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Abstract 

During the last decade, a number of important developments have surfaced concerning fractional calculus and its 

applications in various branches of fundamental and applied science. In particular, fractional field theory (FFT) 

represents an active area of research in mathematical physics whose motivation stems, in part, from its ability to 

shed light on many of open questions surrounding Quantum Field Theory (QFT), Standard Model for particle 

physics (SM) and Quantum Gravity Theories (QG). We review here some recent developments of FFT that promise 

to recover the physics of SM in the low-energy limit and solve some of its seemingly intractable puzzles. 
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1. INTRODUCTION 

The Standard Model of particle physics (SM) embodies our current knowledge of the strong and 

electroweak (EW) interactions. SM is a conceptual framework of remarkable predictive power 

whose fundamental degrees of freedom are the spin one-half quarks and leptons, the spin one 

gauge bosons and the spin-zero Higgs doublet. Symmetry constraints play a key role in fixing the 

dynamical structure of SM, which exhibits invariance under the combined 

(3) (2) (1)L Y EMSU SU U× ×  gauge group. SM contains a rich phenomenology able to account for 
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a large variety of processes involving strong and EW interactions, confinement and electroweak 

symmetry breaking (EWSB), hadronic and leptonic flavor physics [  ]. Despite being confirmed 

in many independent tests, SM is considered an incomplete framework. At the time of writing, 

the root cause of EWSB remains elusive. The search for the physical source of EWSB has been 

one of the main drivers in both experimental and theoretical high-energy physics for the past 35 

years. We still lack conclusive evidence for the Higgs boson that is alleged to break the 

electroweak (2) (1)L YSU U×  symmetry to its smaller electromagnetic (1)EMU  subgroup. There is 

a fairly large slew of theoretical challenges facing SM, most cited ones including the origin of 

neutrino masses and mixing, the dark matter puzzle, the source of CP symmetry breaking and 

baryon asymmetry, the fine-tuning problem, the “triviality” problem and the LEP paradox 

associated with the minimal Higgs scenario, the flavor problem, the source of anomalous 

magnetic moments of charged leptons and the unknown connection to low-energy manifestations 

of QG [  ].    

SM is built in strict compliance with a series of postulates called consistency conditions. The 

remarkable success of SM can be attributed to a unitary, local, renormalizable, gauge invariant 

and anomaly-free formulation of QFT [ ]. Since SM is based on a renormalizable gauge field 

theory, the prevailing opinion among theorists is that it can be extrapolated to energies above the 

EW scale. The underlying assumption is that QFT stays compliant to consistency conditions 

throughout all energy scales. Needless to say, this is a speculative conjecture whose validation 

awaits analysis of vast sets of data from the Large Hadron Collider (LHC) and other detector 

sites [  ]. 

Inspired by recent advances in nonlinear dynamics and critical behavior outside equilibrium, we 

develop here an approach to physics beyond SM that has received virtually no attention in 
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mainstream research. The main tool at our disposal is the Renormalization group (RG) 

description of dynamics on fractal and multifractal structures, as embodied in the so-called 

fractional field theories (FFT). This class of theories represents an emerging topic in 

mathematical physics. Motivation for their appeal stems, in part, from the ability to offer 

surprising insights into many foundational questions involving QFT, SM and Quantum Gravity 

Theories (QG) [ ]. FFT is built on the key idea that, at some large energy scale, spacetime 

dimensionality turns into a continuous variable  

 4 , 1D ε ε= − <<  (1) 

where 0ε =  recovers the familiar low-energy limit of both SM and General Relativity. In 

general, the deep ultraviolet regime of QFT may be described by a FFT where ε  is not 

necessarily limited to a small deviation from zero but it assumes a scale-dependent range of 

values [  ]. 

Our contribution is organized as follows: next section is dedicated to a brief survey of FFT and 

some of their current applications. Section three presents few of existing hints in support of FFT. 

The dynamic role of continuous dimension (1) in ensuring consistency of QFT forms the topic of 

section 4. A novel mass and flavor generation mechanism based on (1) is formulated in section 

five. Section six deals with a straightforward solution to both gauge hierarchy and cosmological 

constant problems using (1) and dimensional regularization. Open questions, future 

developments and a summary of results are included in the last two sections.  

We caution from the outset that our contribution is meant to be informal and introductory in 

nature. It reflects a body of ongoing theoretical work with many ideas under development. 
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Follow-up modeling efforts are needed to falsify, consolidate or expand our tentative 

conclusions.   

2. BRIEF SYNOPSIS OF FRACTIONAL FIELD THEORIES 

Fractional field theories are continuum field models built on spacetime endowed with non-

integer dimensions. Multi-fractional field theories (MFT) are a subset of FFT in which the 

spacetime dimension D is variable and runs with the observation scale. By analogy with the 

behavior of RG equations, this property is called dimensional flow. A characteristic feature of 

both theories is that the measure entering the action functional is not the familiar D-dimensional 

entity Dd x , but a Lebesgue–Stieltjes measure ( )d xρ  whose form is determined by fractal 

geometry [  ]. 

Consider a multiplet of classical fields iΦ = Φ , 1, 2,...,i N= embedded in Minkowski  spacetime. 

