A System to convert Gravitational Energy directly into Electrical Energy

Fran De Aquino
Maranhao State University, Physics Department, S.Luis/MA, Brazil.
Copyright © 2012 by Fran De Aquino. All Rights Reserved.

Abstract

We show that it is possible to produce strong gravitational accelerations on the free electrons of a conductor in order to obtain electrical current. This allows the conversion of gravitational energy directly into electrical energy. Here, we propose a system that can produce several tens of kilowatts of electrical energy converted from the gravitational energy.

Key words: Modified theories of gravity, Electric fields effects on material flows, Electron tubes, Electrical instruments. PACS: 04.50.Kd, 83.60.Np , 84.47.+w, 07.50.-e.

1. Introduction

In a previous paper [1], we have proposed a system to convert gravitational energy into rotational kinetic energy (Gravitational Motor), which can be converted into electrical energy by means of a conventional electrical generator. Now, we propose a novel system to convert gravitational energy directly into electrical energy.

It is known that, in some materials, called conductors, the free electrons are so loosely held by the atom and so close to the neighboring atoms that they tend to drift randomly from one atom to its neighboring atoms. This means that the electrons move in all directions by the same amount. However, if some outside force acts upon the free electrons their movement becomes not random, and they move from atom to atom at the same direction of the applied force. This flow of electrons (their electric charge) through the conductor produces the electrical current, which is defined as a flow of electric charge through a medium [2]. This charge is typically carried by moving electrons in a conductor, but it can also be carried by ions in an electrolyte, or by both ions and electrons in a plasma [3].

Thus, the electrical current arises in a conductor when an outside force acts upon the free electrons. This force is called, in a generic way, of electromotive force (EMF). Usually, it is of electrical nature $(F=e E)$.

Here, it is shown that the electrical flow can also be achieved by means of gravitational forces $\left(F=m_{e} g\right)$. The Gravitational Shielding Effect (BR Patent Number: PI0805046-5, July 31, 2008 [4]), shows that a battery of Gravitational Shieldings can strongly intensify the gravitational acceleration in any direction and, in this way, it is possible to produce strong gravitational accelerations on the free electrons of a conductor in order to obtain electrical current.

2. Theory

From the quantization of gravity it follows that the gravitational mass m_{g} and the inertial mass m_{i} are correlated by means of the following factor [1]:

$$
\begin{equation*}
\chi=\frac{m_{g}}{m_{i 0}}=\left\{1-2\left[\sqrt{1+\left(\frac{\Delta p}{m_{i 0} c}\right)^{2}}-1\right]\right\} \tag{1}
\end{equation*}
$$

where $m_{i 0}$ is the rest inertial mass of the particle and Δp is the variation in the particle's kinetic momentum; c is the speed of light.

When Δp is produced by the absorption of a photon with wavelength λ, it is expressed by $\Delta p=h / \lambda$. In this case, Eq. (1) becomes

$$
\begin{align*}
\frac{m_{g}}{m_{i 0}} & =\left\{1-2\left[\sqrt{1+\left(\frac{h / m_{i 0} c}{\lambda}\right)^{2}}-1\right]\right\} \\
& =\left\{1-2\left[\sqrt{1+\left(\frac{\lambda_{0}}{\lambda}\right)^{2}}-1\right]\right\} \tag{2}
\end{align*}
$$

where $\lambda_{0}=h / m_{i 0} c$ is the De Broglie wavelength for the particle with rest inertial mass $m_{i 0}$.

It has been shown that there is an additional effect - Gravitational Shielding effect - produced by a substance whose gravitational mass was reduced or made negative [5]. The effect extends beyond substance (gravitational shielding), up to a certain distance from it (along the central axis of gravitational shielding). This effect shows that in this region the gravity acceleration, g_{1}, is reduced at the same proportion, i.e., $g_{1}=\chi_{1} g \quad$ where $\chi_{1}=m_{g} / m_{i 0}$ and g is the gravity acceleration before the gravitational shielding). Consequently, after a second gravitational shielding, the gravity will be given by $g_{2}=\chi_{2} g_{1}=\chi_{1} \chi_{2} g$, where χ_{2} is the value of the ratio $m_{g} / m_{i 0}$ for the second gravitational shielding. In a generalized way, we can write that after the nth gravitational shielding the gravity, g_{n}, will be given by

$$
\begin{equation*}
g_{n}=\chi_{1} \chi_{2} \chi_{3} \cdots \chi_{n} g \tag{3}
\end{equation*}
$$

This possibility shows that, by means of a battery of gravitational shieldings, we can make particles acquire enormous accelerations. In practice, this can lead to the conception of powerful particles accelerators, kinetic weapons or weapons of shockwaves.

