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We show that it is possible to produce strong gravitational accelerations on the free electrons of a 
conductor in order to obtain electrical current. This allows the conversion of gravitational energy directly 
into electrical energy. Here, we propose a system that can produce several tens of kilowatts of electrical 
energy converted from the gravitational energy.  

 
         Key words: Modified theories of gravity, Electric fields effects on material flows, Electron tubes, Electrical instruments. 
          PACS: 04.50.Kd, 83.60.Np , 84.47.+w, 07.50.-e.    
 
 
1. Introduction 
 
          In a previous paper [1], we have 
proposed a system to convert gravitational 
energy into rotational kinetic energy 
(Gravitational Motor), which can be 
converted into electrical energy by means of 
a conventional electrical generator. Now, we 
propose a novel system to convert 
gravitational energy directly into electrical 
energy.    
           It is known that, in some materials, 
called conductors, the free electrons are so 
loosely held by the atom and so close to the 
neighboring atoms that they tend to drift 
randomly from one atom to its neighboring 
atoms. This means that the electrons move in 
all directions by the same amount. However, 
if some outside force acts upon the free 
electrons their movement becomes not 
random, and they move from atom to atom at 
the same direction of the applied force. This 
flow of electrons (their electric charge) 
through the conductor produces the electrical 
current, which is defined as a flow of electric 
charge through a medium [2]. This charge is 
typically carried by moving electrons in a 
conductor, but it can also be carried by ions 
in an electrolyte, or by both ions and 
electrons in a plasma [3].   
          Thus, the electrical current arises in a 
conductor when an outside force acts upon 
the free electrons. This force is called, in a 
generic way, of electromotive force (EMF). 
Usually, it is of electrical nature ( ) .  eEF =

 
 
 
Here, it is shown that the electrical flow can 
also be achieved by means of gravitational 
forces ( )gmF e= . The Gravitational 
Shielding Effect (BR Patent Number: 
PI0805046-5, July 31, 2008 [4]), shows that 
a battery of Gravitational Shieldings can 
strongly intensify the gravitational 
acceleration in any direction and, in this way, 
it is possible to produce strong gravitational 
accelerations on the free electrons of a 
conductor in order to obtain electrical 
current.  
  
2. Theory 
 
          From the quantization of gravity it 
follows that the gravitational mass mg and 
the inertial mass mi are correlated by means 
of the following factor [1]: 
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where  is the rest inertial mass of the 
particle and 

0im
pΔ  is the variation in the 

particle’s kinetic momentum;  is the speed 
of light.   

c

          When pΔ  is produced by the 
absorption of a photon with wavelengthλ , it 
is expressed by λhp =Δ . In this case, Eq. 
(1) becomes 
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where cmh i00 =λ  is the De Broglie 
wavelength for the particle with rest inertial 
mass .   0im
           It has been shown that there is an 
additional effect - Gravitational Shielding 
effect - produced by a substance whose 
gravitational mass was reduced or made 
negative [5]. The effect extends beyond 
substance (gravitational shielding) , up to a 
certain distance from it  (along the central 
axis of gravitational shielding). This effect 
shows that in this region the gravity 
acceleration, , is reduced at the same 
proportion, i.e.,

1g
gg

11 χ=  where 

01 ig mm=χ  and  is the gravity 
acceleration before the gravitational 
shielding).  Consequently, after a second 
gravitational shielding, the gravity will be 
given by

g

ggg
21122 χχχ == , where 

2
χ  is 

the value of the ratio 0ig mm for the second 
gravitational shielding. In a generalized way, 
we can write that after the nth gravitational 
shielding the gravity, , will be given by ng
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          This possibility shows that, by means 
of a battery of gravitational shieldings, we 
can make particles acquire enormous 
accelerations.  In practice, this can lead to the 
conception of powerful particles accelerators, 
kinetic weapons or weapons of shockwaves. 
          From Electrodynamics we know that 
when an electromagnetic wave with 
frequency and velocity  incides on a  
material  with relative  permittivity 

f c

rε , 
relative magnetic permeability rμ  and 
electrical conductivity σ , its velocity is 
reduced to rncv =  where  is the index of 
refraction of the material, given by [

rn
6]  
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If  ωεσ >> , fπω 2= , Eq. (4) reduces to 
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Thus, the wavelength of the incident 
radiation (See Fig. 1) becomes 
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Fig. 1 – Modified Electromagnetic Wave. The 
wavelength of the electromagnetic wave can be
strongly reduced, but its frequency remains the same.