Assuming that all fields are analytic functions of coordinates x xµ= , 0,1, 2,3µ = , a generic 

example for a FFT action in one dimension 1 0x x= ≥  is given by 

 [ ] ( , )S d LρΦ = Φ ∂Φ∫  (2) 

in which [ ] 

 
1

( 1)
x

d dx
ααρ

α

−

=
Γ +

 (3) 

and 0 1α< ≤ . In the limit of low-level fractality, we write 1α ε= −  with 1ε <<  and the measure 

becomes 

 
(1 )
(2 )

x
d dx

εερ
ε

−−
=
Γ −

 (4) 
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(3) is a natural generalization of differential dx  for smooth spacetime ( 0ε = ). 

Another generic example is based on using fractional differential and integral operators in field 

theory [ ]. Equations containing such operators are used to analyze the behavior of systems 

characterized by 

• Power-law nonlinearity, 

• Power-law long-range spatial correlations or long-term memory, 

• Fractal or multi-fractal properties. 

In the last decade, the number of applications of fractional operators in science and engineering 

has been steadily growing. They include models of fractional-relaxation effects, anomalous 

transport in fluids and plasma, wave propagation in complex media, viscoelastic materials, 

universal response in dielectric media, non-Markovian evolution of quantum fields, networks of 

fractional oscillators, dynamics of non-extensive statistical systems, QFT, QG and so on. The 

reader is referred to [  ] for an informative (albeit incomplete) update of how fractional operators 

are used in various contexts.  

Let 1( , ) ( )pf x L Eλ ∈  an arbitrary function of x  defined on a one-dimensional Euclidean space 

1 0x x= ≥  where λ  is a parameter and 11 p α< < . Fractional integration of order α on 

( , )y−∞ and ( , )y +∞ is described by [  ] 

1

1 ( , )
( )( , )

( ) ( )

y f x dx
I f y

y x
α

α

λλ
α+ −−∞

=
Γ −∫    

(5a)           

1

1 ( , )
( )( , )

( ) ( )y

f x dx
I f y

x y
α

α

λλ
α

+∞

− −=
Γ −∫             
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An alternate formulation is given by the left (L) and right (R) Riemann-Liouville operators,  

0
0

1
( , ) ( ) ( , )

(1 )

y

L

d
D f y y x f x dx

dy
α αλ λ

α
−= −

Γ − ∫   

(5b)  

 
0

0

1
( , ) ( ) ( ) ( , )

(1 )R
y

d
D f y x y f x dx

dy
α αλ λ

α
−= − −

Γ − ∫   

Fractional operators describe dynamics on fractal and multi-fractal structures and are a natural 

generalization of momentum-energy operators for energy scales far beyond the SM scale [ ]. 

Given the non-local nature of fractional operators, which is incompatible with underlying 

principles of QFT, connecting FFT with QFT in the low-energy limit turns out to be a non-trivial 

challenge [  ].  

Current formulation of QFT contains several hints that point toward fractal space-time and FFT. 

We examine them in the next section. 

3. HINTS FOR FRACTAL SPACETIME IN FIELD THEORY 

3.1) The first hint stems from the deep analogy between the Euclidean Path Integral formulation 

of QFT and critical phenomena [ ]. This implicit connection was first made clear by Wilson’s 

seminal work on RG program [ ]. As the underlying geometry of critical phenomena is 

manifestly fractal, it follows that QFT lives on a fractal foundation [ ]. Surprisingly, with few 

isolated exceptions, the dynamic ramifications of this connection remain largely unexplored to-

date [ ]. In what follows we glance upon the relationship between RG, critical phenomena and 

the concept of continuous dimension. 
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Fluctuations stemming from environmental interactions and the uncertainty principle, as well as 

correlations in statistical physics and QFT, are known to become unbounded near a critical point. 

In this region, fluctuations lead to singular thermodynamic behavior characterized by universal 

critical exponents and scaling functions [ ]. These power-law singularities bring to light an 

underlying emerging symmetry associated with critical phenomena, namely the manifest scale 

invariance of the theory: at the critical point, the physical system has no characteristic scale and 

the correlation length diverges. In the language of QFT, divergence of the correlation length is 

equivalent to a massless theory. 

RG provides a natural framework for explaining the onset of critical phenomena, the roots of 

universality and the classification of various systems in terms of universality classes. In the 

context of RG, the process of integrating out fluctuations and the short-distance degrees of 

freedom is made systematic. For instance, if there is a single mass scale M  in the microscopic 

theory, RG proceeds by building an effective field theory whose content may be understood as a 

power expansion in 1M . RG is based on the premise that the renormalization technique absorbs 

all relevant fluctuations above M . There are two implicit premises behind this technique: a) 

fluctuations have a finite average and b) renormalization process is carried out at a fixed 

dimensionality of space-time. 

A key consequence of RG in both statistical physics and QFT is that universal properties near 

second-order phase transitions depend strongly on the space-time dimensionality. Consider, for 

instance, the traditional one-component Ising model consisting of an orthogonal lattice of spins 

experiencing nearest neighbor coupling. It can exhibit an infinite number of multi-critical points 

in 2D = , a critical Wilson-Fisher or a tri-critical point in 3D =  and a Gaussian fixed point for 
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4D =  [ ]. Percolation, random walks and formation of fractal clusters in critical systems 

undergoing second order phase transitions are also typical examples of processes whose outcome 

depends on D  [ ]. The relevant literature on statistical physics of phase transitions points out that 

continuity in the dimensionality of space is an essential ingredient for the correct description of 

critical phenomena. As mentioned below, extrapolation from 4D =  to an infinitesimally lower 

dimension 4D ε= −  is the basis for dimensional regularization in field theory and represents one 

frequent method in the non-perturbative study of the RG flow near non-trivial fixed points [ ]. 

