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Abstract

Clifford-space Gravity is revisited and new results are found. The
Clifford space (C-space) generalized gravitational field equations are ob-
tained from a variational principle and which is based on an extension of
the Einstein-Hilbert-Cartan action. One of the main results of this work
is that the C-space connection requires torsion in order to have consis-
tency between the Clifford algebraic structure and the zero nonmetricity
condition VxgM™ = 0. A discussion on the cosmological constant and
bi-metric theories of gravity follows. We continue by pointing out the re-
lations of Clifford space gravity to Lanczos-Lovelock-Cartan (LLC) higher
curvature gravity with torsion. We finalize by pointing out that C-space
gravity involves higher-spins beyond spin 2 and argue why one could view
the LLC higher curvature actions, and other extended gravitational theo-
ries based on f(R), f(Ruv), ... actions, for polynomial-valued functions, as
mere ef fective actions after integrating the C-space gravitational action
with respect to all the poly-coordinates, except the vectorial ones z*.

1 Introduction

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces)
and Clifford-Phase spaces were developed [1], [2]. The Extended Relativity
theory in Clifford-spaces (C-spaces) is a natural extension of the ordinary Rela-
tivity theory whose generalized coordinates are Clifford polyvector-valued quan-
tities which incorporate the lines, areas, volumes, and hyper-volumes degrees
of freedom associated with the collective dynamics of particles, strings, mem-
branes, p-branes (closed p-branes) moving in a D-dimensional target spacetime
background. C-space Relativity permits to study the dynamics of all (closed)
p-branes, for different values of p, on a unified footing. Our theory has 2 funda-
mental parameters : the speed of a light ¢ and a length scale which can be set
to be equal to the Planck length. The role of “photons” in C-space is played by
tensionless branes. An extensive review of the Extended Relativity Theory in
Clifford spaces can be found in [1].



The poly-vector valued coordinates x*, x#1#2 gHir2t3  are now linked to
the basis vectors generators «*, bi-vectors generators vy, A+, tri-vectors gener-
ators v, A Vus A Yuss --- of the Clifford algebra, including the Clifford algebra
unit element (associated to a scalar coordinate). These poly-vector valued coor-
dinates can be interpreted as the quenched-degrees of freedom of an ensemble of
p-loops associated with the dynamics of closed p-branes, for p =0,1,2,...,D—1,
embedded in a target D-dimensional spacetime background.

The C-space poly-vector-valued momentum is defined as P = dX/d¥ where
X is the Clifford-valued coordinate corresponding to the Ci(1,3) algebra in
four-dimensions

X = ol+4a" v, + 2" v Ny + 2P v A Ay, + 2T Y A Ay Ay (111)

o is the Clifford scalar component of the poly-vector-valued coordinate and
d¥ is the infinitesimal C-space proper “time” interval which is invariant un-
der CI(1,3) transformations which are the Clifford-algebra extensions of the
SO(1,3) Lorentz transformations [1]. One should emphasize that dX, which is
given by the square root of the quadratic interval in C-space

(d%)? = (do)?* + dx, dz" + dx,, d2" + ... (1.2)

is not equal to the proper time Lorentz-invariant interval ds in ordinary space-
time (ds)? = g, datdz” = dx,dz". For extensive details and references we
refer to [1].

The main purpose of this work is to revisit Clifford-space Gravity [1], [7]
where new results are found. The Clifford space (C-space) generalized gravita-
tional field equations are obtained from a variational principle and which is based
on an extension of the Einstein-Hilbert-Cartan action. One of the main results
of this work is that the C-space connection requires torsion in order to have
consistency between the Clifford algebraic structure and the zero nonmetricity
condition Vg™ = 0. A discussion on the cosmological constant and bi-metric
theories of gravity follows. We continue by pointing out the relations of Clifford
space gravity to Lanczos-Lovelock-Cartan (LLC) higher curvature gravity with
torsion. We finalize by pointing out that C-space gravity involves higher-spins
beyond spin 2 and argue why one could view the LLC higher curvature actions,
and other extended gravitational theories based on f(R), f(Ryw), ... actions, for
polynomial-valued functions, as mere ef fective actions after integrating the C-
space gravitational action with respect to all the poly-coordinates, except the
vectorial ones z#.

2 Geometry of Curved Clifford Space

Let the vector fields v, p = 1,2, ...,n be a coordinate basis in V,, satisfying the
Clifford algebra relation

Y- Vv = (’Y;/YV + '71/7u) = Guv (2-1)
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where g,,,, is the metric of V,,. In curved space vy, and g,,, cannot be constant but
necessarily depend on position z#. An arbitrary vector is a linear superposition
[3] a = at~y, where the components a* are scalars from the geometric point of
view, whilst ,, are vectors.

Besides the basis 7, we can introduce the reciprocal dual basis v* satisfying

e =S ) = g (2:2)

N | =

where g"” is the covariant metric tensor such that

gMa Gav = 5”1/7 {7“771}} = 25#1/7 ’VH:gMV’YV (23)

Let us now consider C-space [1], [4]. A basis in C-space is given by

EA =7 Y YuANYos Yu ANV AYpy o (2.4)

where +y is the unit element of the Clifford algebra that we label as 1 from now
on. In (2.4) when one writes an r-vector basis v,, Ay, A ... A7y, we take the
indices in ”lexicographical” order so that u; < ps < .... < pr. An element of
C-space is a Clifford number, called also Polyvector or Clifford aggregate which
we now write in the form

X = X4E, = s1 + oy, + My A+ (2.5)

A C-space is parametrized not only by 1-vector coordinates z* but also by the
2-vector coordinates x*¥, 3-vector coordinates x#*%, ..., called also holographic
coordinates, since they describe the holographic projections of 1-loops, 2-loops,
3-loops,..., onto the coordinate planes. By p-loop we mean a closed p-brane; in
particular, a 1-loop is closed string. In order to avoid using the powers of the
Planck scale length parameter L, in the expansion of the poly-vector X we can
set set to unity to simplify matters.