v = c v = c/nr 

λ = c/f λmod = v/f = c/nr f

nr 

  
        If a lamina with thickness equal toξ  
contains  atoms/mn 3, then the number of 
atoms per area unit is ξn . Thus, if the 
electromagnetic radiation with frequency 

incides on an area  of the lamina it 
reaches
f S

ξnS  atoms. If it incides on the total 
area of the lamina, , then the total number 
of  atoms reached by the radiation is 

fS

ξfnSN = .  The number of atoms per unit of 
volume, , is given by n
 

( )70

A
N

n
ρ

=

where  is the 
Avogadro’s number; 

kmoleatomsN /1002.6 26
0 ×=

ρ  is the matter density 
of the lamina (in kg/m3) and A is the molar 
mass(kg/kmole).                
          When an electromagnetic wave incides 
on the lamina, it strikes  front atoms, 
where

fN
( ) mff SnN φ≅  , mφ  is the “diameter” of 

the atom. Thus, the electromagnetic wave 
incides effectively on an area  , where mf SNS=

2
4
1

mmS πφ=  is the cross section area of one atom. 
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After these collisions, it carries out  
with the other atoms (See Fig.2).   

collisionsn

 
 
  
 
 
 
 
 
 
 
Fig. 2 – Collisions inside the lamina.   
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Thus, the total number of collisions in the 
volume ξS is 
 

( )
( )8ξ

φξφ

Sn

SnSnSnnNN

m

mmlmlcollisionsfcollisions
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=−+=+=
           

 
The power density, , of the radiation on the 
lamina can be expressed by 

D
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           We can express the total mean number 
of collisions in each atom, , by means of 
the following equation  

1n

 

( )101 N
Nn

n collisionsphotonstotal=

 
Since in each collision a momentum λh  is 
transferred to the atom, then the total 
momentum transferred to the lamina will be 

( ) λhNnp 1=Δ . Therefore, in accordance 
with Eq. (1), we can write that 
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Since Eq. (8) gives ξSnN lcollisions = , we get 

( ) (122 ξSn
hf
PNn lcollisionsphotonstotal ⎟⎟
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Substitution of Eq. (12) into Eq. (11) yields 
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Substitution of P given by Eq. (9) into Eq. 
(13) gives 
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Substitution of ( ) mflf SnN φ≅  and mf SNS =   
into Eq. (14) results 
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where ( ) ( ) ( )llli Vm ρ=0 .  
         Now, considering that the lamina is 
inside an ELF electromagnetic field with 
E and B , then we can write that [7] 
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Substitution of Eq. (16) into Eq. (15) gives 
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In the case in which the area is just the 
area of the cross-section of the lamina

fS
( )αS , 

we obtain from Eq. (17), considering that 
( ) ( ) ξρ αSm lli =0 , the following expression 
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If the electrical conductivity of the lamina, 

( )lσ , is such that ( ) ωεσ >>l , then the value of 
λ is given by Eq. (6), i.e., 
 

( )194
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πλλ
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Substitution of Eq. (19) into Eq. (18) gives  
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Note that tEE m ωsin= .The average value 
for 2E  is equal to 2

2
1

mE  because E  varies 
sinusoidaly (   is the maximum value 

for
mE

E ). On the other hand, 2mrms EE = . 
Consequently we can change 4E  by , 
and the equation above can be rewritten as 
follows 

4
rmsE
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          Now consider the system shown in 
Fig.3. It was designed to convert 
Gravitational Energy directly into Electrical 
Energy. Thus, we can say that it is a 
Gravitational EMF Source. 
          Inside the system there is a dielectric 
tube ( 1≅rε ) with the following characteristics: 

mm60=α , 232 1083.24 mS −×== παα . 
Inside the tube there is an Aluminum sphere 
with 30mm radius and mass 

kgM gs 30536.0= . The tube is filled with air 
at ambient temperature and 1atm. Thus, 
inside the tube, the air density is 

 
( )22.2.1 3−= mkgairρ

 
The number of atoms of air (Nitrogen) per 
unit of volume, , according to Eq.(7), is 
given by 

airn

 

( )23/1016.5 3250 matoms
A

N
n

N

air
air ×==

ρ

 
          The parallel metallic plates (p), shown 
in Fig.3 are subjected to different drop 
voltages. The two sets of plates (D), placed 
on the extremes of the tube, are subjected to 

( ) KVV rmsD 028.1=  at Hzf 60= , while the 

central set of plates (A) is subjected to 
( ) KVV rmsA 169.12= at Hzf 60= . Since mmd 98= , 

then the intensity of the electric field, which 
passes through the 36 cylindrical air laminas 
(each one with 5mm thickness) of the two 
sets (D), is  
 