Recent work on field theories formulated in continuous dimension asserts that a new type of 

critical behavior develops at a fixed energy RG scale µ  as a result of incremental changes in the 

dimensional parameterε  [ ].  

3.2) One of the earliest proposals for non-integer dimensionality of space-time was put forward 

in [ ] where it was shown that vacuum fluctuations surrounding an electron in QED have lesser 

influence in 4D <  dimensions. As a result, the first order correction to the anomalous magnetic 

of the electron in 4D ε= −  dimensions becomes 

 
( ln )

4
Eg

α γ π
δ ε

π
+

=  (6) 

where α  represents the fine structure constant, Eγ  is Euler’s constant and the numerical value of 

parameter ε  is found to be 

 7(5.3 2.5) 10ε −= ± ×  (7)  

Reference [ ] points out that numerical bounds on ε  may be taken from the literature of 

dimensional regularization models. Using measurements of anomalous magnetic moment of 

muon and electron, one obtains  
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 810ε −< ,   1510l m−=  (8) 

in which l  stands for the characteristic length scale for the onset of fractal space-time. Likewise, 

experimental determination of the Lamb shift in hydrogen yields  

 1110ε −< ,   1110l m−=  (9) 

whereas derivations based on astrophysical observations lead to  

 910ε −< ,   1110l m=   (planetary precession) (10) 

 510ε −< , 14.4l = Gpc (cosmic microwave background)   (11) 

3.3) As it is known, dimensional regularization is a key computational tool for removing 

infinities in perturbative QFT. The deviation from space-time dimension (1) is treated as a 

regulator of Feynman integrals and meaningful results are obtained at the end of calculations as 

0ε → . An important property of dimensional regularization is that it complies with gauge and 

Lorentz invariance, in contrast with other regularization methods (e.g. the cutoff schemes) [  ].  

In general, the technique of renormalization in perturbative QFT consists in a two-step program: 

regularization and subtraction. One first controls the divergence present in momentum integrals 

by inserting a suitable regulator, and then brings in a set of counter-terms to cancel out the 

divergence.  Momentum integrals in QFT have the generic form 

 4

0
( )I d qF q

∞
=∫  (12)                                     
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Two regularization techniques are frequently employed to manage (12), namely “momentum 

cutoff” and “dimensional regularization”. When the momentum cutoff scheme is applied for 

regularization in the UV region, the upper limit of (12) is replaced by a finite cutoff UVΛ , 

 4

0
( )

UV

UV
I I d qF q

Λ

Λ→ = ∫  (13) 

Explicit calculation of the convergent integral (13) amounts to a sum of three polynomial terms  

 1( ) ( )
UV UV

UV
I A B CΛ = Λ + + Λ  (14)                           

Dimensional regularization proceeds instead by shifting the momentum integral (12) from a four-

dimensional space to a continuousD - dimensional space 

 
0

( )D
DI I d qF q

∞
→ = ∫  (15) 

Introducing the dimensional parameter 4 Dε = −  leads to 

 1'( ) ' '( )DI I A B Cε ε ε→ = + +  (16) 

The connection between dimensional and cutoff regularization techniques is given by [ ]     

 
2

2

2 5
log log4

6
UV

Eγ π
µ ε
Λ

= − + +  (17a) 

in which µ  is the sliding RG scale [ ]. We find it convenient to present (17a) is a slightly 

different form, that is, 

 
2

2

1

log ( )UV

ε

µ

∝
Λ

 (17b) 
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It is apparent from the above that the four-dimensional spacetime is recovered in either one of 

these limits: 

a) UVΛ →∞  and 0 UVµ< << Λ , 

b) UVΛ < ∞  and 0µ → .  

However, both limits are in conflict with our current understanding of deep ultraviolet and deep 

infrared boundaries of field theory. Theory and experimental observations alike tell us that the 

notions of infinite or zero energy are, strictly speaking, meaningless. This is to say that either 

infinite energies (point-like objects) or zero energies (infinite distance scales) lead to divergences 

whose removal requires the machinery of RG program. Indeed, there is always a finite cutoff at 

both ends of either energy or energy density scale (deep ultraviolet = Planck scale, deep infrared 

= finite radius of the observable Universe or the non-vanishing energy density of the vacuum set 

by cosmological constant). It follows from these considerations that the limit 0ε →  works 

exclusively as reasonable approximation and realistic models near or beyond the SM scale must 

account for space-time geometries having continuous dimensionality.  

3.4) A consistency condition that is violated by SM is invariance under conformal 

transformations in D = 4 dimensions1. This condition constrains the action functional to be 

independent from the choice of measurement units. Conformal symmetry is broken in field 

                                                           
1 Hereafter, scale and conformal symmetry are used interchangeably, with the caveat that there are systems that 

display scale invariance but fail to be conformal invariant [ ]. We ignore this distinction here for the sake of 

simplicity and clarity. 
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theory by dimensionful parameters in the Lagrangian or as result of quantization. The latter 

requires regularization of amplitudes and introduction of an arbitrary RG scale in the theory [  ]. 

