Might Baryons be Yang-Mills Magnetic Monopoles?

Jay R. Yablon
910 Northumberland Drive
Schenectady, New York, 12309-2814

Abstract:

We demonstrate how the baryons which constitute #hvast preponderance of the
material universe are no more and no less than Yanifills magnetic monopoles, with
guarks and gluons confined, and only mesons permétl to net flux in and out.

1. Introduction
In this paper, we pose the following questions:

Why, theoretically, do there exist in nature, nallyroccurring sources, namely
baryons, consisting of exactly three strongly-iatding fermion constituents
which we call “quarks™ Why, and by what mechanisio the massless gauge
particles of Quantum Chromodynamics (QCD), whichoak gluons, cause these
guarks to remain confined within the baryons? Hawd why is it, that the
interactions between baryons only occur via theharge of mediating quark /
antiquark pairs that we call “mesons,” and not tigto any free gluon exchange?
And how, despite the absence of any known symmatepking in QCD, and
even with the gluons being massless, do these nmesdiators obtain their mass?

These are questions of more than passing intéreshuse two most-common types of baryon, of
course, are the proton and neutron, which accaurthé very vast preponderance of the material
universe. It would be good to have a theoreticainfiation for understanding what these
baryons actually are.

We do know, because there are three quarks peomatiyat it is very helpful and can
explain many things about the strong interactiohsye employ the Yang-Mills color group

SU(3x with a wavefunctiong’ =(R G B) in the fundamental representation to ensure

Fermi-Pauli-Dirac exclusion, i.e., to make suret thatwo fermions in a given system have the
exact same set of quantum numbers. But this metesgriptive, and does not explain the
underlying question of why there are three quassshyaryon and not some different number, or
the even more challenging questions about confinémké nature were to provide 4 or 7 or 11,
for example, then we would merely enforce FermiaDistatistics with SU(4) or SU(7) or
SU(11) instead, and would still be asking “why?&rd were instead 4 or 7 or 11 quarks per
baryon.
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From an historical perspective, Rabi once quipdsalaithe muon, “who ordered this?”
Of course, there has been ample experimental esédéor the existence of nucleons since
Rutherford and Chadwick respectively discovered gheton and neutron in 1917 and 1933,
experimentally. But for these baryons and oth&mn a theoretical viewpoint, it is still not
really understood even to this day, “who orderad”h Today, we know that baryons contain
three quarks, but we don’t know why this numbehige. It is still a struggle to understand why
and how these quarks remain stubbornly confined,haow an interaction such as SU(3) QCD
which relies on massless gauge bosons (gluonstdagive rise to massive quark / antiquark
pairs (mesons) which mediate nuclear interactiddsich research has been focused on finding
clever ways to “glue” quarks together, but a fundatal understanding of baryons remains
elusive. In fact, properly understanding baryond eonfinement and massive meson exchange
has proved to be so challenging, that it led theey@hstitute to in 2000 to offer a large prize for
solving the so-called “mass-gap” problem of YandiiTheory, [1] which today remains
unclaimed. And at bottom, the biggest barrierracking this puzzle emanates from the fact that
to this day, nobody really knows, theoretically,atfa baryon is. “Who ordered baryons?” is
still very much a live question.

On a seemingly-different front — which this papeitl seek to show is not at all a
different front — almost as soon as James Clerk vidixpublished his 1873 Treatise on
Electricity and Magnetismguestions arose about magnetic monopoles: “Whthése not
symmetry between electric and magnetic chargeddd rhagnetic monopoles exist?” “If so,
where and how can they be found?” For almost B/ those questions have been asked, and
many experiments have been done and continue tiohe to detect magnetic monopoles. But
to date, magnetic charges have never been conelygiletected and they remain one of the
deepest and most elusive mysteries of the natwdtw

The thesis of this paper is simple: that the magnmonopoles which come into
existence in Yang-Mills theory are synonymous wvaiginyons. _Baryons are Yang-Mills magnetic
monopoles. Yang-Mills magnetic monopoles contaimctly three confined quarks, tightly
bound via massless gluons, with interactions medialy massive mesons. To the question what
is a baryon? the answer is this: a Yang-Mills méignaonopole. To the question do magnetic
monopoles exist and if so where can we find theme?ainswer is this: yes, they exist, and they
are everywhere. We ourselves and everything weasddouch and hear and smell and feel is
built predominantly out of Yang-Mills magnetic mgaes. Whenever we talk about a proton
or a neutron or any other baryon, we are talkinguala Yang-Mills magnetic monopole. We
just don’t realize that, yet. A theoretical oddilyd orphan child for close to 140 years, magnetic
monopoles are in fact the very heart of the mdtevald, but have been hiding in plain sight
ever since the time of Maxwell. Nuclear physiag] she physics of confinement and mesons, is
the physics of magnetic monopoles, governed clabgiby Maxwell's equations plus Yang-
Mills, and quantum mechanically by QCD. And to Ralguestion who ordered this? the
answer, for baryons, is this: James Clerk Maxw&tien Ning Yang and Robert Mills. They are
the theorists who ordered what Rutherford and Chaddwund in their laboratories the better
part of a century ago.




2. A Basic Review of Classical Electrodynamics arllectric / Magnetic Duality

Maxwell’s classical field equations are most offgesented in the form of two separate
equations for electric and magnetic charge dessitie

JV =0, ,F*"

a : (2.1)
Pa,uv zaaF,uv +a,qua +avFa,u
Taken as is, there is nothing in the above to pretree existence of a magnetic charge density

P*" a.k.a. magnetic monopole (which we seek to dematests a baryon density when fully
developed in Yang-Mills theory). However, as s@mone defines the field strength density

F* from the Abelian gauge vector potenti& (which in QED represents the photon) using:
FA =0"A” —0" A¥, (2.2)

the latter equation (2.1) becomd®™ =0, by identity. Thus, the timeless mystery of
Maxwell’'s equations: no magnetic monopoles.

One might think to discard the vector potentidl’ in (2.2) entirely, and specify

electrodynamics entirely in terms of the field stgdh F*. But as Witten points out: ([2] at
page 28)

“the vector potential is not just a conveniencet][is needed in 2B-century
physics for three very good purposes:

. To write a Schrodinger equation for an electroa magnetic field.
. To make it possible to derive Maxwell’'s equatiores a Lagrangian.
. To write anything at all for non-Abelian gauge thgowhich — in our

modern understanding of elementary particle physiissthe starting point
in describing the strong, weak and electromagneteractions.”

In fact, if one really probes the question, thd resue is not why magnetic charges don't
exist, but rather, why electric charges do exibhis is easiest to understand making use of the
“duality” formalism (which we will employ quite afh in this paper), first developed by Reinich
[3] and later elaborated by Wheeler, [4] which utdes Levi-Civita formalism (see [5] at pages
87-89) in which the “dual™ A of any second-rank antisymmetric tens&f in four-spaceR*
is constructed according to the discrete transftiomag A* =4 ™ A ;, and in which first and

third-rank (antisymmetric) tensor duals are fornbgd* A“ =3¢ A and* A, =¢,,, A".
+B,,.,+B )—*Am* B™.; =0 for any two

antisymmetric tensor& andB ([4] at page 251, note 22), it can readily be shakat first rank
and third rank antisymmetric objects are identjcaflelf-dual, that is,* A¥ = A“ and
*A,, = A, . Using duality, one may equivalently write bathMaxwell’s equations (2.3) in

first rank form:

Using the known mathematical identif§/A‘”(B

o,V



3V =0,Fm

v v (23)
P"=9,*F*
or, alternatively and equivalently, in the thirchkaform:
* JOUV — Q0 x EHY 4 QH * EVO 4 gV * EOH

J 0°*F 0“*F 0"*F | (2.4)

PH =9°FEH +J“EY +9"EH

with * F# =L g F.;- Whether one uses (2.1), (2.3) or (2.4) is elytimematter of preference,

and depends largely on what will most simplify ayen calculation that one is trying to do. In
fact, to be fully complete, the final, equivaleaiinng one can consider is:

*JO’/IV :aJ*F/JI/ +a,L1*FVO'+aV*FU/J

2.5
pV :aﬂ* F//V ( )

This particular pairing in the context of QCD, mag related to so-called “dark matter,” which
we will return to briefly at the very end of thigper.

We know very well that Maxwell’s classical electcharge equation in the first rank
formof J”=0,F* may be derived from the Lagrangian (density):

L, =—7F"F, +J'A, (2.6)

via the Euler-Lagrange equation:

07 0% —a;f:o (2.7)
000°¢p)) 0@

for ¢= A”. As will be reviewed further in section 3, thi§,course, is &lassicalfield equation,
which only applies for high-action physics in whigy) :Id4x£(¢) >>7.

But what about the classical magnetic charge eguiti=0,* F*'? What is its
Lagrangian? Well, Witten says we need a vectoemg@l to have a Lagrangian. So, what is the
vector potential? Let us posit a vector poterthat we will call M #. Because the field for the
magnetic chargé® is the dual fields F* =1 g™ F,z, we know right away that we can derive
P"=0d,*F* from a Langrangia £, =-3*F* *F  +P*“M , solong as we definkl “ in

terms of A¥ as:

0“M” =0"M ¥ =*F 4 = Lg% (9 A -0, A, ). (2.8)



This merely constraind “ such that it is not independent &f, but is instead “interleaved”
with A# according to the parametric differential equat{@r8). Put differently, because they
are not fully independent # and A“ will share degrees of freedom. It should be cthat a
Lagrangiant & =-3*F**F,  +P“M , via the Euler-Lagrange equation (2.7) will yield
P"=0d,*F* for either sign, which is why we show #. So, which sign do we choose?

Because* F*' *F , =-F*F , by identity, contrasting®, with £, in (2.6), we see that the

e

choice of the positive sign ig,, would cause the kinetic energy teff’F , to entirely vanish

from the combined Lagrangiag, +£,. This should not happen, so we know that we shoul
choose th@egativesign. Therefore, we establish:

e, =LSFMSE —PHM (2.9)

m

as the magnetic monopole Lagrangian necessaryottupe P* =0 ,* F** and not negate the
kinetic energies associates with the electric ahaquation” =0 ,F*.

So, now all is well, with one exception: Take {2Z@& * F*’, plug it into the third rank
electric charge equationdJ?” =9° *F*" +9#*F" +9"* F% from (2.4), and lo and behold,
we find that* 3% =0, just like the magnetic monopole”” =0, again, by identity. And
because the first rank electric chargé =4 ¢ *J, , this means that there is no electric
charge.

vor !

