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Abstract: 
In this paper we have introduced a new concept on the convergence of a 

sequence of the nonlinear Lipschitz (Lip-) functionals, which would be 

called an L*-convergence, and we have considered its applications in 

Banach spaces. This convergence is very similar to the weak* (W*-) 

convergence of the sequence of the bounded linear functionals, but there 

are some differences. By the L*-convergence, we have considered the 

problem on the relations of the compactness between the Lip-operator and 

its Lip-dual operator, and we have obtained the mean ergodic theorems for 

the Lip-operator.    
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1. Introduction 

 

The monotone operator, compact operator and convex function are the 

typical nonlinear operators in Banach spaces. The Lipschitz (Lip-) operator 

is one of the most important nonlinear operators, but its properties are well 

known recently. There have been published many research results on the 

nonlinear Lip-operator [1,2,3,4,7].  

In this paper we will introduce a L*-convergence of a sequence of the 

nonlinear Lip-functionals and, on the basis of it, we’ll consider the problem 

in [1] on the relations of the compactness of Lip-operator and its Lip-dual 

operator, and obtain the mean ergodic theorems for the Lip-operator. 

First, we’ll recall the concepts on Lip- operator [8]. 

Let X  and Y  be real or complex Banach spaces, M and D  closed subsets of 

X , Y  respectively. Let M∈0 , D∈0  and DMT →:  be an operator. Unless 

otherwise noted, in this paper we shall not repeat above assumptions. If 

there exists a constant 0L ≥  such that, for all My,x ∈ , yxLTyTx −≤− , 

then operator T is called a Lip-operator on M .  

And ( ) sup /M x yL T Tx Ty x y≠= − −  is called a Lip-constant of T on M .   

We’ll often use a set ( )D,MLip0
, that is,   

 ( ) ( ){ TTDMTDMLip ,00:,0 =→= is an Lip-operator on M }. 

If the set D  is a linear subspace of Y , then the set ( )D,MLip0
 is a normed 

linear space and the Lip-constant )(TLM  is a norm of T in ( )DMLip ,0
. And if D  

is a closed linear subspace, in short, a closed subspace, then the normed 

linear space ( )D,MLip0
 is a Banach space by the norm )(TLM . In particular, if 

KD =  (real or complex field), then the space ( )DMLip ,0
 is called a Lip-dual 

space of M . We denote it by *
LM . And the element of *

LM is called a Lip-

functional. In the case of XM = , we denote by *
lX  the ordinary dual space of 
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Banach space X , which consists of all bounded linear functionals defined 

on X and would be called a linear dual space of X , in distinction from Lip-

dual space *
LX of X . Then it is clear that *

lX  is a closed subspace of *
LX . For 

any *, LDfMx ∈∈ , an operator defined by ( )( ) ( )( ) ( )TxfxTfxfTL ==*  is called 

a Lip-dual operator of T  and we denote it by *
LT . Then it is clear that 

),( ***
LLL MDBLT ∈  and )(TLM = *

LT , where ),( **
LL MDBL is the Banach space 

consisting of all the bounded linear operators on *
LD  into *

LM ([2]). Since the 

space *
LM  is a Banach space and the operator *

LT  is a bounded linear, it is 

defined a linear dual space **** )( lLLl MM =  of *
LM  and a linear dual operator 

**** )( lLLl TT =  of *
LT respectively. Then it is easy to see that ),( ******

LlLlLl DMBLT ∈  and 

***)( LlLM TTTL == .                          

In the study of Lip-operator, the need to extend the Lip-functional 

satisfying certain conditions is presented frequently, but that is reduced to 

the possibility of the extension to whole space with Lip-continuity and 

maintenance of Lip-constant of Lip-functional defined at a subset of 

Banach spaces. The following theorem gives us a sure guarantee for such 

possibility.   

Theorem 1[8]. Let f be a real-valued Lip-functional defined on a closed 

subset M of a real Banach space X . Then there exists a real-valued Lip-

functional F defined on X  such that 1) F is an extension of f , i.e., 

)()( xfxF =  for Mx∈ , and 2) )()( fLFL MX = .  