( ) ( ) mVdVE rmsDrmsD /10048.1 4×==
 
and the intensity of the electric field, which 
passes through the 7 cylindrical air laminas 
of the central set (A), is given by  
 

( ) ( ) mVdVE rmsArmsA /102418.1 5×==
 
          Note that the metallic rings (5mm 
thickness) are positioned in such way to 
block the electric field out of the cylindrical 
air  laminas. The objective is to turn each one 
of these laminas into a Gravity Control Cells 
(GCC) [5]. Thus, the system shown in Fig. 3 
has 3 sets of GCC. Two with  18 GCC each,  
and one with 7 GCC. The two sets with 18 
GCC each are positioned at the extremes of 
the tube (D). They work as gravitational 
decelerator while the other set with 7 GCC 
(A) works as a gravitational accelerator, 
intensifying the gravity acceleration 
produced by the mass of the Aluminum 
sphere. According to Eq. (3), this gravity, 
after the GCC becomes 

gsM

th7
2

0
7

7 rGMg gsχ= , where ( ) ( )lilg mm=χ  
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given by Eq. (21) and mmr 53.920 =  is the 
distance between the center of the Aluminum 
sphere and the surface of the first GCC of the 
set (A).  
          The objective of the sets (D), with 18 
GCC each, is to reduce strongly the value of 
the external gravity along the axis of the 
tube. In this case, the value of the external 
gravity, , is reduced by the factor , 

where 
extg extd g18χ

210−=dχ . For example, if the base 
BS of the system is positioned on the Earth 
surface, then  is reduced 

to and, after the set A, it is increased 

by . Since the system is designed for 

2/81.9 smgext =

extd g18χ
7χ

5.308−=χ , then the gravity acceleration on 
the sphere becomes , 
this value is much smaller than 

218187 /106.2 smgextd
−×=χχ

282 /1026.2 smrGMg sgssphere
−×== .  

          Note that there is a uniform magnetic 
field, B , through the Silicon Carbide (SiC)*. 
The electrical conductivity of air, inside the 
dielectric tube, is equal to the electrical 
conductivity of Earth’s atmosphere near the 
land, whose average value is 

mSair /101 14−×≅σ [8]. This value is of 
fundamental importance in order to obtain 
the convenient values of the electrical current 

 and the value ofi χ  and dχ , which are 
given by Eq. (21), i.e., 
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* The Low-resistivity (LR) pure Silicon Carbide called 
CoorsTek Pure SiCTM LR CVD Silicon Carbide, 99.9995%, 
has electrical conductivity of 5000S/m at room temperature; 

8.10=rε  ; ; dielectric strength >10 
KV/mm; maximum working temperature of 1600°C. ( See 

3.3210 −= mkgρ

www.coorstek.com ) 
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where, ( ) ( ) 24.124 0 == fn airairrairr πεσμ , 

, , 325 /1016.5 matomsnair ×= mm
101055.1 −×=φ

2202 1088.14 mS mm
−×== πφ  and Hzf 60= . 

Since  and ( ) mVE rmsA /102418.1 3×=

( ) mVE rmsD /898.104= , we get 
 

( )265.308−=χ  
 
and 
 

( )2710 2−≅dχ  
 
          The gravitational forces due to the 
gravitational mass of the sphere ( )gsM  acting 
on electrons ( )eF , protons ( )pF  and neutrons 
( )pF  of the SiC, are respectively expressed 
by the following relations   
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7
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r
M
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In order to make null the resultant of these 
forces in the SiC (and also in the sphere) we 
must have npe FFF += , i.e.,  
 

( )31BnnBppBee mmm χχχ +=
 
          It is important to note that the set with 
7 GCC (A) cannot be turned on before the 
magnetic field B is on. Because the 
gravitational accelerations on the SiC 
cylinder and Aluminum sphere will be 

http://www.coorstek.com/
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enormous ( )282

0
7 /106 smrGM gs ×≅χ , 

and will explode the device.   
          The force  is the electromotive force 
(EMF), which produces the electrical current. 
Here, this force has gravitational nature. The 
corresponding force of electrical nature 
is . Thus, we can write that 

eF

eEFe =
 

( )32eEam ege =
 
The electrons in the SiC are subjected to the 
gravity acceleration produced by the sphere, 
and increased by the 7 GCC in the region 
(A). The result is 

( )332
0

77

r

M
Gga gs

se χχ ==

Comparing Eq. (32) with Eq.(33), we obtain 
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The electron mobility, eμ , considering 
various scattering mechanisms can be 
obtained by solving the Boltzmann equation 
in the relaxation time approximation. The 
result is [9] 
 

