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Abstract

In this paper was re-visited the dual Ginzburg-Landau model for the calculation of 
Lorenz force, monopoles current, and the energy of vortex lines for a vortex triangular 
lattice type Abrikosov within a nucleon, to find their meaning. For now, it was found that 
these energies would correspond to the  subatomic particles, Ζ,W , bosons, pion +π , and 
of  nucleon itself. Also,  it was determined the fusion temperature of two nucleons. 
The model permits to explain the  beta decay  mechanism of  radioisotopes to be the 
same as the dark counts in the case of superconductors.
A link with gravity as a force that counteracts  the destruction of superconductivity, is 
discussed. In this model to a superconductor analogue, we do not use an a-priori Higgs 
field, and hence a Higgs boson. The entire work is done in natural units.

1. Introduction

Usually, the  masses of ZW , , are calculated by taking into account a priori a Higgs field, 
and the default using the Higgs mechanism and Higgs boson.
Soon after the advent of QCD, ’t Hooft and Mandelstam [1] proposed the dual
superconductor scenario of confinement; the QCD vacuum is thought to behave 
analogously to an electrodynamic superconductor but with the roles of electric and 
magnetic fields being interchanged: a condensate of magnetic monopoles expels electric 
fields from the vacuum. If one now puts electric charge and anti-charge into this medium, 
the electric flux that forms between them will be squeezed into a thin, eventually string-
like, Abrikosov-Nielsen-Oleson (ANO) vortex which results in linear confinement.
The dual superconductor mechanism [1] is an alternative that does not require the ad hoc 
introduction of a Higgs field but instead uses dynamically generated topological 
excitations to provide the screening supercurrents. For example, U(1)
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lattice gauge theory contains Dirac magnetic monopoles in addition to photons. The dual 
superconductor hypothesis postulates that these monopoles provide the circulating color 
magnetic currents that constrain the color electric flux lines into narrow flux tubes. 
’tHooft has shown  that objects similar to the Dirac monopoles in U(1) gauge theory can 
also be found in non-Abelian SU(N) models.

The results are consistent with a dual version of the Ginzburg-Landau model of 
superconductivity. Important in understanding field (magnetic) dependence was 
Abrikosov’s field theoretical approaches based on Ginsburg-Landau theory [2] for type I 
superconductors ( 21κ     , ξλκ =  , λ     is the penetration depth, ξ  the coherence 
length ) and type ones ( 21κ ) II superconductors, which allows magnetic flux Φ  to 
penetrate the superconductor in a regular array quantized in units of elementary flux 

quantum ecπ=Φ .Important was the quantization in a ring , flux 
e
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 +=Φ
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In the present paper we revisited G-L model [2],[4],[5],[6],[7],[8],[9], in order  to 
calculate the values of the Lorenz force, the current, and the energies of the Abrikosov 
vortex lines inside of the nucleon,  in natural units, in view to search for its relevance; for 
the time being, it was found that this would correspond to energies for  subatomic 
particles,  such as that of  ZW , , bosons, and of  pion +π . Also the connection with 
gravity to be analyzed. In this model to a superconductor analogue, we do not use an  a- 
priori Higgs field, and hence a Higgs boson, is still undiscovered, we use only the 
electrical field generated by the pair qq .

2. The description of the analogue model of nucleon to a superconductor

The normal cores that exist in type-II superconductors in the mixed state are not sharply 
delineated. The value of number density of superelectrons of sn  is zero at the centers of 
the cores and rises over a characteristic distance ξ , the coherence length. The magnetic 
field associated with each normal core is spread over a region with a diameter of λ2 , and 
each normal core is surrounded by a vortex of circulating current. 
The QCD vacuum can be viewed as a dual superconductor characterized by a monopole 
condensate [1],[8],[9],[10], when embedding a static qq  pair  into the vacuum. The core 
of the flux tube is just a normal conducting vortex which is stabilized by solenoidal 
magnetic supercurrents, sj , in the surrounding vacuum. 
In order to calculate distinctly  the energy states (masses) in  natural units, firstly  we re-
derive the field equations  of  magnetic monopoles current and  of the electric flux.
Therefore, here is  adopted a basic dual form of Ginzburg-Landau (G-L) theory [2],[4],
[5],[6],[7],  which generalizes the London theory to allow the magnitude of the 
condensate density to vary in space. As before, the superconducting order parameter is a 
complex function )(xψ , where 2)(xψ   is the condensate density sn . Also is defined  the 

2



wave function ))(exp()( xinx s
 ϕψ = , where sn  is the London (bulk) condensate 

density, and ϕ are real functions describing the spatial variation of the condensate.
 The characteristic scale over which the condensate density varies is ξ , the G-L 
coherence length or the vortex core dimension . The x  denote the radial distance of 
points from the z -axis, the superconductor occupying the half space 0x  . Outside of 
the superconductor in the half space 0x  , one has 0HHEB === , where,  “the 
external” vector 0H  is parallel to the surface. The Ψ theory of superconductivity [2] is 
an application of the Landau theory of phase transitions to superconductivity. In this case, 
some scalar complex ψ  function fulfils the role of the order parameter. 
First of all, we write the magnetic induction AcurlAB ×∇== , where A  is the 
electromagnetic field potential. To obtain the full system of equations we must 
incorporate the Maxwell equation 
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and the divergence

0=⋅∇ B                                                                                 (2)

The extended  Maxwell’s equations (in cgs ) which allow for the possibility of “magnetic 
charges” analog with electric charges ( monopoles condensate), the Gauss’ law for 
magnetism is mdivB π ρ40 =≠ ,and  the Faraday’s law of induction contains a new term 
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E
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The Ampere's law, expressed as the integral over any arbitrary loop, where sJ  is the 
current enclosed by this loop, is:

∫ =⋅ sJdlB 0µ                                                                        (3)
A charged particle moving in a −B field experiences a sideways force that is proportional 
to the strength of the magnetic field , the component of velocity that is perpendicular to 
the magnetic field and the charge of the particle. This force is known as Lorentz’ force 
and is given by :

))(()( 2

0

cEvB
q

vBEqF m
L −++=

µ                                        (4)

, where, mq -the magnetic charge, B  in ][Teslas , LF in ][N )                          

In absence of a magnetic field. one gets for free energy of the superconductor, J.Pitaevski 
[2]:
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Here, nf  is the free energy at 0=ψ , i.e. nf  is the free energy of the normal state.
 
