1

INVESTIGATING GRAVITON PROPERTIES, AS EITHER CLASSICAL OR QM, IN NATURE, VIA ALICKI-VAN RYN EXPERIMENAL REALIZATION

Andrew Beckwith
Chongqing University Department of Physics;
e-mail: abeckwith@uh.edu
CHONGQING, PRC,

Astract:

Recently, the author read the Alicki-Van Ryn test as to behavior of photons in a test of violations of classicality. The same thing is proposed via use of a spin two graviton, using typical spin 2 matrices. While the technology currently does not exist to perform such an analysis YET, the same sort of thought experiment is proposed in a way to allow for a first principle test of the either classical or quantum foundations of gravity. Included as well is differentiation between Basyian versuse other forms of statistics as to make sense of what data from this proposed experiment maybe telling us. The reason for the inquiry is due to a specific argument presented in a prior document as to how \hbar is formed from semi classical reasoning, ie. Maxwell's equations involving a closed boundary regime, in the boundary regime between Octonionic Geometry and quantum flat space

Key words: Planck's constant, Octonionic geometry, quantum mechanics, Alicki-Van Ryn test

1. Introduction

What we are looking at is a way to analyze if the process of gravitons / GW can be linked to either classical or quantum processes. The way to do it, is to look at a spin two version of the Alicki-Van Ryn test , a test which was reported for photons , and which we will now refer to via Gravitons $[\ 1\]$, $[\ 2\]$

2. Looking at the way to form spin two operators satisfying the inequalities given in [1] via [2] above.

The starting point to this analysis, is to look at [1] where there is the following description of any two pairs of observables, \hat{A} and \hat{B} satisfying the condition as given in [1] that

$$\hat{B}(x) > \hat{A}(x) > 0 \tag{1}$$

For all states of the system, defined by a hidden variable x, for which for **classicality** leads to the following always being true

$$\langle \hat{B}^2 \rangle > \langle \hat{A}^2 \rangle$$
 (2)

For QM, one has the reverse inequality in (2), namely [1]

$$\langle \hat{B}^2 \rangle < \langle \hat{A}^2 \rangle$$
 (3)

So happens that (3) above is equivalent to the minimum eignnvalue of [1]

$$\min(eignvalue): \hat{B}^2 - \hat{A}^2 :< 0 \tag{4}$$

Whereas (4) is also equvivalent to setting the minimum eignvalue of [1]

$$\min(eignvalue): \hat{B} - \hat{A} > 0 \tag{5}$$

3. Forming conditions to test for (1) to (5) with spin two gravitons, expenrimentally

The idea is to look at what is given in [2] as far as a spin two object and to construct operators \hat{A} and \hat{B} so as to come up with experimental tests.

What we will be looking at a beam splitter version of the way to form observables A and B as given so as to determine for spin two objects if there is a classical or a quantum process occuring. Following [1] we use, simply

$$\hat{A} = \frac{a}{2} \cdot (1 + \hat{Z})$$

$$\hat{B} = \frac{b}{2} \cdot (1 + [r \cdot \cos \beta] \cdot \hat{Z} + [r \cdot \sin \beta] \cdot \hat{X})$$
(6)

This means that the 1 is actually a 5 by 5 identity matrix.

The \hat{Z} and \hat{X} are matrices which are given in [2] as follows, namely

$$S_{x} = \frac{1}{2} \cdot \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 2 & 0 & \sqrt{6} & 0 & 0 \\ 0 & \sqrt{6} & 0 & \sqrt{6} & 0 \\ 0 & 0 & \sqrt{6} & 0 & 2 \\ 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$
 (7)

$$S_{y} = \frac{1}{2i} \cdot \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ -2 & 0 & \sqrt{6} & 0 & 0 \\ 0 & -\sqrt{6} & 0 & \sqrt{6} & 0 \\ 0 & 0 & -\sqrt{6} & 0 & 2 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix}$$
 (8)

$$S_{+} = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{6} & 0 & 0 \\ 0 & 0 & 0 & \sqrt{6} & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (10)

$$S_{-} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & \sqrt{6} & 0 & 0 & 0 \\ 0 & 0 & \sqrt{6} & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$
 (11)

If one used S_x for \hat{X} , and S_z for \hat{Z} and 5 by 5 identity matrices in which then a and then also b are both >0 and with $0 \le r \le 1$ We can then look for the minimum eignvalue of $\hat{B} - \hat{A}$ should be greater than zero, with for a spin 2 particle if one wants to have quantum values assigned to a graviton.