This is not new, but is a well-known problem, @ind why some authors will write about

the “source free” Maxwell equatioris”” =0, * F#¥ =0, recognizing that while electric sources
clearly exist in nature everywhere from lightnirmydlectric currents to the electrons in atoms,
the theory required to permit electric sources xesteis still not fully satisfactory. This is
because, in a classic case of exposing one’s feenwpulling up the sheets to cover one’s
shoulders, as soon as one creates a Lagrangianni@gnetic charge in order to be able to talk
about magnetic charges quantum mechanically, otleeatame time forces the electric charges
to become zero. That is why we said above thatgakissue is not why magnetic charges don’t
exist, but rather, why electric charges do exist.

But in Yang-Mills theory, zero charge is not algen: Magnetic charges exist, as do
electric charges. Specifically, as can be foungiitually any elementary textbook on particle
physics or quantum field theory e.g., [6] equatigtb(17) or [7] equation (15.1.13), the field

The author addresses this problem in the conteiktU¢l) electrodynamics in a 2005 paper at
http://arxiv.org/abs/hep-ph/05082533% imposing a_local duality symmetry and then abswg the local phases
(called “complexion angles” by Reinich) into twow@auge particles which must be introduced in aoidito the
photon in order to maintain duality symmetry. U@gctrodynamics then immediately reveals a hid8&i2)
symmetry. This symmetry is then broken much &SUW2)xU(1) electroweak theory to preserve a masgieston,
while revealing a very heavy mass in the 2.25 T2V range for the vector mediatef' of magnetic monopole
interactions, so that electric and magnetic chabgdls exist, but the magnetic charge interactiorsexceptionally
“weak” and cannot be observed at ordinary energies.




strength tensor for a Yang-Mills (non-Abelian) gaubgeory is:
F'#=0#G'V-0"G' “+ % G,“G,” (2.10)

where theG* are the gauge bosons (classical potentials) otevea Yang-Mills group one is
using (for instance, weak SU{R)or SU(3)), f™ are the group structure constants, and the

Latin internal symmetry indexeis j,k = 1,23...N? -1 for SU(N) are raised and lowered with
the unit matrixJ; .

It often simplifies things to multiply (2.10) thugh by the group generatofs, and then
employ the group structuré™T, = —i[Tj,T"J to rewrite (2.10) as:

FH = a//GV _aVGﬂ — il_G/j,GV]. (2-11)

where F* =T'F* andG* =T'G* are NxN matrices for SU(N). In particular, evenviang-
Mill theory, Maxwell’s classical equations remaially intact in the forms (2.1), as we shall

review in section 4, and it is only the definitioh F*. They simply migrate over to being an
NXN matrix of equations, rather than just a singdgiation. The differences between Abelian

U(1) theory and non-Abelian SU(N) theory all emanfabm the extra terrig[G”,G”J in (2.11),
which is non-zero simply because ti& and G", which are now NxN matrices, do not
commute,[G”,G”];t 0. In short, Yang-Mills theory is merely Maxwellectrodynamics for
non-commuting gauge fields.

Consequently, as soon as one substitutes the behaa (2.11) into Maxwell’'s equation
(2.1) for P =9°F* +9*F" +03"F %, while the terms based o®G" -90"G* continue to
zero out by identity in the usual way, one nonebelarrives at a residual non-zero magnetic
charge:

P =-i(0°|c*,G"|+a#|c",G7|+0"|c7,G*))
. , (2.12)
=-ifo°c*.6"]+[6".0°G" |+ [prc" 67| +[6" 0467 | +[ovG7 6#]+ [67,0vG*)
all because of the fact thtﬁ;”,G“J;t 0. The thesis of this paper will be to show that these-

zero P*" objects are baryons, and that thet(é”,G“] objects are mesons which mediate
nuclear and other baryon interactiansin particular, as we shall later see in, for rapée,
equation (6.20), the three cyclically-symmetriccgiame indexesu,v,o in P are indicative
of three fermion / anti-fermion currents withP™" , while the two antisymmetric indexes v

in [G“,G“J are indicative of two currents, one of which ifeamion, and the other of which is an
antifermion, hence a meson.

But first, we must keep in mind th&®*" =9°F*" +90“F" +0"F% is a_classical field



equation, which means that (2.12) is also classitials therefore important before proceeding
further, to examine the basic differences betwdassecal and quantum electrodynamics, as well
as some semi-classical hybrids of the two, so (haR2) and its offshoots to be developed here
are understood in proper context.

3. A Brief Review of Path Integration and QED, intuding Magnetic Monopole
Interactions

The path integral formulation of quantum fielddheis based upon the path integral:
Z = [Dgexpli/n)] d*xs(g))= cexpliw (3)), (3.1)

together with a suitable Lagrangian densif;(¢) for whatever field ¢ theory is under
consideration. In thef — O limit, that is, in situations where the relevartdtian being
considered is much greater thani.e., S(¢):Id4x£(¢) >> 1, one can use stationary phase (or

steepest descent) approximation to derive the Hidgrange equation (2.7) from the above path
integral (see, e.qg., [6] at 19). Because it iyyaallid for S(¢) >> Ji, the Euler-Lagrange equation

is a classical field equation. Therefore, so tmothe classical field equations’ =0 ,F* and

P"=0d,* F* of (2.3) which are derived from thg, of (2.6) ands,, of (2.9) using the Euler-

Lagrange equation applicable only to high-actioryguts wheres(¢) >>7. In low-action
physics, wherg: starts to dominate, the Euler-Lagrange equatior) (2 longer applies, nor do
any of the field equations reviewed in sectionr] ane must directly dedU(W(J) in order to
obtain proper mathematical expressions governiagttysics of these quantum fields.

As a general mathematical approach, one solves (G.HeduceW(J) from a given

Lagrangian densityf(qﬁ), using what Zee [6] refers to as the “central tdgrof quantum field
theory™

[Dgexplio K @p-V(p)+ I p)=cexpl-V(5/@))ex~1I K D), (3.2)
with the quadratic terms in (3.2) converted oveW.‘()J) via the Gaussian integral:
J'dxexp(% AX +Jx) = (- 2711 A)® expd- 32 12A). (3.3)

Basically, one starts with (3.2), takes the Lagramgdensity £(¢) of the theory under
consideration, applies whatever tricks or resowloelss one can muster to put at least part of the
Lagrangian in the general quadratic fo&#x’ + Jx, and takes all the remaining terms and puts
them into V(#). Then, one useg=(3/3J)J[# to expressV(g4) instead as the operator
V(d/4a1), which enablesexd-V(3/d)) to be removed to the front of the path integragrov
D¢ . In essence, this turns the figidinto an operato® /A that is independent of the variable



of integrationg so is can be treated as a constant during integratOne then uses (3.3) to
evaluate the remaining quadrage (K [¢ + J [¢ still inside the integrand. Finally, as needed,
after obtaining the entire right hand side of (3.@he usesexg-V(d/d)) to operate on
exd—%\] []K‘lEﬂ) and thus generate Green’s functions and Wick mierfits and generally
derive invariant amplitudes including terms of agsired order. This may be converted to
Feynman diagrams as desired. The only probletmaiswhile exp(-V (3/&@))exg-1J K * 1)

can crank out lots of terms, there is no known feerevay to deduce the underlying function
which accommodates all those terms, which is tq #ais difficult or impossible in many

situations to expressxp(~V 3/ & ))expl-1J K * ) in a fully closed form.

Let's look at QED with boundary terms equal toazeas a simple example. For QED,
one can use the product rule and (2.2) to conlierelectric charge Lagrangian (2.6) into:

L. =—sF"F, +JA,

. 3.4
= _%aﬂ(AVaﬂA, - A”aVAﬂ)+%A”a”aﬂA, -3 A0"0, A, + I A G4

Then, after integrating by parts to zero out thanutary term,a”(A”aﬂA» —A”aVAﬂ) -0, and
with some renaming and raising and lowering of k&de this becomes:
e, =1A(9"0%, 040" A, +3¥A,. (3.5)

Now, £, is in precisely the quadratic form needed to eatal|{3.2) via (3.3), and in this simple

case,V(¢) =0 so exd-V(3/d))=1. As is well-known, after converting to momentupase
and inverting the configuration space operator via

D, (g"8°0, —8+3" ek = 5%, (3.6)
(whereby we are essentially deducikg* in (3.2)), we obtain the momentum space propagator

-0, +L-&kk, kK,

D (k : 3.7
w (K) e +ie (37)
along with the well-known result:
4 - 1-&)k k, /1kk
wio)=-3] O L ) (3:8)

(2m)! kk, +ie

Were we to have retained the boundary term dumtggration by parts, that term would have
gone intoV(¢) in (3.2), and (3.7) placed into (3.1) would thendperated on from the left by

exd-V(d/d1)). That is, the non-quadratic boundary terms wdhéh operate on the definite



integral obtained from the quadratic terms.

In momentum space, current conservata’i;jﬂ”(x) =0 becomekﬂ\]"(k):o. ([6] at 31)
Thus, (3.7) by virtue of conserving the currenttues immediately to:

ol dk oy, 1
W(J)_+EIWJ (k) —k”kg+i£J”(k)' (3.9)

As is well known, the plus sign in front of (3.Qpeesses the fundamental result that like electric
charges will repel, because the potential energyeémn the charge densitied(x) is positive.

(see [6] following 1.5(5)) A similar equation in@D tells us that two like quarks, say a Red and
another Red, repel one another, while unlike quag a Red and a Blue, will attract.

There are a few other observations that we noviioiagmake, as these will be helpful in
the ensuing discussion. First, we note that aéadimention of the photon / fieldy, has been

removed from (3.8), because this field itself wde tvariable of integration in (3.1).
Nonetheless,A, is still implicit in (3.8) in two ways. First, ofourse, (3.7) is the photon

propagator. Second, because the photpmmay be expressed in terms of a polarization vector
g, using A, = £, , and because the spin sung,, = Zspmgﬂ * g explicitly containse
we can always substitutESpmeﬂ* g, for -g,, in(3.8) if we wish to see an explicit connection

to the photon field, thus, witk,,J “(k)=0:

d4k spingl-’ * EV v
W(J):—%IWJ”(k)*%J (k). (3.10)

Look at in this way, (3.10) is the quantum fiele@any counterpart of Maxwell’s classical electric
charge equatiod” =0 ,F* from (2.1) written as:

3'(x)=0,F =(g”a°a, —00" )A,(x). (3.11)

For high-action situations whers(¢) >> 7, we may use the classical equation (3.11). Faer lo
action settings whers(g) ~ 7, Maxwell’s (3.11) is no longer valid, and we hageuse (3.10) in

its place. Both (3.10) and (3.11) emanate fromsthee e, = -;F*'F , +J*A of (2.6). The
classical (3.11) is obtained from, by applying anS(¢) >> i approximation to the path integral

(3.1), via the Euler Lagrange equation (2.7). foeantum field expression (3.10) is obtained
from £, by directly deducing\N(J) from (3.1), without any approximation, and is dafor

S(g)~ 1.