Let us consider the behavior in presence of a magnetic field. The density of the magnetic 
field is π82B  must be added to the integrand (5). But this is insufficient in the gradient 
term in (5) is not invariant with respect of gauge transformations:

γ∇+→ AA                                                                            (6)
And for phase transformation

ce γϕϕ 2+→                                                                      (7)
The gradient of phase ϕ defines the velocity of the superconductive pairs  (in our case of 
the monopoles condensate!)

ϕ∇=
m

v s 2


                                                                            (8)

Equation (8) is not invariant under a such transformation. To restore the required 
invariance , one must include a further term containing the vector potential 
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Finally, one gets for the  superconducting current density 
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, and the magnetic induction is 

AB ×∇=                                                                                 (11)
Applying the curl operator to both sides of (10) and using (11) , we obtain the London 
equation 
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Therefore,  to restore the invariance in (5), one substitute for 2ψ∇  the combination 

[ ] 2)2( Acei −∇ , which is obviously gauge invariant. The final expression for the free 
energy then takes the form
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Here,  the magnetic induction must be expressed as in (11). One can obtain the basic 
equations of Ginzburg-Landau theory by varying this functional with respect to A  and 

∗ψ . Carrying first variation with respect to A , we find after a simple calculation:

4



( ) 0
4

4
2)(

2
2

2

=×+

+







++∇−∇=

∫

∫ ∗∗

π
δ

δ
π

ψψψϕψδ

dVBAdiv

AdVcurlBA
m
e

m
iecf 

 (14)

The second integral can be transformed into an integral over remote surface and 
disappears. To minimize the free  energy, the expression in the brackets must be equal to 
zero.  This results in the Maxwell equation 
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, provided that the current density is given by 
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According to the definition of sn we can substitute )exp( ϕψ ins= . Then (15.1) 
becomes 

                                                    (16)

Equation (16) coincides with (10). This justifies our identification of 2ψ  with sn

.Variation of (13) with respect ∗ψ  gives, after simple integration by parts, 
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The second integral is over the surface of the sample. The volume integral vanishes when 
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Equations (15) and (18) form the complete system of the Ginzburg-Landau(G-L) theory. 
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multiplications , and I used the  quantized flux: 
e
cπ=Φ 0 , and sn=Ψ 2 ; 
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Since,  the magnetic charge of monopole being [16] 
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π ε , and assuming that the classical electron radius 

be equal to “the classical monopole radius” from which one has the monopole mass 
eedM memgm 470022 == , the value of λ  remains unmodified.
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We can assume that the induction vector B  is directed along  the z -axis. Then the vector 
potential A  can be chosen along the y -axis and 

dx
dAB =                                                                                     (21)

We must solve the G-L equations (15) and (18) for this one-dimensional problem subject 
to the ns −  boundary conditions:

cHBx →→− ∞→ ,0,ψ ,                                                       (22)
0,)/(, 21 →→∞→ Bbax ψ

 The quantity 
2ψ



 −∇

c
ei


 is gauge invariant, J.Pitaevski [2],  when ϕ∇+→ AA .

If we transforming the equation dimensionless by:

λ
xx =  , λcH

AA = , 
cH

BAB =×∇=                                      (23)

Substituting these variables into  G-L equations (18) and (15).  The G-L equations  for 
our one-dimensionally problem take the form (here are omitted the hats):
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The boundary conditions (22) are:
1,0 =′== AEψ  for − ∞→x

0,1 =′= Aψ  for ∞→x  
Note that the boundary condition 0=A
Equations (24) and (25) give

constntAA =−−−′+′ 42222
2 )2(2 ψψψ

κ
                            (26)

This expression is an “energy”, and as follows from boundary conditions that this energy 
must equal unity.

1)2(2 42222
2 =−−−′+′ ψψψ

κ
AA                                        (27)

For 1ξλκ =  when ξλ   the electrical field penetrates only slightly into 
superconducting phase, and the penetration is of order κ1 , the wave function is small 

in this region and gives only  a small contribution. Let us consider the distance 
κ
1

x  

and 122 Aκ . Then one can neglect the right-hand  side (r.h.s) of (24) and the solution 
matched to (29) bellow is 2xκψ = . Substituting this in (25), we find 222 xA κ=′′ .

The main contribution arises from the region where ψ  changes rapidly, which is of the 

order of 
κ
1

.