From Electrodynamics we know that when an electromagnetic wave with frequency f and velocity c incides on a material with relative permittivity ε_{r}, relative magnetic permeability μ_{r} and electrical conductivity σ, its velocity is reduced to $v=c / n_{r}$ where n_{r} is the index of refraction of the material, given by [6]

$$
\begin{equation*}
n_{r}=\frac{c}{v}=\sqrt{\frac{\varepsilon_{r} \mu_{r}}{2}\left(\sqrt{1+(\sigma / \omega \varepsilon)^{2}}+1\right)} \tag{4}
\end{equation*}
$$

If $\sigma \gg \omega \varepsilon, \omega=2 \pi f$, Eq. (4) reduces to

$$
\begin{equation*}
n_{r}=\sqrt{\frac{\mu_{r} \sigma}{4 \pi \varepsilon_{0} f}} \tag{5}
\end{equation*}
$$

Thus, the wavelength of the incident radiation (See Fig. 1) becomes

$$
\begin{equation*}
\lambda_{\mathrm{mod}}=\frac{v}{f}=\frac{c / f}{n_{r}}=\frac{\lambda}{n_{r}}=\sqrt{\frac{4 \pi}{\mu f \sigma}} \tag{6}
\end{equation*}
$$

Fig. 1 - Modified Electromagnetic Wave. The wavelength of the electromagnetic wave can be strongly reduced, but its frequency remains the same.

If a lamina with thickness equal to ξ contains n atoms $/ \mathrm{m}^{3}$, then the number of atoms per area unit is $n \xi$. Thus, if the electromagnetic radiation with frequency f incides on an area S of the lamina it reaches $n S \xi$ atoms. If it incides on the total area of the lamina, S_{f}, then the total number of atoms reached by the radiation is $N=n S_{f} \xi$. The number of atoms per unit of volume, n, is given by

$$
\begin{equation*}
n=\frac{N_{0} \rho}{A} \tag{7}
\end{equation*}
$$

where $N_{0}=6.02 \times 10^{26}$ atoms $/ \mathrm{kmole}$ is the Avogadro's number; ρ is the matter density of the lamina (in $\mathrm{kg} / \mathrm{m}^{3}$) and A is the molar mass(kg/kmole).

When an electromagnetic wave incides on the lamina, it strikes N_{f} front atoms, where $N_{f} \cong\left(n S_{f}\right) \phi_{m}, \phi_{m}$ is the "diameter" of the atom. Thus, the electromagnetic wave incides effectively on an area $S=N_{f} S_{m}$, where $S_{m}=\frac{1}{4} \pi \phi_{m}^{2}$ is the cross section area of one atom.

After these collisions, it carries out $n_{\text {collisions }}$ with the other atoms (See Fig.2).

Fig. 2 - Collisions inside the lamina.

Thus, the total number of collisions in the volume $S \xi$ is

$$
\begin{align*}
N_{\text {collisions }} & N_{f}+n_{\text {collisions }} n_{l} S \phi_{m}+\left(n_{l} S \xi-n_{n t} S \phi_{m}\right)= \\
& =n_{n t} S \xi \tag{8}
\end{align*}
$$

The power density, D, of the radiation on the lamina can be expressed by

$$
\begin{equation*}
D=\frac{P}{S}=\frac{P}{N_{f} S_{m}} \tag{9}
\end{equation*}
$$

We can express the total mean number of collisions in each atom, n_{1}, by means of the following equation

$$
\begin{equation*}
n_{1}=\frac{n_{\text {total photons }} N_{\text {collisions }}}{N} \tag{10}
\end{equation*}
$$

Since in each collision a momentum h / λ is transferred to the atom, then the total momentum transferred to the lamina will be $\Delta p=\left(n_{1} N\right) h / \lambda$. Therefore, in accordance with Eq. (1), we can write that

$$
\begin{align*}
& \frac{m_{g(l)}}{m_{i 0(l)}}=\left\{1-2\left[\sqrt{1+\left[\left(n_{1} N\right) \frac{\lambda_{0}}{\lambda}\right]^{2}}-1\right]\right\}= \\
& =\left\{1-2\left[\sqrt{1+\left[n_{\text {total photons }} N_{\text {collisions }} \frac{\lambda_{0}}{\lambda}\right]^{2}}-1\right]\right\} \tag{11}
\end{align*}
$$

$$
\begin{equation*}
n_{\text {total photons }} N_{\text {collisions }}=\left(\frac{P}{h f^{2}}\right)\left(n_{l} S \xi\right) \tag{12}
\end{equation*}
$$

Substitution of Eq. (12) into Eq. (11) yields

$$
\begin{equation*}
\frac{m_{g(l)}}{m_{i 0(l)}}=\left\{1-2\left[\sqrt{1+\left[\left(\frac{P}{h f^{2}}\right)\left(n_{l} S \xi\right) \frac{\lambda_{0}}{\lambda}\right]^{2}}-1\right]\right\} \tag{13}
\end{equation*}
$$

Substitution of P given by Eq. (9) into Eq. (13) gives
$\left.\left.\frac{m_{g(l)}}{m_{i O(l)}}=\left\{1-2\left[\sqrt{1+\left[\left(\frac{N_{f} S_{m} D}{f^{2}}\right)\left(\frac{n_{l} S \xi}{m_{i O(l)} c}\right)\right.}\right) \frac{1}{\lambda}\right]^{2}-1\right]\right\}$
Substitution of $N_{f} \cong\left(n_{l} S_{f}\right) \phi_{m}$ and $S=N_{f} S_{m}$ into Eq. (14) results

$$
\begin{equation*}
\frac{m_{g(l)}}{m_{i O(l)}}=\left\{1-2\left[\sqrt{1+\left[\left(\frac{n_{l}^{3} S_{f}^{2} S_{m}^{2} \phi_{m}^{2} \xi D}{m_{i 0(l)} c f^{2}}\right) \frac{1}{\lambda}\right]^{2}}-1\right]\right\} \tag{15}
\end{equation*}
$$

where $m_{i 0(l)}=\rho_{(l)} V_{(l)}$.
Now, considering that the lamina is inside an ELF electromagnetic field with E and B, then we can write that [7]

$$
\begin{equation*}
D=\frac{n_{r(l)} E^{2}}{2 \mu_{0} c} \tag{16}
\end{equation*}
$$

