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In this paper, we try to construct the famous Schröinger equation of quantum mechanics in a very
simple manner. It is shown that, even though the mathematical procedure of the construction may
be correct, it is evident that the establishment of the Schröinger equation is unreasonable in physics.
We point out the application of the Schröinger equation, in fact, will lead to the transformation of
the studied system into an arbitrary variable pseudo physical system. This finding help to uncover
the nature of the nonlocality and Heisenberg’s uncertainty principle of quantum mechanics. It is
inevitable that the use of the Schröinger equation will violate the law of conservation of energy.
Hence, we argue that the Schröinger equation is unsuitable to be applied to any physical systems.

PACS numbers: 03.65.Ca; 0365.Ge

I. INTRODUCTION

It has been well accepted that photon exhibits
both wave-like and particle-like properties, the so-called
wave–particle duality in physics. In order to describe
particle-like nature of light, Einstein proposed that the
energy E and momentum p of a photon can be expressed
as [1]:

E = hν = ~ω, p =
E

c
=
h

λ
= ~k, (1)

where ν is the frequency of a photon, ω = 2πν is the
angular frequency, λ is wavelength of a photon, k = |k| =
2π/λ is the wave number (k is the wave vector) and ~ =
h/2π is the reduced Planck constant.

In 1923, de Broglie claimed that all matter, not just
photon, possess the wave-like nature. For a free material
particle, de Broglie assumed that the associated wave of
the particle also has a frequency and wavelength [2]:

νd =
E

h
, λd =

h

p
, (2)

where h is the Planck constant, E and p are the energy
and the momentum of the particle, respectively.

Without taking into account relativistic effects, the de
Broglie wavelength of a particle with a mass m and a
velocity v can be readily obtained from Eq. (2):

λd =
h

mv
=

h√
2mEk

, (3)

where Ek = mv2/2 is the kinetic energy of the particle.
Motivated by the de Broglie hypothesis, in 1926, Er-

win Schröinger invented an equation as a way of describ-
ing the wave behavior of matter particle, for example,
the electron. The equation was later named Schröinger
equation which can be written as[

− ~2

2m
∇2 + U(r, t)

]
Ψ(r, t) = i~

∂

∂t
Ψ(r, t) (4)
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where m is the particle’s mass, U(r, t) is its potential en-
ergy, ∇2 is the Laplacian, and Ψ(r, t) is the wavefunction.

Undoubtedly, the Schröinger equation of Eq. (4) is the
most important and fundamental equation of the mod-
ern physics. In physical community, the time-dependent
Schröinger equation for a quantum system is even intro-
duced as a powerful analog of Newton’s second law of
motion for a classical system. However, what the wave-
function of the equation is? Can the Schröinger equation
be derived physically? Obviously, if these two issues can
not be well resolved, people may still doubt the reliability
of the Schröinger equation.

On the one hand, although much debate, the wave-
function is now commonly accepted to be a probability
of finding the studied particle at a certain position. On
the other hand, there have been many attempts to derive
the Schröinger equation from different principles [3–12],
including two published derivations by Schröinger himself
[3, 4]. But all these attempts are unsuccessful. They are
either mathematically flawed or physically unreasonable.
It is our viewpoint that any effort for the mathematical
derivation of the Schröinger equation might be in vain,
unless the physical nature of the wavefunction is identi-
fied.

How did Schröinger built his equation? We believe
that this question is certainly one of the most suspense
episodes of theory building in the history of physics. In
this paper, we try to construct the Schröinger equation
in a most reasonable and acceptable way which was likely
to have been used by Schröinger. We will show that the
role of Schröinger equation is primarily to transform the
studied system into a completely uncertain and unrelated
virtual physical system. This conclusion coincides with
results from Schröinger equation for the hydrogen atom.

II. MATHEMATICAL REASONABLE BUT
PHYSICAL UNREASONABLE

It is very hard to imagine that physics research with-
out mathematics. Physicists use mathematics as a tool
not only to assist their research but also to guide their
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research. Nowadays, more and more researchers dream
of uncovering the mysteries of nature with the help of
mathematics. However, we think it is a mistake to blindly
believe that math can tell us everything about the uni-
verse. In this section, it will be shown that the so-called
rigorous mathematical derivation may lead to an absurd
physical result.

First, we have the following pure mathematical equa-
tion (where m, v, e and r are variables)

F (m, v) +H(e, r) = E. (5)

If we multiply a nonzero constant A on both sides of
Eq. (5) at the same time. Accordingly

[F (m, v) +H(e, r)]A = EA. (6)

Then, dividing both sides of Eq.(6) by the same con-
stant A, readily

F (m, v) +H(e, r) = E. (7)

Mathematically, Eq. (7) and Eq. (5) are certainly
identical. Physically, can a similar physical equation re-
main the same under exactly the same two-step math-
ematical operations? In the following, it will be shown
that these operations are not allowed on the equations of
physics.