 Theorem 1P

/
P[8]. Let f  be a complex Lip-functional defined on a closed 

subset M of a complex Banach space X . Then there exists a complex Lip-

functional F defined on X  such that 1) )()( xfxF =  for Mx∈ , and 2) 

)()( fLFL MX ′=′ , where ( ) 2/122 )()()( hLgLfL MMM +=′  and, g  and h  are the real and 

imaginary parts of f respectively.  
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As will be seen from these theorems, we can say that the extension theorem 

is a generalization to nonlinear Lip-functional of the Hahn-Banach theorem 

([5]) on the extension of the bounded linear functional. Some corollaries 

follow from the extension theorem. The following corollary is one of those.    

Corollary [8]. For any MXx \0 ∈ , there exists a real-valued Lip-functional 

f  defined on X  such that 1) ( ) 0=xf  for Mx∈ , 2) ( ) dxf =0 , and  3)  

( ) 1XL f = , where 0inf 0 >−=
∈

xzd
Mz

. 

Proposition 1 [8]. Let ( )DMLipT ,0∈ . Then M  is a certain subset of **
LlM  in 

isometric embedding sense. If an operator **: LlMMJ →  is such isometric 

mapping, then we have, for all ,x y M∈ ,   

* , ( ) 1

sup ( ) ( )
f M L fL

x y Jx Jy f x f y
∈ ≤

− = − = −  and )()( **** JyTJxTTyTx LlLl −=− . 

Here, for any x M∈ , a functional )(xJ  defined on *
LM  by ( )( ) ( )xffxJ =  is a 

bounded linear and an operator JMMJ →: = = { }**( ) LlJ x M x M∈ ∈  is an 

isometric mapping satisfying the conditions of the theorem.   

   

 

 

2. A L*-convergence of sequence of Lip-functionals 
 

We shall introduce a new convergence of a sequence of Lip-functionals in 

Lip-dual space. This convergence is similar to W*-convergence of the 

sequence of bounded linear functionals in the linear dual space of Banach 

space, but there are some differences.  

Definition 1. A sequence { }nf  in Lip-dual space *
LM  would be said to be 

L*-convergent if a finite lim ( )nn
f x

→∞
 exists for each x M∈ ; { }nf  would be said 

to L*-converges to an element *
LMf ∈0  if 

0lim ( ) ( )nn
f x f x

→∞
=  all x M∈ . In the  
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later case, we’ll write *
0 lim nn

f L f
→∞

= −  or , in short, 
*

0

L

nf f→ .  

Remark. In general, the Banach-Steinhaus theorem - the resonance 

theorem ([5]) is not valid for the sequence of Lip-functionals. In other 

words, it is not true that *L -convergence of the sequence { }nf  

implies +∞<)(sup n
n

fL . For example, set ( ) sin /nf x nx n= for 1[0,1]x M R∈ = ⊂ (the 

set of real numbers), then it is clear that { } *
n Lf M⊂  and 

*

0 0
L

nf f→ = , but 

sup ( )n
n

L f = +∞ . The linear dual space of Banach space was always complete in 

the sense of W*-convergence of the sequence of bounded linear functionals. 

But it follows from this example that the Lip-dual space may not be 

complete in the sense of L*-convergence of the sequence of Lip-

functionals. (Private talk; we have discussed this example in our work in 

2003.  And we have seen this example at the paper [3], too. In [3], taken 
nf  

by ( ) 2sin /nf x n x n=  and the example have been discussed not in the sense of 

L*-convergence of a sequence of Lip-functionals, but W*-convergence. 

However, the ideas in the papers [3] and our work look equal to each other. 

Of course, there would be some differences in viewpoint of its discussion. 

We were surprised that our research method and idea for Lip-operator are 

coinciding with Prof. Peng Jigen’. This gave us a mind to study the Lip-

operator theory with great confidence.)          

The following properties and their proofs for L*-convergence are very 

similar to one of the W*-convergence of the sequence of the bounded 

linear functionals. 

Proposition 2. i) If { }nf is strongly convergent to 
0f , that is 00 →− ffn

, then 

*
0 lim nn

f L f
→∞

= − , but not conversely. ii) If +∞<)(sup n
n

fL  and *
0 lim nn

f L f
→∞

= − , then 
0f  is 

unique and )(sup)( 0 n
n

fLfL ≤ . iii) Suppose that +∞<)(sup n
n

fL . Then a sequence 
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{ }nf  L*-converges to an element *
LMf ∈0  if and only if 

0lim ( ) ( )nn
f x f x

→∞
=  on a 

strongly dense subset of M .  