( )35
ge

e m
e τ

μ =

 
where τ  is the average relaxation time over 
the electron energies and  is the 
gravitational mass of electron, which is the 
effective mass of electron.  

gem

          Since τ  can be expressed by 
2nemgeστ =  [10], then Eq. (35) can be 

written as follows 
 

( )36
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Thus, the drift velocity will be expressed by  
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and the electrical current density expressed 
by 
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where neqe =ρ , and  eBege mm χ=  due to 
the electrons are inside the magnetic field B. 
Therefore, Eq. (38) reduces to 
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In order to calculate the expressions of 

Beχ , Bpχ  and Bnχ   we start from Eq. (17), 
for the particular case of single electron in 
the region subjected to the magnetic field B. 
In this case, we must substitute  by ( )lrn

( )( )2
1

04 fn SicSicrrSic πεσμ= ;  by ln 3
3
411 ee rV π=   

(  is the electrons radius),  by er fS
( ) eee VSSA ρ   ( is the specific surface 
area for electrons in this case: 

eSSA

eeeeeeeee VrVAmASSA ρπρ 2
2
1

2
1 2=== ), 

 by , mS 2
ee rS π= ξ  by em r2=φ  and  

by . The result is 
( )lim 0

em
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Electrodynamics tells us that 

( )( ) rmsSiCrrmsrms BncvBE == , and Eq. (19) 
gives ( )fSiCSiCσμπλλ 4mod == . Substitution 
of these expressions into Eq. (40) yields 
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e
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πχ

 
Similarly, in the case of proton and neutron 
we can write that 
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Bn

μ
π
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The radius of free electron is mre
141087.6 −×=  

(See Appendix A) and the radius of protons 
inside the atoms (nuclei) is mrp

15102.1 −×= , 
, then we obtain from Eqs. (41) (42) 

and (43) the following expressions: 
pn rr ≅

 

( )4411049.8121
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f
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⎥
⎥
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⎣

⎡
−×+−=≅ −

f
Brms

BpBn χχ

 
Then, from Eq. (31) it follows that   
 

( )462 BppBee mm χχ ≅
 
Substitution of Eqs. (44) and (45) into Eq. 
(46) gives  
 

( )473.3666

11035.2121

11049.8121

2

4
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2

4
4

=
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⎧
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⎥
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⎤

⎢
⎢
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f
B
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For Hzf 1.0= , we get 

[ ]{ }
[ ]{ } ( )483.3666

11035.2121

11049.8121
47

46

=
−×+−

−×+−
−

rms

rms

B

B

 
whence we obtain 
   

( )49793.0 TBrms =
 
Consequently, Eq. (44) and (45) yields 

 
( )503.3666−=Beχ

and 
( )51999.0≅≅ BpBn χχ

 
In order to the forces  and  have 
contrary direction (such as occurs in the 
case, in which the nature of the electromotive 
force is electrical) we must have 

eF pF

0<Beχ  
and 0>≅ BpBn χχ  (See equations (28) (29) 
and (30)), i.e., 
 

( )52011049.8121 2

4
4 <

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−×+−

f
Brms

and  

( )53011035.2121 2

4
9 >

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−×+− −

f
Brms

 
This means that we must have 
 

( )5486.15106.0 fBf rms <<
 
In the case of Hzf 1.0= the result is 
 

( )5502.4801.0 TBT rms <<
 
Let us now calculate the current density 
through the SiC. According to Eq. (39) we 
have 
 

2
0

7

r

M
G

e
m

j gs
Be

e
SiCe χχσ ⎟

⎠

⎞
⎜
⎝

⎛=

 
Since , mSSC /105 3×=σ 5.308−=χ , 

3.3666−=Beχ , kgM gs 30536.0=  and 
mmr 53.920 = , we obtain 

 
24 /106.6 mAje ×=  

 
Given that 231083.2 mS −×=α we get 
 



 8
 ASji e 8.186== α

  
 Thus, the dissipated power is     

( )561482 Wi
S

xP
SiC

B
d =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ασ
  

 
  
 and the drop voltage V , between the 

extremes of the SiC, is given by  
   ( )

( )57220

2
0

7

V
r

M
G

ex
m

x
j

x
EV gs

Be
B

e

B

SiCe

B

≅

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=== χχ

σ

 

 
 
 
 
 

Thus, the electrical power produced by the 
system is 

 
 

  ( )( ) ( )581.418.186220 kWAVViP ===
 

 
 
           Note that this power can be increased 

simply by increasing the conductivity of the 
SiC. For example, if  the 

electrical current reaches , and 
consequently, the power produced by the 
system becomes  (the double of 
the first one).  