Substitution of Eq. (16) into Eq. (15) gives

$$
\begin{equation*}
\frac{m_{g(l)}}{m_{i O(l)}}=\left\{1-2\left[\sqrt{1+\left[\left(\frac{n_{r(l)} n_{l}^{3} S_{f}^{2} S_{m}^{2} \phi_{m}^{2} \xi E^{2}}{2 \mu_{0} m_{i O(l)} c^{2} f^{2}}\right) \frac{1}{\lambda}\right]^{2}}-1\right]\right\} \tag{17}
\end{equation*}
$$

In the case in which the area S_{f} is just the area of the cross-section of the lamina $\left(S_{\alpha}\right)$, we obtain from Eq. (17), considering that $m_{0(l)}=\rho_{l l} S_{\alpha} \xi$, the following expression

Since Eq. (8) gives $N_{\text {collisions }}=n_{l} S \xi$, we get
$\frac{m_{g(l)}}{m_{i 0(l)}}=\left\{1-2\left[\sqrt{1+\left[\left(\frac{n_{r(l)} n_{l}^{3} S_{\alpha} S_{m}^{2} \phi_{m}^{2} E^{2}}{2 \mu_{0} \rho_{l(l)} c^{2} f^{2}}\right) \frac{1}{\lambda}\right]^{2}}-1\right]\right\}(18)$

If the electrical conductivity of the lamina, $\sigma_{(l)}$, is such that $\sigma_{(l)} \gg \omega \varepsilon$, then the value of λ is given by Eq. (6), i.e.,

$$
\begin{equation*}
\lambda=\lambda_{\text {mod }}=\sqrt{\frac{4 \pi}{\mu f \sigma}} \tag{19}
\end{equation*}
$$

Substitution of Eq. (19) into Eq. (18) gives

$$
\begin{equation*}
\frac{m_{g(l)}}{m_{i o(l)}}=\left\{1-2\left[\sqrt{1+\frac{n_{r(l)}^{2} n_{l}^{6} S_{\alpha}^{2} S_{m}^{4} \phi_{m}^{4} \sigma_{l()} E^{4}}{16 \pi \mu_{b} \rho_{l l}^{2} c^{4} f^{3}}}-1\right]\right\} \tag{20}
\end{equation*}
$$

Note that $E=E_{m} \sin \omega t$. The average value for E^{2} is equal to $1 / 2 E_{m}^{2}$ because E varies sinusoidaly $\left(E_{m}\right.$ is the maximum value for E). On the other hand, $E_{r m s}=E_{m} / \sqrt{2}$. Consequently we can change E^{4} by $E_{r m s}^{4}$, and the equation above can be rewritten as follows

$$
\begin{align*}
\chi & =\frac{m_{g(l)}}{m_{i 0(l)}}= \\
& =\left\{1-2\left[\sqrt{1+\frac{n_{r(l)}^{2} n_{l}^{6} S_{\alpha}^{2} S_{m}^{4} \phi_{m}^{4} \sigma_{(l)} E_{r m s}^{4}}{16 \pi \mu_{0} \rho_{(l)}^{2} c^{4} f^{3}}-1}\right]\right\} \tag{21}
\end{align*}
$$

Now consider the system shown in Fig.3. It was designed to convert Gravitational Energy directly into Electrical Energy. Thus, we can say that it is a Gravitational EMF Source.

Inside the system there is a dielectric tube ($\varepsilon_{r} \cong 1$) with the following characteristics: $\alpha=60 \mathrm{~mm}, S_{\alpha}=\pi \alpha^{2} / 4=2.83 \times 10^{-3} \mathrm{~m}^{2}$. Inside the tube there is an Aluminum sphere with 30 mm radius and mass $M_{g s}=0.30536 \mathrm{~kg}$. The tube is filled with air at ambient temperature and 1 atm . Thus, inside the tube, the air density is

$$
\begin{equation*}
\rho_{\text {air }}=1.2 \mathrm{~kg} \cdot \mathrm{~m}^{-3} \tag{22}
\end{equation*}
$$

The number of atoms of air (Nitrogen) per unit of volume, $n_{\text {air }}$, according to Eq.(7), is given by

$$
\begin{equation*}
n_{\text {air }}=\frac{N_{0} \rho_{\text {air }}}{A_{N}}=5.16 \times 10^{25} \text { atoms } / \mathrm{m}^{3} \tag{23}
\end{equation*}
$$