In a flat C-space the basis vectors E4, E, are constants. In a curved
C-space this is no longer true. Each E4, E4 is a function of the C-space coor-
dinates

XA = g, ot ghrz pHrH2e D (2.6)

which include scalar, vector, bivector,..., r-vector,... coordinates in the underly-
ing D-dim base spacetime and whose corresponding C-space is 2”-dimensional
since the Clifford algebra in D-dim is 2P-dimensional.

In curved C-space one introduces the X-dependent basis generators vz, v
defined in terms of the beins E4;, inverse beins £}’ and the flat tangent space
generators ya,v? as follows va; = E4y (X)ya, Y™ = EM(X)y4.

The covariant derivative of E4;(X), E}/(X) involves the ordinary and spin
connection and is defined as

VkE}, = 0xE3, — Tk, B + wity ED (2.7a)

VkEY = ogEX + 1Y, EY — w8 EY (2.7b)



If the nonmetricity is zero then Vi Eq; = 0, VxEA = 0 in eqs-(2.7). If the
nonmetricity is not zero one must include extra terms in the right hand side of
eqs-(2.7). In this latter case Vi E3, # 0, VxEY # 0. To simplify matters we
shall set the nonmetricity Qx v = Vikgun = 0, to zero such that

Vrgun = <(Vkvu)w> + <y (Vkn) > =

Oxkgun — Tk 9oy — Tk gom = 0 (2.8)

There are two different choices of connections compatible with the zero non-
metricity conditions in eqs-(2.7, 2.8). One choice [5] requires the covariantly-
constancy condition on the curved and tangent C-space basis generators

Vi = Vi(Eyva) = EfViya = 0 (2.9)
since Vi E4; = 0 when the nonmetricity is zero. From (2.9) one infers
Viva = Ogya+wrapy? =0 = 0gya = — wrapy® (2.10a)
and
Vikym = Oxym — Ty = 0 = Oxvm = Thy e (2.11a)
V™ = o™ + TM, A% = 0 = 0™ = — T, 42 (2.11b)

Another choice which is also consistent with the vanishing nonmetricity con-
dition in eqgs-(2.7, 2.9) is to have truly constant v4 [7] such that now one has

Veyu = Vi(Eyva) = Eff Viva = Ejy wrapy® (2.12)

after using Vigvya = wKAB*yB due to the fact that dxy4 = 0 when the tangent
space gamma generators 4 are constants. Inserting eq-(2.12) into eq-(2.8) also
yields a zero nonmetricity result as well

Vigun = <(Vkym)w > + <y (Veww) > =
wrap ( ByfER + ExER ) = 0 (2.13)

because the last terms of (2.13) in the parenthesis (multiplying wx 45) are sym-
metric under the index exchange A <> B, whereas the spin connection prefactor
WKAB = —WKBA Is anti-symmetric. A parallel transport of 4 requires a (spin)
connection and for this reason it is reasonable to set Vigya = wrapy?. Sim-
ilarly one finds that Vgnap = 0, after recurring to the definition nap =<
Yayp > and due to symmetry property of the constant tangent space metric
nap under the exchange of indices, and the anti-symmetry of wx Ap.

One may notice that eq-(2.12) can also be recast as a covariantly-constancy
condition with respect to a new connection by moving the omega terms to the
left-hand side and reabsorbing them into a redefinition of the connection as

L L A BL



Vi = Ok — f‘%(M v = 0 = Vggun = 0 (2.14)

To simplify matters in the rest of this work we will simply choose to work
with the connections appearing in eqs-(2.11) keeping in mind the possibility of
working with the hatted connections (2.14) which are consistent with having
truly constant tangent space generators 4.

If the connection is symmetric in the first two indices I'ipyy = Iprxny one
can arrive at the torsionless Levi-Civita-like expression. This can be attained
as usual by an index permutation of the zero nonmetricity condition

Ik gun — T'kmn — Tenme = 0 (2.15a)
Om ggn — Tmrn — Tunk = 0 (2.15b)
On gy — I'nmux — Ivkm = 0 (2.15¢)

after subtracting eqs-(2.15b, 2.15¢) from eq-(2.15a) one arrives at the Levi-
Civita-like expression for the connection

1
Funk = 3 (OmgxN + ONgMK — OK9MN) (2.16)

due to the symmetry property 'k prnv = argn in the first two indices.

In general, C-space admits torsion [1] and the connection 'Y, # 'V is
not symmetric. For example, if 'k v = I yas is symmetric in the last two
indices, then from eq-(2.8) one can infer that there is a different connection
FKMN = %8[{9]\/[1\7 75 F]MKN = la]\/[gKN which has torsion.

The torsion is defined as Tx,, = T'¥,, — 'Y, ;c in C-space, assuming the
anholonomy coefficients f&,, are zero, [0x,0n]| = fR0n. If the latter co-
efficients are not zero one must include f%,, into the definition of Torsion as
follows

N N N N
Ty = Uk — Tk — frm (2.17)
In the case of nonsymmetric connections with torsion, the curvature obeys
the following relations under the exchange of indices

Runsk = — Rvmukx, Runks = — Runsk, but Runsk # Ryxkun

(2.18)
and is defined, when fy; = 0, in terms of the connection components I'%,, as
follows

Ryny = Ou NS — On Ty + T TRy — TRz Thuy (2.19)

If K # 0 one must also include these anholonomy coefficients into the defini-
tion of curvature (2.19) by adding terms of the form —ff  T'X,.