There is not electric field in this region and one can put 0=A  in (27). Solving this 
equation for ψ ′ , we have

)1(
2

2ψκψ −=′                                                                      (28)

This equation have a simple solution

2tanh( xκψ = )                                                                     (29)
The superconductors of second kind are those with 21κ , and ξλ  .
We now consider the phase transition in  superconductors of the second kind. 
For this we can omit the non-linear )( 2ψψ  term  in (18), we have

ψψ aA
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 This equation coincides with the Schrodinger equation for a particle of mass m2  and 
charge e2  ( in the case of dual, the factor 2  for the charge,  which is specific to the 
“pairs”, it is actually 1) in a magnetic  field 0H (in our case the chromo-electrical flux
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)0(E ). The quantity a  plays the role of energy ( ψE ) of that equation. The minimum 
energy for a such particle in a uniform electro-magnetic field is 
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field of a dipole created by  the pair uu (the chromoelectrical colors field)
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,where ][05.0 fmr ≅ -is the electrical flux tube radius, ][48.0 fmd = -the distance between 

the two quarks charges, usually ][ mAH , but here is used as 
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Fig.1a. Abrikosov’s triangular lattice for a nucleon (proposal)

Fig.1b. The Giant-Vortex type arrangement for the nucleon
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Hence, equation (30) has a solution only if mceHa 82 0∗  , when following power-
law conformal map is applied for complex number of the  r.h.s of (30), or equivalently if 
the electro-magnetic field is less than an upper critical field, see fig.1a. 
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, and in terms of
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The particle energy is 
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κ
λξ , or 05.1121 =κ (of type II-superconductor). 

One of the characteristic lengths for the description of superconductors is called the 
coherence length. It is related to the Fermi velocity for the material and the energy gap (

cBTk ) associated with the condensation to the superconducting state. It has to do with the 
fact that the superconducting electron density cannot change quickly-there is a minimum 
length over which a given change can be made, lest it destroy the superconducting state. 
For example, a transition from the superconducting state to a normal state will have a 
transition layer of finite thickness which is related to the coherence length.

However, superfluids possess some properties that do not appear in ordinary matter. For 
instance, they can flow at low velocities without dissipating any energy—i.e. zero 
viscosity. At higher velocities, energy is dissipated by the formation of quantized 
vortices, which act as "holes" in the medium where superfluidity breaks down.

More exactly, this quantity is called the correlation or healing length [2] , and is defined 
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 is for 0→T  , π2=a from [17], gE -gap energy,  Bk Boltzmann constant; at 
confinement ][122][175 KeMeVTc →= , and the Fermi velocity of electrons 
(monopoles)  is 
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, where as  the Fermi energy we have for monopoles condensate viewed as  boson 
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, numerically, we have: 
 ][55][1232.9 MeVJeEF →−=
,where 3][5.1 fmV = , and the velocity of monopole is

][8997.2855.0 smeceF == υ
 ,and  ][1602.10 me −=ξ  at 0→T      (31.4)

Note that, if we use only the mass of electrons (as in the case of superconductors), the 
velocity obtained is greater than the speed of light, so this  strengthens the use monopole 
condensate.

In the following we will consider the structure of the mixed state. The main problem is to 
understand  how the electric field penetrate in the bulk of the superconductor. Let us 
again consider a superconducting cylinder in the electric field. It is natural to expect that 
the normal regions , with their accompanying electric field, are cylindrical tubes parallel 
to the field. The electrical flux inside such tube  must be integral multiple n  of the flux 
quantum 

][1507.2 2
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ππ                          (32)

The electrical field is concentrated inside the tube. At large distances from the tube it is 
shielded by annular superconducting flowing around the tube. This current is analog of 
the superfluid velocity field surrounding the vortex lines in the superfluid liquid. We can 
then picture the mixed state as an array of quantized vortex lines. Such vortex lines were 
predicted by A.A. Abrikosov in 1957. Their existence is crucial for explaining the 
proprieties of  type II superconductors (dual in our case).  
The presence of a vortex line in the center of the tube increases the free energy of the 
superconducting media. The G-L equations are solved analytically only for ξλ   (near 

cT this means 1κ ). Thus, when  the electrical flux is applied parallel to the 
superconducting cylinder, the first flux penetrating should be located  along the axis  of 
the cylinder.
Substituting sj from Maxwell equation, we can rewrite   (10) as:
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From Maxwell equation (in SI ):
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The phase ϕ  in presence of vortex line is not a single-valued function of the coordinates. 
For a vortex line with minimum flux  0Φ ,  the phase increase by  π2 on traversing  a 
closed contour that enclose the line. Thus the integral along such a contour is

πϕ 2∫ =⋅∇ dl                                                                           (34)

Integrating (33) we find

∫ Φ=⋅×∇+ 0
2 2)( dlBcA λ                                                     (35)

It is not difficult to check  that in the range 
ξλ  x                                                                             (36)

The second term from l.h.s of (35) gives the main contribution. We take the contour of 
integration in (35) a circle of radius x . For this geometry the vector )( B×∇  has only one 
component ϕ)( B×∇  along the contour.
The integration is then simple and we have

2
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Equation (37) then gives mxv s 2=ϕ  for the superfluid velocity as it must be for a 
vortex line in a superfluid of particles with mass m2 .
Integrating of (37) for B  gives
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This equation is valid in the interval (36) with logarithmic accuracy.

Notice also that every vortex carries the flux 0Φ  and hence the mean value of B  over the 
cross-section of the cylinder is 
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, where ν  is the number of lines per unit area. This result is invalid near the upper critical 
flux 2cH where the cores of the vortex lines begin to overlap. To calculate this number 
we have to take into account the interaction between vortex lines. As the first step we 
have to find the electrical field trough a loop of arbitrary radius surrounding   the  line 
without the restriction (36) . Let us  calculate the curl  of the both sides of (33) .
Note that 

)(2 xncurl z δπϕ ⋅⋅=∇                                                             (40)
, and BcurlA =
where

-the Dirac function

Where  r is the two-dimensional radius-vector in the yx − plane and zn  is a unit vector 
along axis z (We assume that the axis of the vortex line coincides with z ). Indeed, 
integrating ϕ∇  along the contour encircling the line and transforming the integral by 
Stokes’ theorem into an integral over a surface spanning  the contour,  we have according 
to (34)

∫ ∫ =⋅∇=⋅∇ πϕϕ 2dScurldl                                                   (41)

Since this equation must be satisfied for any such contour of integration , we have (40). 