Definition 2. A subset /
0M of *

LM  would be called a L*-relatively compact if 

every sequence { }nf  in /
0M  contains a subsequence { }knf  such that { }knf  L*-

converges to an element *
LMf ∈0 .   

We can obtain the following statement.  

Proposition 3.  If M  is separable, then each bounded subset of *
LM  is a L*-

relatively compact.  

The proof is done by the above properties ii), iii) and the diagonal method. 

That is similar to one that if the Banach space X is separable then the 

bounded subset of the linear dual space *
lX of X  is W*-relatively compact 

([5]). On the other hand, It is well known that any bounded subset of *
lX  is 

W*-relatively compact without the separability of X  (the theorem 2 in 

Chapter V, 4 of [6]). But, for Lip-functional, the assumption that M  is 

separable is essential.     

  

 

  

3.    The relations of the compactness between  

Lip-operator and its Lip-dual operator 
  

We’ll recall the concepts of the weak or strong compact operator. 

Let 
0M be the bounded subset of M . An operator ( )0 ,T Lip M D∈  is said to be 

weakly (or strongly) compact (W.C. or S.C.) if the image ( )T M  is relatively 

weakly (or strongly) compact in D  [4, 6].   

We’ll always assume that ( )DMLipT ,0∈  below.  

The following theorems for the compactness of Lip-operator are valid.  
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Theorem 2. If T is S.C., then *
LT  is L*-compact in the sense that the image 

* /
0( )LT D  by *

LT of any bounded subset /
0D  of *

LD  is L*-relatively compact of *
LM .  

Proof. Let { }nf  be a sequence from * /
0( )LT D . Then there exists { }ng  in the 

subset /
0D  such that *

n L nf T g= . We denote by ng  the contraction to the subset 

( )T M of ng , i.e., 
( )|n n T Mg g= . Then { }ng is a clearly bounded set. On the other 

hand, it is well known that if T is S.C. then the range ( )T M of T is strong 

separable. Therefore, by the proposition 3, the set { }ng of Lip-functionals 

defined on ( )T M  is L*-relatively compact. Hence there exist a subsequence 

{ }kng of { }ng and a functional 0g  defined on ( )T M such that ( )
kng y  converges 

0 ( )g y for any ( )y T M∈ . Since sup ( )
kk nL g < +∞ , we have, for any 1 2, ( )y y T M∈ , 

1 2 1 2( ) ( ) sup ( )
k k kn n k ng y g y L g y y− ≤ − . Here, by letting k →∞ , we have 

0 1 0 2 1 2( ) ( ) sup ( )
kk ng y g y L g y y− ≤ − . Thus 0g  is a Lip-functional defined on 

( )T M . By the extension theorem, we can extend 0g  from ( )T M  to D  and we 

denote it by 0g . Then it is clear that *
0 Lg D∈ . Put *

0 0Lf T g= , then we have 

*
0 Lf M∈  and 

*

0k

L

nf f→ . In fact, for any x M∈ ,   

*

*
0 0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ).
k k k kn L n n n

L

f x T g x g Tx g y

g y g Tx g Tx T g x f x

= = = →

→ = = = =
 

This completes the proof. �  

 

Theorem 3. If *
LT  is S.C. then T  is S.C. 

Proof. Since *
LT is a bounded linear operator on *

LD , if *
LT  is S.C. then its 

linear dual operator **
LlT  is also S.C. Therefore the image ** ''

0( )LlT M  by **
LlT  of 

any bounded subset ''
0M  of **

LlM  is relatively S.C. in **
LlD . Let 

0M  be any 

bounded subset of M . We have to prove that the image 
0( )T M is relatively 

S.C. in D . Take any sequence { }ny from 
0( )T M . As was stated in the above 

proposition 1, we’ll denote by MJ  and by DJ  the isometric mappings from 
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M  and D  into **
LlM  and **

LlD  respectively. Then 
0( )MJ M is a bounded subset in 

**
LlM  and so **

0( ( ))Ll MT J M  is relatively S.C. in **
LlD . On the other hand, since 

**
0 0( ( )) ( ( ))D Ll MJ T M T J M= , the set 

0( ( ))DJ T M  is also relatively S.C. in **
LlD . Hence, 

by putting ( )n D ny J y= , then 0( ( ))n Dy J T M∈ =  **
0( ( ))Ll MT J M=  and there exist a 

subsequence { }kny of { }ny  such that { }kny  converges strongly in **
0( ( ))Ll MT J M . 