The standard Riemann-Cartan curvature tensor in ordinary spacetime is
contained in C-space as follows

P2 _— P2 _ P2 P2 a _ P2 o
Rm“?pl - aMFMzPl 8“2FH1ﬂ1 + FMU Fuzl)l FH2U FMlPl -



Rypop, 72 =0, 102, — 0,102+ P/pj M ™ - _ e ™ (2.20)

H2p1 M2~ 1 p1 H2p1 pe M T p1p1

due to the contractions involving the poly-vector valued indices M in eq-(2.20)

There is also the crucial difference that Rf2,  (s,z”,2""?,...) has now an

additional dependence on all the C-space poly-vector valued coordinates s, x¥1"2 g¥172¥3 .

besides the x¥ coordinates. The curvature in the presence of torsion does not
satisfy the same symmetry relations when there is no torsion, therefore the
Ricci-like tensor is no longer symmetric

Rynvs Y = Rus, Ry # Ry, R = g™ Rayy (2.21)
The C-space Ricci-like tensor is

D
R = I D BV (2.22)
=1

and the C-space curvature scalar is

D D
R = ZZ R[m#z»--ﬂj] [V1V2---Vk] [muz---uj] [V1V2-«~Vk] + Z R[#luz---ﬂj] 0 [Mluz---uj] 0
j=1k=1 j=1
(2.23)
To finalize this section we add some remarks about the physical applications
of C-space gravity to higher curvature theories of gravity [7]. One of the key
properties of Lanczos-Lovelock-Cartan gravity (with torsion) is that the field
equations do not contain higher derivatives of the metric tensor beyond the
second order due to the fact that the action does not contain derivatives of the
curvature, see [8], [12], [11] and references therein.
The n-th order Lanczos-Lovelock-Cartan curvature tensor is defined as
R(M) p1p2-p2n  — §P1P2Pan §VIV2Van @ TIT2 R T8Ta RV;Q”“TZ" (2.24)

H1p2. . fh2n T1T2...T2n K12 . [h2n viv2 v3Vy n—1V2n

the n-th order Lovelock curvature scalar is

R(") = §Yive2-Ven P TIT2 PP T3T4 P T2n—1T2n (2_25)

T1T2...T2n viva v3vq Van—1V2n

the above curvature tensors are antisymmetric under the exchange of any of the
i (p) indices. The Lanczos-Lovelock-Cartan Lagrangian density is

(3]
1
L=/ Z cn Lny, Ln= on R™ (2.26)
n=0
where ¢, are arbitrary coefficients; the first term corresponds to the cosmological
constant. The integer part is [%} = % when D = even, and % when D = odd.

The general Lanczos-Lovelock-Cartan (LLC) theory in D spacetime dimensions
is given by the action



(5]
S = /dDa: gl en Lo, (2.27)

0

Ns}

n

A simple ansatz relating the LLC higher curvatures to C-space curvatures
is based on the following contractions [7]

D

Cl R(n) ViVa..V2n E R V1V2V2n PLP2-.-Pk + R viva...Vay O (2 28)

on H1H2. ph2n H1p2-- 20 P1P2---Pk H1p2..pi2n O '
k=1

where one must take a slice in C-space which requires to evaluate all the terms in
the right hand side of eqs-(2.28) at the “points” s = z#1#2 = . . = ghihzID =
0, for all z#, since the left hand side of eqs-(2.28) solely depends on the vector
coordinates z*.

After evaluating the C-space scalar curvature (2.23), setting the values of all
the poly-vector coordinates to zero, except the x* coordinates, one can relate
it to the LLC Lagrangian, up to the cosmological constant ( the ¢, term ), as
follows

o R (zH) (2.29)
n=1

The curvature tensors and scalar curvature with torsion in Riemann-Cartan

space appearing in the right hand side of (2.29) decompose into the standard

Riemannian piece plus torsion squared terms and derivatives of torsion. For

instance, R = R— %TabcT abe [10], where R is the Riemannian scalar curvature.

3 Clifford Algebraic Structure of Curved C-spaces

In this section we shall study the Clifford Algebraic Structure of Curved C-
spaces. Without loss of generality we can facilitate matters enormously if one
chooses a frame in the tangent C-space such that E4;, EY # 0, if the grade of
M equals grade of A; and E3;, EAl = 0 if the grade of M is not equal to the
grade of A. Choosing such frame requires fixing some of the generalized Lorentz
symmetries (poly-rotations) in the tangent C-space. Afterwards we will study
the most general case scenario when there is a nontrivial grade mixing such
that all the components of E4,, E4f must be taken into account. The simpler
”diagonal gauge” choice E4;, EY # 0, if the grade of M equals grade of A,
permits us to begin with

{1#.4"} = EY B {y*2"} =2 B Ef 0" = 2g" (3.1)



and

V*AY] = Eb By 7*0"] = 2 Ef By 4" = M (3.2)
one learns that
o = Bl By (33)
and
y = Byl = Eb By 4 = Ef; By (3.4)
multiplying both sides of (3.4) by v, and taking the scalar parts < v°%y,,, >=
coed = cécméi], where c¢ is a constant of proportionality that decouples from

(3.4), one arrives at the crucial decomposition of

a 1 1%
El, B} by = E” Ey, (3.5)

[m n

E[H”}&cd _ E[H”] — 1
[ed] - [mn] T
in terms of anti-symmetrized products and where the (antl) symmetrization has
a weight of 1.
The commutator

7T = =2 (*y" —n*y%) (3.6a)
yields
. 47] = (Bl Bey] =
—2 B BE (°qb —n¥y®) = — (BYEY — BYEY) BS (09" — n"y°) =
—2 (" 4” — g’ 4M) (3.6b)

hence we learned that the curved space commutator [y*¥,~”] has the same
functional form as the tangent space commutator [y2°,v¢]. Similarly, after some
straightforward algebra one obtains

[7“”7 7p7—] = —92 (g”p’yy‘r — gl/p’yMT + e ) (37)

which has the same functional form as the commutator [y*®,v°¢] so the Jacobi
identities are satisfied. For example, after using eqs-(3.2, 3.6,3.7) one still retains
the vanishing condition

(Y, AT + 197 DA™ + [T 5971 = 0 (3.8)

The form of the (anti) commutators involving the curved space basis generators
M will be modified considerably from those in the tangent space case if one
did not set EAl = 0 for the mixed grade components. Nevertheless, in this
more complicated case, the (graded) Jacobi identities will still be satisfied. The
”diagonal gauge” conditions B4 # 0 if grade A equals grade of M, simplifies
enormously the form of the commutation relations [y, v™] of the curved space
basis generators in such a way that they sill retain the same functional form as



the flat tangent space commutators [y“, %], and as such, obey automatically
the Jacobi identities. Similar conclusions apply to the anti-commutators.