Finally,  we obtain 

)(2 0
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Using the vector identity BBdivBcurlcurlB ∆−=∆−∇= , we obtain

)(2 0
2 xBcB δλ Φ=∆⋅−                                                             (43)

This equation is valid only at all distances 
ξx                                                                                        (44)

Throughout all the space except the line 0=x  equation (43) coincides with the London 
equation (12) 
The )(xδ  function on r.h.s defines the character of the solution at 0→x . Actualy this 
singularity has already been defined in (38), which is valid at small x .
The solution of this equation at ∞→x  is )()( 0 λxconstrB Κ⋅= , where 0Κ  is the 
Hankel function of imaginary argument. The coefficient must be defined by  matching 
with the solution of (38). Using the asymptotic formula )2log()(0 xx γ≈Κ  for 1x ,
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where 78.1≅= Ceγ (C is Euler’s constant), we finally have 
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Using equation (45) we can rewrite (38) as:
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In opposite limit of large distances  one can use the asymptotic expression 
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Accordingly the superconductive current density  decreases (in SI ):

( ) λ
ϕ λπ

ε
επ

π
xe

cx
c

c
dx
dBcj −Φ

=−= 2153
00

2

0 )2(8
2

4
4

                            (48)

We can now calculate the energy ε  of the vortex line. The magnetic part of free energy 
corresponding to London equation is given by the integral.

( )[ ]∫ += dVcurlBcBFB
222
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Indeed, by varying the expression with respect to B , we immediately obtain the London 
equation (12). The main contribution to the integral is due to the second term, which 
contains a logarithmic divergence. Substituting (37) in (48.1), and integrating in the range 
(36), we obtain for the energy per unit length of  vortex line. 
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Equation (49), explains why only vortex lines with the minimum flux 0Φ are the most 
favorable. The energy of a  line  is proportional to the square of its magnetic flux. Thus, 
the fragmentation of one line with the flux 0Φn  into n  lines with flux 0Φ results in an n-
fold gain in energy.  
A discussion of the physical background of this energy can be found, e.g. in the books 
[13], [14], [15] , as related to Dirichlet’s energy and  harmonic maps.
Thus, in [13], when is induced a magnetic stray field h which has a certain energy, 
according to the static Maxwell equation, the stray field satisfies 0)( =hcurl ; 

0)( =+ hudiv , where u , is extended by 0 outside Ω  . The first equation implies that h−  
can be written as the gradient of function U . By the second equation, this U  is  a 
solution of )(udivU =∆ in the distribution sense (since,  0)( =∇ Ucurl , and 

UUdiv ∆=∇ )( ). There exists exactly one solution such that the integral 
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∫∫ Ω
∇⋅=∇ UdxudxU

R 2
1

2
1

3

2
                                                     (49.1)     

is finite, and for this choice of U , this integral gives the main contribution to the 
micromagnetic energy. It is called the magnetostaic energy [13].

In our terms, constuB == , 
x
BcurlBU

∂
∂==∇ ,  since 

constuudivUB =→=→=∆=∆ 0)(0 .

Substituting 
c

Bu
x 2

0

2
2
π λλ

Φ
==


  from (46)  with 1log(...)10 ⇒ ≅→≈ λx on the 

boundary, or the dual gauge component of the total electrical field

, when 




= 21665.4

Am
JeB monopoles                                                    (49.2) 

,and   U∇  from (37) ,  one have 
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c
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c
c

c

                 (49.3)

Here, the factor 04 επ c  is used to convert from )()( SIcgs → .
Because the magnetic induction of the  monopoles current which is powered by electric 
field given by a pair of quarks ( 0H ),  202 c

monopoles HHB ≅⋅≥ , as  resulting from the 
comparison (49.2) with  (30.1) and (31), it has the raw flow consequences squeezing this 
cromoelectrical  flux into a vortex line, followed by forcing an organization into a 
triangular Abrikosov lattice, see figure 1.
The core of every vortex can be considered to contain a vortex line, and every particle in 
the vortex can be considered to be circulating around the vortex line. Vortex lines can 
start and end at the boundary of the fluid or form closed loops.
The presence of vortex line which increases the free energy of the superconducting media 
with Lε , it  is thermodynamically favorable if the contribution is negative; i.e. if 

0400 π µε LHcL ⋅Φ−   , and 
0

0
0 µ

H
B = , 0

2
0 1 εµ c= ,or

0

0
10

4
Φ

=
c

HH c
π ε µ

                                                                      (49.4)

Substituting  (49.3) in (49.4) , we find the lower critical field 





==




Φ
== 222

0
10 15.1)log(log

2
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Am
Je

c
cHB c κ

π λ
π

ξ
λ

π λ


          (49.5)
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, where 1114.0=ξ , and when near the axis, for ξ≅= 116.0x  ,  when the induction is 
1215.2)( cHeB ≅≅ξ                                                                     (49.6)

Let us the results obtained to the calculation of the energy of interaction of vortex lines. It 
is important that equation (43), which defines the distribution of the field, is linear one. It 
means that under condition (44) the field produced by different vortex lines is additive. 
Let us consider two vortex lines placed at 1x    and 2x separated by a distance d from 
each other. Then, 21 BBB += . The energy of the lines is given by (48.1). Let us 
transform the first term in integrand by means of (42) (to multiply with B  ),  which gives 