In the framework of classical physics, the behavior of
the electron inside the hydrogen atom is governed by the
following equation of motion

1

2
mv2 − e2

4πε0r
= E, (8)

where m is the mass of electron, v is its velocity, e is
the elementary charge, ε0 stands for the permittivity of
free space, and r is the distance between electron and
nucleus. In this equation, the first left term represents
the electron kinetic energy, the second left term describes
an effective potential energy and the right term E is the
total energy of electron.

Similarly, we multiply the constant A on both sides of
Eq. (8). Unlike the case of pure mathematical equation
discussed above, in order to truly describe this opera-
tion on the physical system, we must introduce two new
variables (ξ and α) which yields the following equation

1

2
(
Am

ξ2
)(ξv)2 − (

√
Aαe)2

4πε0(αr)
= EA. (9)

When divided by the same constant A on both sides,
thus the Eq. (9) can be written as follows

1

2
(m

η2

ξ2
)(
ξ

η
v)2 −

(
√
α/βe)2

4πε0(α/β)r
= E, (10)

where another two new variables (η and β) have to be
introduced during the mathematical operation.

Eq. (10) can be reexpressed as

1

2
m(ξ, η)v2(ξ, η)− e2(α, β)

4πε0r(α, β)
= E. (11)

By comparing Eq. (11) with Eq (8), it is obvious
that these two equations are completely different. Be-
cause ξ, η, α and β are almost arbitrarily adjustable real
numbers, Eq. (11) indicates that the fully determinate
physical system of a hydrogen atom of Eq. (8) has been
changed into an infinite number of pseudo physical sys-
tems. It should be noted that this absolutely man-made
erroneous result has been misread as the nonlocality of
quantum mechanics [13, 14]. Under these seemingly rea-
sonable mathematical operations, all physical quantities
(time, space, speed, energy, momentum, charge) will be
uncertainty. Furthermore, if the constant A is replaced
by a time and space function of Ψ(r, t) (continuous, fi-
nite, non-zero and single-valued), we will soon obtain an
unlimited number of dynamic and more complex physical
systems in this way.

These two steps (multiply and divide) can be simplified
in a single step (multiply or divide). Let us multiply (or
divide) on both sides of Eq. (8) by number 1, the hydro-
gen system will also be changed into an infinite number
of pseudo hydrogen-like systems because there are also
infinite variety ways to decompose “1” into two parts. In
addition, we can control the system uncertainty by limit-
ing the range of variables. For the case of single step, let
ξ = 1− δ, α = 1− δ, where δ is an infinitesimal variable,
then Eq. (8) becomes

1

2

[
m

(1− δ)2

]
[(1− δ)v]

2 − (
√
1− δe)2

4πε0 [(1− δ)r]
= E. (12)

Then expand the above items including the variable
δ, we obtain the lowest order approximation equation of
motion for the electron of the hydrogen as{
1

2
mv2 − e2

4πε0r

}
−

{
1

2
(δm)(

√
2δv)2 − (

√
δe)2

4πε0(r/δ)

}
≈ E.

(13)
By comparing Eq. (13) with Eq. (8), it is no difficult

to find that the original hydrogen system has been be su-
perimposed by a variable unrelated pseudo hydrogen-like
systems. Consequently, the law of conservation of energy
is no longer valid and all physical quantities will become
uncertain. Therefore, we argue that the Heisenberg’s un-
certainty principle [15] is also an artificial principle, which
is a misunderstanding of the real nature.

For the best of our knowledge, never have researchers
noted that by multiplying (or dividing) a constant (even
number 1) on both ends of a physical equation may lead
to a completely change the studied physical system. In
the following section, we will show that it was most likely
that Schröinger had made the same mistake when he tried
to construct his equation.
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III. HOW DID SCHRÖINGER GET HIS
EQUATION?

What path did Schröinger take to end up at his equa-
tion? As Schröinger never told anyone about it, this
has become the eternal mystery in the history of science.
However, we believe that people still have the possibility
to reproduce the history of the technical construction of
the Schröinger equation.

We guess that Schröinger established his equation bas-
ing on the following three main criteria: (1) de Broglie’s
hypothesis of matter wave, (2) the law of conservation of
energy, (3) classical plane wave equation. In a conserva-
tive field (central force field), the total mechanical energy
E (kinetic Ek and potential Ep) of a material particle is
conserved

Ek + Ep =
p2

2m
+ V (r) = E, (14)

where m is the mass of the material particle, p is its
momentum, V (r) is potential energy and E is the total
energy.