Thus { }kny  is strong Cauchy sequence. On the other hand, since the 

mapping DJ  is isometric, we have ( ) ( )
k l k l k ln n D n D n n ny y J y J y y y− = − = −  and so { }kny  is 

strong Cauchy sequence in D . Therefore 
0( )T M is relatively S.C. in D . This 

completes the proof of the theorem. � 

 

Theorem 4. If *
LT is W.C. and ( )DJ D  is closed in the sense of the W*-

convergence, then T  is S.C. 

Proof. As the above theorem 3, Let 
0M  be any bounded subset of M  and 

{ }ny  any sequence from 
0( )T M . Since  **

LlT  is also W.C., the set 

**
0 0( ( )) ( ( ))D Ll MJ T M T J M=  is relatively W.C. in **

LlD . Therefore the sequence 

{ }( )n D ny J y=  contains a subsequence { }kny  such that { }kny converges weakly 

in **
0( ( ))Ll MT J M . Hence { }kny  is W*-convergent. Since **

LlD  is a linear dual 

space of the Banach space *
LD , it is complete in the sense of the W*-

convergence. Thus there exists an element **
0 Lly D∈  such that { }kny  is W*-

converges to 0y . On the other hand, by the assumption, 0y  must belong to 

( )DJ D . Consequently, for any *
Lf D∈ , the sequence { }( )

kny f converges to 0 ( )y f . 

Now Let 0y D∈  and 0 0( )Dy J y= . Then, as was stated in the above proposition 

1, we have 
0 0( ) ( ), ( ) ( )

k kn ny f f y y f f y= =  for any *
Lf D∈ . Since the sequence 

{ }( )
kny f converges to 0 ( )y f , we have, for any *

Lf D∈ , 
0( ) ( )

knf y f y→ . We now 

shall show that the sequence { }kny  is strongly convergent to 0y . If it does 
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not, the point 0y is not in the strong closure of { }kny . We denote by 0D  the 

strong closure of { }kny . Then we have 
0

0inf 0
z D

d z y
∈

= − > . Therefore, by the 

corollary of the extension theorem, there exists a functional *
0 Lf D∈  such 

that 0 0( ) 0 ( )f z z D= ∈ , 0 0( )f y d= and 0( ) 1L f = . This is contrary to the above. 

Therefore 
0( )T M is relatively S.C. in D . This completes the proof of the 

theorem. � 

 

Remark. In general, the following statement is true: “ if, for any *
Lf D∈ , the 

sequence { }( )nf y  converges to 0( )f y , then { }ny  converges strongly to 0y .”  

Without using the extension theorem, this is easily proved as follows. We 

define a functional 
0f  on D  by 

0 0 0( )f y y y y= − −  for y D∈ . Then it is clear 

that *
0 Lf D∈  and 

0( ) 1DL f = .  Therefore we have   

0 0 0 0 0( ) ( ) 0 .n n ny y y y y y f y f y− = − − + = − →  

The linear dual operator of the bounded linear operator maps a W*- 

convergent sequence of bounded linear functionals to the W*-convergent 

one. Similarly, we see easily that the Lip-dual of Lip-operator maps a L*-

convergent sequence of Lip-functionals to the L*-convergent one of Lip-

functionals. In this connection, we may introduce a following concept.  

 

The operator *
LT  would be said to satisfy L*-W (or L*-S) property if it 

maps a L*-convergent bounded sequence of Lip-functionals to the weakly 

(or strongly) convergent one of Lip-functionals. It is easy to see that if *
LT  is 

W.C. (or S.C.) then it satisfies L*-W (or L*-S) property, but not conversely. 

However, the following theorem is valid.   

 

Theorem 5. Let D  be separable and *
LT  satisfy the L*-W (or L*-S) property. 

Then *
LT  is W.C. (or S.C.) 
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Proof. Take any bounded subset /
0D  of *

LD and a sequence { }nf  in * /
0( )LT D . 