Strictly speaking one does not have a Lie algebra because the metric gt
is no longer constant, hence one does not have structure constants in the right
hand side of [y™, 4] = fMN~L but structure functions fM¥ instead

AN = EX EE AP = EX ER 6P AC =
EN By [67 Bf Y = [ A" (3.9a)
where the structure functions are defined by
EX(X) EF (X) f&° Ef(X) = fi"™(X) (3.96)

The flat tangent C-space the metric n*® was defined by taking the scalar
part of the Clifford geometric product of the tangent space generators n48 =<
7448 > and such that the tangent C-space metric 722 is not zero only when
the grade of A = grade of B. If one chooses a frame such that B4l # 0, if
grade of A equals the grade of M, then one arrives at g™~ #£ 0, if the grade of
M equals the grade of N. Whereas the mixed grade components of the curved
C-space metric gMN =< yMAN >= P EEpAB are also zero. Consequently, if
one uses now the expression for the connection with torsion given by

1
INVINIES 5 9" " gLy (3.10)

one will end up with the following non-vanishing values for those connection
components of the form

F%/I 0 Fx[ o ]‘—‘%1?;302]’ F%ll[?l';:."?]”oﬁ] (311)

this will simplify enormously the calculations because the derivatives of v
given by dgy™M = —T'¥, ~L will only involve the contribution of those non-
vanishing connection components (3.11). Namely, those where the grade of L
equals the grade of M.

For example, taking derivatives of eq-(3.2) with respect to 2¥ and after using
eq-(3.11) gives

L2u 9iov 108 — Tou 9o (a8) = Tp () (8] (3.12)

If one were to use the torsionless Levi-Civita-like connection expression in (2.16),
rather than the connection in eq-(3.10), for I'7 ,,I'7,, T’ 1] [ap), after taking the
derivatives of eq-(3.2) one will arrive at the same equation (3.12), in addition to
extra equations resulting from the additional terms stemming from the mixed
grade components appearing in 9y = fI‘]I‘(/[ L’yL .

One can verify that if one uses the Levi-Civita connection (2.12) in eq-(3.12,
while performing the following decomposition of the metric

9lap) ] = You 9v — Jav Ypu (3.13)



and after setting to zero the mixed-grade components of the metric, it leads to
a differential constraint among the derivatives of the metric of the form

9v80ugap — Oadpp) — Gva(Ougsp — O5gpu) +

9ua(0v98p — 089py) — 9up(Ougap — Oagp) = 0 (3.14)

One can avoid this differential constraint (3.14) if one does not recur to the
torsionless Levi-Civita-like connection expression (2.16) but instead one uses
the following expression for the connection with torsion in eq-(3.10)

oT 1

- 1
o, = 39 b9 Lo ) (e8] = 9 9p9las] [uv] (3.15)

In this case, eq-(3.12), after recurring to the decomposition (3.13), reduces then
to a mere identity between the left and right hand sides in such a way that there
are no longer differential constraints imposed among the first derivatives of the
metric, like they occurred in (3.14). Therefore we have found a good reason
why one must choose a connection with torsion of the form given by eqs-(3.10,
3.15). It is dictated to us by the Clifford algebraic structure. The apparent dif-
ferential constraints become mere identities, upon a closer inspection, when the
connection with torsion (3.10, 3.15) is chosen and when the metric components
are decomposed into its irreducible factors (3.13). We shall provide a few more
examples of why this is true below.

Another example of how an apparent differential constraint turns into a
mere identity is by taking derivatives on both sides of (3.7) with respect to 7,
for example. After evaluating the commutators one arrives at

—Tl) (970977 — g7y = T2 (g 7" — g7 y7) =
(0:g") 4" = (0-9"P) A" — "’ TY ™ + g T, 7 (3.16)

In the Appendix we shall explicitly show how after contracting the gammas, by
multiplying by v, on both sides of eq-(3.16) and taking the scalar parts, one
arrives at an strict identity, thus avoiding the introduction of spurious differen-
tial constraints involving derivatives of the metric. One may verify as well that
after taking derivatives of the anti-commutators leads to apparent differential
constraints which become mere identities after using the expression for the con-
nection with torsion (3.10), the zero mixed-grade conditions gyny = 0 for the
metric, and when the metric components gl#1#2-#x] [11v2--v4] are decomposed
into its irreducible factors as

g“lul . e g“luk
H2V1 MoV

det | T v e (3.13)
ghevL gHvE

10



The calculations are very tedious as one can see in the Appendix. Even more so
when one evaluates the remaining (anti) commutators and takes their deriva-
tives.