The parallel metallic plates (p), shown in Fig. 3 are subjected to different drop voltages. The two sets of plates (D), placed on the extremes of the tube, are subjected to $V_{(D) \text { rms }}=10.28 \mathrm{~V}$ at $f=60 \mathrm{~Hz}$, while the central set of plates (A) is subjected to $V_{(A) r m s}=121.69 \mathrm{~V}$ at $f=60 \mathrm{H}_{2}$. Since $d=98 \mathrm{~mm}$, then the intensity of the electric field, which passes through the 36 cylindrical air laminas (each one with 5 mm thickness) of the two sets (D), is

$$
E_{(D) r m s}=V_{(D) r m s} / d=104.898 \mathrm{~V} / \mathrm{m}
$$

and the intensity of the electric field, which passes through the 7 cylindrical air laminas of the central set (A), is given by

$$
E_{(A) r m s}=V_{(A) r m s} / d=1.2418 \times 10^{3} \mathrm{~V} / \mathrm{m}
$$

Note that the metallic rings (5 mm thickness) are positioned in such way to block the electric field out of the cylindrical air laminas. The objective is to turn each one of these laminas into a Gravity Control Cells (GCC) [5]. Thus, the system shown in Fig. 3 has 3 sets of GCC. Two with 18 GCC each, and one with 7 GCC. The two sets with 18 GCC each are positioned at the extremes of the tube (D). They work as gravitational decelerator while the other set with 7 GCC (A) works as a gravitational accelerator, intensifying the gravity acceleration produced by the mass $M_{g s}$ of the Aluminum sphere. According to Eq. (3), this gravity, after the $7^{\text {th }} \mathrm{GCC}$ becomes $g_{7}=\chi^{7} G M_{g s} / r_{0}^{2}, \quad$ where $\quad \chi=m_{g(l)} / m_{i(l)}$
given by Eq. (21) and $r_{0}=92.53 \mathrm{~mm}$ is the distance between the center of the Aluminum sphere and the surface of the first GCC of the set (A).

The objective of the sets (D), with 18 GCC each, is to reduce strongly the value of the external gravity along the axis of the tube. In this case, the value of the external gravity, $g_{\text {ext }}$, is reduced by the factor $\chi_{d}^{18} g_{\text {ext }}$, where $\chi_{d}=10^{-2}$. For example, if the base BS of the system is positioned on the Earth surface, then $g_{\text {ext }}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ is reduced to $\chi_{d}^{18} g_{\text {ext }}$ and, after the set A , it is increased by χ^{7}. Since the system is designed for $\chi=-308.5$, then the gravity acceleration on the sphere becomes $\chi^{7} \chi_{d}^{18} g_{\text {ext }}=2.6 \times 10^{-18} \mathrm{~m} / \mathrm{s}^{2}$, this value is much smaller than $g_{\text {sphere }}=G M_{g s} / r_{s}^{2}=2.26 \times 10^{-8} \mathrm{~m} / \mathrm{s}^{2}$.

Note that there is a uniform magnetic field, B, through the Silicon Carbide (SiC) ${ }^{*}$. Also note that Americium 241^{\dagger} droplets are conveniently placed along the dielectric tube in order to increase the electrical conductivity of the air. The objective is to increase the conductivity of the air, inside the dielectric tube, up to $\sigma_{\text {air }}=1 \times 10^{-6} \mathrm{~S} / \mathrm{m}$. This value is of fundamental importance in order to obtain the convenient values of the

[^0]electrical current i and the value of χ and χ_{d}, which are given by Eq. (21), i.e.,
\[

$$
\begin{align*}
\chi & =\left\{1-2\left[\sqrt{\left.\left.1+\frac{n_{r(a i r)}^{2} n_{\text {air }}^{6} S_{\alpha}^{2} S_{m}^{4} \phi_{m}^{4} \sigma_{a i r} E_{(A) r m s}^{4}}{16 \pi \mu_{0} \rho_{\text {air }}^{2} c^{4} f^{3}}-1\right]\right\}=}\right.\right. \\
& =\left\{1-2\left[\sqrt{1+1.02 \times 10^{-8} E_{(A) r m s}^{4}}-1\right]\right\} \tag{24}\\
\chi_{d} & =\left\{1-2\left[\sqrt{\left.\left.1+\frac{n_{r(a i r}^{2} n_{\text {air }}^{6} S_{\alpha}^{2} S_{m}^{4} \phi_{m}^{4} \sigma_{\text {air }} E_{(D) r m s}^{4}}{16 \pi \mu b \rho_{\text {air }}^{2} f^{4} f^{3}}-1\right]\right\}=}\right.\right. \\
& =\left\{1-2\left[\sqrt{1+1.02 \times 10^{-8} E_{(D) r m s}^{4}-1}\right]\right\} \tag{25}
\end{align*}
$$
\]

where, $n_{r(\text { air })}=\sqrt{\mu_{r(\text { air })} \sigma_{\text {air }} / 4 \pi \varepsilon_{0} f}=12.24$, $n_{\text {air }}=5.16 \times 10^{25}$ atoms $/ \mathrm{m}^{3}, \phi_{m}=1.55 \times 10^{-10} \mathrm{~m}$, $S_{m}=\pi \phi_{m}^{2} / 4=1.88 \times 10^{-20} \mathrm{~m}^{2}$ and $f=60 \mathrm{~Hz}$. Since $\quad E_{(A) r m s}=1.2418 \times 10^{3} \mathrm{~V} / \mathrm{m}$ and $E_{(D) r m s}=104.898 \mathrm{~V} / \mathrm{m}$, we get

$$
\begin{equation*}
\chi=-308.5 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi_{d} \cong 10^{-2} \tag{27}
\end{equation*}
$$