[ ]
[ ])()1()(2

)(
)(

20

22

222

xxxxxB
curlBcurlcurlBBc

curlBcB

z −+−Φ
++⋅−

=+

δδ
λ

λ
                                                (50)

The first term in the r.h.s can be transformed into the form

                                                    (51)

The volume integration of this term in (48.1) can be 
reduced to an integration over a remote surface. This integral disappears, because of the 
fast decrease of the field. Because we are interested here in the energy of interaction of 
the lines, we must takes into account only “the mixed terms” of the type )()( 12 xxxB z −δ . 
(Terms likes  )()( 11 xxxB z −δ  contribute to the self-energy of the vortex lines (49). Now 
the integration in (48.1) is trivial. We have for the interaction energy 

))2()1((
8

2
12

0
int xBxB

L
L +

Φ
=

π
ε                                                 (52)

Both terms on the right contribute equally and using (45) we have 






Κ

Φ
=

Φ
=

λλππ
ε dxBd d 022

2
00

int 8
4

)(
4

2
)(                                       (53)

One can also  use the asymptotic expression for intε (see (47)) 

λλ
λπ

ε xe
d

−




Φ

=
21

22327

2
0

int 2
4

, λx                                        (54) 

When the distance ξλ ≈d  the cores of vortex lines overlap [2]. The equation (42) is 
no longer valid. However, (39) is still valid. 
Let us consider a closed contour near the surface of the cylinder. The change of wave 
function on passing round the contour is Sπ ν2  , where S  is the cross-section area of the 
cylinder and ν -the number of vortex lines. One obtain from (16) that the electric flux is 

∫ ⋅−Φ=Φ dl
n
j

e
mS

s

s



22 0ν                                                             (55)          
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)(
)( 2

curlBBdiv
curlBcurlcurlBB

×
=+⋅−



Let us recall that a similarly relationship [4], [1],  it was introduced for the first time by 
London, called fluxoid equation.
Each fluixoid, or vortex,  is associated with a single quantum of flux represented as 0Φ

,and is surrounded   by a circulating  suppercurrent , s
j , of spatial extent, λ  . As the 

applied field increases, the fluxoids begin to interact and as the consequence ensembles 
themselves into a lattice. A simple geometrical argument for the spacing, d  of a 
triangular lattice then gives the flux quantization condition [13], 

0
2

3
2 Φ=Bd                                                                               (56)

, where B , is the induction.
The solution of Ginzburg-Landau phenomenological free energy (13)  is useful for 
understanding the Abrikosov flux lattice. The coordinate-dependent order parameter ϕ
describes the flux vortices of periodicity of a triangular lattice. Fluctuations from ϕ  
change the state to ψ , the minimization of free energy with respect to ψ  , gives the 
ground state )0(rϕ .
The free energy is given by, 

( )
∫ 









 −

+++




 −∇+= dV

HBbaA
c
ei

m
ff n π

ψψψ
82

2
2

2
042

22




(57)

, the average magnetic induction is )0,0,( yB −


. The free energy has solutions of vortices 
of triangular form. The coordinates of the three vertices of a triangular vortex are given 

by )0,(),0,0( l , and l





2
3,

2
1

. The fluctuation from ground state corresponding to that of 

triangular lattice is that for small fluctuations. The deviation of the free energy from the 
mean-field value FMFF −  with respect to the thermal energy, Tk B , can be used to obtain 
the physical properties of the fluctuations which are useful for understanding the melted 
vortex lattices. The deviation from the triangular Abrikosov lattice is defined as 

( ) 2
1

2
1 /0 araD 〉−〈= ϕψ                                                    (58)

which uses the spatial and thermal averages calculated  with the probability 
( )TkF B−exp . Classically, 

MF

B

FF
Tk

D
−

=                                                                       (59)

measures the fluctuations from the triangular vortex state. The fluctuation in the distance 
between vortexes becomes:
-case 1, ( ) 32345101 BcTT cFM

−−≅−                                    (60)       

-case 2, 4511 BcTT cFM
−≅− ;                                             (61)

-case 3, a vortex transition below the transition temperature see [12]
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, where, FMT -the flux-lattice melting temperature, and 1.0=c  from  Lindemann criterion 
of lattice melting  when 222 lcd = , and the flux quantization condition Bl 0

2 Φ= , 
κπ nB 2= . 

For numerical values  ][175 MeVTc = ,  in case of symmetry breaking, the case 1, results 

cFM TT ≈ , and in case 2, results ][100 keVTFM ≅ ,   by using (56) in place of 2
0 dB ≅Φ

with  ][3982.0 fmd = (a very precisely value), and 1≅κ , which is the temperature of 
fusion (melting!) of two nucleons.
This triangular lattice corresponds to the arrangement of the quarks pairs  dduuuu ,, in 
the frame of a nucleon, see fig.1a, fig.1b.

