values of a quater-

nionic distribution that uses the quaternionic number space as its parameter space. In that way the 

quaternionic distribution can act as a curved coordinate system. The quaternionic distribution rep-

resents the parameter space of the QPAD. 

 

In most cases where quaternionic distributions are used, the fact that quaternions possess two 

independent sign selections is ignored. The first sign selection, the conjugation, inverts the sign of 

all three imaginary base vectors. The second sign selection, the reflection, inverts the sign of a 

single imaginary base vector. The reflection can be taken in three independent directions. When 

relevant these directions are color coded. The sign selections in a quaternionic distribution are all 

similar. Individually, the conjugation and the reflection switch the handedness of the external vec-

tor product in the product of two quaternions that are taken from the same quaternionic distribu-

tion. The sign selection of the parameter space is usually taken as the reference for the sign selec-

tions of the quaternionic distributions. When a quaternionic distribution has the same sign 

selection as its parameter space has, then it will be called a base quaternionic distribution. Eight 

sign flavors correspond with each base quaternionic distribution. This adds a significant amount 

of functionality to quaternionic distributions. 

 

For each QPAD, the mixture of conjugation and colored reflections produces eight different 

sign flavors. When colors are neglected, still four different flavors result. In quantum physics the-

se sign flavors play a crucial role. In conventional physics this role is hidden in complex probabil-

ity amplitude distributions (CPAD’s), alpha, beta and gamma matrices and in spinors. Colors are 

added as an aftermath.  

 

The extension of the primitive models cures several restrictions including the lack of support 

for fields, but one is left. Both the extended quantum logic and the extended separable Hilbert 

space can only represent a static status quo. The Hilbert space does not have an operator that de-

                                                                                                                                                              
8 http://en.wikipedia.org/wiki/Quantum_field_theory  
9 http://en.wikipedia.org/wiki/Quantum_electrodynamics  
10 http://en.wikipedia.org/wiki/Quantum_chromodynamics  
11 Also called balance equation. 

http://en.wikipedia.org/wiki/Quantum_field_theory
http://en.wikipedia.org/wiki/Quantum_electrodynamics
http://en.wikipedia.org/wiki/Quantum_chromodynamics
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livers progression as an eigenvalue. Instead progression can be attached as a parameter to the 

whole Hilbert space including the Gelfand triple and the attached QPAD’s. 

 

Now implementing dynamics becomes a simple action. The whole Hilbert Book Model con-

sists of an ordered sequence of sandwiches that each includes the Gelfand triple including its Hil-

bert space and the attached QPAD’s. The progression parameter acts as page number of the book. 

In the resulting Hilbert Book Model the progression is made in universe wide steps. 

 

 
Figure 1: Structure of the Hilbert Book Model 

1.2 Virtual 

Primary QPAD’s are quaternionic distributions of the probability of presence of virtual 

“charge” carriers. This “charge” may stand for an ensemble of properties. 

The coupling of primary QPAD’s results in elementary particles12. The properties that charac-

terize this coupling form the sources of secondary QPAD’s. Secondary QPAD’s have actual 

charges as their sources and particles as their charge carriers. Secondary QPAD's concern a single 

property of the carrier. They are known as the physical field that relates to that property. Their 

presence can be observed. 

 

The Hilbert Book Model does not use the notion of a virtual particle. Instead the role of prima-

ry QPAD’s is used for this purpose.  

                                                           
12 See: Particle physics 



 

 

 

Primary QPAD's cannot be observed directly. Their existence can only be derived from the ex-

istence of secondary QPAD's. 

In the Hilbert Book Model the “implementation” of forces via the exchange of virtual particles 

is replaced by the mutual influencing of the corresponding QPAD’s. This influence is instantiated 

via the fact that the concerned primary QPAD’s superpose and that their currents feed/supply oth-

er QPAD’s. 

 

Interaction is implemented via QPAD’s that act as a wave function. Wave function QPAD’s 

which with respect to their parameter space exhibit an isotropic sign flavor13, will provide the 

weak interaction. Other wave function QPAD’s provide the strong interaction. 

 

1.3 QPAD-sphere 

QPAD's are quaternionic amplitude distributions and can be interpreted as a combination of a 

scalar "charge" density distribution and a vectorial "current" density distribution. The currents 

consist of uniformly moving charge carriers. When the wave function of a particle is represented 

by a primary QPAD, then this gives a special interpretation of that wave function. A very special 

kind of primary QPAD is a local background QPAD14. It represents the local superposition of the 

tails of the wave functions of distant elementary particles.  

 

The QPAD's that act as wave functions may be imagined in a space that glues the eigenspace 

of the location operator that resides in the Gelfand triple to the Hilbert eigenvectors of the particle 

location operator that resides in the separable Hilbert space. This QPAD-sphere in which these 

QPAD’s exist may be the location of the warm bath that some physicists use as the base of their 

theories. This QPAD-sphere contains streams of space patches that are superfluous in the eigen-

space in the Gelfand triple and that fail in the corresponding eigenspace in the separable Hilbert 

space. Both eigenspaces are considered to be affine spaces. Coupled QPAD’s act as pumps that 

circulate space patches in the QPAD-sphere15.  

 

The reason of the streaming process becomes understandable when the dimensions of the ei-

genspaces are reduced to one. The eigenspace that resides in the Gelfand triple is a continuum and 

can be represented by a circle whose topology is specified by real numbers. The eigenspace in the 

separable Hilbert space is countable and consists necessarily out of far less positions. The simplest 

solution is that these places are specified via rational numbers. 

 

Now let this situation be managed by a mathemagician that must re-compute the situation at 

regular instances. He gets his location information from the continuum eigenspace and must find 

the proper rational number for each particle. He does this by allowing a stochastic inaccuracy be-

tween his real input location and his rational result location. Thus each particle possesses a normal 

distribution of potential locations. The mathemagician solves his problem by stealing potential 

                                                           
13 See: Quaternionic distributions 
14 See: Special QPAD’s 
15 See: figure 2, the QPAD-sphere 
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positions from distant particles and adding them close to the center of the normal distribution of 

the potential positions of the local particle that he currently investigates. This process pumps po-

tential positions around. Since every action of the mathematician is independent from previous or 

later actions, the process behaves as a Poisson process. 

 

 
Figure 2: The QPAD-sphere 

 

The next step is best visualized in two-dimensional affine eigenspaces. In this case results a 

sphere with a thin atmosphere in which thermal streams of eigenspace patches circulate such that 

at the location of particles the atmosphere is compressed. Like the air in the earth's atmosphere the 

eigenspace patches are circulating. Each particle has its own wave function QPAD, which is 

denser on its center than on its tail. The circulation takes place due to the fact that eigenspace 

patches are taken from the tails of the wave functions of distant particles and added to the QPAD 

of the local particle. The patches are retrieved from QPAD tails low in the atmosphere and they 

are emitted high in the atmosphere. If they spread far, then they lose temperature and thus height. 

In this way the local compression of this virtual atmosphere explains the local curvature of the ei-

genspace. 

Now jump back to the full set of dimensions. 

 

A coupled local wave function pumps space patches taken from the tails of other wave func-

tions to the source at its center and spreads them over its surround. In this way it reclaims space 

patches that were supplied by distant sources and supplies them in the form of local space patches. 

The result of the stream of space patches is a local space curvature. Thus the local background 



 

 

QPAD acts as a drain where the local coupled wave function acts as a source of space patches. 

The process that does this can be characterized as a Poisson process. 
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1.4 History 

In its first years, the development of quantum physics occurred violently. Little attention was 

paid to a solid and consistent foundation. The development could be characterized as delving in 

unknown grounds. Obtaining results that would support applications was preferred above a deep 

understanding of the fundamentals.  

 

The first successful results were found by Schrödinger and Heisenberg. They both used a quan-

tization procedure that converted a common classical equation of motion into a quantum mechan-

ical equation of motion. Schrödinger used a wave function that varied as a function of its time pa-

rameter, while operators do not depend on time. Heisenberg represented the operators by matrices 

and made them time dependent, while their target vectors were considered to be independent of 

time. This led to the distinction between the Schrödinger picture and the Heisenberg picture.  

 

Somewhat later John von Neumann and others integrated both views in one model that was 

based on Hilbert spaces. Von Neumann also laid the connection of the model with quantum logic. 

However, that connection was ignored in later developments. Due to the restrictions that are 

posed by separable Hilbert spaces, the development of quantum physics moved to other types of 

Hilbert spaces.  

 

Due to this integration, it becomes clear that the Schrödinger picture and the Heisenberg pic-

ture represent two different views of the same situation. It appears to be unimportant were time is 

put as a parameter. The important thing is that the time parameter acts as a progression indicator. 

This observation indicates that the validity of the progression parameter covers the whole Hilbert 

space. With other words, the Hilbert space itself represents a static status quo. 

 

In those days quaternions played no role. The vector spaces and functions that were used all 

applied complex numbers and observables were represented with self-adjoint operators. These 

operators are restricted to real eigenvalues. 

 

Quaternions were discovered by the Irish mathematician Sir William Rowan Hamilton16 in 

1843. They were very popular during no more than two decades and after that they got forgotten. 

Only in the sixties of the twentieth century, due to the discovery of Constantin Piron that a sepa-

rable Hilbert space ultimately uses quaternions for its inner product, a short upswing of quaterni-

ons occurred. But quickly thereafter they fell into oblivion again. Currently most scientists never 

encountered quaternions. The functionality of quaternions is taken over by complex numbers and 

a combination of scalars and vectors and by a combination of Clifford algebras, Grassmann alge-

bras, Jordan algebras, alpha-, beta- and gamma-matrices and by spinors. The probability ampli-

tude functions were taken to be complex rather than quaternionic. Except for the quaternion func-

tionality that is hidden in the α, β, γ matrices, hardly any attention was given to the possible sign 

selections of quaternion imaginary base vectors and as a consequence the sign flavors of quaterni-

                                                           
16 http://en.wikipedia.org/wiki/William_Rowan_Hamilton  

http://en.wikipedia.org/wiki/William_Rowan_Hamilton


 

 

onic distributions stay undetected. So, much of the typical functionality of quaternions still stays 

obscured. 

 

The approach taken by quantum field theory departed significantly from the earlier generated 

foundation of quantum physics that relied on its isomorphism with quantum logic. Both QED and 

QCD put the quantum scene in non-separable Hilbert spaces. Only the wave function is seen as a 

(complex) probability amplitude distribution. Spinors and gamma matrices are used to simulate 

quaternion behavior. Physical fields are seen as something quite different from wave functions. 

 

The influence of Lorentz transformations gives scientists the impression that space and time do 

not fit in a quaternion but instead in a spacetime quantity that features a Minkowski signature. 

Length contraction, time dilation and space curvature have made it improbable that progression 

would be seen as a universe wide parameter. 

 

These developments cause a significant deviation between the approach that is taken in con-

temporary physics and the line according which the Hilbert Book Model is developed. 

1.5 Criticism 

Due to its unorthodox approach and controversial methods the Hilbert Book Model has drawn 

some criticism 

1.5.1 Model 

Question:  

The separable Hilbert space has clearly some nasty restrictions. Why can quantum physics not 

be completely done in the realm of a rigged Hilbert space? 

Answer: 

In that case there is no fundamental reason for the introduction of fields in QP. It will also not 

be possible to base QP on traditional quantum logic (TQL), because the isomorphism that exists 

between TQL and separable Hilbert spaces (SHS’s) does not exist between TQL and a rigged Hil-

bert space (RHS). See figure 1. 

The quaternionic probability amplitude distributions (QPAD’s) on which fields are based, link 

the SHS with its Gelfand triple {Φ SHS Φ’}, which is a RHS. However, the QPAD’s are not part 

of the SHS and not part of the RHS. The HBM can be pictured as: 

 

TQL⇔SHS⇒{QPAD’s}⇒RHS≡{Φ SHS Φ’} 
 

While the isomorphism ⇔ is replaced by incongruence ⇐≠⇒ in 
 

TQL⇐≠⇒RHS 

1.5.2 Quaternions 

Remark1: 

A tensor product between to quaternionic Hilbert spaces cannot be constructed. So it is better 

to stay with complex Hilbert spaces. 

Remark2: 

(1) 

(2) 
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The notion of covariant derivative, which is an important concept on quantum field theory, of-

fers problems with quaternionic distributions, so it is better to stay with a complex representation. 

This is due to the fact that for quaternionic distributions in general: 

 

      ≠                 
 

\Response: 

The HBM proves that solutions exist that do not apply these concepts. 

 

In fact the subject can be reversed: 

If a methodology is in conflict with a quaternionic approach, then it must not be applied as a 

general methodology in quantum physics. Such method can only be applied in special, one dimen-

sional cases. 

1.6 Consequence 

The application of the HBM requests from physicists that they give up some of the conven-

tional methodology and learn new tricks. 

  

(1) 



 

 

 
PART II 
The Hilbert Book Model 

Abstract 

The extension of the separable Hilbert space by a set of QPAD’s enables the interpretation of 

equations of movement as continuity equations. Exploring this fact leads to a complete set of 

equations that describe all known elementary particles that are contained in the standard model. 

The equations enable the computation of the coupling factors from the configuration of the consti-

tuting fields. The properties of the elementary particles, including the coupling factors are related 

to the local curvature and in this way to the notions of mass and electric charge. Further the notion 

of a QPAD-sphere shows that QPAD play an important role in the establishment of curvature and 

inertia. 
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2 INGREDIENTS 

The most intriguing ingredients of the model are quaternions, quaternionic distributions and 

QPAD’s. 

2.1 Role of the particle locator operator 

The particle locator operator 𝔖 is one of the operators for which the eigenvectors are coupled 

to a background continuum that is related to the eigenspace of a corresponding position operator 

that resides in the Gelfand triple. 

The background continuum may be curved. It means that this background continuum is a qua-

ternionic function of the eigenvalues of that position operator. This function has the same sign 

flavor as its parameter space. Without curvature its parameters and the corresponding values are 

equal. 

For each eigenvector of the particle locator operator the background continuum acts as parame-

ter space for the QPAD that connects this eigenvector with the eigenspace of the corresponding 

position operator that resides in the Gelfand triple. The QPAD can be visualized as a fuzzy funnel 

that drops stochastically inaccurate observation values onto the particle. 

This position operator has a canonical conjugate, which is the corresponding momentum opera-

tor. A connection of the particle eigenvector with the eigenspace of the momentum operator runs 

via a different QPAD. Without any curvature the two QPAD’s would be each other’s Fourier 

transform. 

2.2 QPAD’s 

All elementary particles correspond to different eigenvectors of the particle locator operator 𝔖. 
Each elementary particle has its own QPAD that acts as its wave function. 
If we want to categorize particles, then we must categorize their QPAD’s  But, we also 
must take the QPAD in account to which the wave function QPAD is coupled  Some QPAD’s 
stay uncoupled. 

 
If a QPAD has a well-defined location in configuration space, then it does not have a well-

defined location in the canonical conjugate space. So we better use both locations together.  
A possible strategy is to use the superposition of the QPAD and its Fourier transform. 
This solution distinguishes QPAD’s that, apart from a scalar, are invariant under Fourier 
transformation17.  

An important category of invariants is formed by QPAD’s that have the shape         , 
where   is a constant and   is the distance from the central location1819. 

Further it is sensible to introduce for each category the notion of an average QPAD. De-
termining the average QPAD involves integration over the full parameter space. 

In fact the procedure for determining the average QPAD produces a representation of the 
superposition of all QPAD’s in the parameter space   

                                                           
17 See Appendix; Functions invariant under Fourier transform 
18 http://en.wikipedia.org/wiki/Hankel_transform#Some_Hankel_transform_pairs  
19 Also see http://en.wikipedia.org/wiki/Bertrand's_theorem  

http://en.wikipedia.org/wiki/Hankel_transform#Some_Hankel_transform_pairs
http://en.wikipedia.org/wiki/Bertrand's_theorem


 

 

Another procedure constructs the superposition of all tails of QPAD’s at a certain location  
This produces a background QPAD. For each location such a background QPAD exists, but it 
may differ per location. However, it can only differ very marginally for neighboring loca-
tions. 

2.3 QPAD vizualization 

If I was a good artist and I was asked to give an artist impression of the magic wand of a magi-

cian, then I would not paint a dull rod or a stick with a star at the end. Instead I would draw a very 

thin glass rod that has a sparkling fuzzy ball at its tip. A static view of that ball would be like: 

 

  Figure 3: Typical isotropic QPAD 

 

A dynamic view would show how the sparkles move inside out (source) or outside in (drain). 

This fuzzy ball is how a simple QPAD may look like when we could see it. In a static QPAD, uni-

formly moving virtual charge carriers replace the sparkles. The movement need neither be parallel 

nor spherical, but it must be uniform. The carriers may be interpreted as tiny patches that are tak-

en from the continuum background that forms the parameter space of the QPAD. 

 

Even when they are attenuated or spatially or temporally spread by a binomial process, Poisson 

processes create a result that has a Poisson distribution. The output of an efficient Poisson process 

has a density distribution that comes close to a Gaussian distribution. A typical example QPAD 

might show such a Gaussian density distribution. When actual electrical charges would be distrib-

uted this way, then this distribution creates a potential that has the shape of an error function. Al-

ready at a short distance from its center this function decreases very close to a 1/r dependence. At 

that distance the local potential would be the same as when a single large charge was put at the 

center. Instead our example has virtual charges. So it represents a single virtual charge at the cen-

ter (or an ensemble of properties of the carrier of that single charge). The raised potential is also 

virtual. Still it describes our example QPAD. 

 

Thus the source that creates the above described fuzzy ball may be characterized as a Poisson 

process. 

2.4 Special QPAD’s 

QPAD’s exist in two categories: 

 A primary QPAD concerns virtual charges. 

 A secondary QPAD concerns actual charges. 
The actual charges concern properties that characterize the coupling of two primary QPAD’s. 
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We will consider a special ensemble of primary QPAD’s {     ,    }.  

 The     ,    are normalized: ∫ |    ,   |
      

 
  

 The     ,    must be spherically symmetric. 

 From a given minimal distance their modulus must decrease with radius   as 

   . 
 

The special QPAD’s are Fourier transform invariant and conform to Bertrand’s theorem20. 

2.4.1 The average QPAD 

The ensemble {     ,   } of the special QPAD’s has an average    ,    

2.4.2 The background QPAD 

The ensemble {     ,    } is distributed randomly over the center points {  } in an affine pa-

rameter space. At a given point P in this space the superposition of all {     ,   } will be con-

structed. 

This superposition will be renormalized and then indicated by Φ  ,   . 
Thus,  

 

∫|Φ  ,   |      
 

 

 

In this superposition the largest contribution comes from the     ,     for which the    is far-

thest from P. Further the directions of the imaginary part are reversed with respect to the direc-

tions in the     ,    . 
Especially at long distances, all differences are smoothed away via an averaging process. 

 

The result is that: 

 

Φ  ,    =     ,    
 

We will interpret Φ  ,    as the background QPAD. 

The approach taken here, shows similarity with the approach of Denis Sciama in his paper: 

“On the origin of inertia”21. 

Every sign flavor might have its own background QPAD. 

2.4.2.1 Uniform movement 

Due to its construction the location as well as the shape of the background QPAD is very sta-

ble. In the HBM the background QPAD is reconstructed at every subsequent page. As long as the 

whole QPAD remains static, it can be reconstructed at a displaced location. Thus, as long as this 

                                                           
20 http://en.wikipedia.org/wiki/Bertrand%27s_theorem  
21 See: http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 

(1) 

(2) 

http://en.wikipedia.org/wiki/Bertrand%27s_theorem
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S


 

 

movement is contained in its current density distribution, the background QPAD can move freely 

in a uniform way. 

In principle every location has its own background QPAD. However, it makes only sense to 

couple the locations of particles with the local background QPAD. If this coupling is strong then it 

acts as a sticky resistance against acceleration of the coupled particle. 

2.4.3 Isotropy 

Source QPAD’s are isotropic. Drain QPAD’s are also isotropic and are the conjugate of a cor-

responding source QPAD. 

Anisotropic QPAD’s are hybrids. In one or two dimensions they correspond to source 

QPAD’s. In the other dimensions they correspond to a drain QPAD. 

Oscillating QPAD’s oscillate between source modes and drain modes. They usually can be de-

scribed by spherical or linear harmonic (quantum) oscillators. A special case of the oscillating 

QPAD is a plain wave. 

2.5 Inertia 

Inertia22 is based on the fact that all particles in universe influence a selected local particle. 

Since this influence is isotropic it usually does not disturb the particle. This condition holds as 

long as the particle is located stationary or moves uniformly. In that case the connected QPAD is 

static. However, when the particle accelerates, then this goes together with the existence of an ex-

tra field that becomes part of the particle’s QPAD and that counteracts the acceleration. 

 

The background QPAD that is coupled to the wave function QPAD at the right side of the 

equation of motion23 represents the influence of the universe on the local particle. It represents the 

superposition of all tails of the wave functions of particles that exist in universe. For that reason it 

is the source of inertia. This is shown in the elementary coupling equation. 

 

         
 

The QPAD’s    and    are sign flavors of the same base QPAD  , which on  its turn has the 

same sign flavor as the coordinate system that acts as parameter space. 

For elementary fermions the coupled field    equals the isotropic background field Φ. 

For electrons the wave function    equals   Φ   
The formula (1) holds for all massive elementary particle types, for elementary fermions as 

well as for the elementary bosons that couple to other sign flavors24 than Φ.  

 

With other words, for every QPAD sign flavor    that acts as a wave function of an elemen-

tary particle exists a background QPAD   25. The corresponding particle type is fully character-

ized by the pair {  ,   }  
These facts are in detail treated in the section on elementary particles. 

                                                           
22 Appendix; The universe of items 
23 See Elementary particles 
24 See Quaternions; Sign selections 
25 See: the QPAD game 

(1) 
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According to equation (1) the wave function QPAD is rather strongly coupled to the local 

background QPAD. The equation describes the situation of an independently moving particle. 

In atoms the electrons oscillate around the nucleus. There these particle move more freely. 

They are still coupled to the centrally located background QPAD, but the coupling is rather loose. 

Equation (1) does not describe that situation. Instead of the Dirac equation, the Klein-Gordon 

equation fits more appropriately. 

 

The background QPAD’s play the role that is thought for the Higgs field. 

2.6 Coupling and curvature 

When a local wave function QPAD is coupled to a local background QPAD, then the back-

ground QPAD can be considered as a source that supplies the local wave function QPAD. On its 

turn the local wave function QPAD acts as a drain. Thus, the coupled system pumps space taken 

from the rest of the universe to the location of the local wave function QPAD. These flowing 

space patches form part of the space that the eigenspace    of the location operator that resides in 

the Gelfand triple has extra with respect to the eigenspace    of the particle location operator that 

resides in the separable Hilbert space. Otherwise said: the eigenspace    compresses via the wave 

function QPAD to the eigenspace    and expands back via the coupled background QPAD to ei-

genspace   . The observer that uses    as his observation space, experiences a local compression 

of his observation space at the location of the observed QPAD. This can be expressed by a local 

curvature of the observation space. 

 

As extra detail can be said that the source and the drain act as Poisson processes that cause a 

Gaussian distribution of the patches of space that flow in/out the drain/source location. 

 

The moving space patches may be interpreted as virtual carriers of the properties that charac-

terize the coupling event. 

The coupling properties themselves act as sources of secondary QPAD’s. These are known as 

physical fields. In the Kerr-Newman metric equation these properties act as sources of curvature. 

  



 

 

2.7 Hyper-complex numbers 

Hyper-complex numbers form categories that are ordered with respect to their dimension. The 

dimension   takes the form     , where   is a non-negative integer. A hyper-complex number 

of dimension   can be obtained from a pair of hyper-complex numbers of dimension     via a 

construction algorithm. Several construction algorithms exist. The most popular is the Cayley-

Dickson construction26. A less known construction algorithm is the 2
n
-on construction of Warren 

Smith27. This construction delivers numbers that in the higher dimensions retain better arithmetic 

capabilities. Up and including the octonions the two construction algorithms deliver the same 

numbers. The sedions differ from the 2
4
-ons. 

 

In their lower m dimensions the 2
n
-ons behave similarly to the 2

m
-ons.  

The 2
n
-ons have n independent imaginary base vectors. As a consequence the 2

n
-ons feature n 

independent sign selections. 

Both construction methods ignore these sign selections. Sign selections play a crucial role in 

this paper. 

  

                                                           
26 http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction  
27 Appendix; 2

n
-ons, See http://www.math.temple.edu/~wds/homepage/nce2.pdf 

http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
http://www.math.temple.edu/~wds/homepage/nce2.pdf


 

35 

 

2.8 Quaternions 

A quaternion is a 1+3 dimensional hyper-complex number. It has a one dimensional real part 

and a three dimensional imaginary part. As a result, it can be seen as the combination of a real 

scalar and a three dimensional vector.  

 

                 
 

The quaternions form a division ring28. According to the Frobenius theorem29, the only finite-

dimensional division algebras over the reals are the reals themselves, the complex numbers, and 

the quaternions. 

The coefficients {  } are real numbers. Bi-quaternions exist that have complex coefficients, 

but these do not form a division ring. 

 

2.8.1 Sign selections 

The quaternions possess two independent sign selections. The conju-

gation  ⇔    inverts the sign of all imaginary base vectors. It acts iso-

tropic.  

 

                  
 

The reflection  ⇔    inverts a single imaginary base vector and for  

that reason it acts anisotropic.  

 

                  
 

Here, the base vector   is selected arbitrarily. 

These two sign selections can be mixed. They generate four sign 

states.  

When the three independent directions in which reflections can occur are 

also  

taken into account, then eight different sign selections are possible.  

These sign selections are color coded as is shown in figure 4.  

Individually the conjugation and the reflection both flip the handedness  

of the external vector product of the imaginary part when both factors  

use the same sign selections. 

Figure 4: Sign selections. 

  

                                                           
28 http://en.wikipedia.org/wiki/Division_ring  
29 http://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras)  
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2.8.2 Habits 

The addition works as in all division rings, however the product of two quaternions does not 

commute. 

2.8.2.1 Product rule 

The product rule is best expressed in the form of real scalars and 3D vectors: 

 

        〈 ,  〉              

 

〈 ,  〉                 
 

                                           
 

        

 

The norm or modulus is defined by: 

 

| |   √     〈 ,  〉  

 

2.9 Quaternionic distributions 

Several forms of quaternionic distributions exist. Two forms are relevant for the HBM. 

 

A curved coordinate system can be related to a flat coordinate system via a quaternionic distri-

bution. The flat coordinate system plays the role of parameter space. On its turn the curved coor-

dinate system can also play the role of a parameter space. It does that for quaternionic probability 

amplitude distributions (QPAD’s). 

 

A quaternionic probability amplitude distribution 30 is a quaternionic distribution. Its value can 

be split in a real part that can be interpreted as a charge density distribution and an imaginary part 

that can be interpreted as a current density distribution. The squared modulus of the value can be 

interpreted as the probability density of the presence of the carrier of the charge. The charge can 

be any property of the carrier or it stands for the ensemble of the properties of the carrier. 

                                                           
30 http://en.wikipedia.org/wiki/Probability_amplitude treats complex probability amplitude dis-

tributions. 