However, it can be shown that conformal symmetry may be restored if the theory is placed on 

spacetime having continuous dimensionality [ ]. To this end, consider the Lagrangian of  

massless electrodynamics. It reads,  

 
1
4

L F F i Dµν µ
µν µψ γ ψ= − +  (18) 

An arbitrary change in coordinate scale 'x x xλ→ =  along with the corresponding field 

transformations 

 
3
2( ) '( ) ( )x x xψ ψ λ ψ→ =  (19) 

 ( ) ' ( ) ( )A x A x A xµ µ µλ→ =  (20)                                                     

leave the action unchanged [ ]. The Noether current associated with the change of scale is given 

by 

 scaleJ xµ µν
νθ=  (21)                                                           

in which µνθ represents the conserved energy-momentum tensor , 0µν
µθ∂ = . The conservation 

of scale current (21) amounts to the vanishing of the trace of the energy-momentum tensor, that 

is, 

 0scaleJ µ µ
µ µθ∂ = =  (22) 

In D  space-time dimensions the trace of massive theory may be cast in the form 
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 ( , , , , , )
4

F F m R m F Fµ ησ ησ
µ ησ ησ

εθ ψψ ε ψ ψ= + +  (23)                                

where the first two terms explicitly highlight the contribution of electron mass and the deviation 

from four-dimensionality. All terms vanish in the limiting case 0m =  and 0ε = . The residual 

term in (23) embodies correction effects not included in the first two terms. Enforcing conformal 

invariance defined by a vanishing trace in (23) implies that electrons may gain mass on account 

of deviations from 4D = . 

4. LOCAL CONFORMAL SYMMETRY IN CONTINUOUS DIMENSION  

Demanding that a conformal invariant field theory be defined in continuous dimension (1) means 

that all variables and descriptors of that theory (coordinates, dimensional measures, fields, 

propagators and gauge charges) behave as fractal functions. This viewpoint echoes the 

observation that collective phenomena at criticality approach scale-invariance and live on a 

fractal support [  ]. On this basis, taking UVs µ
Λ=  and starting from (1) and (17b), 

 2sε −∝  (24) 

it is natural to conjecture that the following scaling relations hold near criticality: 

a) coordinates:   
( )

( ) 2
x

x

x
xx s

ν
ν ε

−
∝ =                                                                                             (25) 

b) fermions:      
( )

( ) 2

x
xs

ψ

ψ

ν
νψ ε

−
∝ =  
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c) gauge bosons:   

( )

( ) 2

xA

A xA s
ν

ν ε
−

∝ =                                                                                                    

d) dimensional measure:     
( )

( ) 2

x
x

x s
ρ

ρ

ν
νρ ε

−
∝ =  

e) dimensional measure in field space:    

( )
( ) 2

x
xs

ϕ

ϕ

ν
ν

ϕρ ε
−

∝ =  

Two observations are in order at this point: 

1) Similar scale transformations describe conformal invariant behavior of propagators in FFT [ ]. 

2) Since (25) represents a set of parametric relations, conformal invariance under (25) is 

necessarily a comprehensive symmetry involving concomitant transformations of coordinates, 

fields, propagators and dimensional measures. This is in contrast with conventional QFT where 

the symmetry under coordinate transformations and symmetry under internal transformations in 

field space cannot be trivially mixed (Coleman - Mandula theorem [  ]). 

Consider now a generic classical or quantum field theory defined on arbitrary space-time 

dimension D: 

 [ ] ( )D
i i iS d x gΦ = Φ∫  (26) 

in which iΦ  denotes a product of fields and/or their derivatives and ig  are coupling constants or 

masses. Due to (24) and (25), each term of (26) contains a multiplication of power functions  

 ( ) ( ) ( ) ( ) ( ) ( )( , , ) ( )D a x b x c x a x b x c xf x g d x g ε ε ε ε + +Φ = Φ ∝ =  (27) 

Here, ( ), ( )a x b x and ( )c x are linearly dependent on the set of ( )xν exponents defined in (25).  An 

arbitrary scale transformation applied to (27) amounts to 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , , ) ( , , )x x x x a x x b x x c xf x g f x gα β γ α β γλ λ λ λ + +Φ = Φ     (28) 

with 1λ ≠ . There are two cases of interest here, namely: 

1) If ( ) ( ) ( ) ( ) ( ) ( ) 1x a x x b x x c xα β γ+ + =  then (28) corresponds to ordinary scale invariance of 

homogeneous functions [  ]. 

2) The case ( ) ( ) ( ) ( ) ( ) ( ) 0x a x x b x x c xα β γ+ + =  defines a condition of scale invariance that is 

insensitive toλ .   

Consider again the action functional (26). We seek to cast the requirement of conformal 

symmetry applied to (26) in a form that explicitly highlights the role played by dimensional flow. 