" The author develops a detailed example which mimistboundary terms, inttp://arxiv.org/abs/0911.108for
QED in curved spacetime.




The second observation is that while the clasgi®@dll) expresses’ as a function of
A, itis often desirable to obtain an inverse examsfor A, directly in terms ofJ”. And in

this paper, in section 5, obtaining such an invérs& ang-Mills fields will be a very central part
of the development. Becaust, (k) in (3.7) also happens to be the momentum spa@sav

of the g*¥0°d, —9*0" in (3.11), see (3.6), we can combine the clas¢iall) and the quantum
mechanical (3.7) and also ukgJ*(k)=0 to obtain the semi-classical relationship:

A,(x)=D,, (k)" (x) :%J”(x). (3.12)

Semi-classical relationships of the form (3.12) wé very important for showing the connection
between Yang-Mills magnetic monopolB§” and baryons, again, as will be seen in section 5.

Now let us turn to the magnetic monopoles. Hes start with the magnetic monopole
Lagrangian £, of (2.9). This is identical to the?, of (2.6) but for the simple symbolic

substitutions ofJ* - P#, A, - M, and F* - *F*, and the fact thaf,, needed to have an
opposite overall sign fron®, in order to prevent a vanishing of the kineticrgyefrom £, + £,
due to the identity F** *F , =-F*F
for £, contrast (3.5) for®, , will be:

So, the after-integration by parts Lagrangiansiy

v

€. =-iM,(g"0%0, -0%0" M, -P*M,. (3.13)

m

Therefore, in place of (3.3) our guiding Gaussraegral will be
[ axexpl-1 Ax? - 3x)= (271 A)*expl3% /2). (3.14)

The inversion ofg*’9?0, —-0%9" in (3.13) will be identical to that which is shovim (3.6)

yielding an identical propagator to (3.7), but wiite understanding that this propagator is for the
parameterized fielgp = M , which is now the field of integration, definedtarms of the photon

field by the parametric differential equation (2.8)The end result of the path integration,
corresponding to (3.8) will be:

4 _ _ o
AL P S LT AL LTV

w(p')=+2 o e ve (3.15)

2

The only real mathematical difference betwwa“) and W(J”) is that inW(P”) the overall
sign has flipped, see (3.14) versus (3.3). Cormsgrthis current withd ,P*(x) =0, which in

momentum space is, P"(k) =0, (3.15) now becomes:

10



w(p")=-

1o dk L, 1
> | (2”)4P (k) —kgkgﬂgpﬂ(k). (3.16)

The above now expresses the fundamental resultiteainagneticcharges willattract,
because the potential energy between the chargsitigsrP’(x) is negative. A similar equation

in QCD, once we establish that Yang-Mills magnetiarges are baryongjould establish the
fundamental result of nuclear physics that likeymans attract It is certainly known empirically
that this is so; to date, there is no theoreticgdarative for why this would be so. Showing that
Yang-Mills magnetic charges are baryons would vikea equation to (3.16) at the same time
provide theoretical imperative to the stronglyaadtive nature of the nuclear interaction.

If we wish for theg =M , to make an explicit appearance in (3.15), we uiefine a
new polarization vectoré, via M,=¢&,e™*, and employ -g,, :Zspmfﬂ*fv and
kﬂP”(k) =0 to write:

w(pY)= +lf d4k4 P (k)* PITE P (k). (3.17)
2 r[)

2 Kk, +ig

Viewed in this way, the above is the quantum figldory counterpart of Maxwell’s classical
magnetic charge equatid?® =d,* F* from (2.3), written as:

P'(x)=0,*F* =(g"0°0, 03" M, (x), (3.18)

contrast the parallel relationship between the twranand classical electric charge field
equations (3.10) and (3.11). Equations (3.10)(&nt7) may be thought of as the quantum field
theory version of Maxwell's equations (2.3).

A semi-classical relationship corresponding tol23. may similarly be developed,
namely:

M, (x)= D, (k)P (x) = — 2 pv(x). (3.19)

This type of relationship comes into play when éd@sng possible dark or “hidden” matter, in
conjunction with a third rank curre@®” =*J%" based on (2.5), as will be briefly discussed at
the end of this paper.

More importantly, we wish to go back to (3.15); &gP* (k) =0, and make use of the

duality and self-dual relationship” =*P# =1 g##’P__ to write (3.15) as:

afo
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auv - —
W(P ) 72 (2n)4p"” kk, +ie Fogo

(3.20)

This is the quantum mechanical counterpart of thestcal magnetic monopole field equation
PH =0°F* +0d*F" +03"F% of (2.1).

We can use this to form a propagator for the mexhiabf interactions between third
rank-magnetic monopole sources with six spacetiidexes, namely:

voyr uapo
_ 1879,

D ¥ (k 3.21
(k) 36 k%, +ie (3.21)
and then write (3.20) in terms of (3.21) as:
guv | — 1 d4k apo
W(P™)= =3[ Por (D7 () o ). (3.2

(By convention, we keep the minus sign in the esgimn forW(P"”V) and not the propagator so

as to emphasize the attraction between like chgrgékese fully quantum relationships (3.20)
and alternatively (3.22), (3.21) express the quantield interactions between two third rank
magnetic charges.

Equation (3.20) and its equivalent pair of equati(B.22), (3.21) are extremely important
relationships, because these describe the quarnéloniriteraction between third rank magnetic
monopoles. To the degree we can show that in Witlg-theory, these magnetic charge’®
are baryons, the Yang-Mills counterparts of thepe#dons will become the equations governing
the nuclear interactions between and among barswets as protons and neutrons! What is nice

about these relationships, is that while thi, :fﬂe‘ipaxﬂ field is implicit via the spin sum

-0, :Zspmfﬂ*fv , this can all be swept intg,,. Thus, in the foregoing quantum field

equations (3.20) and alternatively (3.22), (3.24¢, do not have to directly concern ourselves
any longer with the parametric relation of (2.8).

Before we proceed to the next section, there \&we doints to be made following the
discussion in this section. First, equation (3. 2®ws the power, in particular, of first and third
rank duality. One can use duality as a “Trojarskbof sorts, to perform “difficult” calculations

using the “simple” first rank-sourced” and P#, and then, after the calculation is done, to
convert the resulting expressions over to “richemtl more complex expressions containing the

third-rank sources) " and P*". One good example of this, is to consider howidlift if not
impossible it would be to derive a Lagrangian fr&#ft” =0°F* +9“F" +3"F% in (2.1).
Duality makes that task easier by working from éugivalent equatiorP” =9 ,* F* in (2.3)

with M" defined as in (2.8), and so we can derive the drmgjan £, =3* F*“ *F , -P*M

12



of (2.9) pretty much the same way as we deriveutial £, =-3F*F, +J*A of (2.6).

Once we have this Lagrangian, we can easily plaathiack into the Euler-Lagrange equation to
get back to the classicalP’=0,*F*, then apply duality to go over to

PH =0°F* +0“F" +0"F%*. As a second example, we use the Lagrangian
L, =3*F**F,-P*M, to derive theW(P) of (3.16) using the simpler first ranR*, then
afterwards we apply duality to get to the more clex@and richer expression in (3.20).

Second, and more fundamentally, we will shortlygseceeding to show that a Yang-
Mils P is a baryon. We shall do so by making use of thassical field equation
P =0?F* +0#“F" +0"F%, and substituting into this equation a semi-clzdsequation
akin to (3.12). Thus, we will be employing a sestaissical set of equations which apply only in
the high-action arenas(¢) >>7 to establish the connection between Yang-Mills nedig

monopoles and baryons. So an obvious questionbeilldoes this result remain valid even
under low-action, fully quantum conditions whesgp) ~ 7 ? The answer we will posit is: yes!

Why? If we can establish in the semi classicaé\@n classical arena th®™" has all
the properties of a baryon in circumstances wrﬁ(ge) >> 7, then there is no logic to suggest
that P?" will cease to be a baryon once we consider quastmditions wheres(¢) ~ 7 . Once
a baryon, always a baryon! What will happen, haveis that once we move into the low-
action arena wheres(¢)~ 7, we will have to forego the use of any of the setassical

equations we have developed, because they wilbngelr correctly describe, mathematically,
the behavior of these baryons in the low actiomareThus, to describe low actids(g) ~ 7

baryonic physics with complete mathematical precsiwe will have to discard any

mathematics based on the classical equatitstt’ =907F* +0“F" +3"F%, and will be
required to turn exclusively to a Yang-Mills equatiparallel to (3.20) to understand the precise
behaviors of a baryon in that low-action arena.

So in a very basic sense, using a “bicycle ridinggtaphor, we will use semi-classical
extensions of the classical equati®f” =0°F*" +3“F" +0"F% as “training wheels” to
demonstrate thaP?" is in fact a baryon under classical, high-actionditions. Then, once
that is completed, we would remove the training &lteguations, and rely on a fully quantum

field equation which is a Yang-Mills cousin to (@)Zor W(P"””), to tell us how these baryons

behave in the quantum arena in which our trainidgeel equations begin to break down or
simply cease to work. But no matter what the actinigh or low, the Yang-Mills magnetic

monopole P will still be a baryon! It will just adhere toftérent mathematical equations in
different action arenas.

Finally, in Figure 1 following, is a “map” of alhe classical, quantum and semi-classical
eguations we have reviewed in sections 2 and 3.
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Figure 1: Quantum, Classical and Semi-Classical Electrodynamics Equation Map

Path Integral

z = [ Dpexpli/n)[ d*x2(p))= Cexp(iw (7))

Input Equations

Classwal _ gl 4 Quantum
>> ﬁ " FIUV - % v 7 ’ Flelds S((D) >>h and S(¢) ~ fl
M =R 1€aﬁﬂV(a As aﬁAa)!
> k,J*(k)=0 k,P*(k)=0 Conservation
a‘ 85_ 9o W(J)

Lagrangians
+ o il F,+J “A +

_o F / Electnc charge / field \

1 d%
J=+— —J“ (k) ——— T, (k
j k°k, +ie (k)

=(g""97d,—0"0" )A 5 v
(8 - ) u 1;” =Ll FWEF —PYM, \ (llke charges repel)
/ Magnetic charge / field d' |
P =9, *F" w(P)= P*(k)* ———— Pk
Third Rank Monopole Conversion (like charges attract)
#* pH =p# = %Eaﬁ&upuﬁ/i +

/ " P#WT :P‘umj' — _g,uvm Pf \ | d4k I
PRT S TFH 0 4 W)= | ) o o

T ie

7" =(g"a°3, —9*a" )A,l Semi-Classical
\ Inverse > Propagator ' ‘
v _gﬂV +(l_§)kakv ,lkﬂkc_
A k)=D,, (k)J" (k) D,, (k)=

/ kk, +ie
gt U=Ck k, kK
g';u ( 6) ,Lf v O'Jv(k)
Kk, +ie

A, (k)=

i

1 sign chosen because *F*" *F, =-F*'F, . Opposite sign choice would remove
kinetic energy from £ +£ .