mSSiC /101 4×=σ

Ai 6.373=

kWP 2.82=
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Fig. 3 – A Gravitational EMF Source (Developed from a process patented in July, 31 2008, PI0805046-5) 
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Appendix A: The “Geometrical Radii” of Electron and Proton 
 
          It is known that the frequency of 
oscillation of a simple spring oscillator is  
 

( )1
2
1 A

m
Kf

π
=

 
where  is the inertial mass attached to the 
spring and 

m
K  is the spring constant (in 

N·m−1). In this case, the restoring force 
exerted by the spring is linear and given by  
 

( )2AKxF −=
 
where x  is the displacement from the 
equilibrium position. 
          Now, consider the gravitational force: 
For example, above the surface of the Earth, 
the force follows the familiar Newtonian 
function, i.e., 2rmGMF gg⊕−= , where 

the mass of Earth is,  is the 
gravitational  mass of a particle and 

⊕gM gm
r is the 

distance between the centers. Below Earth’s 
surface the force is linear and given by 

( )3
3

Ar
R

mGM
F gg

⊕

⊕−=

where  is the radius of Earth.  ⊕R
          By comparing (A3) with (A2) we 
obtain 

( )4
3

A
x
r

R

GM

m
K

m
K g

g
⎟
⎠
⎞

⎜
⎝
⎛==

⊕

⊕

χ

Making , and substituting (A4) 
into (A1) gives 

⊕== Rrx

 

( )5
2
1

3 A
R

GM
f g

⊕

⊕=
χ

π
 
In the case of an electron and a positron, we 
substitute  by , ⊕gM gem χ  by eχ and  by 

, where  is the radius of electron (or 
positron). Thus, Eq. (A5) becomes 

⊕R

eR eR

 
 

( )6
2
1

3
A

R

Gm
f

e

egeχ
π

=

The value of eχ  varies with the density of 
energy [1]. When the electron and the 
positron are distant from each other and the 
local density of energy is small, the value of 

eχ  becomes very close to 1. However, when 
the electron and the positron are penetrating 
one another, the energy densities in each 
particle become very strong due to the 
proximity of their electrical charges e  and, 
consequently, the value of eχ  strongly 
increases. In order to calculate the value of 

eχ under these conditions( ), we 
start from the expression of correlation 
between electric charge  and gravitational 
mass, obtained in a previous work [

eRrx ==

q
1]:  

 

( ) ( )74 0 AimGq imaginarygπε=

  
where  is the imaginary 

gravitational mass, and 
(imaginarygm )

1−=i .  
 
          In the case of electron, Eq. (A7) gives  
 

( )

( )( )
( )( )

( )( ) ( )8106.14

4

4

4

19
03

2
0

2
03

2
0

00

0

ACmG

imG

imG

imGq

realeie

realeie

imaginaryeie

imaginarygee

−×−==

=−=

==

==

χπε

χπε

χπε

πε

 
where we obtain 
 

( )9108.1 21 Ae ×−=χ
 
This is therefore, the value of eχ  increased 
by the strong density of energy produced by 
the electrical charges  of the two particles, 
under previously mentioned conditions.  

e

          Given that eiege mm 0χ= , Eq. (A6) 
yields        
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( )10
2
1

3
0

2

A
R

mG
f

e

eieχ
π

=

  
From Quantum Mechanics, we know that  
 

( )112
0 Acmhf i=

 
where  is the Planck’s constant. Thus, in 
the case of we get 

h
eii mm 00 =

 

( )12
2

0 A
h

cm
f ei=

 
          By comparing (A10) and (A12) we 
conclude that 
 

( )13
2
1

3
0

22
0 A

R
mG

h
cm

e

eieei χ
π

=

 
Isolating the radius , we get: eR
 

( )141087.6
2

14
2

0

3
2

3
1

Am
c
h

m
GR e

ei
e

−×=⎟
⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
χ

 
Compare this value with the Compton sized 
electron, which predicts  
and also with standardized result recently 
obtained of  [

mRe
131086.3 −×=

mRe
131074 −×−= 11].            

         In the case of proton, we have  
 

( )

( )( )
( )( )

( )( ) ( )15106.14
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2
0

2
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2
0

00
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imG
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realpip

realpip

imaginarypip

imaginarygpp

−×−==

=−=
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χπε
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where we obtain 
 

( )16107.9 17 Ap ×−=χ

 
 Thus, the result is 
 

( )171072.3
2

17
2

0

3
2

3
1

Am
c

h
m
GR p

pi
p

−×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

π

χ

 
          Note that these radii, given by 
Equations ( )14A  and ( , are the radii of 
free electrons and free protons (when the 
particle and antiparticle (in isolation) 
penetrate themselves mutually).  