Then there exists { }ng in the subset /
0D  such that *

n L nf T g= . Since D  is 

separable and /
0D  is bounded, by the proposition 3, the subset /

0D  is L*-

relatively compact, that is, there exists a subsequence { }kng of { }ng  and an 

element *
0 Lg D∈  such that 

*

0k

L

ng g→ . By the hypothesis of the theorem, 

*
k kn L nf T g=  converges weakly  (or strongly) to *

0 0Lf T g= . Therefore *
LT is W.C. 

(or S.C.). � 

  

Theorem 6. Let *
LD  be separable and D  satisfy following condition: 

If { }ny  is a sequence of elements in D  and a finite lim ( )nn
g y

→∞
exists   for 

each *
Lg D∈ , then there exists an element 0y D∈  such that 0( ) ( )ng y g y→ . Then 

T is S.C.   

Proof. As in the theorem 3, let 
0M  be any bounded subset of M and take any 

sequence { }ny from 
0( )T M . Let { }ng  be a strong dense set of a countable 

number of elements in *
LD . Then, since { }ny  is bounded, we can choose, by 

the diagonal method, a subsequence { }kny  such that a finite lim ( )
kn nk

g y
→∞

 exists 

for every fixed n . And, for any *
Lg D∈  and 0ε > , there exists { }

0n ng g∈  such 

that 
0

( )nL g g ε− < . We have 

0 0 0 0

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i j i i i j j j

i i j j

n n n n n n n n n n n n

n n n n n n n n

g y g y g y g y g y g y g y g y

L g g y g y g y L g g y

− ≤ − + − + − ≤

≤ − + − + −

 

and so ( )
kng y  is Cauchy sequence for each *

Lg D∈ . By the assumption of the 

theorem, there exists an element 0y D∈  such that 
0( ) ( )

kng y g y→ . Therefore, 

by the corollary of the extension theorem, we have that { }kny converges 

strongly to 0y .  This shows that T is S.C. � 
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The following theorem shows the properties of the set of the W.C. (or S.C.) 

operators.  

 

Theorem 7. (i) A linear combination of W.C. (or S.C.) operators is W.C. 

(or S.C.) respectively. (ii) Let a sequence { }nT  of W.C. (or S.C.) operators 

in ( )D,MLip0
 converge to a Lip-operator T  in the sense that lim ( ) 0nn

L T T
→∞

− = . 

Then T  is also W.C. (or S.C.). (iii) The product of a Lip-operator by a S.C. 

operator is S.C. operator. In other words, the set of S.C. operators has the 

like property with closed two-sided ideal in the Banach space ( )0 ,Lip M M . (iv) 

The product of a Lip-operator by a W.C. operator on the left is W.C. 

operator, but not on the right.     

 

Remark. The proof of this theorem is similar to the case of the bounded 

linear operator. We show a counter example with respect to the letter part 

of (iv). To do that, it would be sufficient to show that there exist a Lip-

operator in ( )0 ,Lip M M  and a weakly convergent sequence { }nx in M  such that 

the image { }nTx  by T  of { }nx  doesn’t converges weakly.    

Let [0,1]X C= . Here [0,1]C is the space consisting of all continuous functions 

defined on the real interval [0,1] . Take both sequence { }nx  and { }nx by 

( )nx t nt= for 0 1/t n≤ ≤ , ( ) 2nx t nt= − for 1/ 2/n t n≤ ≤ , ( ) 0nx t = for 2/ 1n t≤ ≤ , and 

( ) 1nx t nt= − for 0 1/t n≤ ≤ , ( ) 0nx t = for 1/ 1n t≤ ≤ . And we put 
0 ( ) 1x t = for 0t = , 

0 ( ) 1x t = for 0 1t< ≤ . Then { }nx converges weakly to 0 ( ) 0x t ≡ , but { }nx doesn’t 

converges weakly to 0x  because 0x isn’t in [0,1]C  and so { }nx can’t contain 

any weakly convergent subsequence. We define an operator T  by n nTx x= , 

then T  is a Lip-operator defined on { }nM x= .  
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4. The mean ergodic theorems for Lip-operator 
 

The fixed point of an operator is the solution of the equation containing 

that operator. The existence of the solution of an operator equation is just 

existence of the fixed point of the operator. Recently, there have been 

published many research results on the fixed point of Lip-operator, in 

particular, the nonexpansive operator [4,7]. An important task in the fixed- 

point theory of the operator is not only to evidence the existence of the 

fixed point, but also to compose the approximate sequence converging to 

one.  The mean ergodic theorems are of the important in the construction of 

such approximate sequence. In the paper [1], there have been considered, 

by Lip- dual operator of Lip- operator, the mean ergodic theorem of the 

nonexpansive operator in uniformly convex Banach spaces with Frechet 

differentiable norm    

In this section we will consider a mean ergodic theorem of Lip- operator 

defined on the closed convex subset of weakly complete Banach space. 