A direct numerical analysis allows to obtain the following values for the current, force 
and energy. Thus, from (48 ) the current is given by:

]/[715.1
)2(8

2 20
2153

0 fmAee
c

c
x

c
j x ≅

Φ
= − λ

ϕ
ε

λπ
                        (62)

,where λ≅x  , 
For λ⋅= 2x , the current density decreases at ][5.3 2fmAejF ≅
Note that velocity Fυ  , moreover, if one considers the monopole current  given by 
equation (10), as DFs gvnj =ϕ

, where the magnetic charge is: 

eee
e

c
e
cg d 5.68

2
1374

2
4 2

0
0 ====

 π ε
π ε                               (63)

If we use the range λ≤≅ 1.0x , then the current is obtained by derivation of  (46):

][8302.0
89.9
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1

2
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2

2
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            (64)
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In order to make a correct choice of coherence length, were plotted in figure 2. 
expressions: (64), (31.3) (46), (48) and sn , all associated with the range of x . The result 
indicates that  for ][1.0 fmx  , the velocity  becomes larger than of  the light, and the 
coherence  grows faster, reaching values larger than the radius of the nucleon. Also, small 
values with those of the λξ < < , it follows that 167.22 eBB c =>   , when 2cB  is given by 
(31), as a function of the ξ , or by (46) as )(xB . 
Therefore, the best choice is to consider λξ ≈0   , when cF <υ , but strictly ξλ ≥ , as 

112.0111.0 ≤≤ ξ                                                                   (64.1)

That correspond with the value calculated above (31.1) as a Fermi velocity.  This result  
marks the essential proof of this model, namely the consideration of the monopole  
condensate.

From (4 ) and (47),  the Lorentz’ force is:
][4.25.2 NeBqvF FiL ≅=              (65)    

,when B   is given by  (46) and λ≅x , for the upper limit: 

                              (66)

With B from (47) and for λx , we have

                         (67)
, for ][4.872 fmx == λ
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, then,  the force becomes ][268.1 NeFL −≅ , or in terms of energy 
][945 MeVxFLbarrier =∗=ε                                                    (68)

,or the nucleon overall. 
In case of )0(→≅ ξx





=





Φ

= 22
0 1503.1log

2
2

)0(
Am

Je
xc

B λ
π λ

                                  (69)

 
, which respect (49.6).

The magnetic energy results from (49), and (49.3),  and    for  ( ξλ  x ) from (36):

      (70)

, the force on the flux tube (string tension).
Now, from (54) and  ξλ )64( ÷≈d ,  we have

[ ] ][144113.2
2

4 21

22327

2
0

0
2

int MeVfmJee
d

c x ⇒−=




Φ

= − λλ
λπ

εε   (71)

What would be the value of the mass of the pion +π , composed of a pair of quarks du  
interacting at a distance  ][66.065.532 fmd ≅∗≅≈ λ    of the radius of the nucleus.

Now, others important values of energy:
][09.1][117.0*)14.0;()0( int0 Jefmxxd −≅=−== λεε         (71.1)

 , and from (69)  with ][107.0 fmx =≅ ξ ;                                 (71.2)

][11.58)2( 2
10

2
0 JeHVc ch −== πεε                                        (71.3)

Now,  the vortex energy is: 
][0816.182

20
2 JeHVc cvortex −== πεε                                            (71.4)

, where V -is the volume, see fig.1, accordingly, the corresponding equivalently masses 
are  

][732 GeVcM vortex ⇒= ε                                                               
, which seems to be equal to the mass of  W  boson.
The energy of the  neutral boson Ζ  is assimilated with the vortex-vortex three pairs 
interaction energy  [22], ][91*3 int GeVpairZ == −εε ,  when  from (71) 

][33.30][0985.4)4.1;116.0117.0(intint GeVJexdpair →−==−==− λεε ,  (72.1)
 is the energy of  each of three  pairs of  vortex outermost )0( ≅d  vortices lines which 
interacting (repel) at the center of the triangle situated at λ4.1=x , thus, being  generated 
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a neutral current in the zone of Z  during the triangular arrangement of the lattice, see 
fig.1a, or fig.1b.
Now, is possible that  the vortices start to coalesce  into a giant vortex (GV) [26], see, fig. 
1b. ,
Thus,  from (71),  results an another energy state-maximum possible ( 0≅d ), probable 
that of Higgs boson (H):

][135][0817.2);116.0117.0(*3 int GeVJexdH →−==−== λεε           (72.2)
Notice that this is not in fact a particle, since contain others subparticles (

monopolesduZW ,,,, ), so during high energy protons collision (CERN) can not be 
obtained as itself. 
Here, a factor of 2   was introduced to correct on  e2  for “pairs” in the G-L model.

3. Beta decay  halftime calculation-  an essential test of model validation

Below we will demonstrate that the mechanism for beta decay of  radioisotopes is the 
same as the dark counts in the case of superconductors [2].

In [3], are  discussed three types of possible fluctuations in superconducting strip 
(nucleon) which result in dissipation. Each one causes transition to the normal state from 
the metastable superconducting state when currents are close to the critical value cI : (a) 
Spontaneous nucleation of a normal-state belt across the
strip with π2 -ϕ phase slip as in thin wires (a every phase slip meaning 0Φ  energy 
released). 
(b) Spontaneous nucleation of a single vortex near the edge of the strip and its motion 
across to the opposite edge accompanied by a voltage pulse. 
(c) Spontaneous nucleation of vortex-antivortex pairs and their unbinding as they move 
across the strip  to opposite edges due to the Lorentz force, as well as the opposite 
process of nucleation of vortices and antivortices at the opposite edges and their 
annihilation in the strip middle. 
In [3] are derived the  energy barriers for three dissipative processes mentioned within the 
GL theory. Consider a thin-film strip (one of three vortexes of the nucleus)  of width 