The gravitational forces due to the gravitational mass of the sphere $\left(M_{g s}\right)$ acting on electrons $\left(F_{e}\right)$, protons $\left(F_{p}\right)$ and neutrons $\left(F_{p}\right)$ of the SiC , are respectively expressed by the following relations

$$
\begin{align*}
& F_{e}=m_{g e} a_{e}=\chi_{B e} m_{e}\left(\chi^{\top} G \frac{M_{g s}}{r_{0}^{2}}\right) \tag{28}\\
& F_{p}=m_{g p} a_{p}=\chi_{B p} m_{p}\left(\chi^{\top} G \frac{M_{g s}}{r_{0}^{2}}\right) \tag{29}\\
& F_{n}=m_{g n} a_{n}=\chi_{B n} m_{n}\left(\chi^{\top} G \frac{M_{g s}}{r_{0}^{2}}\right) \tag{30}
\end{align*}
$$

In order to make null the resultant of these forces in the SiC (and also in the sphere) we must have $F_{e}=F_{p}+F_{n}$, i.e.,

$$
\begin{equation*}
m_{e} \chi_{\mathrm{Be}}=m_{p} \chi_{\mathrm{Bp}}+m_{n} \chi_{\mathrm{Bn}} \tag{31}
\end{equation*}
$$

It is important to note that the set with 7 GCC (A) cannot be turned on before the magnetic field B is on. Because the gravitational accelerations on the SiC cylinder and Aluminum sphere will be enormous $\left(\chi^{7} G M_{g s} / r_{0}^{2} \cong 6 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}\right)$, and will explode the device.

The force F_{e} is the electromotive force (EMF), which produces the electrical current. Here, this force has gravitational nature. The corresponding force of electrical nature is $F_{e}=e E$. Thus, we can write that

$$
\begin{equation*}
m_{g e} a_{e}=e E \tag{32}
\end{equation*}
$$

The electrons in the SiC are subjected to the gravity acceleration produced by the sphere, and increased by the 7 GCC in the region (A). The result is

$$
\begin{equation*}
a_{e}=\chi^{7} g_{s}=\chi^{7} G \frac{M_{g s}}{r_{0}^{2}} \tag{33}
\end{equation*}
$$

Comparing Eq. (32) with Eq.(33), we obtain

$$
\begin{equation*}
E=\left(\frac{m_{g e}}{e}\right) \chi^{7} G \frac{M_{g s}}{r_{0}^{2}} \tag{34}
\end{equation*}
$$

The electron mobility, μ_{e}, considering various scattering mechanisms can be obtained by solving the Boltzmann equation in the relaxation time approximation. The result is [8]

$$
\begin{equation*}
\mu_{e}=\frac{e\langle\tau\rangle}{m_{g e}} \tag{35}
\end{equation*}
$$

where $\langle\tau\rangle$ is the average relaxation time over the electron energies and $m_{g e}$ is the gravitational mass of electron, which is the effective mass of electron.

Since $\langle\tau\rangle$ can be expressed by $\langle\tau\rangle=m_{g e} \sigma / n e^{2}$ [9], then Eq. (35) can be written as follows

$$
\begin{equation*}
\mu_{e}=\frac{\sigma}{n e} \tag{36}
\end{equation*}
$$

Thus, the drift velocity will be expressed by

$$
\begin{equation*}
v_{d}=\mu_{e} E=\frac{\sigma}{n e}\left(\frac{m_{g e}}{e}\right) \chi^{7} G \frac{M_{g s}}{r_{0}^{2}} \tag{37}
\end{equation*}
$$

and the electrical current density expressed by

$$
\begin{equation*}
j_{e}=\rho_{q e} v_{d}=\sigma_{S i C}\left(\frac{m_{g e}}{e}\right) \chi^{7} G \frac{M_{g s}}{r_{0}^{2}} \tag{38}
\end{equation*}
$$

where $\rho_{q e}=n e$, and $m_{g e}=\chi_{B e} m_{e}$ due to the electrons are inside the magnetic field B. Therefore, Eq. (38) reduces to

$$
\begin{equation*}
j_{e}=\sigma_{S i C}\left(\frac{m_{e}}{e}\right) \chi_{B e} \chi^{7} G \frac{M_{g s}}{r_{0}^{2}} \tag{39}
\end{equation*}
$$

In order to calculate the expressions of $\chi_{B e}, \chi_{B p}$ and $\chi_{B n}$ we start from Eq. (17), for the particular case of single electron in the region subjected to the magnetic field B. In this case, we must substitute $n_{r(l)}$ by $n_{r S i c}=\left(\mu_{r(S i c} \sigma_{S i c} / 4 \pi \varepsilon_{0} f\right)^{\frac{1}{2}} ; n_{l}$ by $1 / V_{e}=1 / \frac{4}{3} \pi r_{e}^{3}$ (r_{e} is the electrons radius), S_{f} by $\left(S S A_{e}\right) \rho_{e} V_{e} \quad\left(S S A_{e}\right.$ is the specific surface area for electrons in this case: $\left.S S A_{e}=\frac{1}{2} A_{e} / m_{e}=\frac{1}{2} A_{e} / \rho_{e} V_{e}=2 \pi r_{e}^{2} / \rho_{e} V_{e}\right)$, S_{m} by $S_{e}=\pi r_{e}^{2}, \xi$ by $\phi_{m}=2 r_{e}$ and $m_{i 0(l)}$ by m_{e}. The result is

$$
\begin{equation*}
\chi_{\mathrm{Be}}=\left\{1-2\left[\sqrt{1+\frac{45.56 \pi^{2} r_{e}^{4} n_{r S i i}^{2} E^{4}}{\mu_{0}^{2} m_{e}^{2} c^{4} f^{4} \lambda^{2}}}-1\right]\right\} \tag{40}
\end{equation*}
$$