Our purpose is to obtain the results for Lip-operator by Lip-dual operator 

as the bounded linear operator.    

We put
1

1 n
m

n
m

S T
n =

= ∑ and *

1

1 ( ) .
n

L m
n L

m

S T
n =

= ∑  If X Y= and M D= , then we’ll denote 

( )0 ,Lip M D  by ( )0 ,Lip M M . It is clear that ( )0 ,nS Lip M M∈  and ( )* *,L
n L LS BL M M∈  for 

each n  if M is a convex set of X . Unless otherwise noted, in the below 

theorems we shall always assume following condition, that is, X is a 

weakly complete Banach space, M  is a closed convex subset of X  and 

( )0 ,T Lip M M∈ .   
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 Theorem 8. Suppose that 
1

sup ( )L
n

n
L S

≥
< +∞  and 

1
sup ( )n
n

L S
≥

< +∞ . If, for any *
Lf M∈ , a 

sequence { }L
nS f  is weakly convergent, then there exists a fixed point 

0x  of T  

in M , and, for any x M∈ , the sequence { }nS x  converges weakly to 
0x .      

Proof. Since a finite lim( ) ( )L
nn

S f x
→∞

 exists for any *
Lf M∈  and x M∈ , we shall 

put ( ) lim( )( )L
nn

g x S f x
→∞

= . Then it is not difficult to see that *
Lg M∈  and 

( ) sup ( )L
n

n
L g L S f≤ . In fact, we have, for any 1 2,x x M∈ , 

1 2 1 2
1

( ) ( ) ( ) ( ) sup ( )L L L
n n n

n
S f x S f x L S f x x

≥
− ≤ − and, by letting n →∞ , we have 

1 2 1 2
1

( ) ( ) sup ( )L
n

n
g x g x L S f x x

≥
− ≤ − . Therefore g  must belong to *

LM  and we see 

that ( ) sup ( )L
n

n
L g L S f≤ . And, for any *

Lf M∈ , the sequence { }L
nS f  is L*-

convergent to the element *
Lg M∈ , that is, 

*L
L
nS f g→ . We now define an 

operator /
0T  by /

0 :T f g→ , that is, /
0T f g= . Then it is clear that / * *

0 ( , )L LT BL M M∈ . 

For, since /
0( ) ( ) lim( )( )L

nn
T f x S f x

→∞
= and each L

nS is clearly in * *( , )L LBL M M , it is clear 

that the operator /
0T defined on *

LM  is also linear. And, by /
0( ) sup ( )L

n
n

L T f L S f≤  

for any *
Lf M∈ , we have /

0( ) sup ( )L
n

n
L T L S≤ < +∞ . On the other hand, we take any 

bounded linear functional f  defined on X  and denote by f  the contraction 

to the set M of f , i.e., | Mf f= . Then f  is a clearly in *
LM . We define by *

LM  

the set consisting of all f ’s. then we see easily that *
LM  is a subset of *

LM . 

We have, for any x M∈ and *
Lf M∈ ,  

( )

* *

1 1

1 1

1 1( ) ( ) ( ) ( ) (( ) ) ( )

1 1( )

n n
L m m
n L L

m m

n n
m m

n
m m

S f x T f x T f x
n n

f T x f T x f S x
n n

= =

= =

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑

 

and so ( ) /
0( ) ( ) ( ) ( ) ( )L

n nS f x f S x g x T f x= → = . Therefore, a sequence { }nS x  is 

weakly convergent. By the assumption that X  is weakly complete and M  is 
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closed convex, there exists an element 
0x M∈  such that 