14



4. Yang Mills “Classical” Field Equations are theMaxwell Equations

In section 2, we began with the classical fieldiagpn J” =9 ,F* of (2.1), and then
derived a Lagrangiaf, = -;F*'F , +J*A in (2.6) which was designed to reproduce (2.1) via
the Euler-Lagrange equation (2.7). Similarly f& =9 ,*F* of (2.3) in relation to the
£, =3*F**F,-P*M, of (2.9). Once known, those Lagrangians then gavihe basis, via

the path integral (3.1), to arrive W(J) in (3.9) andW(P) in (3.16), which are fully quantum

field expressions. That is, as illustrated in dguation map of Figure 1, once we have the
Lagrangians, we can go in either direction: to thedt branch” to derive a classical field

equation, or to the “right branch” derive the quamtamplitudes inherent M/(J) andW(P).

Yang-Mills theory obtains its unique dynamical peaiies because of the field strength
tensor F* in (2.11) and particularly the non-commuting te[@‘(J,G”] which contains NxN
matrices for SU(N). It will be helpful when workjrwith this non-Abelian Yang-Mill§=*" to

employ a little “trick” which putsF#” into a form that is far easier to calculate witlari the
ugly expression (2.10). Specifically, we writel(P) as:

F% =94G" -0"G* -i[G*,G"|= (0" -iG* )" - (0" -iG" )6* = D*G” - D'G* = D*G".(4.1)
where we have defined

D* =9¥ —iG*. (4.2)

But of course, (4.2) is simply a gauge-covariantivdgive. So what (4.1) tells us rather
succinctly, is that Yang-Mills (non-Abelian) gautieory is just Abelian gauge theory in which

the gauge-covariant derivatiie” = 0# —iG* is used to form the field strength tendet” of
(4.1). This is in the nature of applying gaugeotlyegto gauge theory. This compact expression

F* = D¥G"! will serve us well for cleanly carrying out calatibns in a variety of situations.

The first thing we will wish to have available ang-Mills theory, are classical
equations corresponding to Maxwells’ =d ,F* and P =907F*" +0“F"” +9"F % of (2.1).
So to start with we ask: what do Maxwell’s claskeguations look like for Yang-Mills theory?

As it turns out, as we shall very briefly reviewwnavithout a lot of explicit calculation (it is a
good exercise for the reader to confirm this), ¢heguations are exactly the same.

The Yang-Mills counterparts to (2.1) are deriveekctly from a Yang-Mills Lagrangian,
via the Euler-Lagrange equation (2.7). The custgnYang-Mills Lagrangian corresponding to

(2.6) for non-Abelian fieldG” and “electric charge” sources’, which uses our trick (4.1), is:

e=Tr(-1F*F, +23#G,)=Tr(-D*G'D G, +23*G,). (4.3)

[u™=v

The factor of 2 arises simply because the groupemggors for SU(N) are normalized to
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Tr(T‘T"):%J” , and the trace arises beca@g and J* are NxN matrices.

To find the classicab(g)= [d“xe(¢)>>1 field equations, following the left branch of

Figure 1, we can use the right side of (4.3) inHuder-Lagrange equation (2.7). Although the
calculation is more involved than that for QED, afl the new non-linear terms ia£/0G’
cancel identically because of the index commutatsssthatd£/0G? =-2TrJ,. And, all the

non-linear terms irﬂ,i?/a(a”GT) consolidate intcﬂS/d(&"Gr): —2TrF,, based on the new non-

commuting terms in the Yang-Mill§&*". Therefore, the Euler-Lagrange equation solves to
-Trd, = —Tr( "Fm). With the trace removed and revised indexing, Yaeg-Mills “classical”
field equation is just that of Maxwell:

J"=0,F" (4.4)
By the same logic, based on a magnetic chargeabgn:

e=Trlz*F#*F, -2PM )=Tr(D*G'D M, -2P*M ), (4.5)

we expect that the magnetic equation will also behanged form that of Maxwell, giving us
P"=0,*F*, and therefore via duality:

Po;u[/ :aaFyv +a,uFVU +al/FU,U. (46)

Of course, in Yang-Mills theory, the magnetic gabbgesonsM # appearing in (4.5) need
to be parameterized to the electric gauge bosBfisby a non-Abelian version of (2.8).
Specifically, with (2.8) and (2.11) as a referepoit, wedefinethe M # in terms of* F*V as:

9“M” —3"M* —i[M# M"|=*F* =1 % (3,G, -0,G, -i|c*,G"|). 4.7)

This means that with the Yang-Mills field** = DI“G"! together with (4.7) above, we can use
Maxwell's equations to explore Yang-Mills theory ihigh-action S(¢) >>7  physics.

Confirming that these classical field equationstak an identical form in Yang-Mills theory, as
we just have, is an important step for our ovetaitelopment.

5. A Classical Yang Mills Inverse

We start the next stage of development by usiegtriick of (4.1) in Maxwell's charge
eqguation (4.4) to obtain:

3" =9,F™ =9,D*G" =9,D*G" -9,D"G* =(g"9,D -0“D" )G, (5.1)
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Contrasting the above to (3.11), we now want t@iobthe inverse expression f&, in terms of
J", similarly to what was done in (3.12). Thus, weed the inverse , of the configuration

space operatog”’d, D’ —d“D", defined such thai, =1_,J7. We will not for the moment call
this inverse a propagatdd,, because technically propagators are derived égéth integral.

Of course, in QED the propagator that emerges fpath integration happens to be identical to
the inverse, see the “observation” made in theudsion of (3.12). But for Yang-Mills theory,
we ought not assumee priori that this identity between propagator and invevidlecontinue to

be the case. So to make clear this distinctionargenaming this inverse, .

Similarly to (3.6), but using the configuration spaoperatorg”’0,D° —0“D", we now
wish to obtain:

lv)l (gﬂVaUDU _aﬂDV)eikaXa — Iv/i (g,UV (acrag _achU)_ (a,uav —a'uGV))eian” — 5yﬂeik”xa (52)

The presence in the above of the terms such“&’ which are derivatives of fields

introduces a complexity that is not encounteredJ{it) Abelian gauge theory. This added
complexity occurs because these derivative®94G"” do not directly operate on the Fourier
kernel € but instead operate on the gauge field. Because the fiel@&" = G”(x”) is a
function of spacetime, we may make use of the cotatourelationship:

9°G* =ilk?,G*| (5.3)

to replace then varioud’G* which appear in (5.2). The space componentsisfrétationship,
9°A° :i[k"",Ab] for the photon field are used in Dirac theory tride the electron magnetic
moment, see, for example, [8], just after equa(lb®64). The time component of the above,
0°G* = i[kO,G”J is a variant of Heisenberg’s equation of moticee $or example [9], equation
(3.61), which also uses this four-dimensional eggian.

So, we substitute (5.3) into (5.2), and with saemaming of indexes to get&', on the
right, we obtain:

ool ik 6, |-m) ik il 6 )= % 64

Before we try to calculate this inverse, knowingttthis might have no inverse (see [6], chapter

" One can see how this operates as a derivativeohsidering the very simple examp(élax)x2 =2X. The
canonical Heisenberg commutator in the space diioiesiss lxi, ijI ihgij . If we apply this tol_Xi Xk, pj], we
find that lXiXk, p"]=2i7f‘zgij x¥, which we can write as?i(xixk)=2hgij XX =—ilXiXk, pi]. This is just a
fancy way of writing (6/6X)X2 = 2X. But it turns that this works like a derivativer fany order inx, i.e.,
((3/6X)Xn =nx"", etc., so that any time we have a fieAi.l(X), we can apphd’ A (X) = ilpj A (X)J
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111.4), let us add a square mass temm by hand in the usual way. Also, let us requi this
configuration space operator be symmetric unger. o interchange by symmetrizing the

above expression using an index anticommutétdf,G” . Thus, we re-specify (5.4) as:

b, . - ke + i 67 = 9

av

Finally, let us also require thaf, be symmetric undeo ~ v interchange, by writing
this in general form for three unknowAsB andC as:

|, = Ag,, +Bk.k, +1Cilk,.G, . (5.6)
Finally, we plug this into (5.5)We now need to solve the expression
(Ag,, +Bk k, +1Cilk,.,G, - g kK, +i|k*,G,|-m?)+Kk*k* +1ik*,G?|)=o*.  (5.7)

It is very importantas we proceed, to keep in mind that @& is an NxN matrix for the

Yang-Mills gauge group SU(N). Thus, any expressishich putG? into a denominator have
to be understood as requiring the formation ol ang-Mills matrix inverse So that the
expressions we develop have a similar “look” to ifean expressions from QED, we will

generally use a “quoted denominator” notatiohM"=M ™ to designate a Yang-Mills matrix
inverse. ThusG?  =1/"G’", etc.

As we start to solve (5.7) in the usual way, wstfiletermine that:

1

_"kak + i[ka,G ]—mz" = _(kaka + i[ka’Ga]_mz)_l’ (5.8)

A=

where as stated we use the quotes to denote axnratérse. Putting this back into (5.7), and
after absorbing out the metric tensor, we find eluess now left with the expression:

Kk, +1ilk*.G,,|
"k, +ilk?,G, |-m*"
= —(BK“k, +1Cilk,G, kK, +ilk*,G,]-m?) , (5.9)
+1Bk k ik 6?]-1clk,., Jk*.67]+1cilk, .G, Jk"k” + Bk k k*k?

g

Observing that the top line term has a numertt, +%i[k“’,Gv}J and the second line term

containsBk“k, +%Cilk{",GV}J, we see that these numerators can be cancellétiveaitsetB=C,

and if the terms on the third line can somehow é®ed out. In fact, to be able to form this
inverse at all, that is exactly what we aeguiredto do. So, we now s&=C, and we also set
the entire third line to zero, which as we shallnneatarily review, amounts to a gauge fixing
condition. We then do some reduction and constdiddo obtain:
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1

wpa A a —m2n
B=C=- KK *IK',G, jmm (5.10)
"k°k, +ik”,G, |- m?"

subject to the condition:

(k,k, +3ilk,.G, k“k* +1ilk*,G?])=0] (5.11)

Again, these result from setti8FC and then setting the third line of (5.9) to zero.