)17A

          Inside the atoms (nuclei) the radius of 
protons is well-known. For example, protons, 
as the hydrogen nuclei, have a radius given 
by  [mRp

15102.1 −×≅ 12, 13]. The strong 
increase in respect to the value given by Eq. 
(A17) is due to the interaction with the 
electron of the atom.  
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We show that it is possible to produce strong gravitational accelerations on the free electrons of a conductor in order to obtain electrical current. This allows the conversion of gravitational energy directly into electrical energy. Here, we propose a system that can produce several tens of kilowatts of electrical energy converted from the gravitational energy. 

         Key words: Modified theories of gravity, Electric fields effects on material flows, Electron tubes, Electrical instruments.
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1. Introduction

          In a previous paper [1], we have proposed a system to convert gravitational energy into rotational kinetic energy (Gravitational Motor), which can be converted into electrical energy by means of a conventional electrical generator. Now, we propose a novel system to convert gravitational energy directly into electrical energy.   

           It is known that, in some materials, called conductors, the free electrons are so loosely held by the atom and so close to the neighboring atoms that they tend to drift randomly from one atom to its neighboring atoms. This means that the electrons move in all directions by the same amount. However, if some outside force acts upon the free electrons their movement becomes not random, and they move from atom to atom at the same direction of the applied force. This flow of electrons (their electric charge) through the conductor produces the electrical current, which is defined as a flow of electric charge through a medium [2]. This charge is typically carried by moving electrons in a conductor, but it can also be carried by ions in an electrolyte, or by both ions and electrons in a plasma [3].  

          Thus, the electrical current arises in a conductor when an outside force acts upon the free electrons. This force is called, in a generic way, of electromotive force (EMF). Usually, it is of electrical nature 
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Here, it is shown that the electrical flow can also be achieved by means of gravitational forces
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. The Gravitational Shielding Effect (BR Patent Number: PI0805046-5, July 31, 2008 [4]), shows that a battery of Gravitational Shieldings can strongly intensify the gravitational acceleration in any direction and, in this way, it is possible to produce strong gravitational accelerations on the free electrons of a conductor in order to obtain electrical current. 

2. Theory


          From the quantization of gravity it follows that the gravitational mass mg and the inertial mass mi are correlated by means of the following factor [1]:
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where 
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 is the rest inertial mass of the particle and 
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 is the variation in the particle’s kinetic momentum; 

[image: image6.wmf]c


 is the speed of light.  

          When 

[image: image7.wmf]p


D


 is produced by the absorption of a photon with wavelength
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. In this case, Eq. (1) becomes
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where 
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 is the De Broglie wavelength for the particle with rest inertial mass 
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           It has been shown that there is an additional effect - Gravitational Shielding effect - produced by a substance whose gravitational mass was reduced or made negative [5]. The effect extends beyond substance (gravitational shielding) , up to a certain distance from it  (along the central axis of gravitational shielding). This effect shows that in this region the gravity acceleration, 
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 and 
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 is the gravity acceleration before the gravitational shielding).  Consequently, after a second gravitational shielding, the gravity will be given by
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for the second gravitational shielding. In a generalized way, we can write that after the nth gravitational shielding the gravity,
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          This possibility shows that, by means of a battery of gravitational shieldings, we can make particles acquire enormous accelerations.  In practice, this can lead to the conception of powerful particles accelerators, kinetic weapons or weapons of shockwaves.

          From Electrodynamics we know that when an electromagnetic wave with frequency 
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 incides on a  material  with relative  permittivity 
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, its velocity is reduced to 
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 is the index of refraction of the material, given by [6] 
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, Eq. (4) reduces to
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Thus, the wavelength of the incident radiation (See Fig. 1) becomes
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[image: image34.emf]                  Fig. 1  –   Modified Electromagnetic Wave .  The  wavelength of the electromagnetic wave  can be   strongly reduced ,  but  its frequency  remains the same .  
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        If a lamina with thickness equal to
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 is the Avogadro’s number; 
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 is the matter density of the lamina (in kg/m3) and A is the molar mass(kg/kmole).               

          When an electromagnetic wave incides on the lamina, it strikes 
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 is the “diameter” of the atom. Thus, the electromagnetic wave incides effectively on an area 
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 is the cross section area of one atom. After these collisions, it carries out 
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 with the other atoms (See Fig.2).  