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Probability_amplitude
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2.9.1 Sign flavors 

The quaternions that form the values of a quaternionic distribution must all feature the same set 

of sign selections. This fact attaches a sign flavor to each quaternionic distribution. Quaternionic 

distributions come in four sign flavors31:   ,   ,    and   .  However,    and    are di-

rection dependent and appear in corresponding color versions. If the directions of the reflections 

are of interest, then eight different sign flavors exist. We indicate color by an extra index: 

     ,  ,  . See figure 4. 

We will use the symbol   or    for the sign flavor of the quaternionic distribution that has 

the same sign flavor as its parameter space. The superscripts indicate the number of base vectors 

that changed sign.  

We will use 

 

      
 

And with the same symbolic: 

 

  
 
   

 ,    ,  ,   

 

     

 

Often the symbols   and    will be used instead of the symbols    and   . 

2.9.1.1 QD multiplication 
What happens when quaternions from different sign flavors will be multiplied? 

 

1. First a reference sign flavor is selected.  

2. This sign flavor is taken to be the sign flavor of the distribution that will receive 

the result. 

3. The factors are first brought to this reference sign selection. 

4. In this process nothing changes in the values of the quaternions. 

5. After that the multiplication takes place. 

6. The result is delivered in the reference sign flavor. 
 

With other words the multiplication takes place with the handedness that is defined in the tar-

get distribution. 

2.9.2 Differentiation and Fourier transform 

A quaternionic distribution f(q) can be differentiated32. 

                                                           
31 The notion of “sign flavor” is used because for elementary particles “flavor” already has a 

different meaning. 
32 For more details, see Appendix; Quaternionic distributions, 

(1) 

(2) 

(3) 



 

 

 

              〈 ,     〉                 (       ) 

 

The colored   and   signs refer to the influence of conjugation of      on quaternionic multi-

plication. The  sign refers to the influence of reflection of     . 
In this section, the parameter q is supposed to be taken from a non-curved parameter space. 

With that precondition, in Fourier space differentiation becomes multiplication with the canonical 

conjugate coordinate   and therefore the equivalent equation becomes: 

 

g̃    k ̃     k   ̃    〈 ,  ̃   〉  k  ̃       ̃     (    ̃   ) 

 

For the imaginary parts holds: 

 

                      (       ) 

 

 ̃     k  ̃       ̃     (    ̃   ) 

2.9.3 Spinors and matrices 

In contemporary physics complex probability amplitude distributions (CPAD’s) are used rather 

than QPAD’s. Spinors and matrices are used to simulate QPAD behavior for CPAD’s. 

 

A spinor [ ] is a 1×4 matrix consisting of CPAD’s that represent the sign flavors of a 
QPAD. Sometimes the spinor is represented as a 1×2 matrix. 

 
The   and   matrices influence the elements of spinor [ ]. 
 

   [
  
   

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

 

 ,   and   represent imaginary base vectors of the simulated quaternion.   represents the con-

jugation action for the spinor. 

 

A relation exist between   ,   ,    and the Pauli33 matrices    ,   ,   : 
 

                                                           
33 http://en.wikipedia.org/wiki/Pauli_matrices  

(2) 

(3) 

(4) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Pauli_matrices


 

39 

 

   [
    
  
] ,    [ 

   
  

] ,    [
  
   

] 

 

    ,      ,      ,       
 

This combination is usually represented in the form of gamma matrices. 

In Dirac representation, the four contravariant gamma matrices are 

 

   [

    
    
     
     

] ,    [

    
    
     
     

],  

 

   [

     
    
    
     

] ,    [

    
     
     
    

]  

 

It is useful to define the product of the four gamma matrices as follows: 

 

                 [

    
    
     
     

] 

 

The gamma matrices as specified here are appropriate for acting on Dirac spinors written in the 

Dirac basis; in fact, the Dirac basis is defined by these matrices. In the Dirac basis34: 

 

   [
  
   

] ,    [    

    
] ,     [

  
  
] 

 

This corresponds with     
 ,      . 

Apart from the Dirac basis, a Weyl basis exists 

 

       [
  
  
] ,    [    

    
] ,     [

   
  

] 

 

The Weyl basis has the advantage that its chiral projections35 take a simple form: 

 

          
  [ ]  [

  
  
] [ ] 

 

          
  [ ]  [

  
  
] [ ]  

 

                                                           
34 http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis  
35 http://en.wikipedia.org/wiki/Chirality_(physics)  

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

http://en.wikipedia.org/wiki/Covariance_and_contravariance
http://en.wikipedia.org/wiki/Chirality_(physics)
http://en.wikipedia.org/wiki/Gamma_matrices#Dirac_basis
http://en.wikipedia.org/wiki/Chirality_(physics)
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2.9.4 Continuity equation 

When applied to a quaternionic probability amplitude distribution (QPAD), the equation for 

the differentiation leads to a continuity equation. 

 

When       is interpreted as a charge density distribution, then the conservation of the corre-

sponding charge36 is given by the continuity equation: 

 

Total change within V = flow into V + production inside V 

 
 

  
∫       

 

 ∮  ̂  
 

 
   

 

 ∫     

 

 

 

∫       

 

 ∫〈 ,  〉   

 

 ∫     

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding surface S,    ,    is the velocity 

at which the charge density     ,    enters volume V and    is the source density inside V. In the 

above formula   stands for 

          
 

It is the flux (flow per unit area and unit time) of    . 
 

The combination of     ,    and    ,    is a quaternionic skew field    ,    and can be seen as 

a probability amplitude distribution (QPAD). 

 

       

 

   ,       ,    can be seen as an overall probability density distribution of the presence of the 

carrier of the charge.     ,    is a charge density distribution.    ,    is the current density distri-

bution. 

The conversion from formula (2) to formula (3) uses the Gauss theorem37. This results in the 

law of charge conservation:  

 

    ,          ,    〈 , (    ,      ,         ,   )〉 

 

       ,    〈 ,    ,       ,   〉 
 

       ,    〈   ,   ,      ,   〉  〈 ,    ,   〉     ,    
 

                                                           
36 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 
37 http://en.wikipedia.org/wiki/Divergence_theorem  

(15) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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 〈 ,    ,   〉 
 

The blue colored ± indicates quaternionic sign selection through conjugation of the field 

   ,   . The field    ,    is an arbitrary differentiable vector function. 

 

〈 ,      ,   〉    
 

   ,          ,    is always divergence free. In the following we will neglect    ,   . 
 

Equation (6) represents a balance equation for charge density. What this charge actually is, will 

be left in the middle. It can be one of the properties of the carrier or it can represent the full en-

semble of the properties of the carrier. 

 

This only treats the real part of the full equation. The full equation runs: 

 

   ,        ,        ,       ,    
 

        ,    〈 ,    ,   〉       ,          ,    (      ,   ) 

 

       ,    〈   ,   ,      ,   〉  〈 ,    ,   〉     ,     
 

      ,          ,          ,    
 

 (      ,         ,       ,         ,   ) 

 

    ,           ,    〈    ,      ,   〉  〈 ,    ,   〉     ,    
 

   ,          ,          ,    
 

 ( (    ,         ,       ,         ,   )) 

 

The red sign selection indicates a change of handedness by changing the sign of one of the im-

aginary base vectors. Conjugation also causes a switch of handedness. It changes the sign of all 

three imaginary base vectors. 

  

(7) 

(8) 

(9) 

(10) 



 

 

3 PARTICLE PHYSICS 

This chapter treats the first level coupling. The result of that coupling are first level particles. 

These particles are solely created out of coupled primary QPAD’s and annihilate back into prima-

ry QPAD’s. The zero-level of coupling stands for no coupling.  

This section will not separate different particle generations. 

Graphically the first level coupling is presented in more detail in the slide show. 

3.1 Elementary fermions 

First level particles appear to obey a special kind of continuity equation. In this continuity 

equation the source/drain term is represented by the coupled background QPAD.  

3.1.1 Dirac equation 

The best known equation of motion for elementary fermions is the Dirac equation. It is written 

using spinors and matrices. 

The Dirac equation for a free moving electron or positron is known as: 

 

  [ ]    [ ]    [ ] 
 

The Dirac matrices   and   give the spinor [ ] the function of a pair of QPAD’s. 

This spinor equation can be converted into two quaternionic equations that act on the QPAD’s 

   and   : 
 

             
 

             

 

In the mass term the coupling factor   couples    and   . When     then    and    are 

not coupled. Further: 

 

     
       

 

In the left term of equations (2) and (3),   and    represent the wave function of the particle. 

In the right side appears the background field. In that sense {  ,  } and {  ,  } represent each 

other’s antiparticle. 

 

Reformulating these equations gives 

 

         

 

                         
 

For the conjugated equation holds 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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This implements the reverse flip. The corresponding particle is the antiparticle. 

 

{  ,   }   {  ,   } 

 

Both flips switch the handedness. 

 

Equations (5) and (7) are each other’s quaternionic conjugate. However, it must be noticed that 

all terms are conjugated, including the nabla operator, but the parameter space stays untouched. 

Thus equation (7) differs from equation (5). 

 

Summing the equations gives via 

 

        〈 , 〉 
 

the result 

 

      〈 , 〉        
 

The difference gives 

 

                  

 

Just reversing the sign flavors does not work. For the same QPAD  , the corresponding equa-

tion will contain extra terms: 

 

                                     

 

       〈 , 〉                       〈 , 〉  
 

      〈 , 〉       
 

Thus if the reverse equation fits, then it will concern another QPAD configuration    that will 

not fit the original equation. 

The pair {   ,    } that fits equation: 

 

            

 

represents a different particle than the electron {  ,   }, which obeys equation (5). It also 

differs from the positron {  ,   }, which obeys equation (7).  

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 



 

 

Where the electron couples to the general background QPAD   , the new particle couples to 

the conjugate    of the general background QPAD   . 

3.1.1.1 The coupling factor 
Multiplying both sides of the equation of motion for the electron: 

 

         

 

with    and then integrate over the full parameter space gives: 

 

∫        
 

   ∫          
 

  ∫|  
 
|
 
     

 

  

 

Thus, the coupling factor   can be computed from the QPAD  . 

3.1.2 The Majorana equation 

The Majorana equation deviates from the Dirac equation in that is applies another sign flavor 

of the wave function QPAD  . That other sign flavor is still coupled to the general background 

QPAD    . 
 

        
  

 

The conjugated equation defines the anti-particle. 

 

         
   

 

The particle is represented by the ordered pair {  ,   }. The corresponding flip does not 

switch the handedness. 

The Majorana equation is thought to hold for neutrinos, which are neutral. Equation (2) will 

then hold for the anti-neutrino. 

The coupling coefficient    for the neutrino follows from: 

 

∫        
 

    ∫ 
         

 

   ∫| 
 
 
|
 
     

 

   

 

3.1.3 The next particle type 

We have exploited:  

 

         

 

and 

 

(1) 

(2) 

(1) 

(2) 

(3) 

(1) 
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The next possibility would be: 

 

        
  

 

The conjugated equation is: 

 

         
   

 

The particle is represented by the ordered pair {  ,   }. The corresponding flip does switch 

the handedness. Again the wave function QPAD is coupled to the general background QPAD 

  . 

Like the electron, this particle will have charge, but its charge will be three times lower, be-

cause only one instead of three imaginary base vectors cause the switch in handedness. Of course, 

this is an opportunistic interpretation, but it seems to fit when we assume that the particle is a 

down quark with charge equal to -⅓e. 

 

The formula for the coupling factor    is: 

 

∫        
 

    ∫ 
         

 

   ∫| 
 
 
|
 
     

 

   

 

The coupling that constitutes the down quark is anisotropic. This fact introduces a new kind if 

charge, which is called color charge. The color is related to the direction of the reflection of the 

wave function QPAD. 

In summary the down quarks have the following properties: 

 

 Location 

o Position 

o Momentum 

 Electric charge 

 Spin 

 Color charge 

3.2 Massles bosons 

This paragraph treats the zero-level of coupling. 

3.2.1 No coupling 

The last possible form in which the wave function couples to the background field     is: 

 

         

 

(2) 

(3) 

(4) 

(5) 

(1) 



 

 

The formula for the coupling factor   is: 

 

∫        
 

   ∫          
 

  ∫|  
 
|
 
     

 

  

 

∫        
 

  ∫ | |    
 

   

 

Presence does not leak. So, 

 

   . 
 

With other words a QPAD does not couple to itself. 

3.2.2 The free QPAD 

When for sign flavor    the coupling factor   is zero then: 

 

       
 

    
   〈 ,  〉 

 

        
     

     
 

It means that a change    
  in the speed of the current goes together with a rotation   of the 

current  

 

       
 

and/or a new field  : 

 

      
  

 

For comparison, in the equations of Maxwell38 the field   is defined as: 

 

      
     

       
  

 

In those equations   is the electric field and   is the magnetic field. However here these fields 

have a more general meaning. 

 

Thus equation (3) means: 

 

    

 

                                                           
38http://en.wikipedia.org/wiki/Maxwell%27s_equations#Potential_formulation   

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Maxwell%27s_equations#Potential_formulation
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More interesting is the corollary  

 

        

 

         
                     

 

       〈 ,  〉            
  

 

          
    

    
 

Thus 

 

        
    

 

Or 

       
 

Further 

 

  
   
   〈 ,    

 〉   〈 ,     〉  〈 ,    
 〉       

  

 

Thus: 

 

       
 

With other words a free (= not coupled)    is either harmonic or it is static. The static condi-

tion corresponds to the ground state. 

This holds for all QPAD’s. 

3.3 Reflection 

We have now exhausted all possibilities for coupling a QPAD sign flavor to the general back-

ground QPAD   . Above we could link the analyzed particles to electrons, neutrinos and down 

quarks. Their antiparticles were treated as well. The investigated particles are elementary fermi-

ons. (We did not state why they are fermions.) 

We also analyzed the situation that a QPAD is coupled to itself. That situation leads to zero 

coupling factor, which means no coupling. The free QPAD’s are bosons and correspond to pho-

tons or gluons. (We did not state why these “particles” are bosons.) 

 

The ordered pair {ψˣ, ψʸ } represents a category of elementary particle types. 

For antiparticles all participating fields and the nabla operator conjugate. 

 

We can now try to establish the apparent rules of the game. The rules are: 

 

 If the wave function QPAD is coupled to the general background QPAD then the 

particle is a fermion. Otherwise, it is a boson. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 



 

 

 If the coupling takes place between two QPAD sign flavors with different hand-

edness, then the corresponding particle is charged.  

 The charge depends on the number and on the direction of the base vectors that 

differ.  

 The count for each difference is ±⅓e. 
 

No elementary particle type exists that obeys the above rules and at the same time features 

electric charge ⅔e. Such a particle may exist as a composite. Thus, according to these rules the 

up-quarks are not elementary fermions. For that reason, they do not belong to the standard model! 

 

The elementary particles that are not yet covered are    and    bosons and Z bosons. We like 

to proceed in a similar way, but the coupling with the background QPAD is used up. Now let us 

try other couplings.  

 

We already encountered one, the ordered pair of sign flavors {  ,   } that obeys 

 

          

 

The coupling changes the handedness, so the particle is charged. It has much in common with 

the positron. Still it is not the anti-particle of the electron, because its equation of motion differs. 

It might exist, but then it probably hides behind the positron. 

3.4 Limits of the model 

The scheme does not distinguish between generations of elementary particle types. 

 

It must be stated that the reason of being a fermion as it is applied here, differs strongly from 

the usual fermion/boson assignment. As a consequence also the notion of spin will differ. This 

approach is due to the fact that the elementary particles are defined as a pair of coupled QPAD’s 

and not as a single wave function QPAD. Only the ordered pair will define the value of the spin 

and the fact that the particle is a fermion. 

 

We adopt the existing convention that fermions go together with half integer valued spin. Here 

it will not be explained why that relation exists. With other words, having half integer spin and 

being a fermion is related on the one hand to experimental results and on the other hand to the or-

dered pair of coupled QPAD’s that represents the particle. In the HBM a particle is a fermion 

when its wave function is coupled to the general background QPAD. What spin actually is, is not 

explained in this model. We just accept the existing convention. The same holds for the electrical 

charges. 

 

In short, this model does not explain why particles get their electric charge or spin. The model 

only explains the origin and the habits of the coupling factor and it explains how the values of the 

electric charge and spin relate with the ordered coupled QPAD pair that represents the particle. 

 

Later, it will be explained how the coupling factor relates to the mass of the particle.  

(1) 
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3.5 Anisotropic coupling fields 

We have explored all particles that make use of the isotropic background QPAD   . These 

particles appear to be fermions. Next we like to explore particles that couple to anisotropic back-

grounds. These particles will appear to be bosons. It means that they all have integer valued spin. 

It is not explained why these particles are bosons or have full integer spin. 

3.5.1 The cross-sign flavor equations 

These equations describe the situation that a flip is made from a   
 

 field to a    
 

 field or 

vice versa. The direction related index   might or might not play a role. 

 

   
 
        

 
 

 

The conjugated equation is: 

 

    
 
        

 
 

 

Another form is 

 

   
 
        

 
 

 

The conjugated equation is: 

 

    
 
        

 
 

 

The sign flavor switch affects three imaginary base vectors and flips the handedness. As a con-

sequence the particles have a full electric charge. It concerns two particles, the    and the    

bosons. These bosons carry electrical charges. 

The    and    bosons are considered to be each other’s antiparticle. It is also possible that 

they hide between each other’s antiparticle. 

 

  
 
    
 
       

 
   
 

 

 

∫  (  
 
   
 
)    

 

     ∫ (  
 
   
 
)    

 

      

 

  
 
    
 
       

 
   
 

 

 

∫ (  
 
    
 
)    

 

     ∫ (  
 
   
 
)    

 

      

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



 

 

3.5.2 The Z boson 

The particle that obeys: 

 

         
  

 

 

Is a neutral boson. 

 

∫  (  
 
    )    

 

    ∫ (  
 
   
 
)    

 

      

 

Another possibility is: 

 

          
  

 

Again these particles may hide between each other’s anti-particle. 

3.6 General form 

The general form of the equation for particle {  ,   } is: 

 

         
 

For the antiparticle: 

 

            
 

For all particles hold: 

 

      〈 , 
 〉       

 

        
     

        
 

The Fourier transform equivalents are 

 

   ̃   〈 ,  ̃
 〉     ̃  

 

   ̃    ̃     ̃
      ̃  

 

   is generally known as the Hamiltonian.   is the momentum. 

 

∫        

 

 

 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 

(5) 
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∫         

 

 

 

The factor g is real and non-negative. 

Further, the equation for coupling factor   is: 

 

∫            
 

   ∫          
 

  ∫|  |    
 

 

 

An equivalent of the Lagrangian may look like 

 

                   
 

3.7 Shadow particles 

Several particle types have properties and behavior that is similar to the properties and behav-

ior of antiparticle types of other particle types. 

For example {  ,   } is hidden behind the positron which is the antiparticle of the electron 

{  ,   }. The    boson {  
 
,   
 
} hides behind the antiparticle of the    boson {   

 
,   
 
} 

and vice versa. 

The boson {  
 
,   
 
} hides behind the antiparticle of {   

 
,   
 
} and vice versa. 

3.8 Resulting particles 

Under the resulting particles fall 12 multi-color couplings. It are anisotropic QPAD’s that are 

coupled to other anisotropic particles that only differ with respect to their color. They show great 

resemblance with mesons. 

Further, a set of particles exist that are shadow particles of down-quarks or anti-down-quarks. 

3.9 Anti-particles 

Just like the universe is filled with a huge number of particles, it is also filled with a huge 

number of anti-particles. Otherwise the anti-particles would not sense the same kind of inertia that 

particles do. 

This anti-world has its own kind of general background QPAD.  

We christen this version the “background anti-QPAD”.  

It represents the local superposition of the tails of the wave functions of all anti-particles in 

universe.  

  

(9) 

(10) 



 

 

 

4 Origin of curvature 

The primary QPAD’s cause a local pressure in the QPAD-sphere. This only occurs when the 

QPAD is coupled to another QPAD. Both QPAD’s must be sign flavors of the same base QPAD. 

On its turn the local pressure causes a local space curvature. 

4.1 Physical fields 

Primary QPAD’s are not observable. The properties that characterize an elementary coupling 

can be interpreted as sources/drains of new QPAD’s that we will christen secondary QPAD’s. 

These secondary QPAD’s become noticeable as corresponding physical fields. 

With other words, these physical fields use the properties of primary couplings as their 

sources/drains. 

Wave function QPAD’s and background QPAD’s transport tiny patches of the parameter 

space. Since these patches are added to or taken from the parameter space, these patches can be 

interpreted as tiny virtual sources or drains. Thus, where the carriers that are transported by wave 

functions are tiny virtual sources/drains, the sources/drains of physical fields are actual 

sources/drains. 

4.2 Curvature and inertia 

All primary couplings affect the local curvature 

Only the wave function QPAD’s that couple to a background QPAD will experience inertia 

This also holds for anti-particles and their background anti-QPAD 

4.2.1 Inertia versus anti-particle 

Besides of the fact that all particles possess corresponding anti-particles, each wave function 

category seems to correspond with a corresponding background QPAD, which in some cases is 

the conjugate of the wave function QPAD. However, fermions and their anti-particles seem to 

prefer isotropic background QPAD’s. Fermions share the same (isotropic) background QPAD and 

anti-fermions do the same. 

4.2.2 Inertia of W and Z Bosons 

W and Z bosons use their “own” background QPAD, which is anisotropic. 

The background QPAD of a    boson has the form of the wave function QPAD of a    bos-

on, which has the form of an anti-   boson. 

The background QPAD of a    boson has the form of the wave function QPAD of a    bos-

on, which has the form of an anti-   boson. 

The background QPAD of a   boson has the form of the form of the wave function QPAD of 

the anti-Z boson. 

4.3 Effect of primary coupling 

The coupling may compress or decompress the local parameter space. 

Above, 56 different kinds of primary coupling are discerned. 
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Together with the balance equations that differ for particles and anti-particles and shadow par-

ticles this defines a large number of ways of how the local parameter space is affected. 

 

 

 

 

 

 

  



 

 

5 Higher level coupling 

The primary QPAD’s cause a local pressure in the QPAD-sphere 

On its turn that local pressure causes the local space curvature. 

 

The streams of space patches that result after the primary couplings will be used in higher level 

interactions. It means that these resulting currents may still influence higher level coupling. 

 

Hypothesis: 

In these interactions the properties of the primary couplings are conserved 

 

5.1 The Kerr-Newman equation 

The Kerr-Newman metric equation gives a rough impression on how this works. It uses the 

sources/drains of physical fields and not the primary couplings. For that reason it delivers only a 

course approximation. 

The Kerr-Newman equation describes the effects of physical fields on curvature for elementary 

particles as well as for black holes  

5.2 Role of secondary QPAD’s 

The properties that characterize primary couplings act as sources/drains of secondary QPAD’s 

The primary couplings are responsible for affecting the local curvature, but it looks as if the 

secondary QPAD’s have this role 

This is a false impression! 

5.3 Higgs 

This story does not include a Higgs particle or a Higgs field. However, the Hilbert Book model 

uses a background field that acts as a partner in the coupling of that background field to the wave 

function of an elementary fermion. That background field takes the role of the Higgs field. It im-

plements inertia. This simplified picture ignores that every coupled QPAD in some way affects 

curvature. 
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6 HADRONS 

The HBM cannot discern generations of elementary particles. For that reason the elementary 

fermions are treated per category. 

Symbol e or    means electron 

Symbol p or    means positron 

Symbol n means neutrino 

Symbol d means down-quark 

Symbol u means up-quark. But in the HBM up-quarks are no elementary particles. 

6.1 Second level coupling 

This chapter treats the second level of coupling. It treats couplings between elementary parti-

cles. This coupling uses the secondary QPAD’s that are generated by the properties of the first 

level coupling. The Hilbert Book Model delivers the reason of existence of these properties; cou-

pling factor, electric charge, angular momentum (spin) and possibly color charge of elementary 

particles. In higher level couplings these properties are conserved.  

 

The primary couplings influence the local curvature. However, the primary QPAD’s are not 

observable. Only the secondary QPAD’s become observable. Thus, it looks as if the secondary 

QPAD’s or their sources/drains are responsible for affecting curvature. This, of course, is a false 

expression.  

Still the currents in the coupled QPAD’s that remain after coupling may still influence higher 

level coupling. 

 

The curvature is also a binding ingredient for the next levels of coupling. The formulas that de-

scribe the influence of the conserved properties on the curvature inform what will happen. Cur-

rently the best available formula is the Kerr-Newman metric formula. The Kerr-Newman equation 

works on the base of locally existent properties (the sources or drains of the secondary QPAD’s). 

At a fixed instant of proper time, thus inside a single page of the Hilbert Book Model, the Kerr-

Newman equation is a static equation. 

If in a subsequent HBM page the controlling properties have changed, then those new proper-

ties define the new configuration. 

 

The first level coupling that constitutes elementary fermions uses a background field that is the 

partner in the coupling of that background field to the wave function of the elementary fermion. 

The background field represents the superposition of the tails of the wave functions of all mas-

sive particles that exist in the universe. In this way inertia gets its implementation. 

 

Many primary couplings do not involve coupling to the general background QPAD. Thus the 

corresponding coupling does not so much inflict inertia. However, the QPAD’s that are coupled to 

the wave function QPAD’s may glue particles together. 

 

Hadrons are the first of the next levels of binding products. 

 



 

 

The Kerr-Newman equation shows an abnormality at the place where black holes get their 

horizon. Whether or not a hadron possesses a horizon is in this respect unimportant. The proper-

ties of the elementary particles that are bound together in order to form the hadron are sources of 

secondary QPAD’s. The static versions of these secondary QPAD’s reach beyond a possible hori-

zon. To the outside world the superposition of these fields signal the properties of the hadron.  

The primary QPAD’s that constitute the elementary particles and that on their turn constitute 

the hadron, also reach beyond the potential horizon. 

 

6.2 Interaction 

The common way of treating interactions in quantum field theory is to apply a methodology 

called covariant derivation. This methodology works well in a complex representation, but fails in 

a quaternionic approach. With other words it works in special one-dimensional cases but it is not 

well suited for multidimensional cases. So, the HBM must find another approach in order to im-

plement interactions. The HBM also does not consider the existence of virtual particles. However, 

this is compensated by the availability of primary QPAD’s. These primary QPAD’s describe the 

probability of presence of virtual carriers of charges, where the charges can be ensembles of prop-

erties of that carrier. Superpositions of tails of these QPAD’s can construct temporary couplings. 

These couplings will in fact represent temporary virtual particles. This deliberation leads to the 

acceptance of the superposition of the tails of QPAD’s as the medium that implements the feature 

of interaction. 

6.3 Rules 

The second level of coupling has its own set of rules. 

 

 The total color of the composite must be white39. 

 The properties of the constituting particles will be conserved.  

 However, mass (coupling factor) may be exchanged against field energy. 

 Field energy is transported via oscillating QPAD’s. 

 Like the fermions, hadrons exist in generations. 
 

The properties of the elementary particles, including color, play a significant role in the Pauli 

principle. 

Coupling factor, electric charge, angular momentum (spin) and color charge are sources of 

secondary fields. 

Location (position or momentum) are not sources of secondary fields. 