We now are looking at the (13) – (12) equation result which will be parlayed as

$$\hat{B} - \hat{A} = \begin{bmatrix}
1 & & & \\
1 & 1 & & \\
& 1 & \\
& & 1
\end{bmatrix} + \begin{bmatrix} r \cdot \cos \beta \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -2 \end{bmatrix}$$

$$+ \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\
2 & 0 & \sqrt{6} & 0 & 0 \\
0 & 0 & \sqrt{6} & 0 & 2 \\
0 & 0 & 0 & 2 & 0 \end{bmatrix}$$

$$-\frac{a}{2} \cdot \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$
(14)

We need to find ratio relations between the different input parameters of (14) above so as to be able to find out if the minimum eignivalue of (14) is greater than zero, for a quantum results, or is less than zero for certain configurations for semi classical characteristics of a graviton. This will have to be numerically simulated. In any case, note that in the case of spin $\frac{1}{2}$ that [1] has a very simple interpretation, namely for a quantum behavior of spin $\frac{1}{2}$ for there to be a minimum eignvalue of B-A > 0 we need to have

$$\frac{1 - r^2}{2 \cdot \sqrt{1 + r^2 - 2r\cos\beta}} < \frac{a}{b} < \frac{1 - r^2}{2 \cdot (1 - r\cos\beta)}$$
 (15)

This, (15) is for a spin $\frac{1}{2}$ particle. To be continued later will be a proof that if the minimum eignvalue for (14) is less than zero, that the graviton will be massive, which will be presented in a future publication.

4. Why having a semi classical interretation of a graviton is not impossible.

In a prior publication, Beckwith identified processes in which Planck's constant could be founded in a pre quantum era. We will for the sake of completeness review these results. The first is to consider [3]

TABLE 1

.Time Interval Dy	namical consequences Does	QM/WdW apply?
Just before Electroweak era	Form \hbar from early E & M	NO
	fields, and use Maxwell's	
	Equations with necessary to	
	implement boundary	
	conditions created from	
	change from Octonionic	
	geometry to flat space	
Electro-Weak Era	\hbar kept constant due to	YES
	Machian relations	
Post Electro-Weak Era to	\hbar kept constant due to	YES
today	Machian relations	Wave function of Universe

4a . So if a domain wall enters the picture, then what does this do to structure formation and also Plank's constant?

In [3] we are stuck with how a semi classical argument can be used to construct Table 1 above. In particular, we look at how Planck's constant is derived, as in the electroweak regime of space time, namely that given the prime in both (16) and (17) is for a total derivative [4],[5]

$$E_{y} = \frac{\partial A_{y}}{\partial t} = \omega \cdot A_{y}' \left(\omega \cdot (t - x) \right)$$
 (16)

Similarly [3],[4],[5]

$$B_{z} = -\frac{\partial A_{y}}{\partial x} = \omega \cdot A_{y}' \left(\omega \cdot (t - x) \right)$$
(17)

The A field so given would be part of the Maxwell's equations given by [5] as, when [] represents a D'Albertain operator, that in a vacuum, one would have for an A field [4], [5]

And for a scalar field ϕ

$$[]\phi = 0 \tag{19}$$

Following this line of thought we then would have an energy density given by, if ε_0 is the early universe permeability [5]

$$\eta = \frac{\varepsilon_0}{2} \cdot \left(E_y^2 + B_z^2 \right) = \omega^2 \cdot \varepsilon_0 \cdot A_y'^2 \left(\omega \cdot \left(t - x \right) \right) \tag{20}$$