0 lim nn
x W S x

→∞
= − . We 

define again an operator 0T  by 0 0:T x x→ , that is, 0 0T x x= . Then it is easy to 

see that 0 0 ( , )T Lip M M∈ . In fact, we have, for any 1 2,x x M∈ ,  

1 2 1 2
1

( ) ( ) sup ( )n n n
n

f S x f S x L S f x x
≥

− ≤ −   

and so 
0 1 0 2 1 2

1
( ) ( ) sup ( )n

n
f T x f T x L S f x x

≥
− ≤ −  . Thus we must obtain 

0 1 0 2 1 2
1

sup ( )n
n

T x T x L S x x
≥

− ≤ − , so 0T belongs to ( )0 ,Lip M M . Therefore it is defined 

Lip-dual operator *
0( )LT  of T  and we have 

( ) / *
0 0 0( ) ( ) ( ) ( ) ( ) ( ) (( ) ) ( )L

n n LS f x f S x g x T f x f T x T f x= → = = = and

( ) * * *
0 0( ) ( ) (( ) ) ( ) (( ) ( ) ) ( )L

n n L L LS f Tx f S Tx T f Tx T T f x= → =  for any x M∈  and *
Lf M∈ . On 

the other hand, by the hypothesis such that 
1sup ( )L

n nL S≥ < +∞ , we have 

( ) ( )
*

1 * 1
1( 1) 0

Ln L L
L n nn T f n n S f S f− −

+= + ⋅ − → , and, since *
0( )LT  is com- mutative with 

each L
nS , we obtain  

( ) ( ) ( )
( ) ( )( )( ) ( )( )

* *

** *
0

( ) ( ) ( )

1( ) ( ) ( ).

L L L
n L n n L

nL
n L L L

S f Tx T S f x S T f x

S f x T I f x T f x
n

= = =

= + − →

 

Therefore we have ( ) ( )* * *
0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )L L LT T f x T f x f T Tx f T x= = ⋅ = . 

 By the arbitrariness of *
Lf M∈  and the Hahn-Banach theorem ([5]), it is true 

that 
0 0T Tx T x⋅ = . Thus we have ( ) ( )* * *

0 0( ) ( ) ( ) ( ) ( )L L LT T f x T f x= , for any *
Lf M∈ . 

Again by the arbitrariness of x M∈ , we must have * * *
0 0( ) ( ) ( )L L LT T f T f= . This 

proves that, for any *
Lf M∈ , the element *

0( )LT f  is a fixed point of *
LT . On the 

other hand, since 
1

sup ( )L
n

n
L S

≥
< +∞  and the sequence { }L

nS f  is weakly convergent, 

the sequence { }L
nS f , for any *

Lf M∈ , converge strongly to the fixed point 

*
0( )LT f  of *

LT  by the theorem 2 in Chapter VIII, 3 of [5], which is the mean 

ergodic theorem for the bounded linear operator and is proved on the basis 

of the Mazur’ theorem. Therefore we have, for any *
Lf M∈ , 

*

*
0( )

L
L
n LS f T f→  and 
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so 
*

* * *
0( )

L
L
n L L LS T f T T f→ . By repeating the same argument as above, we have 

*

* *
0( )

L
L
n L LS T f T f→ and * * *

0 0( ) ( )L L LT T f T f= . Thus we have 
0 0( ) ( )f T T x f T x⋅ = . By the 

arbitrariness of *
Lf M∈ , we must have 

0 0 0T T x T x x⋅ = = . Therefore, for any x M∈ , 

the element 
0 0T x x=  is a fixed point of T . This completes the proof. � 

 

Corollary 1. Suppose that there exists a constant 0K ≥  such that ( )nL T K≤  

for any n  or that the operator T  is nonexpansive, that is, ( ) 1L T ≤ . If, for any 

*
Lf M∈ , a sequence { }L

nS f  is weakly compact, then there exists a fixed point 

0x  of T  in M  and, for any x M∈ , the sequence { }nS x  converges weakly to 
0x .      

Proof. Since *( ) LL T T=  and * *( ) ( )n n
L LT T=  for each n , by the assumption, we 

have that 
1

sup ( )L
n

n
L S

≥
< +∞  and 

1
sup ( )n
n

L S
≥

< +∞ . On the other hand, since, for any 

*
Lf M∈ , a sequence { }L

nS f  is weakly compact, there exist a subsequence 

{ }k

L
nS f  such that { }k

L
nS f  is weakly convergent. Then, by the theorem 2 in 

Chapter VIII, 3 of [5], for any *
Lf M∈ , a sequence { }L

nS f  is weakly 

convergent. Therefore the result of the corollary follows from the above 

theorem 8.       