The mass dimensions of coordinates, couplings and fields are given by   

[ ] [ ] ( )gd D
g M= , [ ] [ ] ( )d D

M ΦΦ = , [ ] [ ] ( )xd D
x M

−
= , [ ] ( )xD d DDd x M

−
  =   

By dimensional analysis, action (26) represents a Lorentz scalar if  

 ( ) ( ) ( ) 0g xd D d D Dd DΦ+ − =  (29) 

Now, demanding that coupling is a scalar quantity ( 0gd = ), implies that the rest of dimensions 

need to be rescaled through a suitable flow '( ) ( ')x xd D d D→ , '( ) ( ')d D d DΦ Φ→ and 'D D→ such 

that   

 ' '( ') ' ( ') 0xd D D d DΦ − =  (30) 

In terms of ε  (29) becomes  

 ( ) ( ) ( 4) ( ) 0g xd d dε ε ε εΦ+ + − =  (31) 
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with 

 (0) (0) 4( (0)) 0g xd d dΦ+ − =  (32) 

Let  

 ( ) ( 4)[ ( )]xdε ε ε∆ = −  (33) 

Assuming that all mass dimensions are analytic functions of (1) leads to the following relations  

' ( ') ( )
d

d dε ε δε
ε
Φ

Φ Φ

∂
= +

∂  

( ') ( )ε ε δε
ε
∂∆

∆ = ∆ +
∂    

(0) (0) 0g

d d
d dε ε ε

ε ε ε ε
Φ Φ

Φ

∂ ∂∂∆ ∂∆ + + ∆ + = + − = ∂ ∂ ∂ ∂   

g

d
dε

ε ε
Φ∂ ∂∆ + = ∂ ∂   

 

where 1ε δε∝ << . Also let 

,d η ηε εΦ ∆
Φ ∝ ∆ ∝  

Following (25), the above condition can be presented as 

 ( ) ( ) ( ) ( ) ( )gx d x x x d xη ηΦ Φ ∆+ ∆ =  (34) 

Two prime examples of field theories having dimensionful coupling constants are General 

Relativity (GR) and the four-fermion model of weak interactions. It is known that quantized 

versions of such “effective” theories face serious challenges because different diagrams no 
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longer can be added together to cancel non-renormalizable behavior. However, this may no 

longer the case if spacetime dimension is treated as a continuous variable. For instance, in light 

of (30) to (34), one can start from the Einstein-Hilbert action of classical gravity 

 41
16GS d x gR

Gπ
= −∫  (35) 

and come up with a scalar Newton constant by letting coordinates and the components of the 

metric tensor gµν  flow their dimensions according to   

 '( ) '( )x xD d D d→  (36a) 

 '( ) ( ')g gd D d D
µν µν

→  (36b) 

 '
'( ) ( ')G Gd D d D→  (36c) 

This substitution unveils the deep and counterintuitive connection between conformal symmetry 

in continuous dimension and GR [ ]. As shown in the Appendix, this finding lines up well with 

theories where local scale symmetry is the source of classical gravity, dark matter sector and the 

mass generation mechanism in SM [  ].  

We close this section with a brief remark on how the Lebesgue-Stieltjes measure (3) and (4) may 

be used to reinforce consistency in field theory. 

First, under any scale transformation the measure behaves as [ ]  

 0(1 ) (1 ) (1 ) (1 )( ) ( ), 0x y zx xε ε ε ερ λ λ ρ λ− + − + − + −= >  (37) 
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where 4 Dµ µε = −  ( 0,1, 2,3µ = ) and 4( )x d xρ = . The measure becomes insensitive to λ  if 

deviations from integer dimensions are large ( (1)Oµε = ) and if 

 0 4x y zε ε ε ε+ + + =  (38) 

This constraint allows for a non-commutative description of spacetime since, in general,  

 0x y zε ε ε ε≠ ≠ ≠  (39) 

Second, when extended to the Path Integral (PI) analysis, (37) can set the stage for anomaly 

cancellation in field theory following the Fujikawa criterion [ ]. To sketch this point, consider 

the case  

 , , 0( ) ( ) ( )x y z x x xε ε ε≈ =      (40) 

 1λ σ= − ,    1σ <  (41) 

(37) takes the form 

 ( ) {1 4[1 ( )] } ( )x x xρ λ ε σ ρ≈ − −  (42) 

In the PI treatment pioneered by Fujikawa, the symmetry of a quantum theory can be tested by 

starting from the generating functional.  Consider the functional describing a vector field aAµ  and 

an axial current source aµ in four-dimensional spacetime [  ] 

 4[ , ] [ ][ ]exp [ ( , , ) ]a a
AW a A d d i d x L A a jµµ µ µ µψ ψ ψ ψ= −∫ ∫  (43) 

Define an infinitesimal scaling of fermion fields ( ( ) 1xη << ) as in 
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 5' (1 )iψ ηγ ψ= −  (44a) 

 5' (1 )iψ ψ ηγ= −  (44b) 

The corresponding change of functional (40) is 

 [ , ] [ , ]a aW a A J W a Aµ µ µ µ µη−∂ =  (45) 

Here, J represents the Jacobian associated with the transformation of PI measure. Its explicit 

form is given by 

 4
,exp[ ( ) ( )]AJ i d x x j xµ
µη= − ∂∫  (46) 

where, by definition, 

 [ ][ ] [ '][ ']d d d d Jψ ψ ψ ψ=∫ ∫  (47) 

If the same analysis is carried out in continuous dimension, coordinates are expected to scale 

according to (25) and (46) turns into 

 4
,exp{ [1 4(1 ( )) ] ( ) ( )}AJ i d x x x j xµ
µε σ η= − − − ∂∫  (48) 

The theory is anomaly-free if the Jacobian is unitary, that is, if 

 ,[1 4(1 ( )) ] ( ) ( ) 0Ax x j xµ
µε σ η− − ∂ =  (49) 

In particular, for any ( )xε  given by (40), one can always conveniently choose a scale 

1σ λ= − that satisfies 
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1

4[1 ( )]x
σ

ε
∝

−
 (50) 

Although far from being either rigorous or complete, this derivation points out that is possible, at 

least in principle, to remove anomalies from an underlying theory by embedding it in a spacetime 

with continuous dimensionality.  