6.4 Up-quarks 

In the HBM the up-quarks cannot be constructed from a simple coupling of QPAD sign fla-

vors. Therefore the HBM does not consider them to be elementary particles. Instead up-quarks are 

                                                           
39 In observable particles, which are particles that may be detected in measuring machines like 

the LHC, the color is always white. 
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composed of down-quarks and W+ particles or from down-quarks, positrons and neutrinos. Fur-

ther, the up-quarks annihilate into these constituents.  

Like down-quarks the up-quarks have color. This attribute relates to the direction of the reflec-

tion of the constituting down-quark. 

Apart from up-quarks also anti-up-quarks exist. 

6.5 Mesons 

Mesons are composed out of quarks and anti-quarks. The following meson categories exist. 

 

 (dd+uu)/√2 

 (dd-uu)/√2 

 ud 

 du 
 

However, it might well be that the mixed color elementary particles are in fact mesons. 

6.6 Baryons 

Baryons are composed out of triples of quarks. The following baryons exist40. 

 

Symbol configuration name Isospin I3 

    ddd delta    ⁄  

   ddu neutron    ⁄  

   uud proton  
 ⁄  

    uuu delta  
 ⁄  

 

For the anti-baryons the possibilities are: 

 

 ddd 

 ddu 

 uud 

 uuu 
 

I relation to the Pauli principle the versions with multiple u or multiple d can only exist due to the 

fact that the constituting quarks have different spin and/or different color charge. 

t  

                                                           
40 The generations are ignored! 



 

 

7 COSMOLOGY 

Cosmology concerns all particles with a mass above the limiting mass 𝔐. 

7.1 Higher order couplings 

It is assumed that during higher order couplings the constituting elementary particles keep their 

basic properties; 

 coupling factor,  

 electric charge  

 angular momentum. 
 

The properties that characterize the coupling event in elementary particles are sources of sec-

ondary fields. These fields are known as physical fields. For example the electric charge is a 

source for electromagnetic fields. The coupling factor is a source for the gravitation field. The 

spin also causes a field. 

 

A secondary field is a specialized QPAD that has one of the properties of the elementary parti-

cle as its isolated source. 

 

These secondary fields play a major role in the higher order couplings. The reason for this fact 

is that the sources of the secondary fields influence the curvature of the parameter space. 

 

The composite particles can be considered to have wave functions that are formed by the su-

perposition of the wave functions of the constituting particles. However, at least part of these par-

ticles consist of coupled pairs of QPAD’s in which one is a wave function QPAD  and the other is 

a background QPAD. With other words, a composite particle is a coupling between a superposi-

tion of a number of wave function QPAD’s and a superposition of a number of background 

QPAD’s. 

 

It means that the wave function of the composite is a superposition of a set of QPAD’s that 

have different sign flavors. However, the same holds for the superposition of the background 

QPAD’s. 

This fact would mean that higher order coupling is not well described by simple wave equa-

tions as those that describe elementary particles. Instead it may be better described by an equation 

that describes the dependence of the local curvature on the locally existing coupling properties.  

 

An equation that does something like that is the Kerr-Newman metric equation. However, the 

Kerr-Newman equation produces an abnormality when the limit41  

 

  √  
           

 

                                                           
41 Appendix; Kerr-Newton limit 
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is passed. Above that limit the particle is encapsulated and guarded by a skin in the form of a 

horizon. Below that limit the particle is naked. 

By selecting an adapted coordinate system the above geometric abnormality fades away42. 

7.2 Curvature 

7.2.1 Hilbert Book Model ingredients 

Each page of the Hilbert Book Model consists of three quite independent ingredients. 

 

Ingredient 1: The quantum logic, or equivalently, its lattice isomorphic companion; 

the set of closed subspaces of an infinite dimensional separable Hilbert space 

 

Ingredient 2: A background coordinate system that is taken from the continuum ei-

genspace of an operator that resides in the Gelfand triple of the separable Hilbert space. 

 

Ingredient 3: A set of QPAD’s that each couple an eigenvector of a particle locator 

operator that resides in the Hilbert space to the background coordinate system. 

 

Couplings between QPAD’s that lead to elementary particles are characterized by three catego-

ries of properties: 

 

 Coupling factor 

 Electric charge 

 Angular momentum 
 

These properties influence the curvature that affects the third ingredient.  

The way that these properties influence curvature is described by metric equations, such as the 

Kerr-Newman metric formula. 

The three ingredients have their own properties and habits. For example the QPAD’s may fea-

ture a maximum speed of information transfer, while the curvature of the background coordinate 

system acts instantaneously on changes of the controlling properties or takes a shortcut over flat 

space rather than over curved space.. 

7.2.2 Macroscopic black hole features 

A black hole can be considered as a geometric abnormality. Since light is the carrier of it, in-

formation can pass nor leave the skin of a black hole. No distant observer can ever see that a mac-

roscopic black hole (MBH) absorbs something. Still intelligent observers know that an observed 

MBH has grown to its current size. The observer derives that information from features in the sur-

round of the MBH. However, these features must already have received enough information about 

the properties of the MBH. Otherwise, the intelligent observer could not have derived his 

knowledge from those features. Thus the features got the message about the properties of the 

MBH by a messenger that goes far faster than light can go.  

                                                           
42 See below: Coordinate system.  



 

 

A possible explanation is the fact that the spread of the influence of the three properties; cou-

pling factor, electric charge and angular momentum have on curvature acts instantaneously. This 

influence runs over the whole extent of the universe.  

An alternative explanation is that the spread of curvature runs with the speed c of information 

transfer, but that it does not run over curved space, but instead it runs over flat space. This means 

that the spread still takes time, but uses a shortcut with respect to what light can achieve. 

In comparison the transport of information runs via QPAD’s and is limited by the maximum 

speed in that medium. That is the speed of light. These facts can be explained by the difference 

between the habits of the corresponding media. 

 

For a part, the features that are described here for black holes also hold for other geometric ab-

normalities that have a much smaller scale.  

7.2.3 Curvature 

The coordinate system that is taken from the eigenspace of an operator that resides in the Gel-

fand triple is not applied directly. Instead a quaternionic distribution that uses the values of the flat 

coordinate system that is taken from the Gelfand triple as its parameters is used as the observed 

coordinate system. 

 

Curvature can be described by the combination of a preselected coordinate system that defines 

location in a non-curved space and a local metric that describes the curvature in terms of that co-

ordinate system. As is described above, the flat coordinate system is taken from the Gelfand tri-

ple. 

7.2.4 Coordinate system 

Several coordinate systems are possible. The most common coordinate systems for a non-

curved three dimensional space are: 

 

 Cartesian coordinates 

 Spherical coordinates 
 

Alternatives for spherical coordinates are: 

 

 Schwarzschild coordinates43 

 Kruskal-Szekeres coordinates44 

 Lemaitre coordinates45 

 Eddington–Finkelstein coordinates46 
 

The advantage of the alternative coordinates is that they avoid unnecessary singularities. How-

ever, these alternatives are only relevant for situations in which the Schwarzschild radius plays a 

                                                           
43 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
44 http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates  
45 http://en.wikipedia.org/wiki/Lemaitre_coordinates  
46 http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates  

http://en.wikipedia.org/wiki/Schwarzschild_coordinates
http://en.wikipedia.org/wiki/Kruskal-Szekeres_coordinates
http://en.wikipedia.org/wiki/Lemaitre_coordinates
http://en.wikipedia.org/wiki/Eddington%E2%80%93Finkelstein_coordinates
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significant role. This is certainly the case for black holes and their environment, but it becomes ir-

relevant in the realm of some elementary particles. 

7.2.5 Metric 

The currently best suitable local metric equation for our purposes is the Kerr-Newman metric47. 

It uses three local properties. These properties are: 

 

 The coupling factor   

 The electric charge   

 The angular momentum   
 

The angular momentum   includes the spin  . 
 

This metric uses the sum of a category of properties that are collected within the observed 

sphere. However, in principle the summation produces different centers of activity for different 

property categories. Thus, these centers need not be at the same location. However, for large 

enough selected radius   and applied to black holes or single particles, these centers coincide.  

 

The simplest interpretation of the Kerr-Newman metric can be taken on the surface of a sphere 

that has a selected radius  . 
 

The formula uses three characteristic radii. The largest characteristic radius plays the most 

prominent role.  

 

This fact introduces the notion of geo-cavity. 

7.2.6 Scales 

The charge-to-mass ratio     is typically larger in smaller systems48. For most astrophysical 

systems, 

 

     ,  
 

while for a Millikan oil drop,  

 

       .  
 

Going all the way down to elementary particles, the value for the electron is  

 

        .  
 

To achieve balance we require that Newton's gravitational force    has the same magnitude as 

Coulomb's force   , that is 

                                                           
47 Appendix;Metric tensor field;Local metric equation 
48 For deeper investigation, see: http://arxiv.org/abs/0802.2914  

(1) 

(2) 

(3) 

http://www.linkedin.com/redirect?url=http%3A%2F%2Farxiv%2Eorg%2Fabs%2F0802%2E2914&urlhash=-sLQ&_t=tracking_disc
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To be more specific, let us assume that       where   is the elementary charge. We then ad-

just the mass   to the value for which the forces are balanced. This gives the Stoney mass49  

 

        
 

√     
              kg         

 

It is only one order of magnitude lower than the Planck mass  

 

   √
 c
 ⁄                

   kg         

 

The ratio between them is given by the square root of the fine structure constant,  

 

α  
e 

c     
                    

 
  
  
 √      

 

Thus, in case of electric charges, the Coulomb forces are nearly in balance with the gravita-

tional forces at the Planck scale. However, at subatomic scale this picture is disturbed by the spin. 

 

For subatomic systems there is an additional phenomenon which comes into play. In fact, ac-

cording to general relativity, the gravitational field tends to become dominated by the spin at dis-

tances of the order of the Compton wavelength. The relevant quantity which governs this behavior 

is the ratio      where   is the (spin) angular momentum. For an electron, 

 

         .  
 

As a consequence, the gravitational field becomes dominated by gravitomagnetic effects in the 

subatomic domain. This fact has important consequences for the electromagnetic fields of spin-

ning charged particles. 

 

The four known gravitational and electromagnetic multi-pole moments of the electron are:  

 the mass   ,  

 the spin       ,  

 the charge    

 the magnetic moment   
   

   
 

The spin is a gravitomagnetic dipole moment, i.e. a gravitational analogue of the magnetic di-

pole moment. 

                                                           
49 http://en.wikipedia.org/wiki/Natural_units  

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

http://en.wikipedia.org/wiki/Natural_units
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The corresponding Kerr-Newman field is therefore dominated by the spin in the subatomic 

domain. In particular, it has no event horizon and it has no ergo-region. (The ergo-region is a re-

gion of space-time located outside the event horizon of a rotating black hole where no object even 

if traveling at the speed of light, can remain stationary.) 

 

An important conclusion is that gravity tends to become spin dominated in the subatomic do-

main. 

 

The Kerr-Newman metric formula indicates that small particles that are encapsulated by a 

horizon are restricted by the limit: 

 

  √          
  

 

Where m is the particle mass,   is the elementary charge and    is the elementary spin. 

This means that protons fall above that limit. 

7.3 Inside black holes 

Objects that fulfill the rules for the existence of a BH horizon hide their internals. Their con-

struction is similar to that of a massive elementary particle. That means that nothing is inside that 

horizon than a set of coupled QPAD’s. One of these is a background QPAD. The others form a 

superposition. This superposition is a kind of super QPAD. It let the BH act as one particle that 

has the properties of the combination of the gathered fields. 

 

Some elementary particles fulfill the requirements for a black hole. The difference between an 

elementary particle and a non-elementary particle is that the wave function is not a pure single 

sign flavor QPAD. The non-elementary wave function is a superposition of QPAD’s that belong 

to different sign flavors. 

7.4 Hadrons 

The Hilbert Book Model delivers the reason of existence of the properties; coupling factor, 

electric charge and angular momentum (spin) of elementary particles. In higher level couplings 

these properties are conserved. These properties influence the local curvature. The curvature is the 

binding ingredient for this next level. The formulas that describe the influence of the conserved 

properties on the curvature control what is happening. Currently the best available formula is the 

Kerr-Newman metric formula. 

This story does not include a Higgs particle or Higgs fields. However, the Hilbert Book model 

uses a background field that is one partner in the coupling of that background field to the wave 

function of an elementary fermion. The background field represents the superposition of the tails 

of the wave functions of all massive particles that exist in the universe. In this way inertia gets its 

implementation. The coupling event is characterized by a set of properties. These are the men-

tioned properties of the elementary particles. 

(10) 

(11) 



 

 

Hadrons are the first of the next levels of binding products. 

 

The Kerr-Newman equation shows an abnormality at the place where black holes get their 

horizon. Whether or not a hadron possesses a horizon is in this respect unimportant. The proper-

ties of the elementary particles that are bound together are sources of secondary fields. These 

fields reach beyond a possible horizon. To the outside world the superposition of these fields sig-

nal the properties of the hadron.   
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8 THE BUILDING 

The building consists of everything that can be assembled from hadrons and fields. 

8.1 Natures Music 

In atoms electrons oscillate around a central point that acts as the location of the particle50. The 

centrally located nucleus fulfills the rules for black holes. In molecules the same features occur in 

an even more complicated configuration.  

The oscillations are harmonic. The most basic harmonic oscillations are, apart from a scalar 

factor, invariant under Fourier transformation51. These oscillations have modes and usually sever-

al of these modes exist in parallel. These modes can be generated and annihilated. Generation 

goes together with the absorption of a more elementary particle and annihilation goes together 

with a corresponding emission.  

8.2 Hydrogen atom 

In the hydrogen atom52 one electron encircles the nucleus. The oscillation of the electron can 

be described as a spherical harmonic oscillation. It can have different oscillation modes. These 

modes are characterized by quantum numbers. Mode switching is activated by creation and anni-

hilation operators. The speed of the electrons is high enough such that relativity effects must be 

considered. Also the spin of the electron plays a role and causes a magnetic effect. 

8.3 Helium atom 

In the helium atom53 two electrons encircle the nucleus. In principle the electrons behave simi-

larly as in the hydrogen atom, however due to the Pauli principle they cannot both occupy the 

same oscillation mode. The electrons not only interact with the nucleus, but they also interact with 

each other.  

   

8.4 Modularization 

Hadrons, atoms and molecules are products of a modularization process.  

Modularization54 encapsulates properties in a higher order individual and renders the resulting 

individual a specific behavior. Its main purpose is that the number of relations to the outside 

world is reduced. Usually the module can be accessed via a series of well-defined interfaces. The 

whole keeps the integrity of the individual intact. 

Modularized systems are far simpler than their monolithic equivalents. Modularization exploits 

reuse. The modularization can have far reaching consequences. That is especially the case when 

                                                           
50 Appendix; Oscillations 
51 Appendix; Functions invariant under Fourier transformation. 
52 http://en.wikipedia.org/wiki/Hydrogen_atom  
53 http://en.wikipedia.org/wiki/Helium_atom  
54 http://vixra.org/abs/1101.0064  

http://en.wikipedia.org/wiki/Hydrogen_atom
http://en.wikipedia.org/wiki/Helium_atom
http://vixra.org/abs/1101.0064


 

 

modules can be used to create a new kind of modules. In this way nature is capable of construct-

ing very complicated systems. On earth nature achieved the stage to be able to generate intelligent 

species. This tendency goes straightly against the tendency that is set by the second law of ther-

modynamics. These laws prescribe that disorganization, randomness and chaos will increase con-

tinuously.  

8.5 Black hole 

8.5.1 Classical black hole 

According to classical mechanics the no-hair theorem55 states that, once a black hole achieves a 

stable condition after formation, it has only three independent physical properties:  

 mass,  

 charge, and  

 angular momentum.  
 

The surface gravity56   may be calculated directly from Newton's Law of Gravitation57, which 

gives the formula 

 

  
 m

r 
 

 

where m is the mass of the object, r is its radius, and   is the gravitational constant58. If we let 

        denote the mean density of the object, we can also write this as 

 

  
  

 
  r 

 

For fixed mean density  , the surface gravity   is proportional to the radius  . 

Sciama59 relates   to the potential that is raised by the community of particles. For fixed mean 

density   this is shown by 

 

    ∫
 

 
  

 

    ∫
  

  
       

 

  
   

 
 
   

     
 

 

                                                           
55 http://en.wikipedia.org/wiki/No-hair_theorem  
56 http://en.wikipedia.org/wiki/Surface_gravity  
57 http://en.wikipedia.org/wiki/Newton%27s_Law_of_Gravitation  
58 http://en.wikipedia.org/wiki/Gravitational_constant  
59 Influence;Inertia 
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http://en.wikipedia.org/wiki/Gravitational_constant
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http://en.wikipedia.org/wiki/Surface_gravity
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Here   is the current radius of the universe. 

8.5.2 Simple black hole 

The Schwarzschild radius    for a non-rotating spherical black hole is 

 

   
   

  
 

 

8.5.3 General black hole 

More generally holds 

 

   
 

  
           

 

where  

   is the mass/energy,  

   is the horizon area, 

   is the angular velocity,  

   is the angular momentum,  

   is the electrostatic potential,  

   is the surface gravity,  

   is the electric charge. 
 

For a stationary black hole, the horizon has constant surface gravity. 

It is not possible to form a black hole with surface gravity.    . 

8.5.4 Quantum black hole 

When quantum mechanical effects are taken into account, one finds that black holes emit ther-

mal radiation (Hawking radiation) at temperature 

 

   
 

  
 

 

A quantum black hole is characterized by an entropy   and an area  . 

The entropy of a black hole is given by the equation: 

 

  
    

   
 

 

The Bekenstein-Hawking Entropy of three-dimensional black holes exactly saturates the bound 

 

  
   
 

 

 

(1) 

(1) 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Angular_momentum
http://en.wikipedia.org/wiki/Surface_gravity
http://en.wikipedia.org/wiki/Hawking_radiation
http://en.wikipedia.org/wiki/Black_hole_thermodynamics#Black_hole_entropy


 

 

where    is the two-dimensional area of the black hole's event horizon in units of the Planck 

area,  

 

     
  

  

  
. 

 

In the Hilbert book model this equals the number of granules that covers the horizon of the 

black hole. 

The horizon of the black hole is an event horizon because information cannot pass this horizon. 

(Near the horizon the speed of light goes to zero.) 

8.5.5 Holographic principle 

The holographic principle60 states that the entropy contained in a closed surface in space equals 

the entropy of a black hole that has absorbed everything that is contained in this surface.  

In the Hilbert book model it means that if the surface is considered as a sparsely covered hori-

zon, then that sparse horizon contains as many granules as the densely covered horizon of the cor-

responding black hole. 

It also means that the maximum entropy that can be contained inside a surface corresponds to a 

dense coverage with granules of that surface. 

In the Hilbert book model, any dense or sparse horizon reflects via its contained entropy the 

number of granules that are contained in the corresponding volume. 

 

We might extend this picture by stating that the number of granules in a volume corresponds 

with the entropy in the volume. In the Hilbert book model the number of granules corresponds to 

the number of Hilbert vectors that are attached to a QPAD. It also corresponds to the number of 

anchor points of the primary physical fields. 

 

The eigenvectors of the particle locator operator 𝔖 correspond to quantum logical propositions 

that represent the location of physical particles. These propositions have a binary yes/no value. In 

the extended model these propositions get extra content via the attached QPAD’s. 

8.5.6 Chandrasekhar limit 

The Chandrasekhar limit61 is an upper bound on the mass of a stable white dwarf star: 

 

       
  
 √  

 
(
  

 
)

 
 ⁄  

      
 
 

 

where: 

 is the reduced Planck constant 

 c is the speed of light 

 G is the gravitational constant 

                                                           
60 http://en.wikipedia.org/wiki/Holographic_principle  
61 http://en.wikipedia.org/wiki/Chandrasekhar_limit  
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 μe is the average molecular weight per electron, which depends upon the chemi-

cal composition of the star. 

 mH is the mass of the hydrogen atom. 

   
           is a constant connected with the solution to the Lane-Emden 

equation. 

Approximately: 

 

       
  
 

  
 . 

 

Where 

 

   √
 c
 ⁄  is the Planck mass 

8.6 Similarity between black hole and massive fermion 

According to the no hair theorem a black hole shows only a few properties to the outside 

world. These properties are sources of secondary fields. 

Massive fermions have a similar behavior. 

Apart from the exposed features it is impossible to observe what goes on inside the black hole. 

It is possible that the internals of a black hole are to a certain extent similar to the construction 

of a massive fermion. It would mean that the BH is based on a set of QPAD’s that each are cou-

pled to a background QPAD. 

8.7 Birth of the universe 

The unit sphere of the separable Hilbert space Ң is an affine space. All unit size eigenvectors 

end in this sphere.  

The eigenvectors of the particle locator operator are exceptional. They are surrounded by a 

QPAD that installs the tendency to keep these vectors together. The parameter of these distribu-

tions is taken from a background coordinate system. This means that also the eigenvectors of the 

particle locator operator possess a position in this background coordinate system. The background 

coordinate system is formed by the eigenspace of an operator that houses in the Gelfand triple Ħ 

of the Hilbert space Ң. The coupling between the eigenvectors of the particle locator operator and 

the eigenspace of the operator in the rigged Hilbert space that provides the background coordinate 

system is not precise. It is stochastic and of the order of the Planck-length. That is why the gran-

ules have this size. 

 

The eigenvectors of the particle locator operator all touch a granule. The relation with quantum 

logic means that the Hilbert vector stands for a proposition that has a yes/no value. In case of the 

Hilbert vectors that are attached to the granules the yes/no value represents group membership. 

Thus each granule represents a bit of information. 

 

(2) 

(3) 

http://en.wikipedia.org/wiki/Lane-Emden_equation
http://en.wikipedia.org/wiki/Lane-Emden_equation


 

 

For the eigenvectors vectors of the particle locator operator a densest packaging exists. It 

means that in that condition the QPAD’s have shrunk to their smallest possible location differ-

ence. 

 

Assumption 1: In that condition, due to the properties of the QPAD’s, the mutual tension 

works asymmetrically.  

 

This asymmetry means that in a surface that is formed by a set of densely packed granules the 

tension on one side is stronger than the surface tension at the other side. As a consequence the fi-

nal configuration of a densest packaging becomes an empty bubble. 

 

In the starting condition all eigenvectors of the particle locator operator are densely packed in 

one assembly.  

 

Assumption 2: After that moment the packaging density relaxes.  

 

The number of granules does not change. Thus, during this spreading the total entropy does not 

change.  

 

The package may fall apart in several separated subassemblies and a large series of single or 

more loosely packed granules. For the single and the more loosely packed granules the corre-

sponding QPAD’s fold out. The densely packed subassemblies take again a bubble shape.  

 

This process may occur instantly or gradually, but most probably it will be done in a sequence 

of these two possibilities.  

 

First occurs a sudden change of scale between the particle locator operator in the separable 

Hilbert space Ң and the GPS operator that delivers the background coordinate system and that re-

sides in the rigged Hilbert space Ħ. It is possible that originally the bubble covered the whole of 

the unit sphere of the Hilbert space Ң, or it may just cover a finite dimensional subspace of Ң. 

This means that the bubble contains an infinite or a finite amount of granules, which suddenly get 

diffused in a much larger space. That space is affine like the unit sphere of the Hilbert space Ң. 

The diffusion takes place at every occupied location in the background coordinate system.  

 

This kind of universe has no spatial origin or it must be the center of the outer horizon. With 

the aid of the background coordinate system, it will be possible to indicate a center of that uni-

verse. Each item in this universe has its own private information horizon. This horizon is set by 

the reach of the light that has been travelling since the birth of the universe. As long as this light 

does not reach the outer horizon that sub-universe looks isotropic. A multitude of such sub-

universes exist that need not overlap. However, they all look at their border at an image of part of 

the start horizon. Such, sub-universes obey the cosmological principle62. 

 

In the next phase the further expansion occurs gradually. Because the QPAD’s that are attached 

to the granules install a tendency for the granules to stay together, a different motor must be pre-

                                                           
62 http://en.wikipedia.org/wiki/Cosmological_principle  
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sent behind this expansion. This motor can be found in the fact that with increasing radius the 

number of pulling granules grows faster than the decrease of the forces that are executed by the 

fields of these granules that is caused by the increasing distance. In an affine space this is always 

and everywhere true. This effect is also the source of inertia. 

 

Due to local attraction, loosely packed and single granules may reassemble in bubble shaped 

subassemblies. These subassemblies are known as black holes. Single granules and small aggre-

gates of granules are known as elementary particles, nuclei or atoms.  

 

Much larger aggregates may be formed as well but these are not densely packed. Elementary 

particles can be categorized according to the configuration of their private fields. The private 

fields determine whether the particle is matter, with other words whether it has mass or not. 

 

Inside the bubble the fact that the granule represents matter is not recognizable. It is only rec-

ognizable when the attached QPAD gets the chance to unfold. That condition is true when the 

granule is not part of a densely packed subassembly. 

 

The requirements for the birth of the universe are: 

1. The existence of a particle locator operator 

2. The existence of QPAD’s that install the tendency to keep these eigenvectors of 

the particle locator operator together 

3. When the large numbers of eigenvectors are densely packed, then the assembly 

forms a bubble, because due to the properties of the QPAD’s, the mutual tension 

works asymmetrically 

4. In advance the eigenvectors of the particle locator operator are densely packed 

in one bubble. 

5. A non-zero probability exists that the package density will be relaxed and the 

package falls apart. This may happen in a two stage process 

a. A sudden reduction of scale occurs 

b. Next a force that pulls the granules further away from each other exists 
 

In the first episode of the universe the sudden scale change took place. This ripped the original 

bubble apart. Next a gradual further expansion took place.  

 

The granules that move freely can at the utmost take one space step at every progression step. 

When the ratio of the space step and the progression step is fixed, then this determines a maxi-

mum speed of granules. A certain type of granules takes a space step at every progression step. 

That type transports information at the maximum possible speed.  

 

When the path of these information transmitting particles is a straight line, then after a while, 

the other types of granules no longer get messages from the birth episode of the universe. But this 

need not be the case. 

 



 

 

Since the messenger has a finite speed, it brings information from the past. First of all the 

speedy messenger and the slow addressee may have started from different locations. Further, due 

to curvature of space the path of the speedy messenger may take much longer than the duration of 

the much straighter path that the much slower addressee has taken. The information about the past 

that is included in the message might be close to the episode in which the granules were combined 

in one large bubble. 

 

Thus despite the fact that most of the information that is generated during the birth of the uni-

verse is long gone, still some of that information may reach particles long after the instance of 

birth. When this information is interpreted it gives the impression of a metric expansion of the 

universe63.  

 

 

  

                                                           
63 http://en.wikipedia.org/wiki/Metric_expansion_of_space 
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http://en.wikipedia.org/wiki/Metric_expansion_of_space
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9 CONCLUSION 

It is quite possible to build a model of physics on a solid axiomatic foundation. It has the ad-

vantage that from the beginning the model stays consistent and trustworthy. For the Hilbert Book 

Model this inroad has brought some rather revolutionary deviations from contemporary physics. 

The way that fields are treated and how dynamics is implemented differs strongly from the ordi-

nary course of physics. Through the switch from complex Hilbert spaces to quaternionic Hilbert 

spaces and the attention that is given to sign flavors of quaternionic probability amplitude distri-

butions it becomes possible to derive unique continuity equations rather than equations of motion 

that reveal the properties and habits of all known elementary particles.  

