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Abstract

The Dirac matrices (γµ) in Majorana representation are purely imaginary. The
Majorana matrices (iγµ) are 4x4 real matrices in Majorana representation. Several
complete sets of Majorana matrices, solutions of equations related with the Dirac
equation, are shown to exist. They define momentum, orbital angular momentum,
total angular momentum and radial spaces. They are applied in the solution of the
Dirac equations for the free fermion and the Hydrogen atom.
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1 Introduction

In reference [1] written in 1937, Ettore Majorana, states that “it is perfectly, and
most naturally, possible to formulate a theory of elementary neutral particles which do
not have negative (energy) states.”. In his theory, Majorana uses a basis in which the
Dirac Gamma matrices have only imaginary entries.

In reference [2] written in 1967, the Oersted Medal’s winner David Hestenes proposed
an alternative to the Dirac equation for the charged fermions, where the imaginary unit is
replaced by matrix multiplications on the right. In reference [3] written in 2008, Hestenes
proposes an improved version of his original theory where Gravity and Electroweak in-
teractions may be accounted.

The Dirac matrices, γµ, in Majorana representation are purely imaginary. That means
that the Majorana matrices, iγµ, are 4x4 real matrices.

An example of such matrices in a particular basis is:

iγ1 =

[
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

]
iγ2 =

[
0 0 +1 0
0 0 0 +1
+1 0 0 0
0 +1 0 0

]
iγ3 =

[
0 +1 0 0
+1 0 0 0
0 0 0 −1
0 0 −1 0

]

iγ0 =

[
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

]
iγ5 =

[
0 −1 0 0
+1 0 0 0
0 0 0 +1
0 0 −1 0

]
= −γ0γ1γ2γ3

(1.1)

The metric, given by the anti-commutator of the matrices, is the Minkowski space-
time metric:

gµν = −{iγµ, iγν} = γµγν + γνγµ = diag(1,−1,−1,−1), µ, ν = 0, 1, 2, 3 (1.2)

In fact, when working with 4x4 real matrices, we can only find a set of 5 anti-commuting
matrices. This means that with 4x4 real matrices we can describe the Minkowski space-
time, but we can not describe, for instance, a 4D euclidean space.

We define /p = γµpµ. The Dirac equation for the free fermion can be written only with
real matrices:

iγ0(iγµ∂µ −m)Ψ(x) = iγ0(i/∂ −m)Ψ(x) = 0 (1.3)

And we can express Lorentz transforms only with real matrices.
The spin operators are defined as:

σk =γkγ5 k = 1, 2, 3 (1.4)

They verify:

[σi, σj] =iγ0εijk σ
k (1.5)

Where εijk is the Levi-Civita symbol. Note that iγ0 commutes with σk and squares to −1,
so it can be thought of as the imaginary unit in the spin algebra.

We will use the following conventions:
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If p is a Lorentz vector:

(γµpµ)(γµpµ) = (/p)(/p) = pµpµ = p · p = p2 = (p0)2 − (p1)2 − (p2)2 − (p3)2 (1.6)

Given a 3-vector ~p and a real number m > 0, we define:

~pi = pi, i = 1, 2, 3 (1.7)

~/p = ~γ · ~p (1.8)

Ep =
√
~p2 +m2 (1.9)

/p = γ0Ep − ~γ · ~p (1.10)

Note that (/p)2 = m2. A Majorana spinor is a real 4D vector on which the Dirac matrices
act. A Dirac spinor is a complex 4D vector, on which the Dirac matrices act.

The references I most used were [4] and [5].

2 Lorentz transformations

A Lorentz transformation can be represented by a tensor a µ
ρ which leaves the metric

invariant:

gρσa µ
ρ a

ν
σ = gµν (2.1)

Let S be a Majorana matrix that verifies:

γρa µ
ρ = S−1γµS (2.2)

Then it verifies γ0S−1 = S†γ0 and γ5S = Sγ5. In the particular case of a Lorentz boost,
the S matrix is given by:

SL =
/pγ0 +m√
Ep +m

√
2m

(2.3)

S−1L = −α0S†Lα
0 =

γ0/p+m√
Ep +m

√
2m

(2.4)

where ~p
m

= ~v√
1−~v2 ,~v is the boost velocity. In the particular case of a rotation, the S matrix

is given by:

SR = exp(iγ5γ0γiϕi), i = 1, 2, 3 (2.5)

S−1R = S†R = −γ0S†Rγ
0 (2.6)

In general, the S matrix is the product of a Lorentz boost and a rotation.