To prove this in the most general case for all the (anti) commutators of the
Clifford algebra, without having to recur to the zero mixed-grade conditions for
the metric, beins, inverse beins; without having to decompose the same grade
metric components into their irreducible pieces, and without having to perform
tedious calculations, one begins with the structure constants associated with
the flat tangent space Clifford algebra

AP = e, AP = 18P, APy = 1EPAC (3.17a)
the structure functions associated with the curved space basis generators are

AN = AR M AN = A (M AN =d Y (3.17)

where
MN = pM EN EC AP (3.18a)
Y = EY B BY f6° (3.18b)
dMN = EX EY EY aiP (3.18¢)

we use primes in the left hand side of eqs-(3.18) to emphasize that in the most
general case, when one does not longer choose the zero mixed-grade conditions
(a "diagonal” gauge) , the functional form of the (anti) commutators for the
curved basis Clifford generators will not be the same as in the tangent space case.
Denoting by AMY any one of the three structure functions ¢V, fIMN @/MN
and after taking ordinary derivatives on each single one of the terms in eqs-
(3.18), one can see that one arrives precisely at the covariantly — constancy
condition on the structure functions A/MN

O h™ + Tl WPY + Tl B9 = TR, 3™ = 0 = Ve (BMN) =0

(3.19)
which is obeyed by a metric compatible connection satisfying
VkEy = OxEy — Tk B + wit g By = 0,
VrEY = ok EY + ¥, BEY — w A EY =0 (3.20)

To show that eq-(3.19) is satisfied it is important to notice once again the
two different choices discussed in section 2 for the connection I' appearing in
(3.20) and the hatted connections I' defined by eq-(2.14). When one uses the
I’s, one has a covariantly-constancy condition imposed on the tangent space and
curved space basis generators. Thus the covariant derivatives of the structure
” constants” héB are zero if one wishes to maintain the tangent space Clifford
algebra intact. Also zero are the covariant derivatives of the beins, and inverse
beins in (3.20). Thus one has automatically Vh/M~ = 0. On the other hand,
if one were to use the I' connection instead, the covariant derivatives are then

11



VrhéB = wipt p h8P + wl 5 he&P — wiB hpP (3.21)

since the ordinary derivative of a true constant is 8KhéB = 0. The covariant
derivatives (with respect to the hatted connections) of the beins and inverse
beins are no longer zero zero, but instead are

VkEY = — wit 5 BB, VKEN = w.h EY (3.22)

By recurring to the definitions of the structure functions (3.18), and the action
of the hatted covariant derivatives described by eqs-(3.21, 3.22), one can verify
the covariantly — constancy condition (with respect to the hatted connection f)
on the structure functions KM~ To see this one regroups the 6 terms obtained
after taking the covariant derivatives of eqs-(3.18) into three pairs. The three
pairs originate from taking covariant derivatives on the beins, inverse beins and
the structure constants in eqs-(3.21, 3.22). The first pair, after raising and
lowering indices, is indeed zero

wiap | EMP EN ES hgP + EMAEY ES hEP ] = 0 (3.23)

because the term inside the bracket is symmetric under the exchange of A <» D
indices, while the spin connection wgi 4p is anti-symmetric. Similar findings
occur to the remaining two pairs. Therefore, V x(RMN) = 0 and the covariant-
constancy condition on the structure functions is obeyed for both connections
T, I. Namely, the key point is that the choice of the metric compatible connec-
tions has to be consistent with the Clifford algebraic structure of the curved
C-space.

We continue this section by adding some important remarks about the zero
mixed-grade condition (”diagonal” gauge choice) which simplified the calcula-
tions. Since under (poly) coordinate transformations the metric transforms as

OxXM gxN

Jix = 9MN F37 HxiR (3.24)

one can realize that if the mixed-grade components are zero in one coordinate
system this does not mean that they are also zero in another coordinate system.
In order to preserve the zero mixed-grade condition on the metric components,
one must restrict the coordinate transformations such that g’ - = 0 if the grade
of J is not equal to the grade of K. This in turn requires that the coordinate
transformations must be restricted to be grade-preserving as well, namely one
must have coordinate transformations of the form

't =gt (z”), M =M (2, s =5(s),..... (3.25)

so that under the restricted coordinate transformations (3.25) one has that
9 # 0, if grade of J equals grade of K, when gy # 0, if grade of M equals
grade of N. Therefore, if one wishes to preserve the conditions E}¥ # 0, if grade
of M equals grade of A, and E’M = 0 if grade of M is not equal to the grade of A,

12



one must restrict the poly-coordinate transformations and generalized Lorentz
transformations (poly-rotations affecting the tangent C-space indices A, B, C...
in B4, A1) to be grade-preserving. This also applies to the metric when
the mixed-grade components of gy/n are zero. Only a restricted set of poly-
coordinate transformations (generalized Lorentz transformations in the tangent
space) will preserve such zero mixed-grade condition on gpn and Ef‘/p EAL

Of course in the most general case we are not confined to perform restricted
poly-coordinate transformations and restricted generalized Lorentz transforma-
tions. Hence one should allow for grade-mixing transformations. In particular,
the connection does not transform homogeneously under poly-coordinate trans-
formations because it is not a (poly) tensor, like the metric. The connection
transforms as

0X?@  9xf  9Xx'L 92xr oX'E
Ciiv = Tor (o) (gxw) ) + + (g (Gx7

) (3.26)

where the last terms are the inhomogeneous pieces.

We have shown explicitly in this section that when the zero mixed-grade
condition was imposed, and when the diagonal metric components were de-
composed into its irreducible components, the Levi-Civita connection was not
satisfactory because it furnishes spurious differential constraints among the first
derivatives of the metric. Whereas the connection choice with torsion in eq-
(3.10) was satisfactory because it rendered the apparent differential constraints
into mere identities. An important question to ask now is whether or not in
a different coordinate system the Levi-Civita connection might turn out to be
satisfactory.