[image: image53.emf]                    Fig. 2   –  Collisions inside the   lamina .     
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Thus, the total number of collisions in the volume 
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The power density,
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, of the radiation on the lamina can be expressed by
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           We can express the total mean number of collisions in each atom,
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Since in each collision a momentum 
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 is transferred to the atom, then the total momentum transferred to the lamina will be 
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Since Eq. (8) gives 
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Substitution of Eq. (12) into Eq. (11) yields
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Substitution of 
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given by Eq. (9) into Eq. (13) gives
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Substitution of
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  into Eq. (14) results
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where 
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         Now, considering that the lamina is inside an ELF electromagnetic field with 
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, then we can write that [7]
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Substitution of Eq. (16) into Eq. (15) gives
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In the case in which the area 
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is just the area of the cross-section of the lamina
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If the electrical conductivity of the lamina, 
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Substitution of Eq. (19) into Eq. (18) gives 
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Note that 
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          Now consider the system shown in Fig.3. It was designed to convert Gravitational Energy directly into Electrical Energy. Thus, we can say that it is a Gravitational EMF Source.

          Inside the system there is a dielectric tube (
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. Inside the tube there is an Aluminum sphere with 30mm radius and mass 
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The number of atoms of air (Nitrogen) per unit of volume, 
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, according to Eq.(7), is given by
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          The parallel metallic plates (p), shown in Fig.3 are subjected to different drop voltages. The two sets of plates (D), placed on the extremes of the tube, are subjected to 
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, while the central set of plates (A) is subjected to 
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, then the intensity of the electric field, which passes through the 36 cylindrical air laminas (each one with 5mm thickness) of the two sets (D), is 



[image: image107.wmf](


)


(


)


m


V


d


V


E


rms


D


rms


D


/


10


048


.


1


4


´


=


=




and the intensity of the electric field, which passes through the 7 cylindrical air laminas of the central set (A), is given by 
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          Note that the metallic rings (5mm thickness) are positioned in such way to block the electric field out of the cylindrical air  laminas. The objective is to turn each one of these laminas into a Gravity Control Cells (GCC) [5]. Thus, the system shown in Fig. 3 has 3 sets of GCC. Two with  18 GCC each,  and one with 7 GCC. The two sets with 18 GCC each are positioned at the extremes of the tube (D). They work as gravitational decelerator while the other set with 7 GCC (A) works as a gravitational accelerator, intensifying the gravity acceleration produced by the mass 
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of the Aluminum sphere. According to Eq. (3), this gravity, after the 
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 given by Eq. (21) and 
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 is the distance between the center of the Aluminum sphere and the surface of the first GCC of the set (A). 

          The objective of the sets (D), with 18 GCC each, is to reduce strongly the value of the external gravity along the axis of the tube. In this case, the value of the external gravity,
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, is reduced by the factor
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and, after the set A, it is increased by 
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, this value is much smaller than 
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          Note that there is a uniform magnetic field, 
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, through the Silicon Carbide (SiC)
. The electrical conductivity of air, inside the dielectric tube, is equal to the electrical conductivity of Earth’s atmosphere near the land, whose average value is 
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[8]. This value is of fundamental importance in order to obtain the convenient values of the electrical current 
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, which are given by Eq. (21), i.e.,
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where,

[image: image130.wmf](


)


(


)


24


.


12


4


0


=


=


f


n


air


air


r


air


r


pe


s


m


, 

[image: image131.wmf]3


25


/


10


16


.


5


m


atoms


n


air


´


=


,

[image: image132.wmf]m


m


10


10


55


.


1


-


´


=


f


, 

[image: image133.wmf]2


20


2


10


88


.


1


4


m


S


m


m


-


´


=


=


pf


 and 

[image: image134.wmf]Hz


f


60


=


. Since 

[image: image135.wmf](


)


m


V


E


rms


A


/


10


2418


.


1


3


´


=


 and 

[image: image136.wmf](


)


m


V


E


rms


D


/


898


.


104


=


, we get



[image: image137.wmf](


)


26


5


.


308


-


=


c




and



[image: image138.wmf](


)


27


10


2


-


@


d


c




          The gravitational forces due to the gravitational mass of the sphere 
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 of the SiC, are respectively expressed by the following relations  
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In order to make null the resultant of these forces in the SiC (and also in the sphere) we must have 
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          It is important to note that the set with 7 GCC (A) cannot be turned on before the magnetic field B is on. Because the gravitational accelerations on the SiC cylinder and Aluminum sphere will be enormous 
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          The force 
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 is the electromotive force (EMF), which produces the electrical current. Here, this force has gravitational nature. The corresponding force of electrical nature is
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The electrons in the SiC are subjected to the gravity acceleration produced by the sphere, and increased by the 7 GCC in the region (A). The result is



[image: image152.wmf](


)


33


2


0


7


7


r


M


G


g


a


gs


s


e


c


c


=


=


Comparing Eq. (32) with Eq.(33), we obtain
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The electron mobility,
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m


, considering various scattering mechanisms can be obtained by solving the Boltzmann equation in the relaxation time approximation. The result is [9]
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where 
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 is the average relaxation time over the electron energies and 
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 is the gravitational mass of electron, which is the effective mass of electron. 