We integrate (20) over a specified E and M boundary, so that, then we can write the following condition namely [4],[5].

$$\iiint \eta d(t-x) dy dz = \omega \varepsilon_o \iiint A_y'^2 \left(\omega \cdot (t-x)\right) d(t-x) dy dz$$
 (21)

(21) would be integrated over the boundary regime from the transition from the Octonionic regime of space time, to the non Octonionic regime,

assuming an abrupt transition occurs, and we can write, the volume integral as representing [4],[5]

$$E_{\text{gravitational-energy}} = \hbar \cdot \omega \tag{22}$$

Our contention for the rest of this paper, is that Mach's principle will be necessary as an information storage container so as to keep the following, i.e. having no variation in the Planck's parameter after its formation from electrodynamics considerations as in (21) and (22). Then by applying [4], [5]

$$\hbar(t) \xrightarrow{Annly-Machs-Relations} \hbar(Constant \ value)$$
 (23)

What we are arguing is that if there is a way to identify Planck's constant as having a semi classical genesis, then the same will be true with gravitons. And that perhaps a semi classical genesis for gravitons may occur at the same time as for the formation of Planck's constant. This is to be determined experimentally.

7. Conclusion. We need to re consider the role of Quantum gravity models at the onset of inflation.

We are stuck in all Quantum gravity models as of putting in an initial time step 'by hand' so to speak which raises fundamental issues of what would form an initial time step in Quantum gravity. The other way to look at the role of an undefined initial starting point for time, which we put in by 'hand' is that the special nature of time itself may be if experimentally verified, via observations, the best hope we have of falsifiable measurements of t'Hoofts conjecture [6] that QM is embedded within a classical physics frame work which we have yet to fully develop.

Perhaps lead to signals from early universe GW which may confirm or falsify the role of QM in initial univese conditions. As well as the role that set as a working approximation [3].

$$v_S^2 k^2 \delta - 4\pi G \rho_b \delta \equiv \left[v_S^2 k^2 - 4\pi G \cdot \left(\rho_b = T_i^i - \lambda \right) \right] = \mathbf{constant}$$
 (24)

Affects the formation of baryonic matter fluctuations

Which may play a role in the formation of Table 1 above.

Acknowledgements

This work is supported in part by National Nature Science Foundation of China grant No110752

References

- 1.G. Brida, et.al, "Improved Implementation of the Alicki-Van Ryn non classicality test for a single particle using SI Detectors", Physical Review A 79, 044102 (2009). http://www.nist.gov/customcf/get_pdf.cfm?pub_id=900940
- 2. http://www.easyspin.org/documentation/spinoperators.html
- 3. A. Beckwith," Is Quantum Mechanics Involved at the Start of Cosmological Evolution? Does a Machian Relationship Between Gravitons and Gravitinos Answer This Question? http://vixra.org/abs/1206.0023' accepted by Hadronic Press, July 1st, 2012:

A. Beckwith," Is there a Change in the Baryonic Structure Formation if Quark Strings and Domain Walls Exist at About the Electro-Weak Era?", http://vixra.org/abs/1207.0034

- 4. U. Bruchholz; "Derivation of Planck's constant from Maxwell's Electrodynamics", Progress in Physics, V4, October 2009, page 67; http://www.ptep-online.com/index_files/2009/PP-19-07.PDF
- 5. U. Bruzchholz, "Key notes on a geometric theory of fields", Progress in Physics, 2009, v.2, 107–113.
- 6. G. 't Hooft, http://arxiv.org/PS_cache/quant-ph/pdf/0212/0212095v1.pdf (2002); G. 't

Hooft., in *Beyond the Quantum*, edited by Th. M. Nieuwenhuizen et al. (World Press Scientific 2006), http://arxiv.org/PS_cache/quant-ph/pdf/0604/0604008v2.pdf, (2006)