To answer this question we must again recur to the covariantly-constancy
conditions on both the metric and structure functions Vg hMYN =0, Vg gM» =
0. Such conditions are covariant in C-space, as they should. From the zero
nonmetricity condition one obtains a connection which is determined in terms
of the metric and for this reason we may write it symbolically as I'[g]. From
the other condition Vx (hMY) = 0 we obtain a connection that we may write
as T'[h']. Since the covariant derivatives were defined in terms of the same
connection I' | we must have I'[g] = T'[A’]. This last functional equality is very
restrictive as we have seen above when the ”diagonal gauge” choice was taken
: the Levi-Civita connection was not satisfactory, whereas the connection with
torsion given by eq-(3.10) was.

Under coordinate transformations, in the new frame of reference denoted
by a tilde, we will have : T'[§] = ['[h’]. Since torsion transforms as a tensor
under coordinate transformations, if there is torsion in one coordinate system
one cannot eliminate it in the new coordinate system. Therefore the new I must
have torsion (contorsion) components as well, and as such, it cannot coincide
with the torsionless Levi-Civita connection. One of the main results of this
section is that C-space has torsion which is required for the connection in order
to have a consistent system of simultaneous equations Vg h/MYN = 0, Vg gMN =
0.

13



To summarize, after studying the algebraic conditions imposed by the Clif-
ford algebra in curved C-space we found : (i) in a given coordinate system (gen-
eralized Lorentz frame) the mixed-grade components of the metric gasn, g™,
and beins Eﬁ, inverse beins EA!| can be set to zero in order to considerably
simplify the calculations; namely due to the very large diffeomorphism sym-
metry in C-space, one may choose a frame (”diagonal gauge”) such that the
mixed grade components of the metric, beins, inverse beins are zero. (i) In
this case, the Clifford algebra associated to the curved space basis generators
assumes the same functional form as it does in the flat tangent space, and obeys
the (graded) Jacobi identities. (iii) The metric, beins, inverse beins, admit a
decomposition into their irreducible pieces ; (iv) only a restricted set of poly-
coordinate transformations (generalized Lorentz transformations in the tangent
space) will preserve such zero mixed-grade condition; (v) the connection has
torsion and is given by eq-(3.10) I'K \ = 1g5 L0y gL n.

These conditions allowed us to convert the apparent differential constraints
among the first derivatives of the metric, resulting from the Clifford algebraic
structure associated with the curved C-space basis generators, into strict iden-
tities as we have explicitly shown in this section and the appendix.

In the most general case, when the mixed grade components of the met-
ric, beins and inverse beins are not set to zero; and when their diagonal com-
ponents do not necessarily decompose into antisymmetrized sums of products
of their irreducible pieces, we have found that the metric compatible connec-
tion VxgMYN = 0 must be consistent with the Clifford algebraic structure if
VihMN = 0. This consistency condition singles out an specific family of
connections (orbits) obtained by performing coordinate transformations of the
fiducial connection with torsion given by eq-(3.10).

An example of the most general case (when the diagonal gauge is not chosen)
is that now the C-space metric component (written in bold font)

g = Eiy E§ 0" + EY Ey n® + E*, Ey, n™®"» + .. (3.27)

is given by a sum of many pieces. The ordinary spacetime metric can naturally
be embedded into the term gﬁ'/) = EFEYn® (which has also a dependence on
all of the poly-vector coordinates X) and is just one piece of the C-space metric
element g”. This is not farfetched, bi-metric theories of gravity, for example,
have been known for a long time since the work of Rosen. The ”zero” term,

corresponding to the scalar-scalar components, is denoted by gf‘ol; = EJEY n°0

and the others will be denoted by gf‘:) where n = 1,2,3,....., D. The reason why

the diagonal gauge choice of setting the mixed-grade components of EQ,E%

to zero is very physical is because g"”(X) reduces then to the standard metric
nz

9(1)(X)-

The upshot of breaking g” into several pieces, is that the quantity

g 8 R, [8,T] = Ry + Ray + coovveee (3.28)

uvp
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admits a splitting into several terms. In the case of constant curvature back-
grounds one may relate the "zero” term Ry = gé‘o’)) R,.,[g,T] with the very large
Planck scale vacuum energy contribution (a very large cosmological constant
in C-space), whereas the second term Ry = géLlp)Rup[g,F] could be related
to the extremely small observed cosmological constant in ordinary spacetime.
When one chooses the diagonal gauge by setting the mixed-grade components of
Eﬁ, EA to zero, one has gh” = gé‘f’ = EgEl’;n“b and the expression in eq-(3.28)
reduces then to the standard scalar curvature with the inclusion of torsion terms
R[g,T] = R+ T? + VT. In a pedestrian way one has ”gauged away” the very
large cosmological constant which resided in the term R (). More work needs
to be done to explore the validity of this possibility.

4 Clifford Space Gravitation

One may construct an Einstein-Hilbert-Cartan like action based on the C-space
curvature scalar. There are two approaches to this process. One approach re-
quires the use of hyper-determinants of hyper-matrices. And the other approach
requires ordinary determinants of square matrices in 2”-dimensions.

The hyper-determinant of a hyper-matrix [13] can be recast in terms of
discriminants [14]. In this fashion one can define the hyper-determinant of gpsn
as products of the hyper-determinants corresponding to the hyper-matrices'

g[uluz] [vivals - g[ulug.uuk] [thva...vk]s fOT 1<k<D (41)

and construct a suitable measure of integration iy, (s, x#, xH1#2 .. gHiHz--HD)
in C-space which, in turn, would allow us to build the C-space version of the
Einstein-Hilbert-Cartan action with a cosmological constant

1
2 / ds Hda:“ I_Idx"”‘2 oo datrze b g (st a2 ) (R — 24A)

(4.2)
k2 is the C-space gravitational coupling constant. In ordinary gravity it is set
to 87Gy, with G being the Newtonian coupling constant.