 

This step only reaches to the first level of binding. The properties of the coupling that occurs 

inside elementary particles form the factors that influence the local curvature. The current status 

of the model already indicates that the next level of particle binding will use the effects of the 

coupling properties on the curvature of the local geometry rather than the coupling of sign flavors 

of quaternionic probability amplitude distributions. It means that in the higher level binding the 

role of the metric equation will be greater than the role of the wave equation. This step is deter-

ministic, while the first level of coupling is afflicted with indeterminism.  
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PART III 
Appendix 

The appendix is a toolbox and a grab bag that contains everything that can be used to build or ana-

lyze the Hilbert Book Model  



 

 

1 Logic 

1.1 History of quantum logic 

Around 1930 John von Neumann and Garrett Birkhoff were searching for an acceptable expla-

nation of the results of experiments that showed that the execution of an observation of a very 

small object can completely destroy the validity of an earlier observation of another observable of 

that object. The Schrödinger equation that agreed with the dynamic behaviour of the particles al-

ready existed. Not much later Heisenberg’s matrix formulation became popular as well. Quite 

soon the conclusion was made that something was fundamentally wrong with the logic behind the 

behaviour of small particles. These small objects show particle behaviour as well as wave behav-

iour and they show quantization effects. It was found that the distribution axiom of classical logic 

had to be changed. Soon it became apparent that the lattice structure of classical logic must be 

weakened from an ortho-complementary modular form to an ortho-complementary weakly modu-

lar lattice. The quantum logic was born. The next step was to find a useful mathematical presenta-

tion of this new logic. A historic review of what happened can be found in: “Quantum Theory: 

von Neumann” vs. Dirac; http://www.illc.uva.nl/~seop/entries/qt-nvd/. It includes extensions of 

the concept of Hilbert space and application of these concepts to quantum field theory. Another 

source is: http://www.quantonics.com/Foulis_On_Quantum_Logic.html.  

1.2 Quantum logic 

Elementary particles behave non-classical. They can present themselves either as a particle or 

as a wave. A measurement of the particle properties of the object destroys the information that 

was obtained from an earlier measurement of the wave properties of that object.  

With elementary particles it becomes clear that that nature obeys a different logic than our old 

trusted classical logic. The difference resides in the modularity axiom. That axiom is weakened. 

The classical logic is congruent to an orthocomplemented modular lattice. The quantum logic is 

congruent to an orthocomplemented weakly modulare lattice. Another name for that lattice is or-

thomodular lattice. 

  

1.2.1 Lattices 

A subset of the axioms of the logic characterizes it as a half ordered set. A larger subset defines 

it as a lattice. 

A lattice is a set of elements  ,  ,  ,  that is closed for the connections ∩ and ∪. These connec-

tions obey: 

  

 The set is partially ordered. With each pair of elements  ,   belongs an element  , such 

that       and      .  
 The set is a ∩half lattice if with each pair of elements  ,   an element   exists, such that 

      ∩   .  
 The set is a ∪half lattice if with each pair of elements  ,   an element   exists, such that 

      ∪   .  
 The set is a lattice if it is both a ∩half lattice and a ∪half lattice. 

http://www.illc.uva.nl/~seop/entries/qt-nvd/
http://www.quantonics.com/Foulis_On_Quantum_Logic.html
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The following relations hold in a lattice:  

 

  ∩        ∩    
 

   ∩     ∩        ∩     ∩     
 

  ∩    ∪         

 

  ∪        ∪    
 

   ∪     ∪        ∪     ∪     
 

  ∪    ∩         

 

The lattice has a partial order inclusion  : 

 

a   b ⇔ a   b = a 

 

A complementary lattice contains two elements   and   with each element a an complementary 

element a’ such that: 

 

  ∩   ’     
 

  ∩        
 

  ∩        

 

  ∪   ’     
 

  ∪        
 

  ∪        

 

An orthocomplemented lattice contains two elements   and   and with each element   an ele-

ment    such that: 

 

  ∪         
 

  ∩         

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 



 

 

 

          
 

                
 

  is the unity element;   is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

  ∩    ∪          ∩     ∪      ∩     
 

  ∪    ∩          ∪     ∩     ∪     
 

A modular lattice supports: 

 

   ∩     ∪    ∩         ∩    ∪     ∩      
 

A weak modular lattice supports instead: 

 

There exists an element   such that 

 

      ⇔     ∪     ∩        ∪    ∩     ∪    ∩     
 

where   obeys: 

 

   ∪     ∩        
 

  ∩        
 

  ∩        
 

[                    ⇔        

 

In an atomic lattice holds  

 

              {      ⇒       } 

 

              {           ∩     ⇒                  ∩    } 
 

  is an atom 

 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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Both the set of propositions of quantum logic and the set of subspaces of a separable Hilbert 

space Ң have the structure of an orthomodular lattice. In this respect these sets are congruent. 

In Hilbert space, an atom is a pure state (a ray spanned by a single vector). 

 

Classical logic has the structure of an orthocomplemented distributive modular and atomic lat-

tice. 

Quantum logic has the structure of an orthomodular lattice. That is an orthocomplented weakly 

modular and atomic lattice. The set of closed subspaces of a Hilbert space also has that structure.  

1.2.2 Proposition 

In Aristotelian logic a proposition is a particular kind of sentence, one which affirms or denies 

a predicate of a subject. Propositions have binary values. They are either true or they are false. 

Propositions take forms like "This is a particle or a wave". In quantum logic 

"This is a particle." is not a proposition. 

In mathematical logic, propositions, also called "propositional formulas" 

or "statement forms", are statements that do not contain quantifiers. They 

are composed of well-formed formulas consisting entirely of atomic for-

mulas, the five logical connectives64, and symbols of grouping (parenthe-

ses etc.). Propositional logic is one of the few areas of mathematics that is 

totally solved, in the sense that it has been proven internally consistent, 

every theorem is true, and every true statement can be proved. Predicate 

logic is an extension of propositional logic, which adds variables and 

quantifiers. 

In Hilbert space a vector is either inside or not inside a closed subspace. A 

proper quantum logical proposition is “Vector |f> is inside state s”. 

In Hilbert space, an atomic predicate corresponds with a subspace that is 

spanned be a single vector. 

Predicates may accept attributes and quantifiers. The predicate logic is al-

so called first order logic. A dynamic logic can handle the fact that predi-

cates may influence each other when atomic predicates are exchanged. 

                                                           
64 http://en.wikipedia.org/wiki/Logical_connective  

http://en.wikipedia.org/wiki/Logical_connective
http://en.wikipedia.org/wiki/Logical_connective


 

 

1.2.3 Observation 

In physics, particularly in quantum physics, a system observable is a property of the system 

state that can be determined by some sequence of physical operations. This paper distinguishes 

between measurements and observations. 

 

 With an observation the state is considered as a linear combination of eigenvec-

tors of the observable. An observation returns the statistical expectation value of 

the eigenvalue of the observable.  

 A measurement transforms the observed state to one of the eigenvectors of the 

observable. What happens depends on the characteristics of the measuring 

equipment. The measurement can be seen as a combination of a transformation 

and an observation. 
 

Depending on the characteristics of the measuring equipment a measurement and a clean ob-

servation can give the same result. 

 

With this interpretation of the concept of observation it is possible to let states observe other 

states. A state might do a transformation before doing an observation but in general it fails the 

equipment to arrange that transformation. In nature observations are far more common than 

measurements. 

 

2 Numbers 

2.1 Cayley-Dickson onstruction 

The Cayley-Dickson construction formula enables the generation of a quaternion from two 

complex numbers: 

 

p = a0 + a1k + i(b0 + b1k) 

 

q = c0 + c1k + i(d0 + d1k) 

 

 (a, b) (c, d) = (ac – db
*
; a

*
d + cb) 

 

r = pq 

 

r0= a0c0 – a1c1 – b0d0 – b1d1 

 

rk= a0c1 – a1c0 – b0d1+ b1d0 

 

ri= a0d0 + a1d1 + b0c0 – b1c1 

 

rj= –a1d0 + a0d1 + b0c1+ b1c0 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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2.2 Warren Smith’s numbers 

All hyper-complex numbers are based on real numbers. Two main construction formulas for 

hyper-complex numbers exist. The Cayley-Dickson construction is the most widely known. The 

Warren-Smith construction gives best algorithmic properties at higher dimensions. Until the octo-

nions both construction formulas deliver the same results. 

The quaternions are the highest dimensional hyper-complex numbers that deliver a division 

ring. 

2.2.1 2
n
-on construction 

The 2
n
-ons use the following doubling formula 

 

  ,     ,                  ,                                

 
Up until the 16-ons the formula can be simplified to 

 
  ,     ,                 ,                       

 
Up to the octonions the Cayley Dickson construction delivers the same as the 2

n
-on construc-

tion. From n>3 the 2
n
-ons are ‘nicer’. 

2.2.1.1 2n-ons 
Table of properties of the 2

n
­ons. See www.math.temple.edu/~wds/homepage/nce2.ps.  

Ty

pe 

name Lose 

1­o

ns 

Reals.    

2­o

ns 

Complex 

numbers 

z
*
 = z (the * denotes conjugating);   

the ordering properties that both {z > 0, -z > 0, or z = 0}  

and {w > 0, z > 0 implies w + z > 0, wz > 0}. 

4­o

ns 

Quaterni-

ons 

commutativity ab = ba;  

the algebraic closedness property that every univariate polynomial  

equation has a root.   

8­o

ns 

Octonions associativity ab · c = a · bc.  

16­

ons 

(not Sed-

enions!) 

right­alternativity x · yy = xy · y;  

right­cancellation x = xy · y
-1

 ;  

flexibility x · yx = xy · x; left­linearity  (b + c)a = ba + ca;  

anti­automorphism ab = ba, (ab)
-1

 = b
-1

 a
-1

 ;  

left­linearity (b + c)a = ba + ca;  

continuity of the map x → xy;  

Moufang and Bol identities;  

diassociativity  

32­  generalized­smoothness of the map x → xy;  

(1) 

(2) 

http://www.math.temple.edu/~wds/homepage/nce2.ps


 

 

ons right­division properties that xa = b has (generically) a solution x, 

and the uniqueness of such an x;  

the “fundamental theorem of algebra” that every polynomial having 

a unique “asymptotically  dominant monomial” must have a root; Trot-

ter's formula: 

 lim   [ 
       ]

 
  lim   (  

   

 
)
 

       

 

Ty

pe 

na

me 

Retain 

2
n
­

ons 

 Unique 2­sided multiplicative & additive identity elements 1 & 0; 

Norm­multiplicativity |xy|
2
 = |x|

2
·|y|

2
 ;  

Norm­subadditivity |a + b| ≤ |a| + |b|; 

2­sided inverse a
-1

 = a
*
/|a|

2
 (a # 0);  

a
**

 = a;  

(x ± y)* = x
*
 ± y

*
; 

(a
-1

) 
-1

 = a;  

(a
*
) 

-1
 = (a

-1
)

*
 ;  

|a|
2
 = |a|

2
 = a

*
a;  

Left­alternativity yy · x = y · yx;  

Left­cancellation x = y
-1

 · yx;  

Right­linearity a(b + c) = ab + ac;  

r
th

 power­associativity a
n
 a

m
 = a

n+m 
;  

Scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s real); Pow-

er­distributivity  (ra
n
 + sa

m
)b = ra

n
 b + sa

m
 b (r, s real);  

Vector product properties of the imaginary part: ab - re(ab) of the product for 

pure­imaginary 2
n
­ons a,b regarded as  (2

n
  - 1)­vectors; 

xa,b = a,x*b, xa,xb = |x|2·a,b and x,y = x*,y* 

Numerous weakened associativity, commutativity, distributivity, antiauto-

morphism, and Moufang and Bol  properties including 9­coordinate ``niner'' ver-

sions of most of those properties; contains 2
n-1

­ons as subalgebra. 

 

2.2.1.1.1 The most important properties of 2n-ons 
If a,b,x,y are 2

n
-ons, n ≥ 0, and s and t are scalars (i.e. all coordinates are 0 except the real co-

ordinate) then 

unit: A unique 2
n
-on 1 exists, with 1·x = x·1 = x. 

zero: A unique 2
n
-on 0 exists, with 0 + x = x + 0 = x and 0·x = x·0 = 0. 

additive properties: x+y = y+x, (x+y)+z = x+(y+z); 

 x exists with x + ( x) = x   x = 0. 

norm: |x|
2
 = xx

*
 = x

*
x. 

norm-multiplicativity: |x|
2
·|y|

2
 = |x·y|

2
. 

scaling: s · x·y = s·x · y = x·s · y = x · s·y = x · y·s. 

weak-linearity: (x + s)·y = x·y + s·y and x·(y + s) = x·y + x·s. 

right-linearity: x·(y + z) = x·y + x·z. 
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inversion: If x ≠ 0 then a unique x
-1

 exists, obeying x
-1

·x = x·x
-1

 = 1. It is x
-1

 = x·|x|
-2

. 

left-alternativity: x · xy = x
2
·y. 

left-cancellation: x · x
-1

·y = y. 

effect on inner products: x·a,b = a, x
*
·b, x,y = x

*
, y

*
,  x

*
·a, x

-1
·b = a,b,  

and x·a,x·b = |x|
2
·a,b. 

Conjugate of inverse: (x
-1

)
*
 = (x

*
)
-1

. 

Near-anticommutativity of unequal basis elements: ek
2
 =  1 and ek·el

* 
=  el·ek

*
  if k ≠ l.  

(Note: the case k; l > 0 shows that unequal pure-imaginary basis elements anticommute.) 

Alternative basis elements: ek·el · ek = ek · el·ek, el·ek · ek = el · ek·ek, and ek·ek ·el = ek · ek·el. 

(However, when n ≥ 4 the 2
n
-ons are not flexible i.e. it is not generally true that x·y · x = x · y·x if 

x and y are 16-ons that are not basis elements. They also are not right-alternative.) 

Quadratic identity: If x is a 2
n
-on (over any field F with charF ≠ 2), then x

2
 + |x|

2
 = 2·x re x 

Squares of imaginaries: If x is a 2
n
-on with re x = 0 (“pure imaginary”) then x

2
 =  |x|

2
 is 

nonpositive pure-real. 

Powering preserves imx direction 

2.2.1.1.2 Niners 
Niners are 2n-ons whose coordinates with index > 8 are zero. The index starts with 0. 

9-flexibility xp · x = x · px, px · p = p · xp. 

9-similitude unambiguity xp · x-1 = x · px
-1

, px · p
-1

 = p · xp
-1

. 

9-right-alternativity xp · p = x · p
2
, px · x = p · x

2
. 

9-right-cancellation xp
-1

 · p = x, px
-1

 · x = p. 

9-effect on inner products x, yp = xp, y, xp, yp = |p|
2
x, y. 

9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx. 

9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp). 

9-coordinate-distributivity ([x + y]z)0;:::;8 = (xz + yz)0;:::;8. 

9-coordinate-Jordan-identity [xy · xx]0;:::;8 = [x(y · xx)]0;:::;8. 

9-anticommutativity for orthogonal imaginary 2
n
-ons 

If p, x = re p = re x = 0 then px =  xp. 

9-reflection If |a| = 1 and the geometric reflection operator is defined below then 

 (refl[a](y))0;:::;8 = (a · y
*
a)0;:::;8, and  {refl[a](y)}

*
0;:::;8 = (a

*
y · a

*
)0;:::;8, and 

if either a or y is a niner then  refl[a](y) = a · y
*
a and  refl[a](y) = a*y · a*. 

 

refl[ ⃗]( ⃗)     ⃗   
 〈 ⃗,  ⃗〉

| ⃗| 
 ⃗ 

What holds for the niners, also holds for the octonions. 

2.3 Quaternions 

2.3.1 Sign selections 

Four possibilities exist due to the sign selections of the quaternions. One sign selection is cov-

ered by the conjugation a→a*. This selection switches the sign of all three imaginary base vec-

tors. The other is caused by switching the sign of a single binary base vector a→a⊗. For this sign 

selection one of the three available base vectors is selected. When relevant, then these choices are 

indicated by colors (r, g or b). Both methods switch the handedness (chirality). When both sign 

(1) 



 

 

selections combine then the superscript a→a⊕ is used. This combination does not switch hand-
edness. Also this selection is colored.  

 
It is also possible to use the extended quaternionic conjugation concept: 
 

       

 

 ⊗     

 

 ⊕     ⊗     

 

The encircled number stands for the number of switched base vectors. For the single sign 

switch   , three independent direction selections are possible. We indicate these choices with r, g 

and b. 

Similarly for the double sign switch   , three independent direction selections are possible. 

We indicate these choices also with r, g and b. This direction belongs to the non-switched direc-

tion. 

Without closer description the value of     is   . It means that the colors are suspected to 

be the same. 

The change from   to   or    cause a switch of the handedness of  . 
 

          (  )
 
   

 

          
 

           

 

The effects of the quaternionic conjugation are visible in the base numbers 1, i, j, k: 

 

     
 

                   
 

The blue colored sign selection is given by 

 

                   
 

                   
 

In the blue colored sign selection, k follows the rules of complex conjugation. This renders its 

direction to a special direction.  

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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The selected color direction is called the longitudinal direction. The the perpendicular direc-

tions are the transverse directions. Apart from that they are mutual perpendicular and perpendicu-

lar to the longitudinal direction, they have no preferred direction.  

2.3.1.1 Sign selections and quaternionic distributions 
Quaternionic distributions are supposed to obey a distribution wide sign selection. Thus, the 

distribution is characterized by one of the eight quaternionic sign flavors.  

 

  ,   ,   ,   ,   ,   ,   , or    

 

Many of the elementary particles are characterized by an ordered pair of two field sign flavors. 

These fields are coupled with a coupling strength that is typical for the particle type. These parti-

cles obey a characteristic continuity equation65. 

2.3.1.2 Product rule 
We use the quaternionic product rule.  

        〈 ,  〉              
 

〈 ,  〉                 
 

                                           

2.3.1.3 Operators 
The sign selections of operator       ,    depend on the sign selections of position operator 

Q, which determines the sign selections for its eigenvalues       ,   .  
 

Normally we consider the sign selection for operators Q and   fixed to operators    and  
 . 

Sometimes we chose  
  instead of operator  . 

 

Quaternionic sign selection are directly connected with the concepts of parity and spin. 

 

For quaternionic functions symmetry reduces the differences that are produced by conjugation 

and anti-symmetry stresses the differences. The same holds for operators. 

2.3.1.4 Matrices 
Another possibility is to present sign selections by matrices66. 

 

   [
    
  
] ,    [ 

   
  

] ,    [
  
   

] 

                                                           
65 Hilbert field equations; Continuity equation for charges 
66 http://www.vttoth.com/qt.htm  

(1) 

(1) 

(2) 

(3) 

(1) 

http://www.vttoth.com/qt.htm
http://www.vttoth.com/qt.htm


 

 

 

The    matrix switches the complex fields that together form the quaternion field. 

 

[
  
    
]  [
  
  
] [
  
    
] 

 

The    matrix switches the real parts and the imaginary parts of the complex fields that togeth-

er form the quaternion field and it switches both fields. 

 

 [
   
    
]  [
   
  

] [
  
    
] 

 

The    matrix switches the sign of the first complex field. 

 

[
   
    
]  [
   
  

] [
  
    
] 

 

  
             

 

The Pauli matrices are involutory. 

The determinants67 and traces68 of the Pauli matrices are: 

 

det        
 

Tr       
 

   [
   
    

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

   [
  
   

] 

 

  [
  
  
] 

 

The    matrices together select the imaginary base vectors. The   matrix exchanges the sign of 

all imaginary base vectors. Thus the   matrix implements the quaternionic conjugate. The conju-

gation also exchanges right handedness against left handedness. 

 

                                                           
67 http://en.wikipedia.org/wiki/Determinant  
68 http://en.wikipedia.org/wiki/Trace_of_a_matrix  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Trace_of_a_matrix
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Trace_of_a_matrix
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Another way of exchanging right handedness against left handedness is the exchange of the 

sign of one of the imaginary base vectors. 

 

[
  
    
]  [
  
  
] [
  
    
] 

 

   [
  
  
]  

 

The gamma matrices69 translate directly from complex fields to fully featured quaternionic 

fields. In this way four sign flavors of quaternionic fields are constructed from four complex 

fields. This is represented by four dimensional matrices and four dimensional spinors. The equiva-

lent of the   matrix is the    matrix. 

 

[

   
    
   
    

]  [

    
    
    
    

] [

   
    
   
    

] 

 

It is false to interpret the matrices as vectors. They form a shorthand for handling spinors. 

 

The Pauli matrix    represents the sign selection a→a⊗, while the   matrix represents the sign 

selection a→a*. The other Pauli matrices and the   matrices implement the resulting part of the 

quaternion behavior for spinors. 

2.3.2 Colored signs 

In the following text, the consequences for the product of the sign choices of the conjugate    

is indicated by blue color  . The extra consequence   for the product of the choice of the hand-

edness  of the cross product is indicated by red color  . The mixed sign selection   acts on both 
sign colors. 

The handedness can be switched by changing the sign of all imaginary base vectors. 
 

                      

 

The sign selections split the ring of quaternions in four different realizations. 

2.3.3 Waltz details 

The 16-ons lose the continuity of the map   ⇒    . Also, in general holds        ≠          
for 16-ons. However, for all 2

n
-ons the base numbers fulfill                        . All 2

n
-ons fea-

ture a conjugate and an inverse. The inverse only exists for non-zero numbers. The 2
n
-ons support 

the number waltz  

 

           
 

                                                           
69 Appendix; Gamma matrices 

(13) 

(14) 

(15) 

(1) 

(1) 



 

 

Often the number waltz appears as a unitary number waltz 

 

          
 

where   is a unit size number and    is its conjugate      = 1. 

 

In quaternion space the quaternion waltz       can be written as 

 

                                      
 

                                         
 

                          
 

                         
 

                                   
 

                                   
 

‖  ‖    ‖               ‖ 

 
Another way of specifying the difference is:  
 

                               
 

‖  ‖     ‖   ‖  ‖ ‖  

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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a

b||

2Φ

ab#a
-1

b

b#

aa

aτΦ

aba-1

The transform aba-1 rotates the 

imaginary part b of b around an 

axis along the imaginary part a of 

a over an angle 2Φ that is twice 

the argument Φ of a in the 

complex field spanned by a and 11

a = ||a||exp(2πiΦ)

Δb

# means perpendicular

||  means parallel 

 

Figure 1. The rotation of a quaternion by a second quaternion. 

 

2.3.3.1.1 Infinitesimal number transformation 
The number   is close to 1. Thus       . Let us investigate the transform         .  
 

                        
 

                              
 

                   
 

                  
 

                  
 

This comes close to the effect of an infinitesimal number waltz, especially when       In 

that case       and    is perpendicular      . 

(1) 

(2) 



 

 

For 2
n
-ons with      ,         in general does not equal  . This effect stays unnoticed when 

quantum mechanics sticks to a complex Hilbert space. 

 

 

b#

2Φ

Δb

ab#a
-1

b#2sin2(2πΦ))

b#isin(4πΦ) 

Δb = (-2sin2(2πΦ) + isin(4πΦ))b#

 
Figure 2: The difference after rotation 

2.4 Quaternion coordinates 

This part of the appendix describes candidates for the coordinates on the coordinate sphere. 

2.4.1 Polar coordinates  

The equivalent to rectangular coordinates in quaternion space is (aτ, ax, ay, az) 

 

                               

 

The equivalent to polar coordinates in quaternion space is 

 

 

a    ‖a‖ cos     
 

a    ‖a‖ sin    sin    cos     
 

a    ‖a‖ sin    sin    sin     

(1) 

(2) 

(3) 

(4) 
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     ‖ ‖               
 

      , where     ,   , is known as the (imaginary) amplitude of the quaternion.  

Angle     ,    is the (co-)latitude and angle     ,    is the longitude.  

For any fixed value of  ,   and   parameterize a 2-sphere of radius       , except for the de-

generate cases, when   equals   or  , in which case they describe a point. 

 

This suggests the following structure of the argument   

 

    ‖ ‖            
 

  ‖ ‖                     
 

     ‖ ‖                
 

The imaginary number   may take any direction.  

2.4.2 3 sphere 

A 3-sphere is a compact, connected, 3-dimensional manifold without boundary. It is also simp-

ly-connected. What this means, loosely speaking, is that any loop, or circular path, on the 3-

sphere can be continuously shrunk to a point without leaving the 3-sphere. The Poincaré conjec-

ture70 proposes that the 3-sphere is the only three dimensional manifold with these properties (up 

to homeomorphism)71. 

The round metric on the 3-sphere in these coordinates is given by 

 

                                   
 

The volume form is given by 

 

                               
 

The 3-dimensional volume (or hyperarea) of a 3-sphere of radius r is 

 

         
 

The 4-dimensional hypervolume (the volume of the 4-dimensional region bounded by the 3-

sphere) is 

 

         
 

The 3-sphere has constant positive sectional curvature equal to     . 
The 3-sphere has a natural Lie group structure SU(2) given by quaternion multiplication. 

                                                           
70 http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture  
71 http://en.wikipedia.org/wiki/3-sphere  

(5) 

(6) 

(7) 

(8) 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
http://en.wikipedia.org/wiki/3-sphere


 

 

The 3-sphere admits non-vanishing vector fields (sections of its tangent bundle). One can even 

find three linearly-independent and non-vanishing vector fields. These may be taken to be any 

left-invariant vector fields forming a basis for the Lie algebra of the 3-sphere. This implies that 

the 3-sphere is parallelizable. It follows that the tangent bundle of the 3-sphere is trivial. 

There is an interesting action of the circle group   on    giving the 3-sphere the structure of a 

principal circle bundle known as the Hopf bundle. If one thinks of     as a subset of   , the action 

is given by 

 

   ,              ,               
 

The orbit space of this action is homeomorphic to the two-sphere   . Since    is not homeo-

morphic to      , the Hopf bundle is nontrivial. 

2.4.3 Hopf coordinates 

Another choice of hyperspherical coordinates,   ,   ,    , makes use of the embedding of    in 

  . In complex coordinates    ,        
  we write 

 

                    
 

                      
 

Here   runs over the range 0 to    , and    and    can take any values between 0 and   . The-

se coordinates are useful in the description of the 3-sphere as the Hopf bundle 

 

   →   →    
 

For any fixed value of η between 0 and    , the coordinates    ,     parameterize a 2-

dimensional torus. In the degenerate cases, when   equals 0 or    , these coordinates describe a 

circle. 

The round metric on the 3-sphere in these coordinates is given by 

 

                    
              

    
and the volume form by 

 

                              

2.4.4 Group structure 

Because the set of unit quaternions is closed under multiplication,    takes on the structure of a 

group. Moreover, since quaternionic multiplication is smooth,    can be regarded as a real Lie 

group. It is a non-abelian, compact Lie group of dimension 3. When thought of as a Lie group    
is often denoted       or    ,  . 