λ*rw = , see fig 1a, fig.1b. We choose the coordinates so that wx ≤≤0 . Since we are 
interested in bias currents which may approach depairing values, the suppression of the 
superconducting order parameter )(ψ  must be taken into account.  Also in [3], is used the 
standard GL functional , given above in (13). 
We will use the case (a),  a vortex crossing from one strip edge to the opposite one 
induces a phase slip without creating a normal region across the strip (one of three 
vortexes of nucleus)  width. When, is treating the vortex as a particle moving in the 
energy potential formed by the superconducting currents around vortex center inside the 
strip and by the Lorentz force induced by the bias current. In [3], it  was derived the 
energy potential and is found the vortex crossings rate (phase slips and corresponding 
voltage pulses) in the framework of Langevin equation for viscous vortex motion by 
invoking the known solution of the corresponding Fokker-Planck equation.
Finally,  from[3] the asymptotic estimate for the dark counts rate,  results as:
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, and where the bias current is :

)1(2 2
0 κκ

π ξ
−= IwI                                                                           (74.1)

                                      (74.2)

Here, λ≅zh -the axial ( z ) height of the monopole condensate.
Here,  the critical current at which the energy barrier vanishes for a single vortex 
crossing:

 
π ξ

µ
72.2

2 0
2 wI

I c = ;                                                                                   (74.3)   

And the thermodynamic critical field is :   

 
c

H c π ξ λ22
0Φ

=                                                                                 (74.4) 

 , where 22 1 κµ −= , and 
                                 (74.5)

, where
)( bindvortexGLh Q−= ετυ -is the energy of the vortex during crossing the barrier of height 

bindvortex Q−ε   by quantum tunneling in place of the thermal activation as in [3], and 

overpassing an ohmic resistance along a transverse path way of the nuclide:

nuclideq

nuclideq

RwR
RR

R 2)(2 ξπ+
=Ω                                                              (75)

Here,  Wvortex M=ε  from (71.4), and bindQ is the beta decay energy as obtained  from the 
data of each radionuclide of beta decay type (Nuclide chart 2010).
In  the case of  beta disintegration  eepn ν++→ − , or 

)80( GeVWeuududd e
−− +++→ ν

,or and the bias current is: eeueed ++=+− )32(33*2)31(
In +β decay, energy is used to convert a proton into a neutron, while emitting a positron (

+e ) and an electron neutrino ( eν ):

eenpEnergy ν++→+ +

So unlike +− ββ ; decay cannot occur in isolation because it requires energy due to the 
mass of the neutron being greater than the mass of the proton. +β  decay can only happen 
inside nuclei when the value of the binding energy of the mother nucleus is less than that 
of the daughter nucleus. The difference between these energies goes into the reaction of 
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converting a proton into a neutron, a positron and a neutrino and into the kinetic energy 
of these particles.
In all the cases where +β decay is allowed energetically (and the proton is a part of a 
nucleus with electron shells) it is accompanied by the electron capture (EC) process, 
when an atomic electron is captured by a nucleus with the emission of a neutrino: 

enepEnergy ν+→++ −

However, in proton-rich nuclei where the energy difference between initial and final 
states is less than MeVcme 56.02 2 ≅ , then  +β decay is not energetically possible, and 
electron capture is the sole decay mode. 
This decay is also called K-capture because the inner most electron of an atom belongs to 
the K-shell of the electronic configuration of the atom, and this has the highest 
probability to interact with the nucleus.
Therefore,  the bias current is: )31(33*2)32( edeeue −=−+                              
At the first sight, the ohmic  resistance of this ad-hoc electrical circuit created by the bias 
current )( eI  due of quarks transformation )( ud → , or )(( duEC → , is given as:

2

1

vortexGL

bind
nuclide V

Q
R

τ
=                                                                    (76)

, and the superconducting quantum resistance is: Ω== keRq 5.6)2( 2  
,where the vortex  potential  is ξ0HVvortex = , 0H from  (30.1)
Giordano [19] has suggested that phase slips due to macroscopic quantum tunneling may 
be the cause of the low temperature resistance tail in the 1D wires he studied in zero field. 
One possible mechanism for our low temperature resistivity tail could be quantum 
tunneling of vortices through the energy barrier [20]. One expects a crossover from 
thermal activation to quantum tunneling to occur when [21], in (73) in place of thermal 
activation  we use the quantum tunneling: GLBTk τ=  
A vortex moving  from  wx →= 0 , during the time  GLτ .
We estimate the total interaction energy interaction with the  neighborhood vortexes or 
with the  one giant-vortexes, fig.1b,  of others nucleons from the nuclide nucleus,  during 
the time GLτ  along the vortex path by matching (74.1), (74.2) and (74.4) as:
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                                    (77)

, where  the ratio z
I

I =2
0 µ  was chosen as a variable in (73), through (74.5);                     

This is, in fact, the work done by the Lorentz force on the vortex path of the length w .
Now, we proceed to application to some radionuclides which decay  beta, and beginning 
with the neutron.  
Thus, the lifetime of the free neutron is a basic physical quantity, which is relevant in a 
variety of different  fields of particle and astrophysics. Being directly related to the weak 
interaction characteristics it plays a vital role in the determination of the basic parameters 
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like coupling constants or quark mixing angles as well as for all cross sections related to 
weak np −  interaction.  From the most precise measurement within this class of 
experiments, results ][3.886 sn =τ .
From Nuclide chart-2010, result:   Mo99 ( MeVQhT 356.1,65, 21 ==−β  ); 

Kr85  , MeVQ 687.0=β   and hT 4821 = , yrTKeVray 756.10%)46.0(514 21 =→=−γ ;
hTKeVray 48.4%)95(151 21 =→=−γ ;  ν++→ −eBaCs 137