Note, again, that we were required to make theketons (5.10) and (5.11) in order to
form an inverse. Gauge-fixing methods such as &addopov are about understanding the
conditions required to obtain defined inverses, asmdve shall momentarily see, (5.11) is a gauge
fixing condition. So we now plug (5.8) and (5.Math B=C into (5.6) in the gauge (5.11), to
obtain the inverse:

kakv +%i|_k{7’Gv}] :

- +
| Jov T k7k, —i[k,G,|"
v "k, —m? +i[k?,G, |"

(5.12)

We may also use (5.3) arldk, — —0,0, to convert this inverse fully back into configuoat
space, thus:

_aaav +%a{UGV}
_ga'l/+|| 2+aaa aaG n
m a B a
ov = ||_aaa _m2+aHG n ' (5'13)

Note that the term[k”,GaJ =0°G, appears in two places in the above, but we dseiothis to
zero here because we are using different gaugggfoonditions, namely, those of (5.11).

Now, we look at some special cases of (5.13). tFwve compare (5.12) to the usual,
well-known propagator for a massive vector bosoQkD, which is:

D = m__ (5.14)

In the case wher&“ - 0, we no longer need to take any matrix inversed,(&rl2) reduces to:
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- KK,
Y m? -k
= (5.15)

This closely resembles (5.14), sans thes, and also withm® -k, rather than justm?

a
appearing in the denominator of the right hand terthe numerator.

But, in comparing (5.12) to (5.14), we see two stabtial differences. First, the
denominators in (5.12) are actually matrix inverbesause they include the NxN Yang-Mills

matrices G’ for SU(N). Second, and this is an absolutely Amdntal point, consider what
happens to (5.12) and (5.14) when we set the neass i’ =0. In (5.14) for the usual
propagator, the termk_k, /m* — o because of then® in that denominator. This originates in

the fact that the QED configuration space operajfd_o0° —0“9" has no inverse. So the

massless propagator becomes infinite! This is \daats to the need for gauge fixing techniques
such as Faddeev-Popov, whereby we end up with #ssless propagator (3.7). We cannot just

setm® =0 in (5.14) and keep a finite expression.

But in (5.12) or (5.15) we can set® = 0 with impunity. That is, we can make the gauge
boson G massm=0 without causing the inverse to become infiniten fact, if we do set
m* =0, (5.12) simply becomes a Yang-Mills massless glarfiropagator:

Lo kK +3ik, G, ]
ek ke 6
7 Kk, +ilkY,G, )"

(5.16)

This a perfectly finite expression! No express gauxing was required (though setting
(k. k, +2ilk,.G,, {k“k? +1i|k*,G?])=0 in (5.11) to obtain the inverse (5.12) implicitiid all
the required gauge fixing). But, most importanitye have revealed a vector boson “mass”

without having ever engaged in spontaneous symmedaking. This is a new mechanism for
generating a vector boson mass, even with massie8sgauge bosons’G

Specifically, comparing the bottom “denominato the usual inverse (5.14) for a
massive propagator and the Yang-Mills inverse (6.\8ich denominators are where we expect
to find the mass of a vector boson, we find theespondence:

1 1
Kk, -m? +ie "k, +ik?,G,]"

= kK, +i[k".G, ]| (5.17)

Most precisely — and this is very important tdyfulnderstand — if the interaction under
consideration, say QCD, contains massless gaugenbdsecause we have not broken any
symmetry to give rise to gauge bosons masses adow®r example, inSU(2),, xU (1), , one

will be “expecting” a massless propagator of thaaligorm (3.8) that is used for the massless
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photon of QED. But in fact, as seen in (5.17), whéserving vector particles (such as tihe
mesons), one will be “observing” masses which odatg from the massless propagator

denominator / inverse(k"ka + i[k",GL,])_1 for a massless gauge boson in Yang-Mills thedigt

knowing about this (k”’k,, + i[k",GD,])_l denominator / inverse, one will compare one’s
observations to the denominatiotk, —m? +ig which is known for a massive vector boson, and

will conclude that the (invertedi“k, + i[k”,GaJ is actually the (invertedk“k, —m* +ie term

that is expected from the known massive boson gatea (5.14). And so, the observer will
conclude that there are massive vector bosons,tdethe fact that all the gauge bosons are
massless, and will wonder how this can occur angbmaven call this a “mass gap” and offer a
reward for figuring out how this can happen.

This is how it happens: The non-linear interadion Yang-Mills theory give rise to a
“pseudo mass"which arises from the observables of mass dimeng®n the right hand side of
the « in (5.17) being mistaken for observables of maswedsion -2 on the left hand side. A
person who is “confused” in this way will wonder wthere appear to be non-zero rest masses
when in fact the gauge bosons have zero mass ansythmetry of the Yang-Mills theory has
never been broken. Thus, there will appear to déigles with masses and defined half-lives
such as then mesonseven if the gauge bosons are mass(edsch they are because we have
set m=0 to get to (5.16) / (5.17)).We have therefore “revealed” a “mass” even whilesth
Yang-Mills gauge bosons have remained massle$his is similar to how after ordinary
spontaneous symmetry breaking such as that usekdtroweak theory, one finds terms of the

form %(%vg)zB"B in the Lagrangian where one expects to $e€B’B,, and so associates
m=1vg with the mass of the bosoB?, that is 1m?’B’B,  1(vg)’B’B,. This is the
approach that one uses to fill the so-called “nugs’!

g

g

Note that when it comes to actually calculating sesas the correspondence (5.17) will
yield some rich mass spectra, particularly becarse calculation will require taking SU(N)

matrix inverses first. That is, the NxN mathxk, + i[k",Ga] for SU(N) must first be inverted,
and then and only thewill the reciprocals of the numeric results thatezge correspond to an

observed boson mass. Imagine calcula(kf@(a + i[k",GD,])_l in SU(3) for example, and all of

the complicated real and imaginary and complex sethat will emerge, and then using a
transition amplitude to pick off masses from theateinators of the resultant expressions. That,
in effect, is how these masses are generated tihdilmass gap, and how a detailed calculation
of meson mass spectra would occur. (Keep in nhiatthis is all based arlassicalhigh-action
field equations, so in fact (5.17) will be modifiedce quantum fields are accounted for. But the
basic idea imparted by (5.17) will remain intacspite the particular expression that emerges
from the fully-quantum version of the foregoing.)

" and also a finite lifetime because a complex mvasise simply indicates a massive particle with ingel half-life
while an imaginary mass indicates a massless mdfaefined half-life, see [10] at 150.
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Having looked atm=0, let us move on to consider the special caseevbethm=0 and

G? - 0. Here there is no longer the need to take anyixnatverses, so we remove the
inversion quotes, and (5.16) becomes:

~g,, —k.k, /KK
Y kaalfu o (5.18)

This is just the massless vector boson propagdt@) éans+i¢, forced into the gaugé = 2,
and bypassing entirely Faddeev-Popov and the wgpmbaches to gauge fixing. Although we
have referred td ,, as an inverse, here it truly is a known propagasowell.

Finally, let us return to (5.12), and consideragtigle that is “on mass shell,” with either
k?k, =m* =0 for a massive particle ok“k, =0 for a massless particle. For an on-shell
particle, the usual propagator (5.14) becomes:

—0, lk(":z"
D, = <Ko (5.19)
+1&

But from (5.12), with either with eithek?k, —m? =0 for a massive particle ok?k, =0 for
one that is massless, the result is the same 5ah#) (becomes:

-9 + kng -i-.%il.k{g’GV}J -
R N C LY (N (5.20)
SR X3 DR 8 B T T |

This is a “naturally-occurring” form of+ie based on Yang-Mills interactions, with the term
+ i[k”,Gajza”Ga (again, which we do _not set to zero here becauseane using different
gauge fixing conditions here) playing a role idealito +is to avoid poles for on shell particles.
The “confused” observer, who is “expecting™des term and instead observes+a[k”,GaJ

term, will simply calculate the lifetime paramefdre based on what is produced Ek;?,Ga]_l.

So, the Yang-Mills inverse (5.12) steers aroundha usual problems with propagators
and inverses. Not only does it explain how ve¢pmeudo masses” will come into existence
even if the gauge bosons of the underlying theemain massless, but it has no problem with
becoming undefined (infinite) for a massless bosamj it does not require using the &
prescription to avoid infinite poles, because ibdarces fully finite results under all the usual
scenarios.

Now, one may ask, how did we get to a massleg®wvparticle inverse (5.18) forced into
the £ =2 gauge without any apparent gauge fixing? The anssvthat we did in fact fix a

gauge back in (5.11). Equation (5.11) is to bearégd as the gauge condition which, in Yang-
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Mills theory, is required to be able to form a matinverse for the (classical, high action,
S(¢) >>7) configuration space operata@”’0,D? -0“D" in the Yang-Mills-Maxwell field
equation (5.1). And, in the process of this, weehlaeen forced to fix the Faddeev-Popov gauge
to £ =2, see (5.18), and to forego the usual covarianggaonditiond’G, =0. That (5.11) is

in the nature of a deep gauge covariant conditemoimes most striking if we also convert (5.11)
back into configuration space, as we did with teerse in (5.13). Doing so yields the rather
fascinating operator equation:

(0,0, -10,,G6, Jora° -10"c?)

{o=v}

:agava/faa -19 0 a{/lGU} —%0 G 0”0‘7+%a G a{”G”} =O'

2Y0%v {oc v} {oc™~v}

(5.21)

This is the spacetime equivalent of the gauge dgixaandition that is required to form an inverse
for the Yang-Mills configuration space operatgf*o,D° —0“D" in (5.1). This is a sixteen

component mixed equation ify indexes, and when raised or lowered into contiamaror
covariant form it is not symmetric under ~ v transposition unless one takes additional steps

to symmetrize this relationship. While most phgsisually stops at two derivatives from the
fields (or three if one counts the conservationsotirces,d”J, =0 and 0“T,, =0), this
relationship contains_fourth derivative® d,0“0°, as well as third derivatives including a
0“G”, and finally the ternﬁ{gGV}a{”G”} which is second order in symmetric field derivagv

(contrast the antisymmetric terﬂ]UGr]a”G”] that appears in Lagrangians). The above (5.21)

replaces any and all of the usual gauge conditibat are used in QED, and all those other
gauge conditions, most notabdy G, = 0, must_not be used here.