It turns out that the only spheres which admit a Lie group structure are   , thought of as the set 

of unit complex numbers, and   , the set of unit quaternions. One might think that   , the set of 

unit octonions, would form a Lie group, but this fails since octonion multiplication is non-

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 
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associative. The octonionic structure does give    one important property: parallelizability72. It 

turns out that the only spheres which are parallelizable are   ,   , and   . 
By using a matrix representation of the quaternions,  , one obtains a matrix representation of 

  . One convenient choice is given by the Pauli matrices: 

 

(                       )  [
                  
                   

] 

 

This map gives an injective algebra homomorphism from H to the set of 2×2 complex matri-

ces. It has the property that the absolute value of a quaternion q is equal to the square root of the 

determinant of the matrix image of q. 

The set of unit quaternions is then given by matrices of the above form with unit determinant. 

This matrix subgroup is precisely the special unitary group SU(2). Thus,    as a Lie group is iso-

morphic to SU(2). 

Using our hyperspherical coordinates   ,   ,     we can then write any element of SU(2) in the 

form 

 

[
e p       sin   e p       cos   
 e p       cos   e p        sin   

] 

 

Another way to state this result is if we express the matrix representation of an element of 

SU(2) as a linear combination of the Pauli matrices. It is seen that an arbitrary element U   SU(2) 

can be written as 

 

          ∑      
   , , 

 

The condition that the determinant of U is +1 implies that the coefficients     are constrained 

to lie on a 3-sphere. 

2.4.5 Versor 

Any unit quaternion   can be written as a versor: 

 

                              
 

This is the quaternionic analogue of Euler's formula. Now the unit imaginary quaternions all lie 

on the unit 2-sphere in Im   so any such ĩ can be written: 

 

                                                

2.4.6 Symplectic decomposition 

Quaternions can be written as the combination of two complex numbers and an imaginary 

number k with unit length. 

  

                                                           
72 http://en.wikipedia.org/wiki/Parallelizability  

(1) 

(2) 

(3) 

(1) 

(2) 
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3 Quaternionic distributions 

3.1 Sign flavors 

Quaternionic distributions are quaternion valued functions of a quaternionic parameter. If not 

otherwise stated, the quaternionic parameter space is not curved. Quaternions feature sign selec-

tions. Inside a quaternionic distribution the quaternionic sign selections of the values are all the 

same. Due to the four possible sign selections of quaternions, quaternionic distributions exist in 

four sign flavors. 

3.2 Differentiation 

A quaternionic distribution f(q) can be differentiated. 

 

              〈 ,     〉                 (       ) 

 

The colored   and   signs refer to the influence of conjugation of      on quaternionic multi-

plication. The  sign refers to the influence of reflection of     . 

3.3 Fourier transform 

In Fourier space differentiation becomes multiplication with the canonical conjugate coordi-

nate   and therefore the equivalent equation becomes: 

 

g̃    k ̃     k   ̃    〈 ,  ̃   〉  k  ̃       ̃     (    ̃   ) 

 

For the imaginary parts holds: 

 

                      (       ) 

 

 ̃     k  ̃       ̃     (    ̃   ) 

 

By using73  

 

           
 

and 

 

〈 ,       〉 = 0 

 

It can be seen that for the static part (        ) holds: 

 

             (       ) 

 

                                                           
73 Bo Thidé: http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf ;Formulas:F.104, F.105 

(1) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
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 ̃       ̃     (    ̃   ) 

3.4 Helmholtz decomposition 

Formula (7) of the last paragraph leads to the Helmholtz decomposition. The Helmholtz de-

composition splits the static vector field   in a (transversal) divergence free part    and a (one 

dimensional longitudinal) rotation free part   .  
 

                
 

Here    is a scalar field and   is a vector field. In quaternionic terms    and   are the real and 
the imaginary part of a quaternionic field  .   is an imaginary quaternion.74 

 

The significance of the terms “longitudinal”and “transversal” can be understood by computing 

the local three-dimensional Fourier transform of the vector field  , which we call  ̃. Next decom-

pose this field, at each point  , into two components, one of which points longitudinally, i.e. par-

allel to  , the other of which points in the transverse direction, i.e. perpendicular to  .  

 

 ̃     ̃      ̃      
 

〈 ,  ̃    〉    
 

   ̃       
 

The Fourier transform converts gradient into multiplication and vice versa. Due to these prop-

erties the inverse Fourier transform gives: 

 

         
 

〈 ,   〉    
 

        
 

So, this split indeed conforms to the Helmholtz decomposition. 

 

This interpretation relies on idealized circumstance in which the decomposition runs along 

straight lines. This idealized condition is in general not provided. In normal conditions the de-

composition and the interpretation via Fourier transformation only work locally and with reduced 

accuracy. 

 

                                                           
74 See next paragraph 

(7) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



 

 

4 Fields 

4.1 The origin of physical fields. 

The Hilbert Book Model is a simple Higgsless model of physics that is strictly based on tradi-

tional quantum logic and on the lattice isomorphic model; the set of subspaces of an infinite di-

mensional separable Hilbert space for which the inner product is specified by using quaternions75. 

This restriction results in the fact that all sets of variables are countable. At the same time most 

observations are taken from a continuum. As a result the set of potential observations overwhelms 

the set of variables76. The situation is comparable to the situation in which the number of equa-

tions is far larger than the number of variables that should form the result. Probably, the set of 

equations will appear to be inconsistent. In order to cure the situation, it is common to assume that 

the observations are inaccurate. The inaccuracy must be stochastic or with other words the obser-

vation result must be blurred. 

Nature applies a similar solution, but instead of a simple spread function in the form of a prob-

ability density distribution, nature applies a quaternionic probability amplitude distribution 

(QPAD). This QPAD can be split into a real part that represents a “charge” density distribution 

and an imaginary part that represents a corresponding “current” density distribution. The “charge” 

represents the set of properties of the thing that is being observed. The parameter of the distribu-

tion represents the location at which the “charge” is observed. The squared modulus of the QPAD 

represents the probability density of the presence of the “charge” at the location that is specified 

by the parameter. 

This approach transfers the dynamics of the observation into a streaming problem. The equa-

tion of motion of the “charge” becomes a continuity equation77. 

The properties of particles move according to the above principle. With each elementary parti-

cle belong one or more QPAD’s that act as private fields of the particle and that determine its dy-

namic behavior when it moves freely. However, these fields overlap. In this way these fields and 

the corresponding particles interact. 

A subset of the elementary particles is massless. These particles correspond to a single QPAD. 

That does not say that their fields cannot overlap.  

All other elementary particles are identified by an ordered pair of QPAD’s that are two field 

sign flavors of the same base field. The coordinate system, whose values are used as field parame-

ter, has its own field sign flavor and acts as a sign flavor reference. 

4.1.1 Categories of fields 

Two categories of fields exist.  

4.1.1.1 Primary fields 
The first category consists of quaternionic probability amplitude distributions (QPAD’s). The 

QPAD’s may overlap and through this superposition they may form covering fields. The QPAD’s 

exist in four sign flavors. The same holds for the covering fields. The QPAD’s may interact. 

                                                           
75 See: http://www.crypts-of-physics.eu/HilbertBookModelEssentials.pdf 
76 A continuum has a higher cardinality than a countable set.  
77 Another name for “continuity equation” is “balance equation”. 
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When different sign flavors interact the strength of the local interaction is characterized by a cou-

pling factor. The members of this category will be called primary fields. 

4.1.1.2 Secondary fields 
The second category consists of administrator fields. These fields administer the effect of in-

teractions on the local curvature of the positioning coordinate system. For all properties that char-

acterize a coupling of sign flavors of primary fields an administrator field exist that registers the 

influence of that property during interactions on the local curvature.  

 

One of these administrator fields is the gravitation field. It administers the influence of the 

strength of the coupling between sign flavors of primary fields on the local curvature.  

 

The electromagnetic fields administer the influence of the electric charge on the local curva-

ture. 

 

The angular momentum including the spin also influences the local curvature. Also this effect 

is administered.  

 

The members of this category will be called secondary fields or administrator fields. 

 

All these influences can be administered by using the local metric. This generates a metric ten-

sor field. 

4.2 Example potential 

The influence of local properties is represented by charges. The charge carrier may contain an 

assembly of charges. 

 

Spatial Harmonic functions78 are suitable charge spread functions. 
For a harmonic function      holds: 
 

                 
 

If there is a static spherically symmetric Gaussian charge density ρ (r): 

 

      
 

√    
 e p  | |

      ⁄   

where Q is the total charge, then the solution φ (r) of Poisson's equation79, 

 

        
    

 
 

 

                                                           
78 http://en.wikipedia.org/wiki/Harmonic_function  
79 http://en.wikipedia.org/wiki/Poisson%27s_equation  

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Harmonic_function
http://en.wikipedia.org/wiki/Poisson%27s_equation
http://en.wikipedia.org/wiki/Harmonic_function
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is given by 

 

     
 

   | |
erf (
| |

√  
) 

 

where erf(x) is the error function.  

 

In fact the quaternionic Poisson’s equation represents two separate equations: 

 

   
            

     

 
 

 

   
           

    

 
 

 

Note that, for | | much greater than σ, the erf function approaches unity and the potential φ (r) 

approaches the point charge potential 
 

   | |
, as one would expect. Furthermore the erf function 

approaches 1 extremely quickly as its argument increases; in practice for | | > 3σ the relative er-

ror is smaller than one part in a thousand80.  

 

The definition of the quaternionic potential ϕ(q) is based on the convolution of a quaternionic 

distribution  (q) with the real function      See Newton potential and Bertrand’s theorem in 

Wikipedia. The real part  0(q) of the distribution  (q) can be interpreted as a charge distribution. 

The imaginary part  (q) can be interpreted as a current distribution. 

The convolution blurs the distribution such that the result becomes differentiable. 

 

In configuration space holds: 

 

           
 

| |
  

 

Reversely, according to Poisson’s equation: 

 

               
 

The real part of ϕ(q) presents a scalar potential. The imaginary part presents a vector potential.  

 

                 
 

In the above section: 

The scalar potential is a blurred charge distribution.  

The vector potential is a blurred current distribution.  

                                                           
80 http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

http://en.wikipedia.org/wiki/Poisson's_equation#Potential_of_a_Gaussian_charge_density
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Current is moving charge. 

Mass is a form of charge. 

 

(The selected blurring function has striking resemblance with the ground state of the quantum 

harmonic oscillator81). 

 

In Fourier space holds: 

 

 ̃      ̃    
 

| |
    ̃      ̃    

 

In Fourier space the frequency spectrum of the Hilbert distribution is multiplied with the Fou-

rier transform of the blurring function. When this falls off when the frequencies go to infinity, 

then as a consequence the frequency spectrum of the potential is bounded. This is valid independ-

ent of the fact that the frequency spectrum of the Hilbert distribution is unbounded. 

5 Fourier transform 

5.1 Quaternionic Fourier transform split 

The longitudinal Fourier transform represents only part of the full quaternionic Fourier trans-

form. It depends on the selection of a radial line      in p space that under ideal conditions runs 

along a straight line. 

 

  (    )         ,       

 

Or 

 

  (    )    (     )  

 

It relates to the full quaternionic Fourier transform Ƒ 

 

 (    )    ̃    

 

The inverse Fourier transform runs: 

 

     ̃           
 

The split in longitudinal and transverse Fourier transforms corresponds to a corresponding split 

in the multi-dimensional Dirac delta function. 

 

                                                           
81 Functions and fields:Functions invariant under Fourier transformation:Ladder opera-

tor:Ground state 

(10) 

(1) 

(2) 

(3) 

(4) 



 

 

We consider a field      that equals the quaternionic differentiation of another field   with re-

spect to a selected (ideal) coordinate system  .  

 

          

 

We use the results of the paragraph on decomposition. We only use the static and imaginary 

version of field     . 
 

For the static imaginary part      holds: 

 

             (       )              

 

In Fourier space differentiation becomes multiplication with the canonical conjugate coordi-

nate   and therefore the equivalent equation becomes: 

 

 ̃      ̃     (    ̃   )   ̃      ̃     

 

Since  

 

                     
 

and 

 

〈 ,       〉    〈 ,      〉    
 

Now we take 

 

  | ̌            |          
       g    

 

   ∫   |     |  

 

 

 

The static imaginary part is 

 

  | ̌            |          
            

 

    (∫   |     |  

 

)  ∫      |     |   

 

 

 

 ∫     |     |    

 

 ∫     |     |    

 

 

 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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 ∫     |    ̃     

 

 ∫     |    ̃     

 

 

 

The left part is the longitudinal inverse Fourier transform of field  ̃   . 
The right part is the transverse inverse Fourier transform of field  ̃   . 
For the Fourier transform of      holds the split: 

 

 ̃     ∫      |         

 

 ∫      |         

 

 

 

  ∫      |        

 

 

 

The longitudinal direction is a one dimensional (radial) space. The corresponding transverse di-

rection is tangent to a sphere in 3D. Its direction depends on the field      or alternatively on the 

combination of field   and the selected (ideal) coordinate system  ̌. 

For a weakly curved coordinate system  ̌ the formulas hold with a restricted accuracy and 

within a restricted region. 

5.2 Alternative transverse plane 

The Cayley-Dickson construction, as well as Warren Smith’s construction formula shows that 

the transverse part can be considered as a complex number space multiplied with a fixed imagi-

nary quaternionic base number. The selection of the imaginary base number i is arbitrary as long 

as it is perpendicular to k. The resulting plane is spanned by axes i and ik. When base number i is 

divided away, then a normal complex number space results.  

Also here a complex Fourier transform can be defined in a way that is similar to the longitudi-

nal Fourier transform. It must be reckoned that the sign selections for these directions differ.  

5.3 Alternative approach to Fourier transform 

The following draws from the work of S. Thangavelu82. 

 

Let us take the non-abelian group  1 which is ℝ ⊗ ℝ ⊗ℝ with the group law 

 

  ,  ,      ,   ,                                       
 

Then it is clear that  1 is non-abelian and the Lebesgue measure dx dy dt is both left and right 

invariant Haar measure on  1. With this measure we can form the Hilbert space L
2
( 1). Let Γ = ℤ 

⊗ ℤ ⊗ ℤ. Then it is easy to check that Γ is a subgroup of  1 so that we can form the quotient M 

= Γ/ 1 consisting of all right cosets of Γ. Functions on M are naturally identified with left Γ-

invariant functions on  1. As the Lebesgue measure dx dy dt is left Γ-invariant we can form 

                                                           
82 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf 

(12) 

(1) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf


 

 

L2(M) using the Lebesgue measure restricted to M. As a set we can identify M with [0, 1)
3
 and we 

just think of L
2
(M) as L

2
([0, 1)

3
). 

 

Fourier expansion in the last variable allows us to decompose L
2
(M) into a direct sum of or-

thogonal subspaces. Simply define ℋk to be the set of all f ∈L
2
(M) which satisfy the condition 

 

   ,  ,          e p               ,  ,    
 

Then ℋk is orthogonal to ℋj whenever k ≠ j and any f ∈ L2
(M) has the unique expansion 

 

     ∑   

 

    

     ∈  ℋ  

 

In quaternionic terms, the split sees ik as imaginary quaternion k and the quaternionic Hilbert 

space is split in components according to the imaginary direction of k, where the choice is be-

tween three mutually perpendicular directions.  

 

For the moment, we are mainly interested in ℋ1 which is a Hilbert space in its own right. It is 

interesting to note that functions in ℋ1 are also invariant under the left action of Γ. 

 

Our next example of a unitary operator is the following. Consider the map J : ℋ1 → ℋ1 given 

by  

 

   ,  ,          ,  ,         
 

    ,  ,        ,   ,         
 

         
 

    ,  ,          ,                 ,        
 

       
 

   ,  ,        ,  ,    
 

     ,  ,           ,              ,  ,         
 

5.4 Weil-Brezin transform  

Next consider the Weil-Brezin transform V: 

 

     ,  ,                   ∑           e p           

 

 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 
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∫ |     ,  ,   |    ∫ ∑  |        | 
   

    

 

   

 

   

   

 

∭|     ,  ,   |           ∫ |     |   
 

 

 

 

 

  

V is unitary.  

See also Zak transform 

5.5 Fourier transform 

We define the Fourier transform F by: 

 

           

 

         ; for every   ∈     ℝ   

                ; for almost every   ∈  ℝ 

 ‖   ‖    ‖ ‖  
 

For   ∈     ℝ       ℝ  the Fourier transform is given by 

 

 f      ∫ f    e p           
  ∈ ℝ

 

 

If we further assume that    ∈     ℝ  then for almost every x we have 

 

 f      ∫  f    e p             
  ∈ ℝ

 

 

5.6 Functions invariant under Fourier transform 

In this section we confine to a complex part of the Hilbert space. 

See http://en.wikipedia.org/wiki/Hermite_polynomials.  

There exist two types of Hermite polynomials: 

 

1. The probalist’s Hermite polynomials: 

 

  
             e p      

  

   
 e p      . 

  

 

2. The physicist’s Hermite polynomials 

 

(2) 

(3) 

(1) 

(2) 

(3) 

  
       

        
    
( √ ) 

(1, 2) 

http://en.wikipedia.org/wiki/Hermite_polynomials


 

 

  
             e p    

  

    
 e p      e p      (  

 

  
)  e p       

 

These two definitions are not exactly equivalent; either is a rescaling of the other: 

 

  
               

    
( √ ) 

 

In the following we focus on the physicist’s Hermite polynomials. 

 

The Gaussian function φ(z) defined by  

 

                  
 

is an eigenfunction of F. It means that its Fourier transform has the same form. 

As     I  any λ in its spectrum        satisfies λ
4
 = 1: Hence,  

 

        {          }.  

We take the Fourier transform of the expansion: 

                          ∑                   
    

 

   

 

First we take the Fourier transform of the left hand side: 

 
 

√  
 ∫                      

               
 

    

    

           
                

   

   ∑          
                

    

 

   

 

The Fourier transform of the right hand side is given by 

 

√  
 ∑  ∫                      

          
    

 

    

 

   

    

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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Equating like powers of c in the transformed versions of the left- and 

right-hand sides gives 

 

√  
 ∫ e p                  

          
    

 

    
     

        e p      
          

  

  
 

Let us define the Hermite functions       
 

           |     c  e p     
          

 

|        |        
  

 

with suitably chosen cn so as to make 

 

‖  ‖
       

 

c  
 

√    √ 
 

 

The importance of the Hermite functions lie in the following theorem. 

 

“The Hermite functions ψn; n   N form an orthonormal basis for L
2
(R)” 

 

Consider the operator  

 

      
  

   
        

 

Apply this to ψn(z): 

 

                        
 

Thus, ψn is an eigenfunction of H. 

 

Let f         be any of the Hermite functions. Then we have 

 

 ∑          e p(              )

 

    

 

 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 



 

 

         ∑                        

 

    

 

 

Proof: As  

 

           

 

the equation  

 

            
 

translates into 

 

                                
 

With the definition of V and t = xy: 

 

     ,  ,                   ∑                         

 

 

 

QED. 

 

The vectors |ψn> are eigenvectors of the Fourier transform operator with eigenvalues (-k)
n
. The 

eigenfunctions ψn(x) represent eigenvectors |ψn> that span the complex Hilbert space Ңk. 

For higher n the central parts of       and |     |
  become a sinusoidal form. 

(17) 

(18) 

(19) 

(20) 
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A coherent state83 is a specific kind of state84 of the quantum harmonic oscillator whose dy-

namics most closely resemble the oscillating behavior of a classical harmonic oscillator system. 

The ground state is a squeezed coherent state85. 

 

The ground state here differs from the ground state of the QPAD. That ground state equals zero 

in the close neighborhood of the center. The size of that neighborhood is of the order of the 

Planck length. Thus in this region the QPAD has the form of a stretched turban mold. It has a 

form similar to the second state in the picture of |    | , thus the lowest state where      is 

asymmetric. Asymmetric states are better localizable than symmetric states.  

  

                                                           
83 http://en.wikipedia.org/wiki/Coherent_state  
84 States 
85 Canonical conjugate: Heisenberg’s uncertainty 

http://en.wikipedia.org/wiki/Coherent_state
http://en.wikipedia.org/wiki/Coherent_state


 

 

5.7 Special Fourier transform pairs 

Functions that keep the same form through Fourier transformation are: 

 

     e p   | |   
 

      
 

| |
 

 

              
 

The comb function consists of a set of equidistant Dirac delta functions. 

 

Other examples of functions that are invariant under Fourier transformation are the linear and 

spherical harmonic oscillators and the solutions of the Laplace equation. 

5.8 Complex Fourier transform invariance properties 

Each even function         ̃    induces a Fourier invariant: 

 

     √          ̃   . 
 

 ̃     √         
 

Each odd function         ̃    induces a Fourier invariant: 

 

     √          ̃   . 
 

A function      is invariant under Fourier transformation if and only if the function   satisfies 

the differential equation  

 
      

   
              , for some scalar  ∈  . 

 

The Fourier transform invariant functions are fixed apart from a scale factor. That scale factor 

can be 1, k, -1 or –k. k is an imaginary base number in the longitudinal direction. 

 

Fourier-invariant functions show iso-resolution, that is,       in the Heisenberg’s uncertain-

ty relation. 

 

For proves see: http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf.  

5.9 Fourier transform properties 

5.9.1 Parseval’s theorem 

Parseval’s theorem runs: 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 

http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf
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∫                ∫ ̃
      ̃        

 

This leads to 

 

∫|    |       ∫| ̃   |
 
     

5.9.2 Convolution 

Through Fourier transformation a convolution changes into a simple product and vice versa. 

 

               ̃     ̃    

5.9.3 Differentiation 

Fourier transformation converts differentiation into multiplication with the canonical conjugat-

ed coordinate. 

 

g          
 

g̃    p ̃    

6 Ladder operator 

The Hermite functions    represent Fock states86. 

 

Boson ladder operators are characterized by 
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In the Heisenberg picture, the operators have the following time dependence: 

 

          e p(      t     ) 

 

                                                           
86 http://en.wikipedia.org/wiki/Fock_state  
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(2) 

(1) 

(1) 

(2) 
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http://en.wikipedia.org/wiki/Fock_state
http://en.wikipedia.org/wiki/Fock_state
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We can also define an enumeration operator N which has the following property: 

 

         

 

 |       |      
 

In deriving the form of   , we have used the fact that the operators X and Px, which represent 

observables, are Hermitian. These observable operators can be expressed as a linear combination 

of the ladder operators as 
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 ̌        √                       
 

The  ̌ and  ̌ operators obey the following identity, known as the canonical commutation rela-

tion: 

 

[ ̌,  ̌]       

 

Using the above, we can prove the identities 

 

                                
 

[  ,  ]      
 

Now, let |fE>denote an energy eigenstate with energy E. The inner product of any ket with it-

self must be non-negative, so 

 

      |               |  
              

 

Expressing     in terms of the Hamiltonian H: 

 

    |                                      
 

so that 

 

         .  

 

Note that when |        |   (is the zero ket i.e. a ket with length zero), the inequality is 

saturated, so that  

 

(4) 
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It is straightforward to check that there exists a state satisfying this condition; it is the ground 

state 

 

|           |               

 

Using the above identities, we can now show that the commutation relations of   and    with 

H are: 

 

[ , ]          

 
[ ,  ]          

 

Thus, provided |        is not the zero ket,  

 

|          |[ , ]            

 

  |                 

 

  |                  

 

            |      
 

Similarly, we can show that 

 

|                      | 
      

 

In other words,   acts on an eigenstate of energy E to produce, up to a multiplicative constant, 

another eigenstate of energy E – ħ ω, and      acts on an eigenstate of energy E to produce an ei-

genstate of energy E + ħ ω. For this reason, a is called a "lowering operator", and     "raising 

operator". The two operators together are called ladder operators. In quantum field theory,   and 

   are alternatively called "annihilation" and "creation" operators because they destroy and create 

particles, which correspond to our quanta of energy. 

Given any energy eigenstate, we can act on it with the lowering operator  , to produce another 

eigenstate with ħ ω-less energy. By repeated application of the lowering operator, it seems that we 

can produce energy eigenstates down to E = −∞. However, this would contradict our earlier re-

quirement that E ≥ ħ ω/2.  

7 States 

7.1 Ground state 

Therefore, there must be a ground-state energy eigenstate, which we label |fground>, such that 

 

 |             |    (zero ket). 

 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(1) 



 

 

In this case, subsequent applications of the lowering operator will just produce zero kets, in-

stead of additional energy eigenstates. Furthermore, we have shown above that 

 

|                     |         

 

Finally, by acting on |         with the raising operator and multiplying by suitable normal-

ization factors, we can produce an infinite set of energy eigenstates  

 

{|        , |    , |    ,  , |    },  

 

such that 

 

|                    |     

 

which matches the energy spectrum. 

This method can also be used to quickly find the ground state wave function of the quantum 

harmonic oscillator.  

Indeed  

 

|             |    
 

becomes 

 

                     |              
 

   
 
 

  
       

 

so that 

 

               
 

   
       ⇒ ln(     )    

   

  
            

 

After normalization this leads to the following position space representation of the ground state 

wave function. 

 

        √
   

  

 
    
   
  
    

 

7.2 Coherent state 

A coherent state is a specific kind of state87 of the quantum harmonic oscillator88 whose dy-

namics most closely resemble the oscillating behavior of a classical harmonic oscillator system.  

 

                                                           
87States  
88 Functions invariant under Fourier transform 
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The coherent state |α> is defined to be the 'right' eigenstate of the annihilation operator  . 

Formally, this reads: 

 

|        |   

 

Since   is not Hermitian, α is a hyper complex number that is not necessarily real, and can be 

represented as 

 

  | | e p       
where   is a real number. | | is the amplitude and   is the phase of state |α>. 

This formula means that a coherent state is left unchanged by the annihilation or the creation of 

a particle. The eigenstate of the annihilation operator has a Poissonian89 number distribution A 

Poisson distribution is a necessary and sufficient condition that all annihilations are statistically 

independent. 

The coherent state's location in the complex plane (phase space90) is cen-

tered at the position and momentum of a classical oscillator of the same 

phase θ and amplitude. As the phase increases the coherent state circles the 

origin and the corresponding disk neither distorts nor spreads. The disc represents 

Heisenberg’s uncertainty. This is the most similar a quantum state can be to a 

single point in phase space. 

 

                                                           
89 http://en.wikipedia.org/wiki/Poissonian  
90 http://en.wikipedia.org/wiki/Phase_space  
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(2) 

http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space


 

 

 

Phase space plot of a coherent state. This shows that the uncertainty (blur) in a coherent state is 

equally distributed in all directions. The horizontal and vertical axes are the X and P quadratures 

of the field, respectively. Oscillations that are said to be in quadrature, if they are separated in 

phase by π/2 radians. The red dots on the x-axis trace out the boundaries of the quantum noise. 

Further from the origin the relative contribution of the quantum noise becomes less important. 