The measure must obey the relation

[DX] pm(X) = [DX'] p1,(X') (4.3)

under poly-vector valued coordinate transformations in C-space. The C-space
metric transforms as

oxXM gxN

Gix = 9MN ST HxiR (4.4)

IThe hyper-determinant of a product of two hyper-matrices is not equal to the product of
their hyper-determinants. However, one is not multiplying two hyper-matrices but decompos-
ing the hyper-matrix gps v into its different blocks.
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but now one has that

M

v/ hdet ¢ # +/hdet g hdet (gj((/N> (4.5)
due to the multiplicative “anomaly” of the product of hyper-determinants. So
the measure p,,, does not coincide with the square root of the hyper-determinant.
It is a more complicated function of the hyper-determinant of g4 and obeying
eq-(4.3).2 One could write hdet(X - Y) = Zahdet(X)hdet(Y), where Z4 # 1
is the multiplicative anomaly and in this fashion eq-(2.30) leads to an implicit
definition of the measure p,, (hdetgap).

The ordinary determinant g = det(g,.) obeys

1
3V=9 = = 3 V=0 g 59" (1.6)

which was fundamental in the derivation of Einstein equations from a variation
of the Einstein-Hilbert action. However, when hyper-determinants of the C-
space metric gap are involved it is no longer true that the relation (4.6) holds
anymore in order to obtain the C-space gravity field equations in the presence
of torsion and a cosmological constant.

Using the relation dRyny = V(]c?f‘J{/IN — VNéng, a variation of the action

1
53 / ds [[da® T[dat#2 ... dat#2#2 p, (|hdet garn|) (R—=2A) + Spatter

(4.7)
with respect to the C-space metric gpsn yields the C-space field equations

SIn (i (|hdet grrnl))

R(MN) —+ (R—QA) (5gMN = 1432 Tun (48)
If, and only if,
OIn(py, (|hdet 1
L (5|gMN gux) D) 9gMN (4.9)

then the field equations (4.8) would coincide with the C-space extension of
Einstein’s equations with a cosmological constant. One should note that the
field equations (4.8) contain torsion since Ry, R are defined in terms of the
nonsymmetric connection I'Y, ;v # I'{,; - The field equations (4.8), for example,
are very different from those found in [17] based on a fourth-rank symmetric
metric tensor.

The hyper-determinant of the C-space metric gprn (a hyper matrix) involv-
ing all the components of the same and different grade is defined as

hdet (gMN) = Jdoo det(gl“/) hdet(gﬂlﬂ«z V1V2) hdet(gﬂ V1V2) """

2There is no known generalization of the Binet-Cauchy formula det(AB) = det(A) det(B)
for 2 arbitrary hypermatrices. However, in the case of particular types of hypermatrices,
some results are known. Let X, Y be two hypermatrices. Suppose that Y is a n X n matrix.
Then, a well-defined hypermatrix product XY is defined in such a way that the hyperdeter-
minant satisfies the rule hdet(X - Y) = hdet(X)hdet(Y)N/™. There, n is the degree of the
hyperdeterminant and N is a number related to the format of the hypermatrix X.
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hdet(gli1~~MDf1V1mVD71 ) gH1~~HDV1~~VD (410)

where the hyper-determinant of g, coincides with the ordinary determinant of
guv- Notice once more that the hyper-determinant of a product of two hyper-
matrices is not equal to the product of their hyper-determinants. However, in
(4.10) one is not multiplying two hyper-matrices gag, ¢’ g, but decomposing the
hyper-matrix gap into different blocks. Hyperdeterminants have found physical
applications in the black-hole/qubit correspondence [15].

One can avoid the use of hyperdeterminants by working in a blockwise fash-
ion, when dealing with poly-vector valued indices, rather than dealing with each
one of the indices of their associated hypermatrices individually. The C-space
metric gasny associated with a Clifford algebra in D-dimensions has a one-to-one
correspondence with an ordinary metric g;; in 2P_dimensions. In particular, the
metric g;; is a square 2P x 2 symmetric matrix with 322 (2P —1) independent
components. The determinant of the square matrix g;; is defined as usual in

terms of epsilon tensors, where the indices range is 7,7 = 1,2,3, ...., 27,
The poly-vector coordinates X = s, z#, x#1#2 ... and their derivatives, have
. . ; D
also a one-to-one correspondence with the coordinates y* = y*, 42, ...... ,y? , and

their derivatives, of the associated 2P-dim space. Thus, one has a correspon-
dence of the action (4.2) in C-space with the ordinary Einstein-Cartan action,
with a cosmological constant ), in 2°-dimensions

1 D
53 / d? y \/|det gij| (R —2)\) (4.11)

However, having a correspondence between the actions in (4.2) and (4.11)
does not mean that they are physically equivalent, even if one replaces the
measure in eq-(4.2) by +/|det g;;|. The reason being that the Clifford algebraic
structure imposes very strong constraints on the allowed C-space connection
and on the metric components gy/n, when the zero grade-mixing condition
gun = 0 is chosen. As we have shown in section 2, the same grade metric
components decompose into their irreducible pieces as described in eqs-(3.13,
3.13’). In order to attain an equivalence one would have to add to the action
(4.11) extra terms involving Lagrange multipliers enforcing the decomposition
conditions (constraints) in eqs-(3.13, .13’).

Another way of implementing those conditions (3.13, 3.13’) is by writing the
variation of the action (4.2) as

— 05 00 ) ny
05 = W g + W og +
58 sglkral sl
5g[#1#2] [v1v2] 69”’/ 69 + o (412)

leading to the C-space gravitational field equations

) 0S 08 5g[M1N2] [v1v2]
=0, +
5900 (59“” 59[#1#2] 282 59“1/

o, =0 (413
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The C-space scalar curvature R after setting all the poly-coordinates to zero,
except x#, was postulated to be related to the LLC Lagrangian, up to a cosmo-
logical constant, as provided by eq-(2.29). Instead of setting/truncating these
poly-coordinates to zero one could view the LLC action as an ef fective ac-
tion after integrating the C-space action (4.2) with respect to all the poly-
coordinates, except the x*

/ dPx /|g(z)| Lpro(a) =

/ds Az ... fien(s, 2, 272 ) (R — 2A) (4.14)

This possibility warrants further investigation. The plausible relation to ex-
tended gravitational theories based on f(R), f(R,.), ... actions for polynomial-
valued functions, and which obviate the need for dark matter, warrants also
further investigation [16]. For instance, instead of reproducing the LLC action
as an effective action in (4.14) one may generate instead an f(R,T) action with
torsion.

