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In Dice 2010 Sumati Surya brought up a weaker Quantum sum rule as a biproduct of a quantum 
invariant measure space. Our question is, does it make sense to have disjoint sets to give us quantum 
conditions for a measure at the origin of the big bang? We argue that the answer is no, which has 
implications as to quantum measures and causal set structure. 

A  Introduction 
In the causal set approach, the probabilities are held to be Markovian [1] , label 
independent and adhere to a casuality called Bells inequality. The author of [1] refers to a 
sequential growth called a calssical transition percolation model. Then [1] makes an 
extension of the above idea to complex models involving quantum measures in the 
definition of a (quantum) complex percolation model which defiines the amplitude of 
transition as follows [1]. For a quantum measure space defined as triple as given by 
( ), , VA μΩ , with Vμ a yet to be defined vector measure, A an event algebra or set of 

propositions about the system, and Ω is the sample space of histories or space time 
configurations. 
 

Let p Cε  ,  for an amplitude of transition, instead of a probability; and set 

( )nCψ as the amplitude for a transition from an empty set to n element of a causal set 

nC , and with ( )nCyl C , cylinder set, as a sub set of Ω containing labeled past finite 

causal sets whose first n elements form the sub causal set nC . Note that the cylinder sets 
form an event algebra Α with measure given by form the sub-causal set nC . Here, ψ is 
a complex measure on Α , and so then  ψ  is a vector measure [1] .  This is the primary 
point of break down which occurs in the case of being at a space time singularity. Away 
from the singularity we will be working with the physics of  
 

( ) ( )( ) ( ) ( ),n n n nD Cyl C Cyl C C Cψ ψ∗′ ′=                                                          (1) 

 
This is done for a cylinder set [1], where γ  is a given path, and tγ as a truncated path, 

with ( )tcyl γ  a subset of Ω  and ( )( ) ( )t tcyl Pμ γ γ= , with  ( )tP γ the probability 
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of a truncated path, with a given initial ( ),i ix t to final ( ),f fx t spatial and times.  Note 

that the μ measure would be for : A Rμ +→ obeying the weaker Quantum sum rule [2] 
 
( ) ( ) ( ) ( ) ( ) ( ) ( )μ α β γ μ α β μ α γ μ β γ μ α μ β μ γ∪ ∪ = ∪ + ∪ + ∪ − − − (1a) 

 
This probability would be a quantum probability which would NOT be obeying the 
classical rule of Kolmogrov [1] 
 
( ) ( ) ( )1 2 1 2P P Pγ γ γ γ∪ = +                                                                                   (1b) 

 
The actual probability used would have to take into account quantum interference. And 
That is due to Eq. (1a) , and Kolmogrov probability no longer applying. Leading to [1]  
 

( ) ( ) ( ){ }| 0t tcyl t t for all t tγ γ γ γ′ ′ ′≡ ∈Ω = ≤ ≤                                       (1c) 

 
 
Here, :D CΑ×Α→ is a de coherence functional [1] which is (i) Hermitian, (ii) 
finitely biadditive, and (iii) strongly additive [2] , i.e. the eignvalues of D constructed as 
a matrix over the histories { }iα are non negative.  

 
We have that a quantum mesurement is then defined via  
 
( ) ( , ) 0Dμ α α α= ≥                                                                                                  (1d) 

 
A quantum vector measurment is defined via 

( ) [ ]:V Hαμ α χ= ∈                                                                                                    (1e) 

 
where 
 

( )
1
0αχ β
⎧

= ⎨
⎩

   ,         ( )αχ β =   1 if    β α= , ( )αχ β = 0 if    β α≠            (1f) 

 
Also V  is the vector space over A  with an inner product given by  
 

( ) ( ) ( ), ,
V

A A
u v u v D

α β

α β α β∗

∈ ∈

≡ ⋅∑∑                                                                 (1g) 
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with a histories Hilbert space H constructed via taking a sequence of Cauchy sequences 
{ }iu sharing an equivalence relationship  

 
{ } { }~i iu v  if  lim 0i i i V

u v→∞ − =                                                                         (1h) 

 
So then as given in [1] the following happen, namely  
 
 

{ } { } { }i i i iu v u v+ ≡ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                                                                    (1i) 

{ } { }i iu uλ λ≡⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                                                                                     (1j) 