 

The representation of the coherent state in the basis of Fock states is: 

 

|    e p   | |  ∑
  

√  

 

   

 |    e p   | |   e p (    )  |    

 

where |n> are Hermite functions (eigenvectors of the Hamiltonian). This is a Poissonian distri-

bution. The probability of detecting n photons is: 

 

     e p  〈 〉 
〈 〉 

  
 

 

Similarly, the average photon number in a coherent state is  

 

〈 〉  〈   〉   | |  
 

and the variance is 

 

         (   )   | |  

7.3 Squeezing 

The squeezing operator can squeeze a state more or less in the direction of either P or Q. The 

operator is defined as: 

 

      e p ( (       )) 

 

    e p       
 

The ground state is a saturated squeezed coherent state where  

 

      and Δq·Δp = ħ/2 

8 Base transforms 

Now we have discovered the following base transforms: 

Position momentum: 
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(5) 
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http://en.wikipedia.org/wiki/Squeezing_operator
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Position Fock state: 
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Fock state coherent state: 
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√  
    e p    | |   

9 Oscillations 

9.1 Harmonic oscillating Hilbert field  

Take the ingredients of the complex harmonic oscillator and interpret these as similar ingredi-

ents of a harmonic oscillating Hilbert field that is based on a Gaussian blur. The blur delivers the 

conditions of the ground state. 
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This means that the ground state corresponds with a Gaussian charge distribution. Higher states 

correspond to a blurred current. We indicate this current as vector potential  . Its time derivative 

 ̇ is perpendicular to  . The other ingredients are P, Q,   and   . 
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The   field and the  ̇ field are mutually perpendicular. If both fields are subjected to a syn-

chronized quantum harmonic oscillation, then an oscillating wave results. We take the same 

ground state for each of the fields. These ground states correspond to a spherical symmetric 

Gaussian blur.  

 

When bounds of the cavity are removed or relaxed, then the higher order modes may differ in a 

phase shift. The sign selections set the eigenvalues of the spin operator. The result is an elliptical-

ly polarized wave that moves in directions along    ̇.  

 

  no longer stands for a single position, but instead for a Gaussian distribution of positions of 

virtual charges. Similarly  ̇ does not stand for a single moving particle, but for a moving Gaussi-

an cloud of virtual charges. 

 

 
 

9.2 Annihilator and creator 

The annihilator   and the creator    are examples of boson operators. This is a consequence 

of their commutation relations. 
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[    ,    ]    
 

[     ,     ]    

 

The corresponding fermion operators are: 

 

{    ,      }    |   

 

{    ,     }    
 

{     ,      }    

 

The fermion operators can be represented by imaginary quaternionic base numbers: 

 

       
 

       
 

          
 

           
 

(    ) (    )                  

 

             

9.3 Rotational symmetry 

In case of rotational symmetry in the imaginary part of quaternion space, the exponential func-

tion must be replaced by a Bessel function. The corresponding Fourier transform then becomes a 

Hankel transform91. 

The spherical harmonics are eigenfunctions of the square of the orbital 

angular momentum operator        and therefore they represent the 

different quantized configurations of atomic orbitals. 

9.4 Spherical harmonics 

The following draws from the work of S. Thangavelu92. 

                                                           
91 http://en.wikipedia.org/wiki/Hankel_transform  
92 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf  
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(15) 

http://en.wikipedia.org/wiki/Hankel_transform
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Quantized
http://en.wikipedia.org/wiki/Atomic_orbitals
http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
http://en.wikipedia.org/wiki/Hankel_transform
http://www.math.iitb.ac.in/atm/faha1/veluma.pdf


 

 

In this subsection we look for eigenfunctions of the Fourier transform which have spherical 

symmetry. As in the one dimensional case we consider functions of the form  

 

           e p   | |   
 

This will be an eigenfunction of   if and only   satisfies 

 

∫           e p    | |     
ℝ 

          

 

Here in quaternion terms   and    represent two mutually perpendicular imaginary numbers 

while   and   are parallel. Thangavelu uses complex numbers. We keep as close as is possible to 

his text. 

 

If (2) is true for all  ∈ ℝ  then we should also have 

 

∫        e p    | |     
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Integrating in polar coordinates the integral on the left is 

 

∫ |    | (∫                 
    

)
 

   

                   

 

where       is the normalised surface measure on the unit sphere     . 
 

If   is homogeneous of degree m then  

 

                 
 

and hence for such polynomials the equation 
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will be satisfied for 

 

           
 

if   has the mean value property 

 

∫                     
    

 

 

Such functions are precisely the harmonic functions satisfying  
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Thus we have proved: 

 

Let  

 

                  | |   
 

where   is homogeneous of degree m and harmonic. Then  

 

              
 

Let    stand for the finite dimensional space of homogeneous harmonic polynomials of de-

gree m:  

 

The above theorem says that the finite dimensional subspace of    ℝ   consisting of functions 

of the form 

 

     e p    | |      ∈      
 

is invariant under the Fourier transform. 

We claim that the following extension is true. 

Let  

 

  ∈     ℝ   
 

be of the form  

  

             | |      ∈      
Then  
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Thus the subspace of functions of the form  
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is invariant under the Fourier transform. 

 

Let  
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be of the form  
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Then  

 

    f     i 
             

 

The above result is known as the Hecke-Bochner formula for the Fourier transform.  

 

We conclude our discussion on invariant subspaces with the following result which shows that 

the Fourier transform of a radial function reduces to an integral transform whose kernel is a Bes-

sel function. This relates to the Hankel transform. 

 

Let    stand for the Bessel function of type        
If  
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is radial and integrable then 
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9.5 Spherical harmonic transform 

Next we like to decompose 2D and 3D functions into wave-like basic patterns that have simple 

radial and angular structures93. In that case, the base functions must take the separation-of-variable 

form: 
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for 2D and 
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for 3D where   ,    and   ,  ,    are the polar and spherical coordinates respectively. mand l 
are integers. l     and |m|    l. 

 

                                                           
93 http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf  
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http://en.wikipedia.org/wiki/Hankel_transform
http://lmb.informatik.uni-freiburg.de/papers/download/wa_report01_08.pdf
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The base functions are eigenfunctions of the Laplacian. They represent wave-like patterns. The 

associated angular transform is closely related to the normal Fourier transform. For polar coordi-

nates this reduces to a simple complex 1D Fourier transform. 

The radial base function is a Bessel function        for polar coordinates and a spherical Bes-

sel function        for spherical coordinates. The parameter   can take either continuous or dis-

crete values, depending on whether the region is infinite or finite. For functions defined on   ,  , 
the transform with        as integral kernel and r as weight is known as the Hankel transform. 

For functions defined on a finite interval, with zero-value boundary condition for the base func-

tions, one gets the Fourier-Bessel series. For the 3D case the transform is called Spherical Har-

monic (SH) transform. 

9.6 Polar coordinates 

The Laplacian in polar coordinates is: 
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The Helmholtz differential equation is 
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The solution is: 

 

Φ     e p       
 

                     
 

   is the  -th order Bessel function. The Neumann function    is singular at    . Therefore 

    and    . 
In finite solutions, the boundary conditions determine what set of functions can be used as base 

functions. The reference in the footnote shows which choices can be relevant. 

9.7 Spherical coordinates 

The Laplacian in polar coordinates is: 
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The Helmholtz differential equation is 
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A non-singular solution for      is: 

 

            
 

   is the spherical Bessel function of order  . 
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9.8 The spherical harmonic transform 

The equivalent of the Fourier transform in terms of spherical harmonics depends on the bound-

ary conditions. For example when the analysis is done over a limited region, then the zero bound-

ary condition will give different results than the zero derivative boundary condition94. An infinite 

range will always request a zero value of contributions when the radius goes to infinity. 

 

      ∫ ∫ ∫    ,  ,    

 

   

  

   

 

   

    
  r,  ,    r sin   dr d  d  

 

   ,  ,     ∑∑ ∑     

 

    

 

   

 

   

      r,  ,    

 

      ,  ,                 ,    
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9.9 The Fourier transform of a black hole 

In its simplest form a black hole is a bubble that is covered with a blanket of ground states. 

The blanket is a comb function that is convoluted with a ground state. The Fourier transform of 

this blanket is the product of the Fourier transform of the comb function and the Fourier transform 

of the ground state. Apart from a factor, the ground state is invariant under Fourier transfor-

mation. Also the comb function is invariant. Thus the Fourier transform of the blanket is a modu-

lated comb function. The modulation does not reach far. 

 

The most complicated component is the bubble. In its simplest form this is a pulse on the radi-

us. If we interpret this pulse as a Dirac delta function, then the Fourier coefficients have the form: 
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If we sum these coefficients, then we get a sampled spherical Bessel function. These spheres 

are blurred with the transformed blanket. 

9.10 Spherical harmonics eigenvalues 

See: http://en.wikipedia.org/wiki/Spherical_harmonics for more details. 

Spherical harmonics are best presented in polar coordinates. There exists a corresponding polar 

Fourier transform. This Fourier transform also has invariant functions. Like in the rectangular 

case, they form the basis for spherical harmonics. 

 

Laplace's equation in spherical coordinates is: 
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Try to find solutions in the form of the eigenfunctions of the Fourier transform.  

By separation of variables, two differential equations result by imposing Laplace's equation: 
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The second equation can be simplified under the assumption that   has the form  

 

   ,               
 

Applying separation of variables again to the second equation gives way to the pair of differen-

tial equations 
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http://en.wikipedia.org/wiki/Spherical_harmonics
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for some number m. A priori, m is a complex constant, but because   must be a periodic func-

tion whose period evenly divides   ,  is necessarily an integer and   is a linear combination of 

the complex exponentials e p        . The solution function    ,    is regular at the poles of 

the sphere, where    ,  . Imposing this regularity in the solution   of the second equation at 

the boundary points of the domain is a Sturm–Liouville problem95 that forces the parameter   to 

be of the form          for some non-negative integer with   | |; this is also explained 

below in terms of the orbital angular momentum. Furthermore, a change of variables        
transforms this equation into the Legendre equation, whose solution is a multiple of the associated 

Legendre function96.   
         . Finally, the equation for R has solutions of the form      

               ; requiring the solution to be regular throughout ℝ  forces    . 
Here the solution was assumed to have the special form  

 

   ,                
 

For a given value of  , there are      independent solutions of this form, one for each inte-

ger m with       . These angular solutions are a product of trigonometric functions, here 

represented as a complex exponential, and associated Legendre functions: 
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which fulfill 

 

       
   ,                  

   ,    
 

Here   
  is called a spherical harmonic function of degree   and order m,    

  is an associated 

Legendre function, N is a normalization constant, θ represents the colatitude and φ represents the 

longitude. In particular, the colatitude97 θ, or polar angle, ranges from 0 at the North Pole to π at 

the South Pole, assuming the value of π/2 at the Equator, and the longitude98  , or azimuth99, may 

assume all values with       . For a fixed integer  , every solution    ,   of the eigenval-

ue problem 

 

                      

 

                                                           
95 http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville_problem  
96 http://en.wikipedia.org/wiki/Associated_Legendre_function  
97 http://en.wikipedia.org/wiki/Colatitude  
98 http://en.wikipedia.org/wiki/Longitude  
99 http://en.wikipedia.org/wiki/Azimuth  
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is a linear combination of   
 . In fact, for any such solution,       ,    is the expression in 

spherical coordinates of a homogeneous polynomial that is harmonic, and so counting dimensions 

shows that there are      linearly independent of such polynomials. 

The general solution to Laplace's equation in a ball centered at the origin is a linear combina-

tion of the spherical harmonic functions multiplied by the appropriate scale factor   , 
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where the   
  are constants and the factors·     

  are known as solid harmonics100. Such an ex-

pansion is valid in the ball 
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9.11 Orbital angular momentum 

In quantum mechanics, Laplace's spherical harmonics are understood in terms of the orbital 

angular momentum101 

 

                                   

 

The spherical harmonics are eigenfunctions of the square of the orbital angular momentum 
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Laplace's spherical harmonics are the joint eigenfunctions of the square of the orbital angular 

momentum and the generator of rotations about the azimuthal axis: 
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These operators commute, and are densely defined self-adjoint operators on the Hilbert space 

of functions ƒ square-integrable with respect to the normal distribution on ℝ : 
 

      
 
 ∫ |    | 

ℝ 
e p  | |         

Furthermore,    is a positive operator. 
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101 http://en.wikipedia.org/wiki/Orbital_angular_momentum  

(12) 

(13) 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum


 

 

If   is a joint eigenfunction of    and   , then by definition 

 

           

 

           
 

for some real numbers m and  . Here m must in fact be an integer, for   must be periodic in the 

coordinate   with period a number that evenly divides    . Furthermore, since 

 

       
      

      
  

 

and each of    ,   ,    are self-adjoint, it follows that     . 

Denote this joint eigenspace by   , , and define the raising and lowering operators by 

 

               

 

              

 

Then    and    commute with   , and the Lie algebra generated by   ,   ,    is the special 

linear Lie algebra, with commutation relations 
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Thus   :   ,     ,    (it is a "raising operator") and   :   ,     ,    (it is a "lowering 

operator"). In particular,   
 :   ,     ,    must be zero for k sufficiently large, because the ine-

quality      must hold in each of the nontrivial joint eigenspaces. Let  ∈   ,  be a nonzero 

joint eigenfunction, and let k be the least integer such that 
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it follows that 
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Thus            for the positive integer        . 
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9.12 Spherical harmonics expansion 

The Laplace spherical harmonics form a complete set of orthonormal functions and thus form 

an orthonormal basis of the Hilbert space of square-integrable functions. On the unit sphere, any 

square-integrable function can thus be expanded as a linear combination of these: 
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This expansion holds in the sense of mean-square convergence — convergence in L
2
 of the 

sphere — which is to say that 

 

lim
   
∫ ∫ |   ,    ∑ ∑   
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sin          
  

 

 

 

The expansion coefficients are the analogs of Fourier coefficients, and can be obtained by mul-

tiplying the above equation by the complex conjugate of a spherical harmonic, integrating over 

the solid angle  , and utilizing the above orthogonality relationships. This is justified rigorously 

by basic Hilbert space theory. For the case of orthonormalized harmonics, this gives: 
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    ,      
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If the coefficients decay in ℓ sufficiently rapidly — for instance, exponentially — then the se-

ries also converges uniformly to ƒ. 

A real square-integrable function ƒ can be expanded in terms of the real harmonics Yℓm above 

as a sum 

 

   ,    ∑ ∑   
   
   ,   

 

    

 

   

 

 

Convergence of the series holds again in the same sense. 

9.13 Spin weighted spherical harmonics 

Regard the sphere    as embedded into the three-dimensional imaginary 

part of the quaternionic number field. At a point x on the sphere, a posi-

tively oriented orthonormal basis of tangent vectors at x is a pair a, b of 

vectors such that 

  ,        ,        ,        

(1) 

(2) 

(3) 

(4) 

(1) 

http://en.wikipedia.org/wiki/Lp_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Euclidean_space


 

 

  ,        ,        

〈 ,      〉      

where the first pair of equations states that a and b are tangent at x, the second pair states that a 

and b are unit vectors, a and b are orthogonal, and the { ,  ,  } is a right-handed basis of ℝ . 
  

θ

a·sin(θ)

a·cos(θ)

b·cos(θ)

-b·sin(θ)

θ

a·sin(θ)

a·cos(θ)

b·cos(θ)
-b·sin(θ)

ψ

ψ

c

d

da = ca·cos(θ) –cb·sin(θ) 

db = ca·cin(θ) –cb·cos(θ)

 
Figure 3: θ and the parameters a and b of the spin-weight function f. 

 

A spin-weight s function ƒ is a function accepting as input a point x of S
2
 and a positively ori-

ented orthonormal basis of tangent vectors at x, such that 

  

 ( ,                  ,                   )   e p           ,  ,    

for every rotation angle  . 

Following Eastwood & Tod (1982), denote the collection of all spin-weight s functions by 

B(s). Concretely, these are understood as functions ƒ on    { } satisfying the following homoge-

neity law under complex scaling 

 

(2) 

(3) 

(4) 

(5) 
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     ,         (
  

 
)

 

   ,     

 

This makes sense provided s is a half-integer. 

Abstractly, B(s) is isomorphic to the smooth vector bundle underlying the antiholomorphic 

vector bundle O
*
(2·s) of the Serre twist on the complex projective line    . A section of the latter 

bundle is a function g on    { } satisfying 

 

 (   ,      )   (  )
  
    ,     

 

Given such a g, we may produce a spin-weight s function by multiplying by a suitable power 

of the Hermitian form 

 

   ,           
 

Specifically,        is a spin-weight s function. The association of a spin-weighted function 

to an ordinary homogeneous function is an isomorphism. 

9.14 Eth 

The spin weight bundles B(s) are equipped with a differential operator  ð (eth). This operator is 

essentially the Dolbeault operator102,  

 

            
 

Thus for       , 
 

                    
 

defines a function of spin-weight    . 

9.15 Spin-weighted harmonic functions 

See http://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics for more details. 

Just as conventional spherical harmonics are the eigenfunctions of the Laplace-Beltrami opera-

tor on the sphere, the spin-weight s harmonics are the eigensections for the Laplace-Beltrami op-

erator acting on the bundles      of spin-weight s functions. 

The spin-weighted harmonics can be represented as functions on a sphere once a point on the 

sphere has been selected to serve as the North Pole. By definition, a function η with spin weight s 

transforms under rotation about the pole via  

 

    e p          
 

                                                           
102 http://en.wikipedia.org/wiki/Dolbeault_operator  
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(7) 
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(2) 

(1) 

http://en.wikipedia.org/wiki/Dolbeault_operator
http://en.wikipedia.org/wiki/Spin-weighted_spherical_harmonics
http://en.wikipedia.org/wiki/Dolbeault_operator


 

 

Working in standard spherical coordinates, we can define a particular operator ð acting on a 

function η as: 

 

      sin      {
 

  
 
 

sin   
 
 

  
}[sin      ] 

 

This gives us another function of   and  . [The operator ð is effectively a covariant derivative 

operator in the sphere.] 

An important property of the new function    is that if η had spin weight  ,    has spin weight 

     . Thus, the operator raises the spin weight of a function by 1. Similarly, we can define an 

operator which will lower the spin weight of a function by 1: 

 

       sin     {
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} [ sin      ] 

 

We extend the function   
  to   

 
 
  according to 

 

  
 

 
    ,       

   ,    
 

     ,  ,  ,          ,   ,   
 

The spin-weighted spherical harmonics are then defined in terms of the usual spherical har-

monics as: 
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The functions   
 

 
  then have the property of transforming with spin weight s. 

Other important properties include the following: 
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10 Differentiation 

A quaternionic distribution f(q) can be differentiated. 
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(3) 

(4) 

(5) 

(6) 
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              〈 ,     〉                 (       ) 

 

The colored   and   signs refer to the influence of conjugation of      on quaternionic multi-

plication. The  sign refers to the influence of reflection of     . 
 

10.1 Continuity equation 

When applied to a quaternionic probability amplitude distribution (QPAD), the equation for 

the differentiation leads to a continuity equation. 

 

When       is interpreted as a charge density distribution, then the conservation of the corre-

sponding charge is given by the continuity equation: 

 

Total change within V = flow into V + production inside V 

 
 

  
∫       

 

 ∮  ̂  
 

 
   

 

 ∫     

 

 

 

∫       

 

 ∫〈 ,  〉   

 

 ∫     

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding surface S,    ,    is the velocity 

at which the charge density     ,    enters volume V and    is the source density inside V. In the 

above formula   stands for 

          
 

It is the flux (flow per unit area and unit time) of    . 
 

The combination of     ,    and    ,    is a quaternionic skew field    ,    and can be seen as 

a probability amplitude distribution (QPAD). 

 

       

 

   ,       ,    can be seen as an overall probability density distribution of the presence of the 

carrier of the charge.     ,    is a charge density distribution.    ,    is the current density distri-

bution. 

The conversion from formula (2) to formula (3) uses the Gauss theorem103. This results in the 

law of charge conservation:  

 

    ,          ,    〈 , (    ,      ,         ,   )〉 

 

       ,    〈 ,    ,       ,   〉 

                                                           
103 http://en.wikipedia.org/wiki/Divergence_theorem  
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http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem


 

 

 

       ,    〈   ,   ,      ,   〉  〈 ,    ,   〉     ,    
 

 〈 ,    ,   〉 
 

The blue colored ± indicates quaternionic sign selection through conjugation of the field 

   ,   . The field    ,    is an arbitrary differentiable vector function. 

 

〈 ,      ,   〉    
 

   ,          ,    is always divergence free. In the following we will neglect    ,   . 
 

In Fourier space the continuity equation becomes: 

 

 ̃   ,       ̃   ,    〈 ,  ̃  ,   〉 
 

Equation (6) represents a balance equation for charge density. What this charge is will be left 

in the middle. It can be one of the properties of the carrier or it can represent the full ensemble of 

the properties of the carrier. 

 

This only treats the real part of the full equation. The full equation runs: 

 

   ,        ,        ,       ,    
 

        ,    〈 ,    ,   〉       ,          ,    (      ,   ) 

 

       ,    〈   ,   ,      ,   〉  〈 ,    ,   〉     ,     
 

      ,          ,          ,    
 

 (      ,         ,       ,         ,   ) 

 

    ,           ,    〈    ,      ,   〉  〈 ,    ,   〉     ,    
 

   ,          ,          ,    
 

 ( (    ,         ,       ,         ,   )) 

 

The red sign selection indicates a change of handedness by changing the sign of one of the im-

aginary base vectors. Conjugation also causes a switch of handedness. It changes the sign of all 

three imaginary base vectors. 

10.1.1 Continuity Equations 

The equation for the conservation of charge: 
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(8) 

(9) 

(10) 

(11) 
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We can define     : 
 

           
 

               〈 ,    〉 
 

        
 
                            

 

        
 
           

 

             
 

The definition of      and      have the freedom of the gauge transform104 
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This translates in the source free case         into: 
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               〈 ,    〉    
 

In the source divergence free case          this means: 
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           〈 ,    〉 
 

 〈 ,    〉                  
 

Due to the fact that there are other charges present, the divergence of the scalar potential need 

be in the direction of the current  (q), which for a spherical symmetric blur is also in the direc-
tion of the vector potential ϕ(q). However, a tendency exists to minimize that difference. 

Thus          is parallel to     .  With other words: 

 

                                                           
104 http://en.wikipedia.org/wiki/Gauge_fixing 
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Reckoning the sign selections for the sign ± of the conjugation and the handedness ± of the 

cross product will provide four different sets of equations. This will provide four different Hilbert 

fields.  

10.2 Discrete distribution 

If  (q) is discrete, such that  

 

      ∑              
 

where   
  is a point charge at location q′, then the contribution to the field E(q) that is generated 

by a point charge at location qi is given by: 
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10.3 Differential potential equations 

The gradient and curl of ϕ(q) are related. In configuration space holds: 

 

               〈 ,    〉                 (       ) 
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When the field      is split into a private field       and a background field      , then 

      corresponds to the private field of the uniform moving item. When this item accelerates, 

then it goes together with an extra term        . This is the reason of existence of inertia105. 

 

〈 ,    〉                    
 

        ; Rotation free field 

 

〈 ,    〉    ; Divergence free B field  

 

                                                           
105 Influence; Inertia 
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        〈 ,    〉          〈 ,    〉         
      

 

                        
      

 

                
      

 

Since       is supposed to be parallel to       , it is sensible to define     as the total field 

in longitudinal direction: 

 

                                
 

And 

 

          
 

With this definition: 
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10.3.1 In Fourier space 

In Fourier space holds: 
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〈 ,  ̃   〉       ̃        ̃     
 

   ̃     ; Rotation free field 

 

〈 ,  ̃   〉    ; Divergence free B field  
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If the distribution  (q) is differentiable, then the same equations that hold for fields ϕ(q) and 

 ̃    hold for the non-blurred distributions  (q) and  ̃   . 

10.4 Maxwell equations 

First it must be noted that the above derived field equations hold for general quaternionic 

fields. 

The resemblance with physical fields holds for electromagnetic fields as well as for gravita-

tional fields and for any fields whose blurring function approximates  

 

      
 

| |
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In Maxwell equations, E(r) is defined as: 
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Further: 
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In Maxwell equations, B(r) is defined as: 
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Further: 
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10.4.1 Differentiable distribution 

If the distribution  (q) is differentiable, then the same equations that hold for fields ϕ(q) and 

 ̃    hold for the non-blurred distributions  (q) and  ̃   . 
Using: 
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And correspondingly in Fourier space 
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11 Conservation laws 

11.1 Flux vector 

The longitudinal direction k of      and the direction i of      fix two mutual perpendicular 

directions. This generates curiosity to the significance of the direction    . With other words 

what happens with          .   
 

The flux vector       is defined as: 
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11.2 Conservation of energy 
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The field energy density is defined as: 

 

            〈    ,     〉  〈    ,     〉               

 

     can be interpreted as the field energy current density. 

The continuity equation for field energy density is given by: 

 

            〈 ,    〉    〈    ,     〉         〈    ,     〉 

 

This means that 〈    ,     〉 can be interpreted as a source term. 

          represents force per unit volume. 

     〈    ,     〉 represents work per unit volume, or, in other words, the power density. It 

is known as the Lorentz power density and is equivalent to the time rate of change of the mechan-

ical energy density of the charged particles that form the current     . 
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Total change within V = flow into V + production inside V 
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Here the source s0 is zero. 
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11.3 How to interprete Umechanical 

            is the energy of the private field (wave function) of the involved particle(s). 

11.4 Conservation of linear momentum 

     can also be interpreted as the field linear momentum density. The time rate change of 

the field linear momentum density is: 
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     is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V surrounded by surface S is: 
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 ∫  〈  ,  〉    ∮〈 ̂,   〉  
 

 

 

 

                           
 

Physically,      is the Lorentz force density. It equals the time rate change of the mechanical 

linear momentum density            . 
 

                           
 

The force acted upon a single particle that is contained in a volume V is: 
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Brought together this gives: 

 

  (                        )    〈 ,     〉 

 

This is the continuity equation for linear momentum. 

The component     is the linear momentum in the i-th direction that passes a surface element in 

the j-th direction per unit time, per unit area. 

 

Total change within V = flow into V + production inside V 
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Here the source sg = 0. 

11.5 Conservation of angular momentum 

11.5.1 Field angular momentum 

The angular momentum relates to the linear momentum. 

 

                  
 

                            

 

                                     
 

              (q) 

 

This enables the balance equation for angular momentum: 
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Total change within V = flow into V + production inside V 
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Here the source sh = 0. 

 

For a localized charge density contained within a volume V holds for the mechanical torsion: 
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Using 
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11.5.2 Spin 

Define the non-local spin term, which does not depend on qʹ as: 

 

       ∫           

 

 

 

Notice 
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And 
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Using Gauss: 
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And 
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Leads to: 
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11.5.3 Spin discussion 

The spin term is defined by: 
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In free space the charge density  0 vanishes and the scalar potential ϕ0 shows no variance. 
Only the vector potential ϕ may vary with q0. Thus: 

 
               

 

       ∫               

 

 

 

Depending on the selected field Σfield has two versions that differ in their sign. These ver-
sions can be combined in a single operator: 
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If 
    

|    |
 can be interpreted as tantrix      ) and 

      

|      |
 can be interpreted as the principle 

normal      , then 
             

|             |
 can be interpreted as the binormal      .  

From these quantities the curvature and the torsion106 can be derived. 
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12 The universe of items 

All particles have properties. Some of these properties expose as sources of corresponding 

fields. Via superposition these fields interact. Long range fields such as the gravitation field have 

universe wide effects. 