          Since 
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Thus, the drift velocity will be expressed by 
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and the electrical current density expressed by
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where 
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 due to the electrons are inside the magnetic field B. Therefore, Eq. (38) reduces to
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In order to calculate the expressions of 
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Electrodynamics tells us that 
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Similarly, in the case of proton and neutron we can write that
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The radius of free electron is 
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 (See Appendix A) and the radius of protons inside the atoms (nuclei) is 
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, then we obtain from Eqs. (41) (42) and (43) the following expressions:
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Then, from Eq. (31) it follows that  
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Substitution of Eqs. (44) and (45) into Eq. (46) gives 
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For 
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whence we obtain
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Consequently, Eq. (44) and (45) yields
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In order to the forces 
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 have contrary direction (such as occurs in the case, in which the nature of the electromotive force is electrical) we must have 
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 (See equations (28) (29) and (30)), i.e.,
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This means that we must have
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In the case of 
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the result is
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Let us now calculate the current density through the SiC. According to Eq. (39) we have
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Since 
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Given that 
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Thus, the dissipated power is 
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and the drop voltage 
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, between the extremes of the SiC, is given by
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Thus, the electrical power produced by the system is
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          Note that this power can be increased simply by increasing the conductivity of the SiC. For example, if 
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 (the double of the first one). 
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Appendix A: The “Geometrical Radii” of Electron and Proton

          It is known that the frequency of oscillation of a simple spring oscillator is 
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where 
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 is the inertial mass attached to the spring and 
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 is the spring constant (in N·m−1). In this case, the restoring force exerted by the spring is linear and given by 
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where 
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 is the displacement from the equilibrium position.

          Now, consider the gravitational force: For example, above the surface of the Earth, the force follows the familiar Newtonian function, i.e., 
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is the distance between the centers. Below Earth’s surface the force is linear and given by
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where 
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 is the radius of Earth. 

          By comparing (A3) with (A2) we obtain
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In the case of an electron and a positron, we substitute 
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 is the radius of electron (or positron). Thus, Eq. (A5) becomes
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The value of 
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 varies with the density of energy [1]. When the electron and the positron are distant from each other and the local density of energy is small, the value of 
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 becomes very close to 1. However, when the electron and the positron are penetrating one another, the energy densities in each particle become very strong due to the proximity of their electrical charges 
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), we start from the expression of correlation between electric charge 
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where 
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          In the case of electron, Eq. (A7) gives 
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where we obtain
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This is therefore, the value of 
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 increased by the strong density of energy produced by the electrical charges 
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 of the two particles, under previously mentioned conditions. 

          Given that 
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From Quantum Mechanics, we know that 
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where 
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 is the Planck’s constant. Thus, in the case of 
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          By comparing (A10) and (A12) we conclude that
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Isolating the radius
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Compare this value with the Compton sized electron, which predicts 
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 and also with standardized result recently obtained of 
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 [11].           

         In the case of proton, we have 
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where we obtain
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 Thus, the result is
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          Note that these radii, given by Equations 
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, are the radii of free electrons and free protons (when the particle and antiparticle (in isolation) penetrate themselves mutually). 

          Inside the atoms (nuclei) the radius of protons is well-known. For example, protons, as the hydrogen nuclei, have a radius given by 
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 [12, 13]. The strong increase in respect to the value given by Eq. (A17) is due to the interaction with the electron of the atom. 
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� The Low-resistivity (LR) pure Silicon Carbide called CoorsTek Pure SiCTM LR CVD Silicon Carbide, 99.9995%, has electrical conductivity of 5000S/m at room temperature; � EMBED Equation.3  ��� ; � EMBED Equation.3  ���; dielectric strength >10 KV/mm; maximum working temperature of 1600°C. ( See � HYPERLINK "http://www.coorstek.com" ��www.coorstek.com� )
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Fig. 3 – A Gravitational EMF Source (Developed from a process patented in July, 31 2008, PI0805046-5)
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Fig. 2 – Collisions inside the lamina.  
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Fig. 1 – Modified Electromagnetic Wave. The wavelength of the electromagnetic wave can be strongly reduced, but its frequency remains the same.
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