5. MASS AND FLAVOR STRUCTURE FROM CONTINUOUS DIMENSION 

The goal of this section is to explore two questions:  How is local conformal symmetry in 

continuous dimension related to the physics of SM? In particular, is it possible to derive the mass 

and flavor structure of SM from a mechanism that mimics electroweak symmetry breaking 

(EWSB) but occurs in continuous dimension? 

Before going into details, let us recall that RG is a powerful framework for understanding the 

approach to critical behavior in statistical physics and to scale invariance in field theory. In the 

Wilson picture, RG equations describe the trajectories of operators towards or away from a 

functional attractor set. According to this model, the flow of masses, gauge couplings, fields and 

mixing angles is given by the corresponding set of β -functions [ ]. 

A standard assumption in perturbative QFT is that the attractors of the RG flow consist of a finite 

number of isolated fixed points [ ]. There is preliminary evidence that the end of the RG flow is a 

limit cycle or an attractor with a more complex structure [ ]. There is also evidence that scale-

invariant RG trajectories lead to periodic and quasi-periodic attractors [ ]. These attractors are 

prone to become unstable under perturbations and, in some cases, acquire a fine structure and 

turn into strange attractors. A straightforward example is the Landau-Ginzburg-Wilson theory 

and the instability of its Wilson-Fisher attractor. The role played by the degenerate nature of this 
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attractor in generating the mass and flavor structure of SM has been discussed in [ ]. Conformal 

symmetry is preserved there as the spectrum of masses and gauge charges develops on the 

critical surface. Unlike the conventional scenario of EWSB, this model is free from any fine-

tuning (or vacuum stabilization) mechanisms. The relationship between ε  , particle masses and 

gauge charges is given by:                                                     

2 2( )g M∗ ~
2

EW constµ =   

(51)                           

* 2( )g ~ fm∗ ~ε  

Here EWµ  denotes the reduced EW scale, g∗  the gauge charge on the critical surface, M the 

vacuum expectation value of the vector boson on the critical surface and *
fm  is the normalized 

fermion mass2. It can be shown that the WF attractor of the RG flow is unstable and changes 

from a single isolated point to a distribution of points [ ].   

One obtains from (51) 

 
2 2 2

2
2 2

2 2

1Z EM

W

M g e
M g

α
α

+
= = +  (52) 

                                                           
2 Parameters entering (51) are defined in [ ]. They have arbitrary magnitude being based on the behavior of the LGW 

model near a generic critical scale EWµ . Numerical values of SM parameters may be obtained after applying a 

suitable rescaling operation in (51) such as  2 2 2 2( ) ,g b Mg g M Mλ λ∗= =  and 
22
EWEW EWµ λ µ=  , with 

2

2 2[ ]( ) ( )
EW EW

g M b

O
g M

λ µ
λ λ = .
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in which 
2

4EM
eα π=  is the fine-structure constant and 

2
2

2 4
gα π=  the strength of the weak 

interaction. The rationale for (52) lies in the fact that the charged gauge boson W ±  carries a 

superposition of weak and electromagnetic charges, whereas the neutral gauge boson 0Z  carries 

only the weak isospin charge. Inverting (52) and taking into account the last rows of Table 1 

below, leads to 

 
2

2
2

2

1 1 1
1 cos

1
11

W
W

EMZ

M
M

θ
α δ
α δ

= = ≈ − =
++

 (53) 

where δ  stands for the Feigenbaum constant [ ]. (53) suggests a natural explanation for the 

Weinberg angle Wθ . We may write (52) as 

 
2 2 2
2 2
2 2
W Z

g g e
const

M M
+

= =  (54) 

This relation offers a straightforward interpretation for both Fermi constant and the mass of the 

hypothetical Higgs boson. Indeed, in SM we have [13] 

 
2
2
2 4 2 F
W

g
G

M
=  (55)                                                         

and 

 0 1
v ( ) 246.22

2F

GeV
G

ϕ ∝ ≈  (56)                                             

where 0v( )ϕ  denotes the vacuum expectation value for the neutral component of the “would-be” 

Higgs doublet.                                      
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Tab 1: Actual versus predicted ratios of SM parameters (except neutrinos) 

A similar comparison may be drawn on neutrinos. Since neutrino oscillation experiments are 

only sensitive to neutrino mass squared differences and not to the absolute neutrino mass scale 

( 0mν ), they can only supply lower limits for two of the neutrino masses, that is, 

12 22( ) 5 10ATMm −≈ ×  eV and 
12 22( ) 1 10SOLm −≈ × eV [ ]. As a result, it is more relevant to consider 

Parameter 

ratio 

Behavior 

 

Actual  

 

Predicted 

 
u

c

m
m  

4−
δ  

33.365 10−×  34.323 10−×  

c

t

m
m  

4−
δ  

33.689 10−×  34.323 10−×  

d

s

m
m  

2−
δ  0.052  0.066 

s

b

m
m  

2−
δ  0.028  0.066 

em
mµ

 
4−

δ  
34.745 10−×  34.323 10−×  

m
m

µ

τ
 

2−
δ  0.061  0.066 

W

Z

M
M  

1
21

(1 )−
δ  

0.8823 0.8623 

2EM

W
( )α

α  
2−

δ  0.053  0.066 

2EM

QCD
( )α

α  
4−

δ  
34.034 10−×  34.323 10−×  
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experimentally constrained bounds on 0mν  reported from beta decay, neutrinoless double beta 

decay as well as from cosmological observations [ ]. 