12.1 Inertia 

The influence of items in universe may decrease with distance according to some function      
of the distance  107. However the number of contributing items increases with the distance. De-

pending on function      the most probable result is that the strongest influence comes from the 

cooperative activity of the most distant items. Due to the enormous number of items in the uni-

verse, any variation of the influences of the distant items averages away. This also holds for the 

density distribution of the items. So there exists a fairly uniform background influence caused by 

the universe of items. What will happen, can be deduced from an equivalent of Denis Sciama’s 

analysis108109110. We will take his analysis as a guide. Sciama’s analysis uses a different setting: the 

(observed) 3D space and coordinate time and Sciama applies Maxwell field theory. We use the 

coordinate space defined by an appropriate coordinate operator that resides in the Gelfand triple of 

the separable Hilbert space and the progression parameter   that relates to the progression step 

counter as our setting. A location in this coordinate space represents a location on the unit sphere 

of Gelfand triple. This last location is taken by the eigenvector that corresponds to the first loca-

tion.  

As stated before, the unit sphere of Gelfand triple is an affine space. This means that we must 

treat position as relative data. With other words, the eigenspace of the coordinate operator has no 

absolute origin. Instead of Sciama’s usage of Maxwell fields we will use quaternionic field theory 

that is applied to quaternionic probability amplitude distributions (QPAD’s). 

 

We may specify a QPAD for usage in a continuity equation. In that case we specify in fact the 

combination of a charge density distribution and a current density distribution. As long as the 

charges and the currents stay static, the QPAD is a static object. 

In the continuity equation we consider the influence of the QPAD on the whole universe. Here 

we consider the influence of the universe on a local charge or current. For this purpose we can use 

similar QPAD’s and volume integrals! 

 

At large distances, the density   of the contributing items can be considered to be uniformly 

distributed. Also any variance in strength other than the dependence on   becomes negligible be-

cause the differences between functions {    } average away. We take the average of the strength 

of {    } as the significant parameter. We combine it with ρ. Therefore the average of ρ can be 

taken out of the integral. 

 

 

                                                           
107 http://en.wikipedia.org/wiki/Bertrand's_theorem and Role of the particle locator operator 
108 http://arxiv.org/abs/physics/0609026v4.pdf  
109 http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S 
110http://rmp.aps.org/abstract/RMP/v36/i1/p463_1   

http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://en.wikipedia.org/wiki/Bertrand's_theorem
http://arxiv.org/abs/physics/0609026v4.pdf
http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
http://rmp.aps.org/abstract/RMP/v36/i1/p463_1
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The total potential   at the location of the influenced subject is111 

 

    ∫
 

 
  

 

    ∫
  

  
        

 

What we have here is the reverse of the definition of the potential that goes together with a 

charge distribution.  

The integral is taken over the coordinate space volume  . Indirectly, the integral is taken over 

the unit sphere of the Gelfand triple. This is an affine space. The parameter   is the length of the 

vector from the actor to the location of the subject. The considered subject is located somewhere 

in the affine coordinate space. All other subjects have positions relative to that considered subject. 

Thus, apart from its dependence on the average value of ρ, Φ is a huge constant. Sciama relates Φ 

to the gravitational constant  . 

 

    
 

 ⁄  

 

As a consequence we can consider the universe as a very large rigid body. If nothing else hap-

pens then all influences compensate each other. 

 

In contrast to Sciama, we use imaginary quaternions rather than 3D vectors. This also avoids 

the distracting factor i. 

 

If the considered subject moves relative to the universe with a uniform speed v, then a vector 

potential A is generated. 

 

  =  ∫
   

   
  

 

 

 

Both ρ and v are independent of r. The product     represents a current. Together with the con-

stant c they can be taken out of the integral. Thus 

 

A = Φ·v/c 

 

The notions of charge and current correspond to equivalent notions in Noether’s theo-
rem112. Here we talk about inertia. Thus charge may symbolize mass. Or even better; it sym-
bolizes the coupling factor that plays the role of mass. 

 

The progression parameter t plays the role of “time”. Be aware, in our setting it is the progres-

sion parameter, which is not the usual notion of time. 

 

According to the Helmholtz theorem the field that is derived from the above potential can be 

split into a divergence free part and a rotation free part. The Helmholtz decomposition theorem 

                                                           
111 http://en.wikipedia.org/wiki/Newtonian_potential 
112 http://en.wikipedia.org/wiki/Noether%27s_theorem  
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http://en.wikipedia.org/wiki/Noether%27s_theorem
http://en.wikipedia.org/wiki/Newtonian_potential
http://en.wikipedia.org/wiki/Noether%27s_theorem


 

 

only concerns the static versions of the derived field. It is related to the fact that the Fourier trans-

form of a vector field can be split in a longitudinal and a transversal version. A corresponding 

split of the multi-dimensional Dirac delta function in a longitudinal and a transversal version ex-

ists as well. 

 

According to Maxwell field theory as well as according to quaternionic field theory, a variation 

of   goes together with a variation of A. On its turn this goes together with a non-zero field 

 ̇  ,    which is a dynamical part of the QPAD. Thus, with varying   the QPAD is no longer stat-

ic.113 

 

Sciama uses a Maxwell equation to explain the relation between ∂v/∂t and  ̇  ,   . Our setting 

differs, but the quaternionic field theory delivers the same results. 
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   ̃  ,     

 

If we exclude the first term because it is negligible small, we get: 

 

   ,      
 

  
 
  

 t
   

  

 t
 

 

Remark: As soon as we turn to the dynamic version (4) an extra component  ̇ of field E ap-

pears that corresponds to acceleration ∂v/∂t.114  

 

As already claimed, in our setting the component    of the field E is negligible. With respect 

to this component the items compensate each other’s influence. This means that if the influenced 

subject moves with uniform speed v, then E ≈ 0. However, a vector potential A is present due to 

the movement of the considered item. Like   and   ,   and   together form a QPAD. Any ac-

celeration of the considered item goes together with an extra non-zero E field. In this way the 

universe of items causes inertia in the form of a force that acts upon the accelerating item’s 

charge. The item is the carrier of the charge  . 
 

The situation in curved space differs. When the path of the item coincides with a geodesic, 

then it can be travelled free of extra generated fields. Thus, a uniform movement along the geo-

desic does not on itself generate a reaction of the universe of items. Any alteration of that uniform 

movement will go together with the existence of an extra field. The physical name for this reac-

tion is action. It usually gets the symbol S.  

 

On the other hand, as we see from inertia, any field change goes together with a corresponding 

acceleration. Uniform movements do cause displacement of charges. In a curved environment it 

                                                           
113 See Differentiation  
114 See http://www.plasma.uu.se/CED/Book; formula 3.25 or Appendix; Maxwell equations 
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changes the configuration of the QPAD. Thus, in that case, even an originally static QPAD may 

be affected.  

 

We may reverse the conclusion of the analysis:  

An extra field component goes together with an acceleration of the local item. 

The acceleration can be seen as the consequence of a local curvature and vice versa. Thus, the 

extra field goes together with a local curvature. 

 

It must be noticed that the original analysis of Sciama uses observable position space rather 

coordinate space and it uses a different notion of time. However, the general conclusion stays the 

same. Sciama’s analysis is criticized because it uses infinite speed of information transfer. Since 

we do not work in observable position space, we do not encounter coordinate time. So for the set-

ting of our analysis, this criticism is misplaced. Most part of the story plays in a stationary QPAD 

condition. As long as the movement stays uniform, the QPAD is static. Any acceleration deviates 

from this stationary condition. This deviation goes together with an extra field component and it 

goes together with a local curvature. 

 

Coordinate time115 relates to observations of position. It is a local player in the game, where the 

progression parameter is a global player. 

 

The situation with electromagnetic fields is different, because with this field positive and nega-

tive charges compensate each other’s long range influence. For that reason there exists no elec-

tromagnetic background influence. The masses of the gravitational and inertial fields only com-

pensate each other’s long range influences through geometrical circumstances. Still in 

combination, they create gigantic potentials. 

 

The particles outside the information horizons also contribute to the inertia. 

 

Thus when through uniform movement the local field configuration changes, then that change 

goes together with an acceleration of the local item. 

12.2 Nearby items 

Items that are located nearby have a different effect. In general their influence will not have its 

strength equal to the average strength. Further these items are not uniformly distributed. Still at 

macroscopic distances their influence depends on inter-distance as         . As a consequence 

their influences form a landscape of which the effects will become sensible in the action of the 

fields that surround the considered item. For observers, this landscape will form a curved action 

space. The considered item will try to follow a geodesic through that curved space. 

12.3 Rotational inertia 

Besides linear inertia there exists rotational inertia. In a non-rotating universe hold near the 

origin A = 0 and Φ = -c
2
/G. We choose units such that c=G=1. In a universe rotating slowly with 

angular speed ω hold 

                                                           
115 Dynamics; Relativity 



 

 

 

Ax = ω·y 

 

Ay =  ω·x 

 

Az = 0 

 

    √          
 

A constant angular movement meets the fields that correspond to a centripetal force. 

 

The field E has the form 

 

    
   

√       
 

 

An added uniform speed v meets the fields corresponding to a Coriolis force.  

 

            

 

          

 

The forces are usually considered as fictitious but they are actually caused by inertia. Sciama 

treats them in section 5 of his paper. Like fields of linear inertia these rotation related fields corre-

spond to actions of the manipulator. 

12.4 Computation of the background QPAD 

The same line of thinking that lead to the formula for the local potential in section 12.1-(1) can 

be applied to the computation of the QPAD that represents the local background field.  

 

The ensemble {     ,    } is distributed randomly over the center points {  } in an affine pa-

rameter space. At a given point P in this space the superposition of all {     ,   } will be con-

structed. 

This superposition will be renormalized and then indicated by Φ  ,   . 
Thus,  

 

∫|Φ  ,   |      
 

 

 

In this superposition the largest contribution comes from the     ,     for which the    is far-

thest from P. Further the directions of the imaginary part of Φ  ,   .are reversed with respect to 

the directions in the     ,    . 
Especially at long distances, all differences are smoothed away via an averaging process. 

 

The result is that for the average QPAD    ,   : 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 
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Φ  ,    =     ,    
 

We will interpret Φ  ,    as the background QPAD. 

Since we are talking about quaternionic distributions it is possible that every sign flavor has its 

own background QPAD. 

 

13 Path characteristics 

The Frenet-Serret frame is devised for describing curved paths of particles  

 

Let {αqt}t = α(q,t) describe a curved path consisting of infinitesimal steps through a landscape 

{αq}q = α(q) of imaginary quaternions αqt, such that  || ̇      ||      for all t.  

 

The 3D Frenet-Serret frame for the above path is given by: 

 

 (    )    
  (    )

  
       ̇    

 

       || ̇   || 
 

             ̇    
 

                   
 

||    ||    ||    ||    ||    ||      
 

      is the tantrix of curve α(q(t)) at instance t. 

     is the principal normal of curve α(q(t)) at instance t. It is only defined when κ(t) ≠ 0. 

     is the binormal of curve α(q(t)) at instance t. 

    ,       and       are imaginary quaternions. 

κ(t)  is the curvature of curve at α(q(t)) at instance t. 

r(t) = 1/ κ(t)  is the radius of curvature at instance t. 

τ(t) is the torsion of curve α(q(t)) at instance t.  

 

[

 ̇   

 ̇   

 ̇   

]   [

   t  
   t    t 

    t  
] [

    
    

    
] 

 
The Frenet-Serret curves have particular characteristics. The path may be curved and curled. 

The path is completely determined by its tantrix, curvature and torsion given by functions of t. 

Each coordinate of the quaternionic function α(q(t)) has its own set of characteristics. This means 

that for a given quaternionic function these characteristics are quaternions rather than real num-

bers and they are all functions of parameter t. 

(2) 

(1

) 

(2

) 

(3

) 

(4

) 

(5

) 

(6

) 



 

 

13.1 Path equations  

The path equations are given by 

 

 ̇      t       
 

 ̇       t         t          t         t            
 

 ̇       t             ̇     ̇         
 

   t            

13.2 Curve length 

The curve length    ,    is defined by: 

 

   ,     ∫ | ̇      |
   

   

   

 

The integration over the square of the modulus delivers the action S of the curve. 

 

   ,     ∫ | ̇      | 
   

   

   

13.3 Reparameterization 

The path characteristics κ(t) and τ(t) together with the curve length and the curve action are in-

dependent of any reparameterization      of the progression parameter t. 

A natural reparameterization is given by          ,   . 

This turns the curve     t   into a natural curve  (  s ): 

 

 (  s )      t   

 

Curves on a surface which minimize length between the endpoints are called geodesics. 

The natural curve corresponds to a geodesic116. 

The consequence is that in three-dimensional space the corresponding movement obeys the ge-

odesic equation117. The Lagrangian is an equivalent of this equation.  

  

                                                           
116 http://en.wikipedia.org/wiki/Geodesic 
117 Equations of motion; Lagrangian 
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14 Metric tensor field 

The metric tensor is an example of a tensor field. This means that relative to a locally non-

affected coordinate system118 on the manifold, a metric tensor takes on the form of a symmetric 

matrix whose entries transform covariantly under changes to the coordinate system. Thus a metric 

tensor is a covariant symmetric tensor119. From the coordinate-independent point of view, a metric 

tensor is defined to be a non-degenerate symmetric bilinear form120 on each tangent space that var-

ies smoothly from point to point. 

14.1 Curved path 

In a Riemannian manifold121 M with metric tensor122  , the length of a continuously differenti-

able curve  : [ ,  ]    is defined by 

 

     ∫ √     ( ̇   , ̇   )   
 

 

 

The distance    ,    between two points   and   of   is defined as the infimum123 of the 

length taken over all continuous, piecewise continuously differentiable curves  : [ ,  ]    such 

that        and       . With this definition of distance, geodesics in a Riemannian manifold 

are then the locally distance-minimizing paths, in the above sense. 

The minimizing curves of L in a small enough open set124 of M can be obtained by techniques 

of calculus of variations125. Typically, one introduces the following action126 or energy function-

al127 

 

      ∫      ( ̇   , ̇   )   
 

 

 

 

It is then enough to minimize the functional E, owing to the Cauchy–Schwarz inequality128 

 

                  
 

with equality if and only if |     | is constant. 

                                                           
118 http://en.wikipedia.org/wiki/Local_coordinate_system  
119 http://en.wikipedia.org/wiki/Symmetric_tensor  
120 http://en.wikipedia.org/wiki/Symmetric_bilinear_form  
121 http://en.wikipedia.org/wiki/Riemannian_manifold  
122 http://en.wikipedia.org/wiki/Metric_tensor  
123 http://en.wikipedia.org/wiki/Infimum  
124 http://en.wikipedia.org/wiki/Open_set  
125 http://en.wikipedia.org/wiki/Calculus_of_variations  
126 http://en.wikipedia.org/wiki/Action_(physics)  
127 http://en.wikipedia.org/wiki/Energy_functional  
128 http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality  
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The Euler–Lagrange129 equations of motion for the functional   are then given in local coordi-

nates by 

 

    

   
      

  
   

  
 
   

  
   

 

where    
 are the Christoffel symbols130 of the metric. This is the geodesic equation. 

14.2 Calculus of variations 

Techniques of the classical calculus of variations131 can be applied to examine the energy func-

tional E. The first variation132 of energy is defined in local coordinates by 

 

         
 

  
|
   
         

 

The critical points133 of the first variation are precisely the geodesics. The second variation is 

defined by 

 

        ,    
  

   
|
   

            

 

In an appropriate sense, zeros of the second variation along a geodesic γ arise along Jacobi 

fields134. Jacobi fields are thus regarded as variations through geodesics. 

By applying variational techniques from classical mechanics135, one can also regard geodesics 

as Hamiltonian flows136. They are solutions of the associated Hamilton–Jacobi equations137, with 

(pseudo-)Riemannian metric taken as Hamiltonian138. 

14.3 Affine geometry 

A geodesic on a smooth manifold M with an affine connection139   is defined as a curve      
such that parallel transport140 along the curve preserves the tangent vector to the curve, so 

 

                                                           
129 Appendix; Derivation of the one dimensional Euler Langrange equation  
130 Equations of motion; Path through field; Christoffel symbols 
131 http://en.wikipedia.org/wiki/Calculus_of_variations  
132 http://en.wikipedia.org/wiki/First_variation  
133 http://en.wikipedia.org/wiki/Critical_point_(mathematics)  
134 http://en.wikipedia.org/wiki/Jacobi_field  
135 http://en.wikipedia.org/wiki/Classical_mechanics  
136 http://en.wikipedia.org/wiki/Geodesics_as_Hamiltonian_flows  
137 http://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation  
138 http://en.wikipedia.org/wiki/Hamiltonian_mechanics  
139 http://en.wikipedia.org/wiki/Affine_connection  
140 http://en.wikipedia.org/wiki/Parallel_transport  
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  ̇ ̇      

 

at each point along the curve, where  ̇ is the derivative with respect to t. More precisely, in or-

der to define the covariant derivative of  ̇ it is necessary first to extend  ̇ to a continuously differ-

entiable imaginary Hilbert field in an open set141. However, the resulting value of the equation is 

independent of the choice of extension. 

Using local coordinates142 on M, we can write the geodesic equation (using the summation 

convention143) as 

 

    

   
      

  
   

  
 
   

  
   

 

where x
μ
(t) are the coordinates of the curve      and    

  are the Christoffel symbols144 of the 

connection  . This is just an ordinary differential equation for the coordinates. It has a unique so-

lution, given an initial position and an initial velocity.  

From the point of view of classical mechanics, geodesics can be thought of as trajectories of 

free particles in a manifold. Indeed, the equation   ̇ ̇      means that the acceleration of the 

curve has no components in the direction of the surface (and therefore it is perpendicular to the 

tangent plane of the surface at each point of the curve). So, the motion is completely determined 

by the bending of the surface. This is also the idea of the general relativity where particles move 

on geodesics and the bending is caused by the gravity. 

14.4 Christoffel symbols 

If x
i
, i = 1,2,...,n, is a local coordinate system on a manifold M, then the tangent vectors 

 

     
 

   
,      ,  ,  ,   

 

define a basis of the tangent space of M at each point. The Christoffel symbols    
  are defined 

as the unique coefficients such that the equation 

 

           
     

 

holds, where    is the Levi-Civita connection145 on M taken in the coordinate direction   . 

The Christoffel symbols can be derived from the vanishing of the covariant derivative of the 

metric tensor gik: 
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By permuting the indices, and re-summing, one can solve explicitly for the Christoffel symbols 

as a function of the metric tensor: 

 

   
 
          

    

   
   
    

   
   
    
   
   

 

where the matrix (   ) is an inverse of the matrix (   ), defined as (using the Kronecker 

delta, and Einstein notation for summation)  

 

          
  

 

Although the Christoffel symbols are written in the same notation as tensors with index nota-

tion, they are not tensors, since they do not transform like tensors under a change of coordinates. 

Under a change of variable from (x
1
, …., x

n
) to (y

1
, …., y

n
), vectors transform as 

 

 

   
   
   

   
 
 

   
 

 

and so 

 

   
   
   

   
 
   

   
    
  
   

   
 
   

   
 
    

      
 

 

where the underline denotes the Christoffel symbols in the y coordinate frame. Note that the 

Christoffel symbol does not transform as a tensor, but rather as an object in the jet bundle. 

At each point, there exist coordinate systems in which the Christoffel symbols vanish at the 

point. These are called (geodesic) normal coordinates, and are often used in Riemannian geome-

try. 

The Christoffel symbols are most typically defined in a coordinate basis, which is the conven-

tion followed here. However, the Christoffel symbols can also be defined in an arbitrary basis of 

tangent vectors    by 

 

           
     

14.5 Local metric equation 

The local metric equation relates the local value of the metric tensor field to the influence of 

the properties of the local particles on the local curvature.  

 

In order to do this it requires a non-affected coordinate system and a way to qualify the influ-

ence that the local value of the particle properties have on the resulting curved coordinate system.  

 

(4) 
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For example the Kerr Newman metric equation uses the per category summed property values 

of the local coupling factors, the electric charges of the local particles and the angular momenta of 

the local particles in order to relate these to the local curvature146.  

14.5.1 Kerr-Newman metric equation 

The Kerr–Newman metric equation describes the geometry of spacetime in the vicinity of a ro-

tating mass M with charge Q. The formula for this metric depends upon what coordinates or coor-

dinate conditions are selected.  

 

It uses three local properties. These properties are: 

 

 The coupling factor   

 The electric charge   

 The angular momentum   
 

The angular momentum   includes the spin  . 
 

In most cases, the simplest interpretation of the Kerr-Newman metric can be taken on the sur-

face of a sphere that has a selected radius  . This metric uses the sum of a category of properties 

that are collected within the observed sphere. However, the summation produces different centers 

of activity for different property categories. Thus, these centers need not be at the same location. 

However, for large enough selected radius   and applied to black holes or single particles, these 

centers coincide. 

The formula uses three characteristic radii, whose prominence usually differs with the content 

of the investigated sphere. 

 

The metric uses a non-curved coordinate system to start with. Several coordinate systems can 

be used. The most common coordinate systems for a non-curved three dimensional space are: 

 

 Cartesian coordinates 

 Spherical coordinates 
 

Alternatives for spherical coordinates are: 

 

 Schwarzschild coordinates147 

 Kruskal-Szekeres coordinates148 

 Lemaitre coordinates149 

 Eddington–Finkelstein coordinates150 

                                                           
146 See next part. 
147 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
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149 http://en.wikipedia.org/wiki/Lemaitre_coordinates  
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The advantage of the alternative coordinates is that they avoid unnecessary singularities.  
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14.5.1.1 Spherical coordinates 
The line element d  in spherical coordinates is given by: 

 

        (
   

 
    )                        

 

  
 

 

 (                 )
 
 
        

  
 

 

where the coordinates r,   and ϕ are the parameters of the standard spherical coordinate sys-

tem. The length-scales α,   and   have been introduced for brevity. 

 

  
 

   
 

 

                  
 

            
    

  

 

   is the Schwarzschild radius151 (in meters) of the massive body, which is related to its mass   

by 

 

   
   

  
 

 

where   is the gravitational constant152. In case of a single encapsulated elementary particle,   

stands for the coupling constant m. 

 

Compare this with the Planck length, l   √    c
  

The Schwarzschild radius is radius of a spherical geo-cavity with mass  . The escape speed 

from the surface of this geo-cavity equals the speed of light. Once a stellar remnant collapses 

within this radius, light cannot escape and the object is no longer visible. It is a characteristic ra-

dius associated with every quantity of mass. 

 

r  is a length-scale corresponding to the electric charge Q of the mass 

 

  
  
   

     
 
 

 

where 
 

    
 is Coulomb's force constant153. 
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Next for simplicity we use the dimension adapted parameter m. 

The radius where the ergo region154 of a black hole starts can be specified by: 

 

        √       
               

 

And the radius of the horizon by 

 

        √       
        

 

where  

 

        
 

is the dimensionless spin parameter, q is the electric charge and m is the mass of the particle 

that is set by the coupling factors155. 

Between these radii lays the ergo-region. That is the place where for any item it is impossible 

to stand still. This is the result of a process known as frame-dragging; general relativity predicts 

that any rotating mass will tend to slightly "drag" along the spacetime immediately surrounding it. 

Any object near the rotating mass will tend to start moving in the direction of rotation.  

The region where the considered item can be considered as a black hole is defined by: 

 

     
      

 

Protons already fall within the region of potential black holes. 

14.5.1.2 Kerr-Newman limit 
The lowest mass 𝔐 where a horizon exists is set by 

 

𝔐 ≡   √  
           

 

Where   is the elementary spin s. 

14.5.1.3 Cartesian coordinates 
The Kerr Newman metric can be expressed in "Kerr Schild" form, using a particular set 

of Cartesian coordinates  
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155 .Misner, C. W., Thorne, K. S. and Wheeler, J. A., Gravitation, W. H. Freeman and Co., 

1973. (Box 33.2) 

(7) 

8) 

9) 

http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Black_hole#Ergosphere


 

159 

 

                

 

  
    

        
[        ] 

 

   
       

     
 

 

   
       

     
 

 
     

 
Notice that   is a unit vector. Here   is the constant mass of the spinning object,   is the con-

stant charge of the spinning object,   is the Minkowski tensor, and   is a constant rotational pa-

rameter of the spinning object. It is understood that the vector   is directed along the positive z-

axis. The quantity   is not the radius, but rather is implicitly defined like this: 

 

  
     

     
 
  

  
 

 

Notice that the quantity r becomes the usual radius   √         when the rotational 

parameter   approaches zero. In this form of solution, units are selected so that the speed of light 

is unity      .  
 

In order to provide a complete solution of the Einstein–Maxwell Equations, the Kerr–Newman 

solution not only includes a formula for the metric tensor, but also a formula for the electromag-

netic potential:  

 

   
    

        
   

 

At large distances from the source (R>>a), these equations reduce to the Reissner-Nordstrom 

metric156 with: 

 

   (  ,   ,   ,   ) 

 

The static electric and magnetic fields are derived from the vector potential and the scalar po-

tential like this: 
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14.5.2 Schwarzschild metric 

14.5.2.1 Schwarzschild coordinates 
Specifying a metric tensor157 is part of the definition of any Lorentzian manifold158. The sim-

plest way to define this tensor is to define it in compatible local coordinate charts and verify that 

the same tensor is defined on the overlaps of the domains of the charts. In this article, we will only 

attempt to define the metric tensor in the domain of a single chart. 

In a Schwarzschild chart159 (on a static spherically symmetric spacetime), the line element ds 
takes the form 

 

ds   (f r )
 
dt  (g r )

 
dr  r  d   sin    dϕ   

 

   t   ,  r  r  r ,      ,   ϕ    

 

In the Schwarzschild chart, the surfaces     ,      appear as round spheres (when we plot 

loci in polar spherical fashion), and from the form of the line element, we see that the metric re-

stricted to any of these surfaces is 

 

d  r 
  d   sin    dϕ  ,      ,   ϕ    

 

That is, these nested coordinate spheres do in fact represent geometric spheres with 

surface area 

 

      
  

 

And Gaussian curvature 

      
  

 

That is, they are geometric round spheres. Moreover, the angular coordinates  ,  are exactly 

the usual polar spherical angular coordinates:   is sometimes called the colatitude and   is usual-
ly called the longitude. This is essentially the defining geometric feature of the Schwarzschild 

chart. 

 

With respect to the Schwarzschild chart, the Lie algebra of Killing vector fields is generated by 

the time-like irrotational Killing vector field    and three space-like Killing vector fields 

  , sin      cot   cos      , cos       cot   sin       

Here, saying that    is irrotational means that the vorticity tensor of the corresponding time-

like congruence vanishes; thus, this Killing vector field is hyper-surface orthogonal. The fact that 

our spacetime admits an irrotational time-like Killing vector field is in fact the defining character-

istic of a static spacetime. One immediate consequence is that the constant time coordinate surfac-

es        form a family of (isometric) spatial hyper-slices. (This is not true for example in the 
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Boyer-Lindquist chart for the exterior region of the Kerr vacuum, where the time-like coordinate 

vector is not hyper-surface orthogonal.) 

 

It may help to add that the four Killing fields given above, considered as abstract vector fields 
on our Lorentzian manifold, give the truest expression of both the symmetries of a static 
spherically symmetric spacetime, while the particular trigonometric form which they take in 
our chart is the truest expression of the meaning of the term Schwarzschild chart. In particu-
lar, the three spatial Killing vector fields have exactly the same form as the three non-
translational Killing vector fields in a spherically symmetric chart on E3; that is, they exhibit 
the notion of arbitrary Euclidean rotation about the origin or spherical symmetry. 