Eq. (2) can be represented in the form of the angular
frequency ω and the wave vector k as

E = ~ω, p = ~k. (15)

In classical physics, the plane wave equation is com-
monly written as

A(r, t) = A0 exp {i(k · r− ωt)} . (16)

As an attempt, Schröinger started by assuming that
matter wave can also be described by the plane wave
equation. Hence, he substituted Eq. (15) into Eq. (16)
yields

φ(r, t) = φ0 exp

{
i

~
(p · r− Et)

}
. (17)

Next, Schröinger probably multiplied both sides of Eq.
(14) by φ(r, t) of Eq. (17) as[

p2

2m
+ V (r)

]
φ(r, t) = Eφ(r, t). (18)

As we have discussed above, this operation may be al-
lowed in mathematics, but it is prohibited in physics. At
that time, he must not be able to recognize this problem.
It was quite easy for Schröinger to find that Eq. (18) can
still be satisfied if the momentum p and the energy E are
represented by the following momentum operator (corre-
sponding to the spatial derivatives) and energy operator
(corresponding to the time derivative)

p = −i~∇, E = i~
∂

∂t
. (19)

(2,0,0) (2,1,0)

(4,3,1)(4,3,0)(4,2,2) (4,1,1)(4,1,0)(4,0,0)
(3,2,1)(3,2,0)(2,1,0) (3,1,0)

Figure 1: Some wavefunctions of the hydrogen atom predicted
by Schröinger equation. Only when l = m = 0, the wave
functions can maintain the spherical symmetry.

Substitution Eq. (19) into Eq. (18), while at the same
expanding the central force field to a general force field
[V (r) → U(r, t)] and replacing the plane wavefunction
φ(r, t) with a general wavefunction Ψ(r, t), Schröinger
finally “derived” his equation of Eq. (4), the so-called “an
inspired passage ”.

Evidently, Schröinger’s “derivation” was entirely spec-
ulative. It should be emphasized that any approach on
derivation of the Schröinger equation of matter particle
will inevitably lead to the change of the studied system.
This conclusion can be well confirmed by the results ob-
tained from the Schröinger equation.

The solution of the Schröinger equation for the hydro-
gen atom has always been recognized as the most suc-
cessful applications of quantum mechanics. In spherical
coordinates, the normalized position wavefunctions of the
hydrogen atom are

ψnlm(r, θ, φ) =

√(
2

na0

)3
(n− l − 1)!

2n(n+ l)!
e−ρ/2ρl ·Lnl · Ylm,

(20)
where ρ = 2r/na0, a0 is the Bohr radius, Lnl =

L2l+1
n−l−1(ρ) are the generalized Laguerre polynomials and

Ylm = Y m
l (θ, φ) is a spherical harmonic function. The

quantum numbers can take the following values: n =
1,2,3,...; l = 0,1,2,...,n − 1; m = −l,...l. As shown in
Fig. 1 , the wave functions of Eq. (20) can be intuitively
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Figure 2: The radial probability density versus r/a0 for the
hydrogen atom, where a0 ≈ 0.53Å is the Bohr radius. Note
that the the radius of hydrogen atom is only 0.79 Å

presented through the images [16] .
As we all know, the electron in the hydrogen atom

experiences a spherically symmetric potential, so it is a
basic criterion that the physical quantities developed to
describe the electron must not destroy the spherical sym-
metry. However, the vast majority of the wavefunctions
of Eq. (20) are completely contrary to this basic crite-
rion, as shown in Fig. 1.

Fig. 2 shows some typical radial probability densi-
ties which are predicted by Schröinger equation for the
electron inside hydrogen. These results imply that, as
an internal electron (with a definitive energy) of the hy-
drogen atom, it would appear very near to the nuclei
(r ≪ a0), but sometimes in a far distance from the same
nuclei (r ≫ a0). According to Eq. (20), the internal
electron of the atom has the possibility to appear in any-
where in the universe. As one can find easily from Fig.
2, for a definitive energy electron (n, m and l are given)

of the hydrogen atom, the radial probability density in-
cludes a lot of nodes (zero probability area) which indi-
cate that the electron may appear in some independent
spaces completely isolated by the wavefunction (see also
Fig. 1). From the perspective of physics, these results
are absurd.

We firmly believe that all conclusions deduced from
the Schröinger equation are impossible to be the physical
facts. Because the application of the Schröinger equation
will eventually cause the change of the physical system.
For a given eigenenergy of the electron, there is an infinite
number of pseudo physical systems defined by Schröinger
equation. The physical parameters of the pseudo systems
are completely different from the real hydrogen atom. In
other words, the most fundamental physical constants
(for example, the elementary charge e, the mass of elec-
tron m) can be arbitrarily adjusted. If the elementary
charge e → 0, the pseudo electron and nuclei can be in-
finitely close to each other, while e→∝, they will become
infinitely separated.

IV. A BRIEF SUMMARY AND CONCLUSIONS

We have successfully constructed the Schröinger equa-
tion in a very reasonable manner. We have provided a
very conclusive mathematical proof that the establish-
ment of the Schröinger equation is impossible and unrea-
sonable in physics. It has been pointed out the appli-
cation of the Schröinger equation on any physical sys-
tem, in fact, would lead to the transformation of the
studied system into a changeable pseudo physical system
where all the fundamental physical constants may have
been changed by the Schröinger equation. Moreover, the
Schröinger equation may create some man-made physical
phenomena, such as the uncertainty of the physical quan-
tities and nonlocality of the matter particles. These argu-
ments have been well supported by the analytical results
from Schröinger equation for the hydrogen atom. Hence,
we argue that the Schröinger equation was based upon
a misunderstanding of the real physical world. Without
doubt, the physics community must now be aware that it
is time to completely abandon the Schröinger equation.
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