Based on these inputs, it makes sense to set the upper (U) and lower (L) limit values for the 

absolute neutrino mass scale as 0( ) 2Umν =  eV and 0( ) 0.1Lmν =  eV. According to Tab. 1, ratios of 

charged lepton masses scale as 
2

δ
−
 and 

4
δ
−
, which suggests that 0mν  should naturally follow a 

8
δ
−
 or 

16
δ
−

pattern . Table 2 displays a side-by-side comparison on the mass ratio 
0

e

m
m

ν for 

0( )Umν and 0( )Lmν , respectively, and shows that numerical predictions line up fairly well with 

current observations. 

 

Parameter 

ratio 

Behavior 

 

Actual 

 

Predicted 

 

0

e

m
m

ν  8−
δ  

72 10−< ×  

64 10−< ×  

51.87 10−×  

0

e

m
m

ν  16−
δ  

72 10−< ×  

64 10−< ×  

103.5 10−×  

 

Tab. 2: Actual vs. predicted ratios of neutrino mass scales. 

 

 



25 
 

6.  A natural solution for the hierarchy problem                       

In section 3 we briefly addressed the issue of dimensional regularization which can be applied at 

both infrared (IR) and ultraviolet (UV) boundaries of the energy scale.  The goal of this section is 

to show that the concept of continuous dimension offers a straightforward solution to the so-

called hierarchy problem of field theory [ ].                                                             

To regularize field theory in the IR one needs to first redefine the limits of integration in (15). If 

Γ  is taken to represent the lowest limit and 0µ  an arbitrary RG scale, a strictly positive ε  on 

less than four dimensions ( 4D < ) requires taking the reciprocal of the logarithm of (15) - (17b) 

to comply with 0µ > Γ . The IR version of (17b) accordingly reads: 

 2
0

2

1
' 4

log( )
Dε

µ
= − ∝

Γ

 (58)                           

We proceed with the following assumptions: 

6.1) The deep IR cutoff of field theory is set by the cosmological constant scale  

 
1
4( )ccΓ = Λ  (59)                                                            

where ccΛ  represents the cosmological constant. 

6.2) The deep UV cutoff of field theory is set by the Planck scale: 

 UV PlΛ = Λ  (60)    



26 
 

Combining 6.1) and 6.2) implies that, as the EW scale is approached from above or below via 

inherent statistical fluctuations, (17b) and (58) naturally converge to a common value. Taking 

0 EWµ µ=  and substituting in (17b) and (58) yields 

 
2

1
4( )EW Pl EW

cc
EW Pl

µ µ
µ
Λ

= → Λ =
Γ Λ

 (61)  

Several conclusions may be drawn from (61), namely,      

• Asymptotic approach to four-dimensional space-time explains the existence of the deep 

IR cutoff ( ccΛ ) and deep UV cutoff ( PlΛ ). Stated differently, fractal space-time 

description supplied by the condition 0ε >  and ' 0ε >  appears to be linked to these 

natural bounds [20].   

• Fixing two out of the three scales involved in (61) automatically determines the third one.  

• The gauge hierarchy problem, cosmological constant problem and the existence of the 

EW phase transition appear to be deeply interconnected. 

• The derivation presented here stands in sharp contrast with sophisticated approaches to 

the hierarchy problem based on Supersymmetry (SUSY), Technicolor, Extra-dimensions, 

Anthropic arguments or gauge unification near the Planck scale.  

7. Open questions and future developments 

Here is a partial list of open questions that need to be answered in future extensions of our work:   

7.1) We have seen that FFT brings up an intriguing picture on phenomena that may unfold 

beyond SM, in particular, in the deep Terascale sector of high-energy physics.  But, since at least 
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in its basic formulation, FFT is not unitary and local, it is at odds with fundamental principles of 

QFT. FFT may be however converted to a unitary theory by taking advantage of non-local 

attributes of fractional differential and integral operators [ ]. As indicated in the text, the key 

symmetry here is local conformal invariance in continuous dimension displayed by dynamics on 

fractal structures. When associated with self-similarity, this property blurs the distinction 

between locality and non-locality and makes room for a meaningful connection between FFT 

and the low-energy regime of SM [ ].   

7.2) As suggested in section four, dimensional flow on fractal spacetime enables one to 

transform dimensionful parameters into scalars and improve consistency of the theory. It remains 

to be explained why Nature favors this mechanism in the first place. 

7.3) The analysis introduced in section five (as well as [ ]) suggests that RG flow in continuous 

dimension (1) offers a natural framework for understanding the mechanism of EWSB.  Under 

conditions that allow use of Landau-Ginzburg-Wilson theory, one is able to retrieve the entire 

structure of SM from nonlinear analysis of RG equations. Among many questions related to this 

topic, we mention the following: 

• Are there additional generations of gauge bosons and fermions or is there a stability limit 

of RG trajectories constraining the number of these flavors? [ ]. 

• Can flavor mixing and the absence of flavor changing neutral currents be explained 

using mixing of RG trajectories near transition to chaos?  