Electrodynamics tells us that $E_{r m s}=v B_{r m s}=\left(c / n_{r(S i C)}\right) B_{r m s}$, and Eq. (19) gives $\lambda=\lambda_{\text {mod }}=\left(4 \pi / \mu_{\text {SiC }} \sigma_{\text {SiC }} f\right)$. Substitution of these expressions into Eq. (40) yields

$$
\begin{equation*}
\chi_{B e}=\left\{1-2\left[\sqrt{1+\frac{45.56 \pi^{2} r_{e}^{4} B_{r m s}^{4}}{\mu_{0}^{2} m_{e}^{2} c^{2} f^{2}}}-1\right]\right\} \tag{41}
\end{equation*}
$$

Similarly, in the case of proton and neutron we can write that

$$
\begin{align*}
& \chi_{B p}=\left\{1-2\left[\sqrt{1+\frac{45.56 \pi^{2} r_{p}^{4} B_{r m s}^{4}}{\mu_{0}^{2} m_{p}^{2} c^{2} f^{2}}}-1\right]\right\} \tag{42}\\
& \chi_{B n}=\left\{1-2\left[\sqrt{1+\frac{45.56 \pi^{2} r_{n}^{4} B_{r m s}^{4}}{\mu_{0}^{2} m_{n}^{2} c^{2} f^{2}}}-1\right]\right\} \tag{43}
\end{align*}
$$

The radius of free electron is $r_{e}=6.87 \times 10^{-14} \mathrm{~m}$ (See Appendix A) and the radius of protons inside the atoms (nuclei) is $r_{p}=1.2 \times 10^{-15} \mathrm{~m}$, $r_{n} \cong r_{p}$, then we obtain from Eqs. (41) (42) and (43) the following expressions:

$$
\begin{gather*}
\chi_{\mathrm{Be}}=\left\{1-2\left[\sqrt{1+8.49 \times 10^{4} \frac{B_{r m s}^{4}}{f^{2}}}-1\right]\right\} \tag{44}\\
\chi_{\mathrm{Bn}} \cong \chi_{\mathrm{Bp}}=\left\{1-2\left[\sqrt{1+2.35 \times 10^{-9} \frac{B_{r m s}^{4}}{f^{2}}-1}\right]\right\} \tag{45}
\end{gather*}
$$

Then, from Eq. (31) it follows that

$$
\begin{equation*}
m_{e} \chi_{B e} \cong 2 m_{p} \chi_{B p} \tag{46}
\end{equation*}
$$

Substitution of Eqs. (44) and (45) into Eq. (46) gives

$$
\begin{equation*}
\frac{\left\{1-2\left[\sqrt{1+8.49 \times 10^{4} \frac{B_{r m s}^{4}}{f^{2}}}-1\right]\right\}}{\left\{1-2\left[\sqrt{1+2.35 \times 10^{-9} \frac{B_{r m s}^{4}}{f^{2}}}-1\right]\right\}}=3666.3 \tag{47}
\end{equation*}
$$

$$
j_{e}=\sigma_{S i C}\left(\frac{m_{e}}{e}\right) \chi_{B e} \chi^{7} G \frac{M_{g s}}{r_{0}^{2}}
$$

Since $\quad \sigma_{S C}=5 \times 10^{3} \mathrm{~S} / \mathrm{m}, \quad \chi=-308.5$, $\chi_{B e}=-3666.3, \quad M_{g s}=0.30536 \mathrm{~kg} \quad$ and $r_{0}=92.53 \mathrm{~mm}$, we obtain

$$
j_{e}=6.6 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}
$$

Given that $S_{\alpha}=2.83 \times 10^{-3} \mathrm{~m}^{2}$ we get

$$
i=j_{e} S_{\alpha}=186.8 \mathrm{~A}
$$

Thus, the dissipated power is

$$
\begin{equation*}
P_{d}=\left(\frac{x_{B}}{\sigma_{S i C} S_{\alpha}}\right) i^{2}=148 \mathrm{~W} \tag{56}
\end{equation*}
$$

and the drop voltage V, between the extremes of the SiC , is given by

$$
\begin{align*}
V & =\frac{E}{x_{B}}=\frac{\left(j_{e} / \sigma_{\text {SiC }}\right)}{x_{B}}=\left(\frac{m_{e}}{e x_{B}}\right) \chi_{B e} \chi^{7} G \frac{M_{g s}}{r_{0}^{2}}= \\
& \cong 220 \mathrm{~V} \tag{57}
\end{align*}
$$

Thus, the electrical power produced by the system is
$P=V i=(220 V)(186.8 A)=41.1 \mathrm{~kW} \quad(58)$
Note that this power can be increased simply by increasing the conductivity of the SiC. For example, if $\sigma_{S i C}=1 \times 10^{4} \mathrm{~S} / \mathrm{m}$ the electrical current reaches $i=373.6 \mathrm{~A}$, and consequently, the power produced by the system becomes $P=82.2 \mathrm{~kW}$ (the double of the first one).