To conclude, one should add that by decomposing the same grade metric
components into their irreducible pieces (3.13, 3.13’) one is introducing higher
spins beyond spin 2. Higher spin theories s = 2,3,....,00 in Anti de Sitter
backgrounds have been extensively studied in the past decades [19]. The higher
spins corresponding to the higher grade metric components gy;n will have an
upper bound determined by the dimension D.

The introduction of matter terms for the gravitational action in C-space is
straightforward. Besides ordinary fermions one has spinor-tensors \Ilgff 12 fin]
fields which contribute to the stress energy tensor. Introducing nonmetricity
furnishes higher curvature extensions of metric affine theories of gravity [9].
An immediate question arises, does the Palatini formalism work also in C-
spaces? Namely, does a variation of the action (4.2) with respect to the C-space
connection (65/6TY,) = 0 yield the same connections as those described by
eq-(3.10) ? This and other remaining questions need to be answered. The
most important is how C-space gravity will improve the quantization program.
Noncommutative Clifford spaces based on noncommuting X poly-coordinates
were considered in [18].

APPENDIX

In the first part of this appendix we will write down the (anti) commuta-
tors involving the flat tangent space Clifford basis generators in D dimensions.
In the second part of this appendix we will verify that eq-(3.16) is an iden-
tity instead of an apparent differential constraint. Similar conclusions follow
for more complicated (anti) commutators involving curved space Clifford basis
generators.

The Clifford geometric product corresponding to the tangent space genera-
tors can be written as
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1 1
YAVE = 5 {va,v8} + 3 [v4,7B] (A1)

The commutators [y4, vg] for pg = odd one has [6]

[ Vosba.bys Y0020 ] = 2yt —
2p'Q' [araz _as...aq] 2]0'(]' [a1...as _as...aq]
2M(p — 2)1(q — 2)! “lbab2 Tbg...bp) A(p — 4)!(q — 4)! “lbrba Tbs...bp)
(A.2)
for pqg = even one has
aiaz...aq | _ (_1)p712p!q! l[a1 _azas...aq)
[’Yblbz...bw Y 1 ] - 1!(p_ 1)!(61— 1)! (b1 pngbg...bp] -
(_1)p—12p!q! lar...as _a4...aq)
Bl(p—3)i(q — 3)1 brbn Toatsl T (43)
The anti-commutators for pg = even are
{ Vorbo.by, Y020} = 27511122.'.'.'17? -
2p'ql l[aras _as...aq] + QP'Q' la1...as _as..aq]
2(p—2)i(g —2)! “broe Toatnl T GG g)i(g— a1 s Tonety
(A.4)
and the anti-commutators for pg = odd are
ajas...a (_1)p—12p[q| [ar _azas...aq]
Doty Y = g = o O et el
(71)p*12p!q! lar...as _a4...aq]
BU(p—3)(g —3)! babs Toutel T (4:5)

Eqs-(A.1-A.5) allows to construct explicitly the Clifford geometric product of
the curved C-space basis generators vy vy = EﬁEJl\gﬁA’YB via the introduction
of the C-space beins.

We turn now to verify that eq-(3.16) is an identity instead of an apparent
differential constraint. Multiplying by v, both sides of (3.16) and taking the
scalar part of the Clifford geometric product yields

LG T, 7+ T 5 — ) =

(0-9") b5, — (0:9"7) 06 — g Ty + ¢ T¥, (4.6)

[e3%

Given the connection defined as

1 1
P, = 5 0" 7 Ol oa)s The = 50%0n(030)  (AT)
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and the decomposition of the bivector-bivector metric components
98y ca = 9Bo Gva — YGyo YBa
g = g g — Gus Gur (A.8)

and moving the derivatives as follows

9"% (0-980) = 0:(9"" 9ps) — (0:9"") gso =
87'(65) - (6Tgy5) 9 = — (87'91/6) 9Bc (A.9)

allow us to verify that eq- (A.6) becomes an identity after recurring to eqs-(A.7-
A.9). For instance, the particular terms in the left hand side of (A.6)

1 o v 1 g 124
=g°" g"" g% (0-980) 9va = 397" 0 g P (0r9p0) =

2
1 op SK vB 1 P SK v 1 iz vp
- ig 504 (67'9 )gﬁ’a = - 5 5,8 6(1 (87'9 ) = - 5 5(1 (aTg ) (AlO)
can be combined with the terms
1 1
597 (0-985) 67 04 = — 5(0:9"") gp0 9”7 O =
- 1(a gy 0% or = — 1(a g™ ot (A.11)
9 T B Yo 2 T o

such that after adding the right hand sides of eqs-(A.10, A.11) gives —(0,g”") %
which is precisely the term appearing in the right hand side of (A.6).
The particular term in the left hand side of (A.6)

—% 97" g"" 9" (Orgva) 950 = —% 970 977 0y (Orgra) = — g" 17, (A12)
becomes precisely the same term in the right hand side of eq-(A.6). Repeating
similar calculations with the remaining terms of eq-(A.6), one can show that
indeed eq-(A.6) is an identity rather than a differential constraint among first
derivatives of the metric. It was crucial to recur to the eqs-(A.7-A.9) in order
to attain this finding.
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