Now that we have the inverse and the gauge comditiequired to produce that inverse,
let us return to where we started, and make usei®fnverse inG, =1,,J7 to specifyG, as a

function of J9. Using (5.12) inG, =1,,J7 we first obtain:

g+ Kok 3l G
L] 5.l SEH TS (5.22)
"k, —m? +i[k?,G, |"

G,=1,J7=

However, as noted earlier back at equation (3rf®)mbmentum space, current conservation
aﬂJ”(x)=O becomesk#J”(k):O. This modifies (5.22) in two respects. Firste tterm

k,k,J° =0. Secondly, and of special interest because iaksrea symmetry, the term
%ilk{g,GV}]J” =%i[kv,Gg]J”. That is, one of the two terms in the anticomrtartaeros out, but

the second term does not. Given thgt was designed to be symmetric under transposition o

the 0 - Vv indexes, that symmetry is broken in (5.22). Seéhwhose reductions, (5.22)
becomes:
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tilk,.G,]
"m’ -k, - ik?,G, "
"k, —m? +i[k%,G, |"

~g, *

G 37 (5.23)

— o —
V_IJV'J -

One can follow the same path outlined above, toreéhis inverse for the various special cases
already explored: low-perturbation whe@&® - 0 (5.14); massless bosam=0 (5.16); both
GY - 0 andm=0 (5.18); and on shek’k, —m* =0 for a massive ok“k, =0 for a massless
particle (5.20).

This inverse expression (5.23) is what we set@ulerive at the start of this section, and
it will play a very central role in helping us tstablish that the Yang-Mills magnetic charge

P? is in fact a baryon. With all of the preliminagroundwork now laid, and with the
understanding developed in section 3 that by uSeld equations such a3’ =d ,F* in (4.4)

and P =9°F* +0*F" +0"F% we are exploring the high-action realm in which
S(¢) :J'd4x£(¢) >> 1, it is time to discover the underlying theoretibakis for the baryons that
constitute the very nuclear heart of the matenéerse.

6. The Baryon and Meson Structure of Yang Mills Mgnetic Monopoles

In (4.6), we established that the Maxwell equati®stl” =d°F*” +0“F" +90"F % for a
magnetic monopole carries over intact to Yang-Milisory for high-action arenas where the

action S(¢) >>7. Therefore, we can now carry forward on the bas$isur earlier equation
(2.12), which was derived by the simple substitutithe Yang Mills field density
F* =9“G" -0"G* —i|G¥,G"| of (2.11) into the P™ =37 F* +a*F* +3"F% of (2.1),
which remains the “classical” magnetic charge equdbr Yang-Mills theory.

The first thing we do is substitu¢G* =ilk”,G*| from (5.3) into (2.12) to yield:
P =(|k,c#| " |+|c* [k?.6" |+ |k*.6" | 67| +|c [«*,.c7 | + k.67 | 6#|+|c? [k .G#]).(6.1)
If we expand the commutators in the above, termshefform G“k?G" -G*k°G" appear
throughout, so that all terms witk’ sandwiched between the tw®* drop out. Then, re-
consolidating the commutators, (6.1) reduces to:
P =—(|lc¥,6" | k| +[le",c7 | k*|+ |7 c¥| k]). (6.2)
This will be our starting point for exploring thardyonic properties oP*" .

First, we insert the hard-won Yang-Mills inverse2@® for G, into (6.2). Keep in mind

that we have done nothing to break the symmetrthefYang-Mills theory and so the gauge
bosons must be presumed to be massless. Nonstheleswill carry the mass term in these
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equations, so whatever we derive is perfectly gandf we want to explore the special case for
m=0 we can always do so by zeroing out the mass dirtiee but at the outset, we ought not
limit ourselves in this way.

Also, to maintain full generality at the outsetchese there are six different appearances
of G, in (6.2), there will be six independent substans of (5.23) into (6.2). To track this, we

will use the first six letters of the Greek alphalee,y,d,£,{ to carry out the internal index

summations within each of the six substitutionghaf inverse (5.23). While it ordinarily does
not matter what letters one chooses to do sumngtibke summation index will in this case
double as a label so we can quickly ascertain whayeterm originated from, as we progress

with our development. And more importantly, whkék,, = kﬁkﬁ where the momenta are equal,

k? =k?, in the event thak® Zk” — for example if these are momentum vectors foo tw
different particles — thek“k, # k/”k/,,. So we are using this index convention to sinmétasly
label the momenta and to avoid making anyriori assumptions about the actual physical

values and meanings of th& in each of the six inverse substitutions we ar&inga Similarly,
substituting (5.23) into each of thg, in (6.2) introduces six mass numbens Here too, we

wish to avoid assuming anythiregpriori. So, we similarly label each mass with one of the
a,B,y,0,6,{, and so regard these at least at the outsetxadiffiérent, independent mass

numbers. Thus, the expression below in (6.3) wgihtain six moment&”,k” k”, k° k*, k¢
which may or may not be different form one anothas, well as six labeled masses
Myys Mg, My My M), M,y Which also may or may not be different from eatteo and may

also be zero or non-zero. This provides completeeality and maximum flexibility to explore.

Finally, prior to substituting this inverse (5.28jo (6.2), for the thre&”,G",G? in the
left hand side of the commutators in (6.2) we hawanged for the free indexggV,o to be in
the right hand position of metric tens@™ =g*“* of (5.23). Conversely, for the three
G*,G",G? from the right hand side of the commutators, weeharranged for the free indexes
U,V,0 to be in the left hand position ig™ = g** (5.23). We may do this becaug&’ = g*“ is
a symmetric tensor and the indexes can thus besbsipin either order, and the order makes no
mathematical difference. But, when one draws anfan diagram for ag? = g*“, the
directional arrows are established based on a rigl&ft reading, so thag® has a linea — 4,

while g““ has a linet — a. This choice of index placement will ensure thihthe directional

arrows for any given terms are lined up in the safimection when Feynman diagrams are
drawn, just to provide a consistent set of dravdagventions.

With all of the foregoing, finally substituting theverse equation (5.23) fd@s, into (6.2)
yields:
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PV =

_ga/f_l_

(e
..m(a)z —kaka _ il,ka’GaJ"

s
My —k%k, = ilkﬂ’GﬁJ"

_gV.E_l_

1

kK, ~ Mg, +ik?,G,|"

1ilk’, ¢’

_gW +"

a’

m(y)2 _kyky_il.ky’_GyJ" J )

"k, =My + ilkﬁ1GﬁJ"

1ilke, 7]
"My’ — k%, — ik, G,|"

gc76+

" kyky - m(y)2 + il.ky’GyJ"

1ik*, G¢]

—g*+ ”m(g)z —Kk, - il_kE:Gg]”

y?

" k5k5 _ m(J)z 4 il.kdyea'J”

1k, 67

— .
S P AN

KK, — M +i[KS,G,]"

-l

Kk, —m,+ ilk(’GzJ"

ﬁ 3

r4mt

kG'

3, |k

kl/

(6.3)

This, of course, is a rather complicated expressoret’s for now just look at the lowest

order terms for whichG* - 0. With that one change, we can remove all the tegibinverses
and many other terms, and (6.3) becomes:

J
a 2 Ta?
"k k, —m,,

g™ g”

J, | k?
k’k; —mg,° ﬁ] ]

- 3 . g
pov = 4| 95 8 J(;],k”
LKk, —mg, k°ks =M,
- . B -
+ £ : 2‘J£’ 7 e 2‘JZ]’kV
i k°k, —m,, k*k, —m,,

(6.4)

This is clearly a much simpler expression than)(6.8Vhile both (6.3) and (6.4) are
>>7, (6.4) lays out the basic structure of

classical insofar as they depend upon an a

P, while (6.3) shows what happens then @& come into play and start to exert a dominant
role. In QCD parlance, we will come to see thad@lescribes the interactions inside a baryon

in the low perturbation regime often referred to“asymptotic freedom,” while (6.3) may

describe the “infrared slavery” or “confinement’gmme where the gluonG# interactions
become very dominant. But we need to take finstgshfirst, and the lowest order comes first so

we now explore theG* - 0 regime for S(¢) >>7 which is specified in (6.4). The terms in
(6.3) involving [k”,GTJ will generate higher-order interactions via (6.8yt (6.4) is the
“skeleton” of P which reveals the underlying structural charasteriof P*" in the lowest

order.

about what is going on inside of the magnetic chsirf*" .
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So we will now explore this structural agon (6.4) in earnest, to see what it tells us



It should be noted first of all that (6.4) is sdhieg of a “chameleon equation,” because
depending on how one manipulates this equationnmae highlight the currents / fermions, one
may highlight the gauge bosons, and one may explaotte currents and gauge bosons in a mixed

view. In the gauge boson view, one leaves t}f#€¢ showing explicitly in the above, which
thereby displays complete boson propagators. dretinrent view, theg”” are absorbed into the
currents viald"’ = g””’Jﬁ. In “mixed” view, we have little of each. We dtavith the current /

fermion view, by applyingl” = g“J, to (6.4) thus:

JH# Jv .
k -m %2 kPk,-m > K
o~ Mg s~ Mg

PU,UI/ = + - \] > \] 2],kll . (65)
k ky—m(y) k kJ—m(J)

J° JH ,
+ 2! 2 ’k
| k°k, -m, kk, —m,

The reader should pause at this point to compaseckbsely, term by term, with (6.2). It was to
get from (6.5) to (6.2), that we went through bE twork in section 5 to develop the inveigg

of (5.12).

Next, theJ# above are all NxN matrices for SU(N), and thernma symmetries of these
groups are hidden inside just to keep notation @ohpnd easy for the calculations we have
done thus far. Now, however, it is time to stamdpng the internal symmetry explicitly into the

picture, so we usd* =T'J*, i=123.N%-1, and similar carefully-indexed expressions for

I )
the other five currents in (6.5). After some remagrof the summed internal symmetry indexes,
we obtain:

" T L ] k,,]
a 2! 2|
k7, = M) kﬂkﬂ My

iqv i19
pon - Ju[[ T T3 Ziikp | (6.6)
| k'k, —=m," Kks —mg,

I

TiJia TiJj/I »
Kk —mgy” Kk, —myy)? |

The group structure matricéB' and their associated commutator may be factorédbthis
entire expression (the reader can check this byredipg all commutators, factoring these out,
and then reconsolidating), so as to write:
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l:[ ‘]i# ij J ka]
a 2 2
KKy = Mgy kﬁkﬁ My

! v J°
PU,UI/ =_[TI,TJ] + [ ‘]| -— J ZJ’k.U . (67)
k’k, —m," k%k; —mg,

‘J_U Jj.u
+ ] i — . ,kV
k'k, —my,)" Kk, —my, |

The group structure constantd* in if *T, = [T‘ ,TjJ maintain the commutation position of each
of the J,“, that is, [Ti,T"JJi ”Jj":[J”,J”J. This expression is perfectly symmetrical in

appearance as between currefit§, but now we will take a simple step to break gymmetry:
we will simply move both currents into the rightnldanumerators. Thus, we simply rewrite the

above as:
a 2 2
k%, —m,, kﬁkﬁ ~ Mg

[ 1 : JiJ; z}ku , (6.8)
o
k’k, —m,,” k°ks —my,

pow =17 T1] +

I 1 J2y
+ £ 21,7 : ] 2 ’kV
Kk, —my,)" Kk, —my, |

It is worth noting by the way, that the six curemay be referred to and distinguished by 6=3x2
combinations of the spacetime indexe®,o and internal symmetry indexesj .