Fig. 3 - A Gravitational EMF Source (Developed from a process patented in July, 31 2008, PI0805046-5)

Appendix A: The "Geometrical Radii" of Electron and Proton

It is known that the frequency of oscillation of a simple spring oscillator is

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{K}{m}} \tag{A1}
\end{equation*}
$$

where m is the inertial mass attached to the spring and K is the spring constant (in $\mathrm{N} \cdot \mathrm{m}^{-1}$). In this case, the restoring force exerted by the spring is linear and given by

$$
\begin{equation*}
F=-K x \tag{A2}
\end{equation*}
$$

where x is the displacement from the equilibrium position.

Now, consider the gravitational force: For example, above the surface of the Earth, the force follows the familiar Newtonian function, i.e., $F=-G M_{g \oplus} m_{g} / r^{2}$, where $M_{g \oplus}$ is the mass of Earth, m_{g} is the gravitational mass of a particle and r is the distance between the centers. Below Earth's surface the force is linear and given by

$$
\begin{equation*}
F=-\frac{G M_{g \oplus} m_{g}}{R_{\oplus}^{3}} r \tag{A3}
\end{equation*}
$$

where R_{\oplus} is the radius of Earth.
By comparing (A3) with (A2) we obtain

$$
\begin{equation*}
\frac{K}{m_{g}}=\frac{K}{\chi m}=\frac{G M_{g \oplus}}{R_{\oplus}^{3}}\left(\frac{r}{x}\right) \tag{A4}
\end{equation*}
$$

Making $x=r=R_{\oplus}$, and substituting (A4) into (A1) gives

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{G M_{g \oplus \chi} \chi}{R_{\oplus}^{3}}} \tag{A5}
\end{equation*}
$$

In the case of an electron and a positron, we substitute $M_{g \oplus}$ by $m_{g e}, \chi$ by χ_{e} and R_{\oplus} by R_{e}, where R_{e} is the radius of electron (or positron). Thus, Eq. (A5) becomes

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{G m_{g e} \chi_{e}}{R_{e}^{3}}} \tag{A6}
\end{equation*}
$$

The value of χ_{e} varies with the density of energy [1]. When the electron and the positron are distant from each other and the local density of energy is small, the value of χ_{e} becomes very close to 1 . However, when the electron and the positron are penetrating one another, the energy densities in each particle become very strong due to the proximity of their electrical charges e and, consequently, the value of χ_{e} strongly increases. In order to calculate the value of χ_{e} under these conditions $\left(x=r=R_{e}\right)$, we start from the expression of correlation between electric charge q and gravitational mass, obtained in a previous work [1]:

$$
\begin{equation*}
q=\sqrt{4 \pi \varepsilon_{0} G} m_{g(\text { imaginary })} i \tag{A7}
\end{equation*}
$$

where $m_{g(\text { (imaginary })}$ is the imaginary gravitational mass, and $i=\sqrt{-1}$.

In the case of electron, Eq. (A7) gives

$$
\begin{align*}
q_{e} & =\sqrt{4 \pi \varepsilon_{0} G} m_{\text {ge(imaginary }} i= \\
& =\sqrt{4 \pi \varepsilon_{0} G}\left(\chi_{e} m_{\text {ioe(imaginary } i} i\right)= \\
& =\sqrt{4 \pi \varepsilon_{0} G}\left(-\chi_{e} \frac{2}{\sqrt{3}} m_{i 0 e(\text { real })} i^{2}\right)= \\
& =\sqrt{4 \pi \varepsilon_{0} G}\left(\frac{2}{\sqrt{3}} \chi_{e} m_{i 0 e(\text { real })}\right)=-1.6 \times 10^{-19} \mathrm{C} \tag{A8}
\end{align*}
$$

where we obtain

$$
\begin{equation*}
\chi_{e}=-1.8 \times 10^{21} \tag{A9}
\end{equation*}
$$

This is therefore, the value of χ_{e} increased by the strong density of energy produced by the electrical charges e of the two particles, under previously mentioned conditions.

Given that $m_{g e}=\chi_{e} m_{i 0 e}$, Eq. (A6) yields

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{G \chi_{e}^{2} m_{i e}}{R_{e}^{3}}} \tag{A10}
\end{equation*}
$$

From Quantum Mechanics, we know that

$$
\begin{equation*}
h f=m_{i 0} c^{2} \tag{Al1}
\end{equation*}
$$

where h is the Planck's constant. Thus, in the case of $m_{i 0}=m_{i 0 e}$ we get

$$
\begin{equation*}
f=\frac{m_{i 0 e} c^{2}}{h} \tag{A12}
\end{equation*}
$$

By comparing (A10) and (A12) we conclude that

$$
\begin{equation*}
\frac{m_{i 0 e} c^{2}}{h}=\frac{1}{2 \pi} \sqrt{\frac{G \chi_{e}^{2} m_{i 0 e}}{R_{e}^{3}}} \tag{A13}
\end{equation*}
$$

Isolating the radius R_{e}, we get:

$$
R_{e}=\left(\frac{G}{m_{i 0 e}}\right)^{\frac{1}{3}}\left(\frac{\chi_{e} h}{2 \pi c^{2}}\right)^{\frac{2}{3}}=6.87 \times 10^{-14} \mathrm{~m}(\mathrm{Al} 4)
$$

Compare this value with the Compton sized electron, which predicts $R_{e}=3.86 \times 10^{-13} \mathrm{~m}$ and also with standardized result recently obtained of $R_{e}=4-7 \times 10^{-13} \mathrm{~m}$ [10].