 

Remark. The Lip-operator T  is said to be uniform if there exists a constant 

0K ≥  such that ( )nL T K≤  for any n ([1]). As would be seen from the mean 

ergidic theorem, in the discussion of the convergence of the mean sequence 

for Lip-operator the condition, whether the Lip-operator is uniform or 

nonexpansive, doesn’t have the essential difference.       

 

Corollary 2. Suppose that M is separable and ( ) 1L T ≤ . If *
LT  satisfies the L*-

W property, then there exists a fixed point 
0x  of T  in M  and, for any x M∈ , 

the sequence { }nS x  converges weakly to 
0x .      
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Proof. It is clear that 
1

sup ( )L
n

n
L S

≥
< +∞  and 

1
sup ( )n
n

L S
≥

< +∞ . Since M is separable, by 

the proposition 3, for any *
Lf M∈ , the sequence { }L

nS f  is L*-compact. 

Therefore there exist a subsequence { }k

L
nS f  such that { }k

L
nS f  is L*-convergent. 

By the assumption, the sequence { }*
k

L
L nT S f  is weakly convergent. On the 

other hand, since 
1

sup ( )L
n

n
L S

≥
< +∞ , we have ( ) ( )*

1
1 1 0

Wn L L
L n n

nT f S f S f
n n +

+
= − → . By 

( )( )* * *1 nL L
n L n L LS f T S f T I f

n
= − − , the sequence { }k

L
nS f  is weakly convergent. 

Consequently, the result of the corollary follows from the above theorem 8. 

� 

       

Corollary 3.  Let X  be a reflexive Banach space, M  a bounded closed 

convex subset of X and let ( ) 1L T ≤ . Then there exist an operator 

( )0 0 ,T Lip M M∈  such that, for any *
Lf M∈ , *

0( )LT f is a fixed point of *
LT , and a 

subsequence { }k

L
nS f  such that { }k

L
nS f  L*-converges to *

0( )LT f . If either { }*
k

L
n LS T f  

L*-converges to * *
0( )L LT T f , or *

LT  is commutative with *
0( )LT , then T  has a 

fixed point in M .      

Proof. It is clear that 
1

sup ( )L
n

n
L S

≥
< +∞  and 

1
sup ( )n
n

L S
≥

< +∞ . Therefore, for any x M∈ , 

the sequence { }nS x  is a bounded subset in M . Hence, by the Eberlein-

Shmulyan theorem ([5]), the set { }nS x  is weakly compact and so there exist 

a subsequence { }knS x such that { }knS x  is weakly convergent. Since the 

reflexive Banach space X  is weakly complete and M  is closed convex, 

there exists an element 
0x M∈  such that { }knS x  converges weakly to 

0x , that is, 

0k

W

nS x x→ . We now define an operator 
0;T M M→  by 

0 0T x x= . Then, by 

repeating the same argument as the theorem 8, we see easily that 
0T  is a 

Lip-operator defined on M . And we have ( ) *
0 0( ) (( ) ) ( )

kn Lf S x f T x T f x→ = and 
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( ) * * *
0 0( ) ( ) (( ) ) ( ) (( ) ( ) ) ( )

k k

L
n n L L Lf S Tx S f Tx T f Tx T T f x= → = for *

Lf M∈ , x M∈ . Thus we have 

( ) ( )* * *
0 0 0 0( )( ) ( ) ( ) ( ) ( ) ( )L L LT T f x T f x f T Tx f T x= = ⋅ = . Therefore, for any *

Lf M∈ , *
0( )LT f is a 

fixed point of *
LT . If *

LT satisfies the assumptions, then it follows from the 

process of the theorem 8 that, for any x M∈ , 0T x  is a fixed point of T . � 

  

Remark. There is noted in [4] that the problem, whether there exists a 

fixed point of the nonexpansive operator defined on the bounded closed 

convex subset into itself of a reflexive Banach space or not, is unsolved. 

Until the present, there have been published many research results on this 

problem, but we couldn’t find the paper completely solving one. We know 

that the problem was considered very much under the several assumptions 

on the subset M .  The corollary 3 shows that the result is original obtained 

from the relation of the nonexpansive operator and its Lip-dual.   
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