For a next step, we drill down even further, by tying J,” :Z'I'iy“z// and the like to
introduce fermion wavefunctions. So now we have;:

[( 1 YTy, vaJ ka]
a 2 2 !
k7, = M) kﬂkﬂ — My

p o :_[-I—i TJ] + [ 1 l//-ﬂyvl//l//TIV”‘//J KX ) (69)
k) 2 2 )
Kk, =my," Kk; —my,

{ 1 ZTiy"wlZij“wJ o

£ _ 2 ' _ 2
Kk, —m,)" Kk, —my,

Now, the next steps are important, so let's waklkn through carefully. We first write
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the two back-to-back wavefunctioggy usingy =u( ple™™ andy =u( ple™™ . But because
these are back to back,” = p,”, and sogw =uu. Keep in mind, because we are working

with SU(N) in Yang-Mills theory, thauu is an NxN SU(N) matrix, in addition to having the

usual 4x4 Dirac structure. So if some variantuof finds its way into any denominators as it
momentarily will, we have to take an SU(N)atrix inverse and not just write an ordinary

denominator. Also taking the sum over all sping know thatzspmsuaz p+m. But in

addition, (p + m)/(pﬁ Ps —mz):ll(p— m). So suddenly, we find that terms which started as

vector boson propagators in (6.4) are turning, a@laan-like in (6.9), into a fermion propagator,
complete with a “revealed” mass for the fermiorar Example, in the top line of (6.9), we make
the following progression of substitutions:

LTy gty uryy gty (prmTye gty (pmg Lve ety Ty
kks —my° Kk —my° kk; —my° P ps—my” "P~mMg" .(6.10)
=Ty Ty wx(p-my )

First, we usez//zZ =uu and sum over all spin states, and because t&5/{dl), over all internal
symmetry states, then settirﬁ uu = p+m. Next, we take thaffirmative step(which as we

will discuss shortly requires some accounting fegrees of freedom and so will render the
gauge bosons massless) of setting the rest méss resultantp+m to be equal to (one and the
same as) the labeled masg;, in the denominator, that is, we now set=m,, . (This my,, of
course, started out in (6.4) as a gauge boson masgauge boson propagator denominator —
more chameleon-like behavior! In a moment, we wiicuss how to account for degrees of
freedom to make this all work properly.) And wensitaneously promot&” — p” into the
momentum four-vector for an actual fermion. Anubfly, we set:

P+tMy  _ 1 (- -1 6.11
PRy —My” P My" (p m(m) (611)

in recognition of the fact, which was discussedeagth in section 5, that whenever an SU(N)
matrix (including Zuu = p+m) needs to go into a “denominator,” we must formirverse.

So, these fermion rest masses;, , etc., such as they are, will be obtained via SUihatrix

inversion. To maintain a clear visual comparisathviamiliar equation forms, we will continue
to use the “quoted denominators” to designate seger

So, we use (6.10) to rewrite (6.9) as:
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g% Ty, VW k(,
kaka_m(a)z "p-my" f

. W YTy Ty
Pa,uv :_[TI’TJ] + g 5 l'[/" 'yﬂ Jyfy ’kll . (612)
kyky -my, e

ao P H
. ( g @TyTy t/f}kv

kka _m(.s)z " p_m(f)"

where we have also lowered the index on the lefdhartices in order to reintroduce thé&" to

the left-hand terms which once again display explicthe appearance of a gauge boson
propagator. This “chameleon equation” is now ifuly-mixed fermion / boson view, because
we now see three fermion propagators and threeeghagon propagators. And, we see how
simply moving both currents into the right hand muators in (6.8) broke the initial symmetry,
gave us both fermion and boson propagators in tsaom of (6.12), and turned three of the six
massesm,, M, M., into fermion masses while leaving the other threessesm,,,,m,,,m.,

intact as boson masses. What we have done hdneak a mass symmetry that started out with
all boson masses, into a mass asymmetry contaoatigboson and fermion masses.

But there is one final piece of the puzzle thateguired to make this all work properly,
which is to account for the degrees of freedom Iratwve just did to turn (6.9) into (6.12). In
going from (6.9) to (6.12), (or even from (6.4) (@&12) where this is even more evident), we
started with six presumed massive vector bosoris massesm,,, Mg, M,,, M, M, M, . A

massive vector boson has three degrees of freeslorthe six bosons we started with in (6.4)
brought 3x6=18 degrees of freedom iRG" . But then between (6.9) and (6.12) we took three
of those masses and turned them into fermion masBessive fermions, however, have four
degrees of freedom, not three. So for us to preraanassive boson mass into a fermion mass,
we must transfer one degree of freedom over fraarbttson to the fermion. So, by associating

My gy, My, M,y iN (6.12) with fermion masses, we are requiredtaal one degree of freedom
from each remaining vector gauge boson. So, negetfbosons must drop down to two degrees
of freedom apiece and must become massless, wreansithat all om,,,m,,,m,, now must

be set to zero. Now, the 18 degrees of freedomritiglly belonged three apiece to six massive
vector bosons have been redistributed: 12 of tinese belong to the 3 fermions, and only 6
belong to the 3 remaining bosons. This should seemy familiar, as this is the same way in
which massless gauge bosons first become massigaéjowing a degree of freedom from a
scalar field via the Goldstone mechanism. So,alarice the degrees of freedom to account for
what we just did, me must now set all of the renmgrm,,,m,,m,, =0, and raising the index

on the currents once again, (6.12) now becomes:
PU‘UI/:—[Ti,Tj] 01 l//-EVyTJVlw ’kg + 1 WEVVTJVaw ,ky + 51 [/ITIVJT]VUw ’kv (613)
k'k, "p—my" Kk, "p-my" Kk, "p-m,)”
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The above, (6.13), can now be said to be equd.®) (n all respects, including a proper degrees
of freedom accounting.

Now we see thaP?" contains three fermions, with terrﬁé’iynTj y”(/IX(p—m(ﬂ))_l that

look exactly like the expressions for the Comptoat®ring of a fermion with a gauge boson,
such asye - ye of an electron with a photon in QED. (e.g., [10141) As we now see clearly
from (6.13),P™" naturally contains three fermions, just like a yam, along all the machinery
for fermion propagation, right alongside of propages for associated, nhow massless, gauge
bosons As a result, for the first time, we will stopfeering to this as a Yang-Mills magnetic
charge, and think of it as a true “baryon candidaiow we need to show that this really has all
the required formal characteristics to be a rdaysgral baryon.

Proceeding apace, the commuta{fbir,TiJ is still sitting out front of (6.13), so let now
work with that. The[Ti ,Tj] operates to commute the vertidé,sy”)(ijV), and in particular, the
operation it now performs on each term in the arftdermion portion of (6.13) is:

r T el oy =l vl (6.14)

which is the same commutatict@”,G”] of free indexes with which everything started back
(6.2), and even further back, in the underlyinddfigensity F** =0“G" —0"G* - i[G”,G”] of
(2.12) which is the heart of Yang-Mills theory. ,$sing the above in (6.13), now yields:

-t a2y -

kK, " p—m" K'k, " p-m," Kk, " p-mg,”

Now, we also know that baryons interact with onether not via massless gauge bosons
i.e., gluons, but via quark-antiquark exchanges, massive meson exchanges (which as we
explored in (5.17), may actually be particles tthatnot have a formal mass but appear to have a

pseudo mass by virtue of confusimdk”ka -m’ +i£) with (k”’k,, + i[k”,Ga])_l). So we should

expect mesons to make an explicit appearance soenewlet’s see. . . Using the first term of
(6.15) for an example, let us first expand the cartator:

ol v | =wy'vw-wy v, (6.16)

Now let's look at the charge conjugation (antipdes) of the above. Using the Dirac
relationshipsy, =Cy, . =—'C™*, y’C :C(—V’)T, andC™y#C :(— y“)T, we obtain:

Yo'y we =—wCyrycy =g (- ) v o=y e (6.17)

This means that (6.16) may be rewritten as:
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oy v lw=wv'vw-wy v'w=wy'yw+uytyve.. (6.18)

The commutator — which is central to Yang-Mills dhge — naturally pairs a particle with an
antiparticle to produce a meson! So we go bag¢B.tthb), and now write:

[( 1 tZy”y”t//Hch”y”wcjka]

kK, Pmy”
P = + 1 ayVwa_FaCyVydl//C ,kll . (619)
I k’k, p-my”

R ( 1 gy y“t//@y"y"wJ »
k°k, "p-mg”

The above also tells us that the antifermions hagesame masses as the fermions, because they
are all over a common propagator denominator /rseze

All that now remains in (6.19) is the final commiotawith momentum terms such &S.
Going back to (5.3), which tells us that commutingpacetime field wittk® is just a clever way
to take its derivatives, we can write that in gaheor a second rank tensor fieM “":

3°M ™ =ik, M#|. (6.20)

With this, (6.19) above may finally be expressethaiit any commutators, as:

aa( 1 t/_fy”y”wﬂl_/cy"y“t/fch}
kakg n p_ rn(ﬂ)"
o — W( 1 Wy”wﬂzcwy”wch} | (6.21)
kyky Ilp_rr](a)ll
+a{ 1 tZy"y"wﬂZy"y"whj
kfkg 11} p — m()"

In the above, we have now also adde#l.a , because going back to (6.3), we see that these ar
the lowest order terms in this candidate baryoro matter what other interactions may take
place, and even as we start to consider quantulas fighere the classical field equations no
longer apply, these basic, zero-order terms willagls remain. Different conditions and special
cases may and will change the higher order teroiswhat appears in (6.21) will always remain
the fundamental backbone of a baryon.

Comparing the first term in (6.19) with the likermn in (6.2) also yields one other very

important result, which will be used momentarily ftomally show that mesons are the only
particles allowed to leave a baryon, thus confinougarks and gluons. Specifically, this
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comparison yields:

lor6]= L WV UHbey Ve, |

; ; - (6.22)
k™K, P~ My,

Before concluding, there is one final point toejadealing generally with Yang-Mills
theory, and not specifically with baryons or QCDhe commutatm[G”,G”] in (6.22) above is

central to Yang-Mills theory. In fact, it appeansthe very foundational equation of Yang-Mills
theory, namely, (2.11). So this often-seen eqnaten be written in a totally novel form, as:

Yy Y
F,UV :a,UGV _aVG,U_i[G,U,GV]:a/lGV _aVG/J +i 0,1 ‘/’y V':w""//cy" vac +... |l (623)
k7K, )

One may use this to go back to all the equation¥asfg-Mills theory, make use of the field
strength in the form of (6.23), and see what sofrtsew insights emerge. Keep in mind, one can

exercise this chameleon-like expression [ﬁr“,G“J into a variety of other forms as well,

including backtracking through the developmenthis section. Those chameleon exercises are
also very helpful if one wishes to draw Feynmargcaas for baryons and mesons, and they
lead to term combinations we have not elaborated hecause they were not essential to the
main line of development.