56
137
55 , MeVQ 175.1=β , 

yrTKeVray 8.30%)85(661 21 =→=−γ  etc

Numerically,  with these data result: ][245.1 seGL −=τ , 2560=Y  , 157≅hν , and with 
λrw = as variable, the evolution of  dark count rate vR , and  of ΩR , for different isotopes 

are given in fig. 5.
Here,  the fraction of the bias current to critical current 0II as used in )(zY  from (74.5) : 
was deduced separately  for Cs137

55 as that of the plateau zone in fig.6 , respectively of 
005.00

2 ≅II µ , by using  the condition 121 ≅TRν .  We can observe  that this value 
corresponds with the expected value from quarks transformation of 

][124][196.1**)(1 0 AAmreve vortex →−≅ ± , where the vortex  crossing velocity is 

GLvortxv τλ= , and 0r -K shell radius. Therefore, the bias current,  which is 
perpendicularly on the monopoles  current,  is   ][150005.0 0

2 AII == µ ; where, 
111.02 =µ , and  the monopoles current is: ][5.30 AeI ≅  as given by (74.2), and 

][46.1 AeI c =  from (74.3). From (77), results   ][1392.2 JeQbind −≅   or near equally with 

βQ of the almost of nuclides, for example,   for  Mo100 , 
][1317.2356.1 JeMeVQ −→=β . 

Now, in case  of quantum tunneling transmission coefficient [18] is 1≅=
−



GLQ

eT
τβ , but 

only when exists a process which facilitates the  vortex crossing at this low energy 
βQQbind ≅ , like the phase slip as was fully explained above.

Thus, it was established  a logarithmic equation of  the  β decay rate which resulting  a 
straight line as a function of  the  barrier width )( λrw =  for every nuclide, fig.5, it 
decreasing in case of  long lived nuclides, like Fe60 . Therefore, this evolution is a 
decisive validation test of  entirely model. 
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Fig.5. The evolution of dark count 
( β  decay)  rate as function of 
barrier width.
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Fig.6 The evolution of the dark count rate ( β ) decay as a function of the bias current.

4. Connection with gravity 

Now, in case of superconductors, applying an external current density j  to the vortex 
system, the flux lines start to move under the action of the Lorenz force cjBFL /= . 
Within a homogeneous system the driving Lorenz force is counteracted by the friction 
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force η νη −=F  alone, where ν is the steady state velocity of the vortex system 
ην cBj /⋅= , and η is Bardeen-Stephen viscous drag coefficient G.Blatterand [2]. The 

point-like defect exerting a force impf on the vortex produces a deformation at the 
impurity ).( pinru  In order to produce strong pinning the (negative)  curvature of the 
pinning energy overcompensate the elasticity of the lattice.

However, as the field increases above 2cH , more and more vortex lines invade the 
superconductor. If the field increases even more, the superconducting regions separating 
the vortex lines becomes thinner and thinner until, finally, the whole material is filled 
with the magnetic field, and the superconductivity is destroyed.  
This is for superconductors; in our case, what it is going to lock this inherent destruction 
of the superconductivity. Maybe there is an additional force (but of mechanical nature, 
being knew that in the vortex core for fluids is a negative pressure p∆− )  equal to the 
Lorentz’ force, such as the force of gravity. 
Below we give a possible breakthrough possible explanation for a such gravity force. 
Thus, if we look at a very simplified (scalar form) of Einstein's equation after multiplying 
with curvature radius 2ζ , the radius (object radius)  R of curvature of spacetime is given 
as:

                                                           (78)
If the pressure p  on the surface of the tube is considered to be 
generated by the gravitation force equal with the contra- Lorenz’ 
force LF  applied on the curvature of space-time ζ situated in 

the center of vortex, its role being  to counteracted  the destruction of superconductivity.
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With Lorentz’ force calculated above

435.0
3928.4
425.2

][425.24
2

e
e

e

Ne
Rc
GM

R
F nucleon

L

=
−

=Κ→

=Κ=Κ=Κ=
ζ

ε
                      (80)                       

, where 3928.4
17.1*15.1

276.1*1167.6*44
2 −=

−
−−=== e

ee
ee

Rc
GM

R
nucleonζ

ε      (81)

,and Κ -“he vacuum elasticity”
,or from (79)
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So, to check this rationale, firstly,  we consider the attraction of a nucleon-Earth  when 
the spacetime curvature of the Earth is chosen little over the Schwarzschild radius 
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Therefore, in the case of a nucleon,  if we use in place of the curvature ζ , which is too 
smaller ][547.4 me −  than of  Plank length, we use just it as  the lower limit, then   is 
obtained an invariant, a surprising result:
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5. Conclusions

In this paper was re-visited a model G-L, in order to calculate the Lorenz force, the 
current, and the energies of the Abrikosov vortex lines inside of the nucleon. Thus, it was 
found that these energies correspond of subatomic particles, W , Ζ , H  bosons, and of 
meson π  . So, the nucleon can be seen as a triangular lattice with three pairs of quarks-
antiquarks in the tips of the  triangle or as giant vortex due of the coalescence of vortices 
lines of three vortexes (W) . These axial vortexes (filaments) interacting in the lateral 
plane. A connection with gravity as a counteracted force to the superconductivity 
destruction,  is discussed. 
All of the keys of this model, as being analogous to a superconductor clinging very well, 
starting with the use of Maxwell's equation with monopoles, further mass, charge, and the 
number of monopoles (density), which define the penetration depth  and the coherence 
length,  and finally to the connection with  gravity. Also, we can say that, because no free 
quarks were detected, the same is true for monopoles, both of which are confined 
together and in full in nucleons,  when the temperature of the universe has reached 

K01210*2 . The model permits to explain the beta decay mechanism of  radioisotopes to 
be the  same as the dark counts in the case of superconductors.
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