{ } { }, lim ,i i i i i V
u v u v→∞≡⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                                                                          (1k) 

 
This for all { } { },i iu v H∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ and Cλ ∈  so then that the quantum measure is 

defined for :V A Hμ → so that for the inner product on H  
 

( ) ( ) ( ), ,V V Dμ α μ β α β=                                                                                   (1l) 

                                                       
The claim associated with Eq. (1) above is that since ψ is a complex measure on Α that 
Eq. (1) corresponds to what is called an unconditional convergence of the vector measure 
over all partitions. Secondly, according to the Caratheodary-Hahn theorm there is 
unconditional convergence for classical stochastic growth, but this is not necessarily 
always true for a quantum growth process.  
 
Main point of the formalism going to Eq. (1l) is of bi-additivity of D  leading to the 
finite addivity of Vμ  

( )
11

n n

V i V i
ii

μ α μ α
==

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑U                                                                                          (1m) 

 
B. Looking at Arguments against Eq. (1) in the vicinity/ orignin of the 
big bang singularity.  
The pre condition for a quantum measure Vμ for a quantum measurement [1] is that for n 

disjoint sets iα ε Α  
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( )
11

n n

V i V i
ii

μ α μ α
==

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑U                                                                                          (1m) 

 
This Eq. (1m) is a pre condition for Vμ being a vector measure over Α  Eq (m) above 
right at the point of the big bang, cannot insure the existence of n disjoint sets 

iα ε Α .  Therefore at the loci of the big bang one would instead get, due to non 

definable disjoint sets iα ε Α  a situation definable as, at best. 
 

( )
11

n n

V i V i
ii

μ α μ α
==

⎛ ⎞
≠⎜ ⎟

⎝ ⎠
∑U                                                                                             (2) 

Not being able to have a guarantee of having n disjoint sets iα ε Α  because of 
singular conditions at the big bang will bring into question if Eq. (1) can hold and the 
overall program of analyzing the existence of quantum measures Vμ . I.e. the triple 

( ), , VA μΩ for quantum measures Vμ cannot be guaranteed to exist. More importantly, 

the statement that there exists ( )nCψ from an empty set to a nth element causal set 

cannot be adhered to, and Eq. (1) cannot exist since there would be no causal set 
structure at the loci of the big bang. 
 
 
C. Making sense out of QM and also wave-particle duality.  
 
So what can be inferred ? If discontinuous set structures do not exist at the onset of the 
big bang in effectively measure zero space, then what is left ?  We get into all sorts of 
difficulties. Our assumption is that a break down of a quantum measure would probably 
be congruent with the break down of use of QM, in the onset of the big bang. The bottom 
below is a simple quantum argument. i.e. how QM falls falls apart, i.e. the wave-particle 
duality structure.I.e. assume that we have ultra light gravitons, with a tiny rest mass, then 
a simple quantum argument will give us [4]  
 

                   
meters

cm

ceVhm

graviton
graviton

ICRELATIVISTgraviton

8

2122

108.2

/104.4

−

−−

×<
⋅

≡⇔

×<

hλ
                                     (3)       

i.e. the smaller the R.H.S. if Eq. (3) gets, the heavier the rest graviton mass is, which 
would get us into problems if we look at ultra short  wave lengths. 
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The obvious generalization of Eq. (3) would be for a mass M 
 

   

1 2# /

# 10

RELATIVISTIC
M given h eV c

given meters
M c

βλ

−<

⇔ ≡ <
⋅

h                                                                  (4)      

 
One could then get, as in Eq.  3 and 4 , a sitaution in which     
 

, 0gravitonm M λ +→∞⇔ →                                                                                      (5) 

 
 
 If we went to a point source, i.e. an infinitely small wave length, the effective mass 
would go to huge, unphysical values. Since Eq.(3) and Eq. (5) is based upon Quantum 
structure, the shorter the wave length got, the less physical the problem becomes, until 
we get to the absurdity of an infinitely massive gravition or an infinitely massive particle 
for an infinitely short wave length. i.e. not only there would be as we go to a point 
structure, no disjoint causal structure, our very physics as we understand QM insight 
would become not tendable. This will lead to a problem with the causal set discretization 
proceedure brought into analysis, next. 
 