7. Confinement, and Meson Interaction

Now let's use the language of differential formsstwow confinement, which helps to
establish our “candidate” baryons and mesons a&s physical baryons and mesons. For the

field strength F** =90“G" - 0"G* —i[G“,G“J, we multiply through bydx dx,, and use the
forms G=G“dx,, F=F”dxdx,, G*= [G”,G”deydx,, and dG=(0G" —a”G”)dxﬂdx,, in a
well-known fashion, to compact this to (see [6]aPter (4.5)):

F =dG-iG2. (7.1)

For P we use the magnetic three-fori= P*"dx, dx dx, , as well as
dF =(07F» +0#F* +0"F#)dx,dx,dx, and dG?=(0°|G*,G"|+a#|G",G|+0"|G7,G*|jdx,dx,dx,,
to multiply P* =9°F* +9“F"* +0"F% through bydx,dx dx, and then express this in the
compacted form:

P =dF =d(dG-iG?)=-idG. (7.2)

This includes the well-known application a@fd=0: the exterior derivative of an exterior
derivative is zero. This is what made the QED netigrcharge vanish back in (2.1) and (2.2).

Similarly, the chromoelectric charge equation is:
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*J=d*F =d*(dG-iG?). (7.3)

Now, we apply Gauss’ law to (7.3), to write:

{3 = fffd*F = fffd*(de-ic?)= ff* F = ff* (dG-ic?). (7.4)

and most importantly, to (7.2) to write:

fH{P = ff{dF = ff{ dldG-ic?)=-iff{dc* = f{fF = ffdc-iffc? =-iffc?| (7.5)

These are the “Maxwell’'s equations” in integralnfofor “classical,” i.e., high action
S>>h chromodynamics, (and indeed, for any “classicainy-Mills theory) and they mirror
the usual Maxwell equations of electrodynamics:

fi9=fHd*F =fJ*F = fJ*da. (7.6)

and

{ﬁp:fﬁdF:fﬁddG:ﬁF:ﬁdA:o. (7.7)

In (7.5), j?ﬁP describes a three dimensional volume which costtie three-fermion /

antifermion objectP?" of (6.21) which is our candidate baryon. But whilaxwell’s (7.7),
particularly ﬁ:F =0, tells us that nothing flows out of a volume whicbntains a magnetic

charge (because there are no magnetic chargesodine tAbelian theory), equation (7.5) for
Yang-Mills theory says something very differenthelcrux of (7.5) is the part that reads:

fHP=fF =-fjc’| (7.8)

This says that across any closed two-dimensiondha® surrounding a three-dimensional
volume which contains a magnetic chaRjas developed in (6.21), there is a net field flaxd

it is a net flux—iﬁG2 of G? = [G”,G”]dxydx, objects. But what are these objects? From

(6.22), we learn that they are quark and antiqupgiss! They are mesons, and nothing else!
The interactions of a Yang-Mills magnetic chaRyare mediated by fermion / anti-fermion pairs
known as mesons! No individual quarks may flowoasrany closes surface. No individual

gluons may flow. Nowhere is there any non-zeront&rith ﬁ* dG as there is in a non-zero

ﬁ* dA in electrodynamics. All that may flow are mesofiese, indeed, are the hallmarks of

confinement, which further advances the hypothisisP is a baryon ands? is a meson.
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8. Summary and Conclusion

As a result of all the foregoing, combining (6.2anhd (6.22) with (7.8) and
P = P dx,dx,dx, and G :[G”,G”deydxv, we may now conclude and summarize the entire

thesis of this paper in the single equation:

ag[ 1 Ey”y“w@cy”y“wc}”_
k7K, PMy"

(2% 1 1 Y _C c
ffP = fff P dxax,dx, =-ifff *"{ka Wyiitﬂf - } b
+av( 1 t/_fy"y”t//ﬂ?y”y”w}W
kfkg n p_ mz)"

(8.1)

=-iffc? =-iffle*.c"jux,dx, = iﬁ(k”lka Wﬂ"iitﬁ’?l’v“’c +...deﬂd>g,

Yang-Mills magnetic chargeP are indeed the three-quark objects we call baryons
though we see that quarks remain tightly knitte¢thvantiquarks in the form of mesons even
inside the enclosed three dimensional surface efodryon. If the quarks acquire mass, then
gluons must be massless to properly account fategjtees of freedom. All that is permitted to
net flow across a closed two-dimensional surfaeethe quark / anti-quark objects we call
mesons. Gluons, and individual quarks not pairégd an antiquark, can never show a net flux
over any closed surface in isolation. Interactidmetween baryons occur only via meson

exchange. This is confinement, fare baryons, and th&* are mesons!

The above achieves confinement in a manner anatogmuhe so-called “MIT Bag
Model” [11], [12] by paying close attention — vgoyoperly so — to what does and does not flow
across a closed surface around a baryon. But&iRs without any backpressure or other ad-
hoc contrivances, and in a way that explains wieyrtiiclear interaction is mediated by mesons.

While exploring these baryons in quantum fieldottyevia the path integral is topic for
another paper, one thing that should be cleariss tiiVhatever the specific details of the path
integration, we know from (3.16) that since bary@me magnetic charges, like baryons will
attract, which is precisely what they need to do to halgether the atomic nuclei. This is yet
another indication thd represents a true, physical baryon.

BecauseP is a three- fermion system, we must of course umxaof Fermi-Dirac
statistics make certain that no two fermions iis $ystem have the same quantum numbers. So
now, for the first time, we formally may select tpauge group SU(3) as the Yang-Mills gauge
group that applies to (8.1), assign each of theifams wavefunctions in (8.1) to one of three

color eigenstategy’ =(R G B), and thereby enforce an exclusion principle. Amdhe
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process, we have answered the very first questmpaged: “Why, theoretically, do there exist
in nature, naturally-occurring sources, namely basy consisting of exactly three strongly-
interacting fermion constituents which we call ‘ckg&d?” And, for reasons developed to go from
(6.12) to (6.13), we do not break any symmetriastifas group, now formally SU(3) but
maintain the eight gauge bosons — now gluons —a&sless.

Having fully developed the baryon and the mesarmoming to (8.1), another point
should now be made for future consideration, wiighgs us back to the very beginning of this
paper. Equation (8.1) is no more and no less thanlogical result of combining the two

classical Maxwell equation3” =d F*" and P* =90’F*" +0“F" +3"F* of (2.1) for Yang-
Mills gauge theory based on the”’ =9“G" —-0"G* —i[G”,G”J of (2.11). Simply find the
inverse of J¥ =0 F*, plug it into P =9°F* +0“F" +0"F%, do the calculations, and

arrive at (8.1).In short, (8.1) is what one obtains when Maxwedil® equations in the context
of Yang-Mills theory are merged together into ag@nequation. Think about this again: both of
Maxwell's equations are embedded in (8.1), i.e1)(& what one inexorably gets from joining
together both of Maxwell’'s equations in Yang-Millkeeory. No more, no less. That simple! For
anyone who has ever wondered what Maxwell equatremdd look like if they were all one
equation rather than two, (8.1) is the answer! Walks equations, for non-commuting fields,
when combined into one, are the classical equatibnsiclear physics!

But by duality, what is sauce for the goose iscedfor the gander. So, going back to
(2.5), we can repeat the entire course of developinstead putting togethé?” =0 ,* F** and

*JMW = JH =97 *FH +04*F" +9" *F%, to develop aJ?” that looks in form, just like
the P?" in (8.1). That is, there is no reason why, if have developed the “P-Baryons” of
(8.1), we cannot also develop a similar J-Baryoat tboks like (8.1) with “electric” simply
exchanged with “magnetic” under the - B,B - —-E symmetry of duality. So, broken or

unbroken symmetrythere does exist a dual for (8.1)If the P-Baryons are the baryons we
observe as our protons and neutrons and oursehceslbof the matter in our world, then J-
Baryons, as a form of “duality matter,” can, ankely must, exist also. The only difference
would be, because of (3.16) versus (3.9), thatry@esrepel one another, just as do like electric
charges. So, where are these dual baryons, amddia& matter with a repulsive nuclear
interaction?

One explanation for the non-appearance of J-Baryoay be that the duality symmetry
is broken, and that this inverse duality matter only comes iriew at much higher energies. If
that is so, then there is potentially a whole urgeeof dual J-Baryon matter that is not accessible
to our senses but nonetheless exists and affeetm#tss of the universe, perhaps to the point
where the majority of the matter in the universmams hidden from view in the form of J-
Baryons. Another explanation, which is not exalasof the first explanation, is that with such
heavy J-Baryons exhibiting nuclear repulsion, timmuld not be clustered together, but in fact
would tend to distribute themselves as far from anether as possible in a homogenous manner
and so would be very difficult to detect in the samay as ordinary matter. They would
certainly contribute to an acceleration of universapansion, tending to evenly disperse

" As explained by this author fritp://arxiv.org/abs/hep-ph/0508257
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throughout the cosmos, and would also be capablpush comes to shove” to possibly
counteract any possible gravitational collapse.usThhe “dual” of the results developed here,
particularly with a proper breaking of duality symtry, may provide a foundation for a serious,
mathematically-rigorous understanding of hypothesitby some) so-called “dark” or hidden
matter. But that is a topic for another day. sltehough for the moment, to have shown that
baryons are magnetic monopoles.

One final, overarching point, which returns ussextion 3. As made clear throughout,
(8.1) is a classical equation, valid for high-ant's(¢) >> 7. This means that (8.1) (and even the

more general equation developed from (6.3) v@iti# 0) will become inexact in the quantum
arena. Does this mean tha¥"” will stop being a baryon? Of course not. It lhereeans that
we will be using different equations, derived viatlp integration, in order to describe the
behaviors of these baryons in the low-action ardhanerely means that the higher order terms
will change and may vary. But the lowest-ordet]yfistructural terms in (8.1) will always
remain intact.

So to conclude: the long-sought and pursued andedusive magnetic monopole, in
Yang-Mills theory, is a baryon, and it exists eweingre and anywhere that there is matter in the
universe, hiding in plan sight!
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