In the case of proton, we have

$$
\begin{aligned}
q_{p} & =\sqrt{4 \pi \varepsilon_{0} G} m_{\text {gp(imaginary }} i= \\
& =\sqrt{4 \pi \varepsilon_{0} G}\left(\chi_{p} m_{i 0 p(\text { imaginarr } i} i\right)= \\
& =\sqrt{4 \pi \varepsilon_{0} G}\left(-\chi_{p} \frac{2}{\sqrt{3}} m_{i 0 p(\text { real })} i^{2}\right)= \\
& =\sqrt{4 \pi \varepsilon_{0} G}\left(\frac{2}{\sqrt{3}} \chi_{p} m_{i 0 p(\text { real }}\right)=-1.6 \times 10^{-19} \mathrm{C} \quad(A 15)
\end{aligned}
$$

where we obtain

$$
\begin{equation*}
\chi_{p}=-9.7 \times 10^{17} \tag{A16}
\end{equation*}
$$

Thus, the result is

$$
R_{p}=\left(\frac{G}{m_{i 0}}\right)^{\frac{1}{3}}\left(\frac{\chi_{p} h}{2 \pi c^{2}}\right)^{\frac{2}{3}}=3.72 \times 10^{-17} m \text { (A17) }
$$

Note that these radii, given by Equations (A14) and (A17), are the radii of free electrons and free protons (when the particle and antiparticle (in isolation) penetrate themselves mutually).

Inside the atoms (nuclei) the radius of protons is well-known. For example, protons, as the hydrogen nuclei, have a radius given by $R_{p} \cong 1.2 \times 10^{-15} \mathrm{~m}$ [11, 12]. The strong increase in respect to the value given by Eq. (A17) is due to the interaction with the electron of the atom.

References

[1] De Aquino, F. (2010) Mathematical Foundations of the Relativistic Theory of Quantum Gravity, Pacific Journal of Science and Technology, 11 (1), pp. 173232.
[2] Valkengurg, V., (1992) Basic Electricity, Prompt Publications, 1-38.
[3] Fischer-Cripps, A., (2004) The electronics companion. CRC Press, p. 13, ISBN 9780750310123.
[4] De Aquino, F. (2008) Process and Device for Controlling the Locally the Gravitational Mass and the Gravity Acceleration, BR Patent Number: PI0805046-5, July 31, 2008.
[5] De Aquino, F. (2010) Gravity Control by means of Electromagnetic Field through Gas at Ultra-Low Pressure, Pacific Journal of Science and Technology, 11(2) November 2010, pp.178-247, Physics/0701091.
[6] Quevedo, C. P. (1977) Eletromagnetismo, McGrawHill, p. 270.
[7] Halliday, D. and Resnick, R. (1968) Physics, J. Willey \& Sons, Portuguese Version, Ed. USP, p. 1124.
[8] Kundu, J. et al., (2007) Semiconductor Physics, Quantum Electronics\& Optoelectronics, 10, 1, pp.1-3.
[9] Alonso, M. and Finn, E. (1967) Fundamental University Physics, Addison-Wesley Co., Portuguese version Ed Edgard Blücher (1972), p. 153.
[10] Mac Gregor. M. H., (1992) The Enigmatic Electron. Boston: Klurer Academic, 1992, pp. 4-5.
[11] N.D. Cook (2010). Models of the Atomic Nucleus (2nd ed.). Springer. p. 57 ff.. ISBN 978-3-642-14736-4.
[12] K.S. Krane (1987). Introductory Nuclear Physics. Wiley-VCH. ISBN 0-471-80553-X.

[^0]: The Low-resistivity (LR) pure Silicon Carbide called CoorsTek Pure SiC ${ }^{\text {TM }}$ LR CVD Silicon Carbide, 99.9995\%, has electrical conductivity of $5000 \mathrm{~S} / \mathrm{m}$ at room temperature; $\varepsilon_{r}=10.8 ; \rho=3210 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$; dielectric strength >10 $\mathrm{KV} / \mathrm{mm}$; maximum working temperature of $1600^{\circ} \mathrm{C}$. (See www.coorstek.com)
 \dagger The radioactive element Americium (Am-241) is widely used in ionization smoke detectors. This type of smoke detector is more common because it is inexpensive and better at detecting the smaller amounts of smoke produced by flaming fires. Inside an ionization detector there is a small amount (perhaps $1 / 5000$ th of a gram) of americium241. The Americium is present in oxide form $\left(\mathrm{AmO}_{2}\right)$ in the detector. The cost of the AmO_{2} is US\$ 1,500 per gram. The amount of radiation in a smoke detector is extremely small. It is also predominantly alpha radiation. Alpha radiation cannot penetrate a sheet of paper, and it is blocked by several centimeters of air. The americium in the smoke detector could only pose a danger if inhaled.