 
D. QM, wave lengths, and problems with Quantum measure Eq.(1m) 
 
As stated by [1] , one can think of Causal sets as part of a partial ordering of space time, 
and to replace the space time continuum with locally finite partially ordered sets [5] ,[ 6]. 
We assert that in place of Eq. (1) which will involve the notion of partially ordered sets 
that instead one has in the immediate neighborhood of a singularity, where we are using 
the ideas of the beginning of this manuscript. So at the singularity. 
 
 

( ) ( )( ) ( ) ( ),n n n nD Cyl C Cyl C C Cψ ψ∗′ ′≠                                                           (6)    

 
That Eq. (6) may happen is due to what may happen in the finite dimensional       H  and 
what happens with total variation [1] as given by looking at finite partitions [8]  
 
                     ( ) { } , Aρπ α α α= ∈                                                                              (7) 

Here the supremum is over all finite partitions as given in Eq. (7) above. And then we 
look at if there is a sufficiently convergent behavior for Vμ , so that uniqueness would be 
guaranteed by the Caratheodary-Hahn –Huvanek theorem. We will be looking at then 
having the following supremum expression for all FINITE partitions as of Eq. (7)  and   
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               ( ) ( ) ( )supV V ρπ α
ρ

μ α μ α= ∑                                                                  (8)  

 
Having a singularity removes applications of Eq. (7) , and of having uniqueness itself 
by[7] challenged ?  What happens if we have instead of Eq. (8) a sitaution for which we 
no longer have finite partitions, ordered sets, but instead 
 

        ( ) ( ) ( )supV V ρπ α
ρ

μ α μ α≠ ∑                                                                       (9) 

 
Or worse, a situation where there is no finite partially ordered set, i.e. no CAUSAL set ? 
Such a situation may 
 
What could go wrong? Suppose that Eq. (7)  no longer holds Suppose we cannot even 
write partitions or ordered causal sets at a singularity so Eq(8) no longer holds and we 
cannot even write Eq.(9)? 
 
Eq. (1) as given in the beginning depends upon having [1] an “unconditional 
convergence of the vector measure over all partitions “. Replace partitions with causal 
set structure, and one still has the same requirement of an unconditional convergence of 
the vector set over all ‘causal set structure’ within a finite geometric regime of space 
time. 
 
Our entire supposition as to Eq. (1), Eq. (8) and even Eq. (9) becomes untendable at the 
singularity. So then, we cannot force QM , with an infinitely small ‘wavelength’, i.e. 
infintely small measure back upon a cosmic singularity, i.e. the big bang itself.  
 
 E. Conclusion? Back to a deterministic treatment of QM, as 
suggested by t’Hooft QM 
 
[1] Suggests a way out of the impasse. If we look at unconditional convergence over all 
partitions, if we cannot do this for a point, in which we tried to have Quantum 
measures constructed, then we have to look at how the singular point , for the big 
bang, is embedded via higher dimensional analogs to a non singular structure.  
 
Secondly, is to not insist upon forcing the situation given in Eq. (4) and Eq. (5) to its 
extremes. I.e. looking at what was said “as to “ real”  complex percolation models  in 
which one accepts that a quantum measure is not additive, as in Eq.(2), but that “ the 
observables of the theory are identical to those of the classical transitive percolations. 
In particular, the observables can be characterized by “stem sets” “ .  
 
If we can put the surrounding the big bang singular point classical transitive 
percolations and relate that to observables identical to classical transitive percolations, 
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we are on the way to fixing the problem of the Quantum measure [8]. I.e. this may be a 
way to be in fedelity with working with t’Hooft’s embedding of Quantum mechanics 
within a higher dimensional theory, as would show up in fixing the problems with the 
Quantum measure[8] and QM as given in the limits as to Eq. (4) and Eq. (5) above.  
 
We can assert though our arguments in 4 space cosmology would contravene [9] ‘s 
structure at the extreme limits of singular big bang physics, as well as lead to the 
untendability of the quantum sum rule ( due to vanishing of disjoint set structure). That 
is if we stick to 4 dimensional space and no higher dimensions.  
 
The only way about the above stated problems for 4 dimensions and a tradtional big bang 
singularity would be using  singular point classical transitive percolations and relate 
that to observables identical to classical transitive percolations and giving up t he 
additivity of quantum measure. 
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