However, note well: in general, the Schwarzschild radial coordinate does not accurately 
represent radial distances, i.e. distances taken along the space-like geodesic congruence 
which arise as the integral curves of   . Rather, to find a suitable notion of 'spatial distance' 
between two of our nested spheres, we should integrate        along some coordinate ray 
from the origin: 

 

   ∫       
  

  

 

 
Similarly, we can regard each sphere as the locus of a spherical cloud of idealized observ-

ers, who must (in general) use rocket engines to accelerate radially outward in order to 
maintain their position. These are static observers, and they have world lines of form 
      ,       ,       , which of course have the form of vertical coordinate lines in the 
Schwarzschild chart. 

In order to compute the proper time interval between two events on the world line of one 
of these observers, we must integrate        along the appropriate coordinate line: 

 

   ∫ f r dt
  

  

 

14.5.2.2 Schwarzschild metric 
In Schwarzschild coordinates160, the Schwarzschild metric has the form: 
 

c  d   (  
r 
r
) c  dt  (  

r 
r
)
  

dr  r  d   sin    dϕ   

 
where: 
   is the proper time (time measured by a clock moving with the particle) in seconds, 
   is the speed of light in meters per second, 
   is the time coordinate (measured by a stationary clock at infinity) in seconds, 
   is the radial coordinate (circumference of a circle centered on the star divided by 
    in meters, 

   is the colatitude (angle from North) in radians, 
                                                           

160 http://en.wikipedia.org/wiki/Schwarzschild_coordinates  
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   is the longitude in radians, and 
    is the Schwarzschild radius (in meters) of the massive body. 

14.5.2.3 Lemaître coordinates 
In Schwarzschild coordinates the Schwarzschild metric has a singularity. Georges Lemaî-

tre was the first to show that this is not a real physical singularity but simply a manifestation 
of the fact that the static Schwarzschild coordinates cannot be realized with material bodies 
inside the gravitational radius161. Indeed inside the gravitational radius everything falls to-
wards the center and it is impossible for a physical body to keep a constant radius. 

A transformation of the Schwarzschild coordinate system from { ,  } to the new coordi-
nates { ,  }, 

 

      
√    

(  
  
 
)
    

 

      
√    

(  
  
 
)
    

 
leads to the Lemaître coordinate expression of the metric, 
 

        
  
 
           sin         

 
Where 
 

    
 [
       

 
]

 

 

 
In Lemaître coordinates there is no singularity at the gravitational radius, which instead 

corresponds to the point 
       

 
   . However, there remains a genuine gravitational singu-

larity at the centrum, where      , which cannot be removed by a coordinate change. 
The Lemaître coordinate system is synchronous, that is, the global time coordinate of the 

metric defines the proper time of co-moving observers. The radially falling bodies reach the 
gravitational radius and the center within finite proper time. 

Along the trajectory of a radial light ray, 
 

   (   √    )    

 
therefore no signal can escape from inside the Schwarzschild radius, where always 
       and the light rays emitted radially inwards and outwards both end up at the origin. 
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15 The action along the live path 

The integrated action Sab is performed over a distance along the action trail or equivalently 

over a period of coordination time 

 

        ∫    
    

 

 

              

 

    ∫      √    (
 

 
)
 

                
  

  

 

 

  ∫     
  

  

 

 

m is the mass of the considered item.  

v is the speed in Q space.  

  is the Lagrangian. 

 

The first line of this formula can be considered as an integral along the trail in coordinate space 

or equivalently over the trail in Hilbert space. The next lines concern integrals over the corre-

sponding path in observed space combined with coordinate time. It must be noticed that these 

spaces have different signature. 

 

          
  

  
 + matter terms 

 

In general relativity, the first term generalizes (includes) both the classical kinetic energy and 

interaction with the Newtonian gravitational potential. It becomes: 

 

     
  

  
      √      ̇    ̇  

 

    is the rank 2 symmetric metric tensor which is also the gravitational potential. Notice that 

a factor of c has been absorbed into the square root. 

The matter terms in the Lagrangian   differ from those in the integrated action Sab. 

 

               ∫        
 

 

 

 other matter terms 

 

The matter term in the Lagrangian due to the presence of an electromagnetic field is given by: 

 

          
  

  
     ̇     + other matter terms 

 

   is the electromagnetic 4-vector potential.  

(1) 

(2) 

(3) 

(4) 

(5) 



 

 

15.1 Noether’s theorem 

When the Lagrangian does not vary with one or more of its parameters, then this corresponds with 

a corresponding symmetry of the system. By Noether's theorem162, such symmetries of the sys-

tem correspond to conservation laws163. In particular, the invariance of the Lagrangian with re-

spect to time τ implies the conservation of energy. 

By partial differentiation of the above Lagrangian, we find: 

     ,  ,  ̇ 

   
  
  

   
 F  

 
     ,  ,  ̇ 

  ̇ 
 m   ̇  p  

 

where the force is F = − U (the negative gradient of the potential, by definition of conservative 

force), and p is the momentum. By substituting these into the Euler–Lagrange equation, we obtain 

a system of second-order differential equations for the coordinates on the particle's trajectory, 

F  
d m ̇  

dt
 m    ̈  p ̇  

which is Newton's second law. 
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16 Quaternionic metric 

For the metric holds 

 

         
                      

 

In quaternionic format this corresponds to 

 

          
  

 

Where    and   are quaternions.    is a component of  . 

 

      
  〈 ,  〉 

 

Using polar coordinates this will run: 

 

               
 

                             
 

                             

 

                     
 

       d                  
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A Tall Quantum Tale 

 

I state you a proposition 

and that proposition indicates 

how the world works 

 

1 QUANTUM TALE 

1.1 Story 

1.1.1 Prelude  

 

 
 

A group of elderly Magi sit in a circle and discuss what happens around them. That is not 

much. The youngest of them gets bored and starts considering their discussion. The chat appears 

regulated, because if they start from a false proposition they will be able to draw any inference, 

whether true or not true, and then the conversation ends only in balderdash ad infinitum.  

 



 

 

After some time, he has collected the rules. These rules prevent the conversations from getting 

out of control. He proposes these rules to his companion discussers. They are very pleased. From 

this moment on, every conversation runs fluently. The inventor writes his finding in a book and 

calls that book "Logic".  

 

However, in their environment still little occurs that is worth a proper discussion. Since the 

talks no longer get out of control, most of the time passes in silence. The inventor feels bored 

again and therefore he tries to invent something else. He realizes that if he changes the rules in his 

book a little, then as a result, the discussions could be become much more interesting. He writes a 

new book that contains the changed rules. Next he changes the forest that exists in their neigh-

bourhood in order to reflect the discussion rules.  

 

After finishing this book and the forest, the situation has completely changed. Continuously, 

things appear in the forest around them that keep their conversations for ever alive. The writer 

calls the second book “Quantum Logic” and he renames his first book “Classical Logic”. The 

toolkit that he uses to create the new structure of the forest also has a name. It is called “Mathe-

matics”. 
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 M                       S  

 

1.1.2 The encounter 

An old, very experienced senior meets a young curious guy, which is full of questions about 

the things that he has observed during his trip through his world. The youngster asks the elder 

whether he can ask him a few of his most urging questions. The senior reacts positively by nick-

ing shortly. However, already the first question of the studious guy startles him: 

 

S: Mister, can you explain me how the world works? 

 

The elder thinks a while very deeply and comes then with his answer: 

 

M: That would be a hell of a job, but I can at least give it a try. Please, sit down on that stone, 

because this will take some time. 

 

The lad sits down and looks expectantly to his narrator. The old man takes a breath and starts: 

 

M: This can be done in the form of a tale. It could be done better in the form of a truck load of 

formulas, but I doubt that you would understand these formulas. Do you accept that I pack the sto-

ry in a tale? 

 

S: Well I like a tale much better than a truck load of formulas. I probably would not understand 

one of them. So please start with your tale. 

 

The elder takes a breath and starts his tale. 

 

 

 



 

 

M: The world is governed by a book of laws. It must conform to these laws. There is no pun-

ishment in not following the laws, but the world cannot do anything else then operate according to 

the rules that are written in the book of laws. 

 

S: Where is that book and how is it called? 

 

M: It is in the possession of the governor of Hilbert’s bush. The book’s name is “The rules of 

quantum logic”. 

 

S: What is in that book? 

 

M: The book contains a small set of rules that regulate what the relations are between proposi-

tions that can be made about things that live in our world. 

 

S: What things? 

 

M: Well, anything that has an identity and that stores the condition it is in. Let us call such a 

thing an item or a particle and let us use the name state for the condition it is in. Mostly the con-

cerned things are very small. However, these things can be very large. 

 

S: What is different with that logic? I know only one kind of logic. 

 

M: You know the kind of logic that humans base their reasoning on. They use the rules of log-

ic in their discussions when they start with truth and want to stay with truth. Nature uses a kind of 

logic that has a much richer structure. However, in that logic only one rule is different. 

 

S: How many rules contains the book and what do these rules mean? 

 

M: The book contains somewhat more than twenty rules and they specify the structure of the 

relations between the allowable propositions. 

 

S: There are not much rules in the book! How can that book rule the world? 

 

M: You are right about this, but these rules are very powerful. 

 

S: Please explain that. 

 

M: Well, the structure of the propositions is reflected in the structure of Hilbert’s bush. Hil-

bert’s bush is a huge and dense forest and is connected to our world. Via these connections Hil-

bert’s bush controls how the world works. 

 

S: Thus, if I visit Hilbert’s bush, then I can see how the world works? 

 

M: No, if you visit Hilbert’s bush, then you can see how the world is controlled.  

 

S: How, can I visit Hilbert’s bush? 
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M: Well, you can join me on a virtual trip to Hilbert’s bush. I will be your guide. 

 

S: Fine. How does Hilbert’s bush look? 

 

The man describes a very strange environment. The chap follows the old man in his mind and 

shows astonished. However, in advance his guide warned that he would present a tale. So, he 

must belief what the man tells. 

 

M: It is like a huge forest of poles. All poles have the same length and the feet of all poles are 

hooked at the same point in the centre of the bush. In this way the poles form an enormous sphere. 

 

S: Where do these poles stand for? 

 

M: The poles are the axes of a multidimensional cube that has an enormous dimension. First 

think of a three dimensional cube. Take a corner of it and take the three axes at that corner. You 

can identify the position of all points in the cube by three positions on rulers that are taken along 

the three axes.  

Now, as in an umbrella, fold these axes together, such that they form a small bundle. Next add 

a large amount of axes to that bundle. Give every axis a unique label in the form of one or more 

numbers. Add a ruler to each of these axes. You can still define the position of each point in the 

multidimensional cube by stating the corresponding positions on the rulers. Next increase the 

number of dimensions until it reaches infinity.  

The axes now form a dense ball and they all are numbered with a unique label. Finally unfold 

in your imagination the “umbrella” again until all axes are again perpendicular to each other. You 

can start counting the dimensions of the cube, but you will never finish counting. 

 

S: Thus the poles are a plain set of axes. 

 

M: Yes, but the space between the perpendicular axes can also be filled with poles. In this way 

several sets of mutually perpendicular axis poles can be found.  

 

S:What is the function of these axis poles? 

 

M: The axis poles have colours. Some axis poles are green poles. Together they form a base in 

which the position of all other poles can be expressed. Another set of axis poles are red. Also they 

form a base. Some of the poles are silver white. They are not necessarily axis poles. The silver 

white poles appear in bundles. 

 

S: That is a strange kind of forest! 

 

M: Indeed, but it is not the only thing that is strange about Hilbert’s bush. Let me tell more 

about the silver white poles. The bundles of white poles represent and at the same time control the 

items in our world. 



 

 

 
S: How is that arranged? 

 

M: The items in our world are reflections of the bundles of white poles in Hilbert bush. What 

happens to the bundles will happen to the items. 

 

The student tries to imagine the strange situation. Apparently two worlds exist. One in which 

he lives and one from where his live is controlled. He visualizes the forest in his brain. 

 

S: What is the function of the green and red poles? 

 

M: At their top these other poles contain a data store in the form of a label. The data stores of 

the green poles contain position data. They are a kind of kilometre indications that you find along 

our roads. Instead of a single number the stores contain all three coordinates. It works like a kind 

of primitive GPS system.  

 

S: With some trouble I can understand what you paint for me. 

 

M: The data stores of the red poles contain speed data, or better said momentum data. In this 

way a bundle of silver white poles can determine the current position and the momentum of the 

moves of its pupil in the real world. 

 

S: Why are there two types of data poles? 

 

M: The governor arranged it that way. In this way the bundle cannot determine both types of 

data at the same time. It is another detail of how the governor models our world. The stores of the 

poles contain the values of the properties of the type observation to which the pole belongs. Math-

ematicians call these values eigenvalues and the corresponding poles eigenvectors. With this trick 

the governor leaves us uncertain about our exact condition. 

 

S: What are mathematicians? 

 

M: Mathematicians are scientists that amongst other things study the mechanisms, which de-

termine the structure and behaviour of Hilbert’s forest. The creator of the forest used mathematics 

to give it its functionality. 

 

S: Can white poles read data? 

 

M: No, in fact a shepherd that takes care of the silver white bundle does that. The forest is very 

dense. So, the shepherd can walk on top of these poles and guard his herd of sheep. From now on, 

I will call the silver white poles the shepherd’s sheep. 
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S: How does the shepherd read the data? 

 

M: The shepherd must turn to the data pole in order to read its data. If he is close to a green 

pole, then he is rather far from a red pole. In fact he may be at nearly the same distance from a se-

ries of red poles. He will usually read the nearest data pole. The same holds when the shepherd 

looks at other colours. Thus, the governor plays a strange trick with our world. 

For the insiders: This is the source for the existence of Heisenberg’s uncertainty principle. It is 

the cause of the quantum behaviour of small particles.  

 

S: I must say, that is a strange situation! 

 

M: Yes, let me proceed. It will become even much stranger. 

 

S: Please, go on. 

 

 
 

M: The shepherd drives his sheep through Hilbert’s bush. He does that guided by the smells 

that he receives from other silver white bundles. The smells are mixtures of perfumes that are at-

tractive and perfumes that are repellent. The shepherd reacts on these smells. 

 

S: What is causing these smells? 

 

M: These smells are caused by the properties of the sheep. They hang as a blurring mist around 

each white pole, thus around each individual sheep. The sheep may also move inside the scope of 

the herd. That movement may also be caused by the influence of the emitted smells. 

 



 

 

S: How does the shepherd keep his sheep together? 

 

M: Well, that happens in a particular way. The bush is so dense, that it is impossible to let the 

poles move. Instead at each of his steps the shepherd redefines the poles that belong to his herd. 

These poles turn silver white. The poles that get outside of the herd obtain their original green or 

red colour. The smells create a tendency to minimize action of the cheap. Further there exists an-

other mechanism, which is called inertia. 

 

S: What is inertia? 

 

M: The smells invoke a sticky resistance of the system of all herds against change. Inertia rep-

resents the combined influence of all other herds. The most distant herds together form the largest 

part of the set of herds. So, they have the largest effect. The influence of each individual herd de-

creases with distance. However, the number of herds increases faster with distance. The difference 

between the distant herds averages away. As a consequence the distant herds form a uniform 

background influence. 

 

S: What is the effect of inertia on a herd? 

 

M: Locally the inertia produces an enormous smell pressure. A smooth uniform movement 

does not disturb this potential. When the herd accelerates it stirs the perfumes and in this way the 

inertia produces a smell that goes together with this movement. 

 

S: I understand now how position is treated. What about time? 

 

M: The shepherd owns a simple clock. That clock counts his steps. His steps are all the same 

size. When he drives his sheep around, he follows a track in Hilbert’s bush. All shepherds take 

their steps in synchrony. In facts at each of their steps the complete forest is redefined. In this pro-

cess the smells act as a guide. They store the current condition of the forest and these represent the 

preconditions for the new version of the forest. You can say that the smells represent potential 

versions of the forest. This includes potential versions of sheep. These potential sheep are virtual 

sheep. 

 

S: So, compared to space, time is handled quite differently. 

 

M: You understand it quickly and perfectly! You understand it better than the physicists of the 

last few centuries. Most of them were wrong with this subject. They think that time and space be-

long in one inseparable observable characteristic. 

 

S: How many of these herds exist? 

 

M: As many as there are particles in our world. So, there exist an enormous number of herds, 

but they are still countable. They can all be identified. All shepherds take their own track through 

Hilbert’s bush. 

 

S: That must make Hilbert’s bush very large! 
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M: It is. Let me proceed. It must be obvious now that the herds influence each other’s move-

ments via their smells. 

 

The lad reflects and pictures the forest in his mind as an enormous sphere. On top of that 

sphere a large number of shepherds push their own herd of silver white lights forward on curving 

tracks that are determined by the smells that other herds produce. At each of the shepherd’s steps 

Hilbert’s forest is reconfigured. The old man must have a strange image of the world. Nonethe-

less, he must have his reasons. 

 

S: So, the shepherds play a crucial role! 

 

M: Yes, they manipulate their own herd. However, the smells of their sheep influence for other 

shepherds the observation of the position and momentum of other herds. 

 

S: How do the smells influence that observation? 

 

M: They give the data that are transmitted in the smell an extra turn. It means that other shep-

herds do not get a proper impression of the position and momentum data that are sent by other 

herds. 

 

S: Is there a good reason for this confusing behaviour? 

 

M: No, there is no reason. It is just a built in habit of all sheep. On the other hand, the governor 

established that habit when he designed mathematics. He designed mathematics such, that Hil-

bert’s bush and its inhabitants behave according to the rules in his book. 

 

S: What is the consequence of this strange behaviour? 

 

M: The consequence is that the particles in the world get the wrong impression of the position 

and momentum of other items. For them it appears that there exists a maximum speed. And these 

items think that they live in a curved space. 

For the insiders: This is the source of the existence of relativity as it was discovered, but not 

explained by Einstein. 

 

S: Do they think that? 

 

M: For them, it is the truth! 

 

S: So, I live in a curved space and for me there exists a maximum speed. 

 

M: That is right. You properly understand how the world is controlled. As long as you do not 

interpret that maximum speed as the limit set by your local police officer. 

 

S: What happens inside a herd? 

 



 

 

M: The sheep inside a well-shaped herd perform rhythmic movements. You could say that they 

are dancing. Physicists call it harmonic movements. These dances occur under the control of the 

shepherd. He considers them as his own possession.  

 

S: What do you mean with a well-shaped herd? 

 

M: A well-formed herd represents in our world a well-formed object, such as an atom. 

 

S: Why is everything set up in such a strange way? 

 

M: The governor of Hilbert’s bush is very intelligent, but also very lazy. He does not want to 

create many rules, so that he does not have to write much in his law book. That is why he invent-

ed Hilbert’s bush. He builds the consequences of all his rules into the structure and the dynamics 

of Hilbert’s bush. That structure is in principle very simple. The same holds for the dynamics. In 

this way he does not have to take care on how the world evolves. However, this leaves an enor-

mous freedom for what happens in the world that is controlled by Hilbert’s bush. That on itself re-

sults in an enormous complexity of the world we live in. That renders the governor very, very 

smart and very, very lazy. 

 

S: How did Hilbert’s bush get its name? 

 

M: Hilbert was the first human that discovered the governor’s bush. So people give it his 

name. 

 

S: Can everybody visit Hilbert’s bush? 

 

M: In principle yes. Everybody that possesses sufficient imagination can visit Hilbert’s bush. 

There exist two guides. A mister Schrödinger tells the story as we did. He tells the story as if the 

bundle of silver white poles moves through the bush of green and red poles. The other guide, mis-

ter Heisenberg tells the story as if the bundle of white poles is stationary and the bush of green 

and red poles moves around. For the world it does not matter what moves. It only senses the rela-

tive motion. 

 

S: How did intelligent creatures like us enter that world? 

 

M: The governor installed a tendency to reduce complexity by means of modularization into 

his forest. When more compatible modules become available it becomes easier to construct more 

capable modules and more capable items from these modules. Given enough time, more and more 

capable items are created, which finally result in intelligent creatures. Scientists call this process 

evolution. It is a chaotic process, but it possesses a powerful tendency. 

 

S: Uch. Can I tell this to my friends? 

 

M: Yes, you can. And if you have learned to read formulas and work with them you can come 

back and I will tell you the same story in a cart load of formulas. 
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S: Thanks. I will come back when I am grown up. Can I still ask a final question? 

 

M: You are a sauce-box, but you are smart. Go ahead. 

 

S: What are you going to do after this? 

 

M: I will visit a very old and very wise scientist, called Mendel. He claims that he has a cohe-

sive explanation for all smells that shepherds react to.  

 
 

 

S: Why is that important? 

 

M: If his claim is right, then he has found the Holy Grail of physics. 

 

S: Gosh! 

 

After this the boy departs. Later he will become a good physicist.  
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2 Interpretation 

The book of laws contains a number of axioms that define the structure of traditional quantum 

logic as an orthomodular lattice. 

 

Hilbert's bush stands for an infinite dimensional separable Hilbert space that is defined over the 

number field of the quaternions. The set of the closed subspaces of the Hilbert space has the same 

lattice structure as traditional quantum logic. 

 

The green poles represent an orthonormal base consisting of eigenvectors of the normal opera-

tor Q. This operator represents an observable quantity, which indicates the location of the item in 

space. 

 

The red poles represent an orthonormal base consisting of eigenvectors of the normal operator 

P. This operator is the canonical conjugate of Q and represents an observable quantity, which in-

dicates the momentum of the item. 

 

The bundle of silver white poles and the herd of sheep represent a closed subspace of the Hil-

bert space that on its turn represents a particular quantum logical statement. This statement con-

cerns a particle or a wave packet in our surroundings. Q describes the thing as a particle. P de-

scribes the thing as a wave packet. 

 

The shepherd represents a complicated operator Ut that pushes the subspace, which is repre-

sented by his herd, around in the Hilbert space. The operator Ut may be seen as a trail of infinites-

imal unitary operators. It is a function of the trail progression parameter t. The progression param-

eter differs from our common notion of time, which is the coordinate time. 

 

Traditional quantum logic defines only the stationary structure of what happens in Hilbert’s 

bush. The dynamics are introduced by the shepherds that react on the smells. 

 

The smells correspond to physical fields. The fields transport information about the conserved 

quantities that characterize the movements of the item and its elements. Each type of preserved 

quantity has its own field type. The operators Ut react on these fields. Inertia shows how these op-

erators reflect the actions of the fields. Any acceleration of the item goes together with a reconfig-

uration of the fields. 

 

The operator Ut transforms the observation operators Q and P into respectively 

 

Qt = Ut
-1

·Q·Ut  

 

and  

 

Pt = Ut
-1

·P·Ut  

 



 

 

.This distorts the correct observation and ensures that the observer experiences a speed maxi-

mum and a curved space. 

 

The eigenvalues of Q and P and the trail progression parameter t characterize the space-time in 

our live space. As already indicated t is not the same as our common coordinate time. 

 

De eigenfunctions of Ut control the (harmonic) internal movements of the particles.  

 

The sheep represent the elements/properties of the particle. 

 

The effect of modularization is treated in  

http://www.crypts-of-physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf.;  

part four of this book 

 

HvL 

http://www.crypts-of-physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf
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QPAD Game 

1 Introduction 

This game is a nice educational puzzle when you have lots of spare time. It can bring you deep 

insight in the standard model. 

In order to know which elementary particle types exist, a small game suffices.  

 

The game takes the presumption that all massive elementary particle types can be identified by 

an ordered pair {  ,    } of sign flavors of a quaternionic probability amplitude distribution 

(QPAD).  

A quaternion offers two sign selections; a conjugation that changes the sign of three imaginary 

base vectors and a reflection that changes the sign of a single base vector. The sign selection stays 

constant throughout the whole QPAD. For a QPAD this means that four different sign flavors ex-

ist. 

The coordinates that are used as parameters of the QPAD also form a quaternionic distribution 

(QD). For a flat coordinate system the value of the distribution equals the parameter. If the coor-

dinate system is curved, then the values of this QPAD follow that deviation. The parameter QD is 

taken as a reference for comparing sign flavors. Two sign selections have an isotropic sign status. 

The other two sign selections are anisotropic. The conjugation and the reflection each cause a 

switch of the handedness of the quaternion product. The other sign selections leave the handed-

ness untouched. 

 

2 Instructions 

2.1 Equation of motion 

The ordered pair {  ,    } represents a category of elementary particle types. 

Now look at the quaternionic format of the equation of free motion of elementary particles. 

 

             
 

  is the quaternionic nabla operator. It represents a four dimensional differentiation. 

   acts as the wave function of the particle. It is a QPAD, whose sign flavor is indicated by 

suffix x. 

  is the coupling factor. It is a real number. 

   is the coupled QPAD sign flavor. 

both    and    are sign flavors of the same base QPAD   . 
   has the same sign flavor as the parameter space. 

For antiparticles you must conjugate all participating fields as well as the nabla operator.  

Photons and gluons have zero coupling factor. 



 

 

2.2 Rules 

a) When    is isotropic (zero or all three base vectors are switched), then the particle 

is a fermion, otherwise it is a boson. 

b) If the coupling takes place between two field sign flavors with different handed-

ness, then the corresponding particle is charged.  

c) The charge depends on the number and direction of the base vectors that differ.  

d) The count for each difference is    . 

e) The procedure does not discriminate the generations 

2.3 The game 

The game is:  

Find the particle types:  

 

 electron,  

 neutrino,  

 down quark,  

 W bosons,  

 Z boson.  
 

The up-quark is not in the list. According to the rules it is impossible to generate elementary 

particles with charge ±⅔e. It means that up-quarks are composite particles. 

2.4 Solution 

The solutions is explained in part II; Elementary particles  

However, you can discover it yourself.  

Try it! It is fairly easy. 

 

The most intriguing fact is that the coupling factor m can be computed from the fields {  ,    } 
So, no Higgs is involved there! 

The properties that characterize the coupling event are sources of secondary fields. These fields 

are known as physical fields. In fact they are QPAD’s where the property plays the role of an iso-

lated charge. 
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The Hilbert Book Model 

Author: Hans van Leunen 

 

This book starts from the axioms of traditional quantum logic and extends this 

model such that it incorporates physical fields as well as dynamics. 

It uses the isomorphism between the set of propositions of traditional quantum 

logic and the set of closed subspaces of an infinite dimensional separable Hilbert 

space that uses quaternions in order to specify its inner products. 

The book finds solutions for the anomalies that are raised by the countability of 

the eigenspaces of normal quaternionic operators. It also takes the consequence of 

the observation that all information about nature becomes available in the form of 

clouds of information carrying quanta. 

The book unifies all fields, such that except for the curvature field, all fields in-

cluding the wave functions are considered as QPAD’s. The curvature field is de-

rived from the curvature of the superposition of all these primary fields. The cur-

vature follows from the decomposition of this covering field in rotation free and 

divergence free parts. 

In order to implement dynamics, the developed model applies a sequence of ex-

tended quantum logics or equivalently a sequence of extended separable Hilbert 

spaces. Each of the members of the sequence represents a static status quo of the 

universe. This leads to a new model of physics:  

 

The Hilbert Book Model 
 

Apart from this main subject the book contains a series of related papers. 
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