• Can all electroweak precision observables be correctly recovered?. 
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• Can all decay channels of particle physics be understood as the result of chaotic mixing 

and diffusion of RG trajectories on strange attractors?. 

• Is it possible to devise a non-perturbative formulation of chiral gauge theory starting 

from FFT, where breaking of discrete symmetries arises naturally? 

8. Conclusion  

FFT represent an emerging research topic in mathematical physics. These theories are founded 

on two premises: 

a) spacetime has an intrinsic fractal or multifractal structure at energy scales sufficiently far from 

the ones describing SM and General Relativity, 

b) spacetime dimensionality either stays fixed and arbitrarily close to 4D =  or flows with the 

probed scale in such a way as to approach 4D = at ordinary energies. 

Drawing on the properties fractal differential and integral operators, we conjectured herein that 

the most comprehensive invariance of FFT near 4D =  is local conformal symmetry in 

continuous dimension. It combines both spatial and internal symmetries, at variance with the 

constraints imposed by the Coleman-Mandula theorem of conventional QFT. There are several 

theoretical benefits of this conjecture, namely:  

• Under certain conditions, dimensional flow can render a theory dimensionless and set the 

stage for its renormalizability. 

• It can also lead to anomaly cancellation and to a consistent renormalization scheme for 

QFT [ ]. 

• It can naturally account for the mass and flavor hierarchies of SM, including neutrinos. 
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• It can explain in a straightforward manner the hierarchy problem and the cosmological 

constant problem. 

• It does not lead to a strongly coupled field theory and does not require fine-tuning or “ad-

hoc” introduction of additional symmetries and/or fields to ensure consistency. 

We close by noting that FFT may also explain the existence of broken discrete symmetries in 

EW interactions (C and CP) [  ] and provide a sensible interpretation on the composition of non-

baryonic “dark matter” [  ].   

APPENDIX A 

 LOCAL CONFORMAL SYMMETRY AS MASS GENERATION MECHANISM  

Let 3,1M  denote a pseudo-Riemannian spacetime with metric gαβ  having signature (+, - , - , -). 

Let ( )( ) x xx sνΩ =  be a strictly positive function on defined on 3,1M  which has an inverse. The 

local conformal transformation in 3,1M  is defined through the following change of metric, 

 2( ) ( ) ( ) ( )g x g x x g xµν µνµν→ =Ω  (A.1) 

The set of all local conformal transformations forms the multiplicative abelian infinite-

dimensional group C. The effect of a local conformal transformation is to redefine the length 

scale according to 

 ( ) ( ) ( ) ( )i j
ijdl x g dx dx dl x x dl x= − → =Ω  (A.2) 

The meaning of the symmetry associated with group C is that the structure of physical laws must 

be independent from the units chosen to measure length, time and mass. In general, a field theory 

that depends on dimensionful rather than dimensionless variables not only fails to comply with 
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local conformal invariance, but typically breaks requirements of gauge symmetry and 

renormalizability. It also leads to anomalies when classical theory is quantized and radiative 

corrections are accounted for [  ].  

Let Φ  be a local tensor or spinor field of arbitrary spin and consider the map 

 ( ) ( ( ))x U xΩ → Ω  (A.3) 

whose operation is described by  

 ( )( ) ( ( )) ( ) ( )xx U x x s xνΦΦ = Ω Φ = Φ  (A.4)  

The number  

 
( )

( )
( )

x x
x

x
ν

κ
νΦ

=  (A.5) 

is called the conformal weight of Φ  and map (A.3, A.4) defines the representation of C in field 

space. Using (A.5) in a global rather than local sense, it can be shown that the Maxwell, Yang-

Mills tensors and Dirac field in four dimensional spacetime (D = 4) have conformal weights 

κ = 0 and κ = - 3/2, respectively [  ].  

As with the standard arguments for the existence of gauge fields, demanding that the theory stays 

invariant to local conformal transformations (A.1), (A.2) and (A.4) implies that there is a gauge 

field S (called the Weyl boson) and a corresponding covariant derivative defined through [  ] 

 ( ) [ ( ) ] ( )x x S xµ µ µκ∂ Φ → ∂ + Φ  (A.6) 

 ( ) ( ) ( )S x S x xµ µ κ→ −∂  (A.7) 

The field tensor associated with S is given by 
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 H S Sµν µ ν ν µ= ∂ − ∂  (A.8) 

The scalar component of S is called the Weyl scalar (σ ). It has conformal weight -1 in D = 4 and 

satisfies 0Hµν = . Since ( ( ))xκ κ ε=  on account of (24) and (25), the constraint of local 

conformal transformation induced by (A.6) shows that space-time dimension takes on the role of 

a local gauge coupling. This conclusion is consistent with the content of sections five, where the 

entire flavor structure of SM emerges from the properties of RG flow in continuous dimension 

4D ε= − .  

Weyl boson has several remarkable features, namely [  ]: 

a) it does not couple to either one of SM particles. It can only form a Bose-Einstein condensate 

under the effect of classical gravity and can be thus interpreted as a likely candidate for dark 

matter. 

b) Weyl scalar represents the Goldstone boson arisen from breaking of local scale invariance and 

turns S into a massive vector particle.  

c) Weyl scalar is related to classical gravity and its vacuum is linked to Newton’s constant (G).  

d) Higgs scenario of EWSB represents a particular embodiment of the Weyl boson model. 
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