3 Momentum space

The equation which defines the momentum space is:

iγ0(i~/∂ −m)M(~x) = M(~x)iγ0Ep (3.1)
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One solution is M(~x) = O†(~p, ~x):

O†(~p, ~x) =
/pγ0 +m√

Ep +m
√

2Ep
eiγ

0~p·~x (3.2)

O is the hermitic conjugate of O†, given by:

O(~p, ~x) = e−iγ
0~p·~x /pγ0 +m√

Ep +m
√

2Ep
(3.3)

Where p0 = Ep. Since the operator iγ0(i~/∂ −m) is anti-hermitic, we have:∫
d3~xO(~q, ~x)O†(~p, ~x)iγ0Ep =

∫
d3~xiγ0EqO(~q, ~x)O†(~p, ~x) (3.4)

Noting that Ep + Eq > 0, this implies that:∫
d3~xe−iγ

0~q·~x
~/qγ0(Ep +m) +~/pγ0(Eq +m)√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

eiγ
0~p·~x = 0 (3.5)

Therefore, we get:∫
d3~xO(~q, ~x)O†(~p, ~x) =

∫
d3~xe−iγ

0~q·~x (Ep +m)(Eq +m) +~/qγ0~/pγ0√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

eiγ
0~p·~x (3.6)

=

∫
d3~xe−iγ

0(~q−~p)·~x (Ep +m)(Eq +m) +~/qγ0~/pγ0√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

(3.7)

= (2π)3δ3(~q − ~p)(Ep +m)(Ep +m) + ~p2

(Ep +m)2Ep
(3.8)

= (2π)3δ3(~q − ~p)(Ep +m)(Ep +m) + (Ep +m)(Ep −m)

(Ep +m)2Ep
(3.9)

= (2π)3δ3(~q − ~p) (3.10)

To check that the momentum space is complete, we do:∫
d3~p

(2π)3
O†(~p, ~y)O(~p, ~x) =

∫
d3~p

(2π)3
/pγ0 +m√

Ep +m
√

2Ep
eiγ

0~p·(~y−~x) /pγ0 +m√
Ep +m

√
2Ep

(3.11)

=

∫
d3~p

(2π)3
ei

/p

m
~p·(~y−~x)/pγ

0

Ep
(3.12)

=

∫
d3~p

(2π)3
cos(~p · (~y − ~x))+ (3.13)

+

∫
d3~p

(2π)3
(−cos(~p · (~y − ~x))

~/pγ0

Ep
+ sin(~p · (~y − ~x))

miγ0

Ep
(3.14)

= δ3(~y − ~x) (3.15)

Note that both cos(~p · (~y − ~x))
~/pα0

Ep
and sin(~p · (~y − ~x))miγ

0

Ep
are odd in ~p and therefore do

not contribute to the integral.
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This means that given an arbitrary matrix in coordinate space, M(~x), it can be given
in terms of other matrix in momentum space M(~p):

M(~x) =

∫
d3~p

(2π)3
O†(~p, ~x)M(~p) (3.16)

Where M(~p) is given by:

M(~p) =

∫
d3~xO(~p, ~x)M(~x) (3.17)

This defines a transform, similar to the Fourier transform, which we will call Fourier-
Majorana transform.

4 Energy-momentum space

Now we can extend our transform to define an energy-momentum space. Given a 4x4
matrix M(x), the Fourier-Majorana transform (in space-time) is defined as:

M(p) =

∫
d4xO(p, x)M(x) (4.1)

Where O is the 4x4 matrix given by:

O(p, x) = eiγ
0p0x0O(~p, ~x) = eiγ

0p·x /pγ0 +m√
Ep +m

√
2Ep

(4.2)

Note that Ep and /pγ0 don’t depend on p0, but p · x does. The inverse Fourier-Majorana
transform is given by:

M(x) =

∫
d4p

(2π)4
O†(p, x)M(p) (4.3)

Where O† is the hermitic conjugate of O,given by:

O†(p, x) = O†(~p, ~x)e−iγ
0p0·x0 =

/pγ0 +m√
Ep +m

√
2Ep

e−iγ
0p·x (4.4)

To prove it:∫
d4p

(2π)4
O†(p, y)O(p, x) =

∫
d3~p

(2π)3
O†(~p, ~y)(

∫
dp0

2π
e−iγ

0p0(y0−x0))O(~p, ~x) (4.5)

= δ(y0 − x0)
∫

d3~p

(2π)3
O†(~p, ~y)O(~p, ~x) (4.6)

= δ4(y − x) (4.7)∫
d4xO(q, x)O†(p, x) =

∫
dx0eiγ

0q0x0(

∫
d3~xO(~q, ~x)O†(~p, ~x))e−iγ

0p0x0 (4.8)

= (2π)3δ3(~q − ~p)
∫
dx0eiγ

0(q0−p0)x0 (4.9)

= (2π)4δ4(q − p) (4.10)
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In what follows we will call just Fourier-Majorana transform to both Fourier-Majorana
transforms in space and space-time. It will be clear from the context to which we are
referring to.

5 Dirac equation for the free fermion

The Dirac equation for the free fermion is:

iγ0(i/∂ −m)Ψ(x) = 0 (5.1)

Where Ψ is a spinor, a vector of the 4D space, on which the Dirac matrices act. Note
that the equation contains only real matrices.

We can make a Fourier-Majorana transform and go to momentum space:

iγ0(i/∂ −m)Ψ(x) = (−∂0 + iγ0i~/∂ − iγ0m)

∫
d3~p

(2π)3
O†(~p, ~x)Ψ(~p, x0) (5.2)

=

∫
d3~p

(2π)3
(−∂0 − iγ0~/p

/p

m
− iγ0m)O†(~p, ~x)Ψ(~p, x0) (5.3)

=

∫
d3~p

(2π)3
(−∂0 + i~/p

Ep
m
− iγ0

E2
p

m
)O†(~p, ~x)Ψ(~p, x0) (5.4)

=

∫
d3~p

(2π)3
(−∂0 − i

/mp

m
Ep)O

†(~p, ~x)Ψ(~p, x0) (5.5)

=

∫
d3~p

(2π)3
O†(~p, ~x)(−∂0 − iγ0Ep)Ψ(~p, x0) (5.6)

The Dirac equation in momentum space is then:

(−∂0 − iγ0Ep)Ψ(~p, x0) = 0 (5.7)

The solution is:

Ψ(~p, x0) = e−iγ
0Epx0ψ(~p) (5.8)

Making an inverse Fourier-Majorana transform we get:

Ψ(x) =

∫
d3~p

(2π)3
/pγ0 +m√

Ep +m
√

2Ep
e−iγ

0p·xψ(~p) (5.9)

Where p0 = Ep and ψ(~p) is an arbitrary spinor. In Majorana representation, if ψ(~p) is a
real spinor, then the solution Ψ(x) is real.

6 Spin

A spinor verifying the Majorana condition has 4 degrees of freedom. There are 2
degrees of freedom that are consumed by the phase of the oscillation of the wave. The 2
degrees of freedom that left correspond to the spin up/down property of the spinor.
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The spin vector s verifies sµsµ = −1 and s0 = 0. The spin operator /sγ5 commutes
with iγ0 and squares to 1. Therefore, it has eigenvalues 1 (up) and −1 (down). The
eigen-vectors of /sγ5, in momentum space, can be defined as:

ψ(~p, s) =
1 + /sγ5

2
ψ(~p, s) (6.1)

ψ(~p,−s) =
1− /sγ5

2
ψ(~p,−s) (6.2)

And the Majorana spinor in momentum space with a defined spin and that satisfies the
Dirac equation is:

Ψ(x0, ~p, s) = e−iγ
0Epx0ψ(~p, s) (6.3)

The spin operators are defined as:

σk =γkγ5 k = 1, 2, 3 (6.4)

They verify:

[σi, σj] =iγ0εijk σ
k (6.5)

Where εijk is the Levi-Civita symbol. Note that iγ0 commutes with σk and squares to −1,
so it can be thought of as the imaginary unit in the spin algebra.

7 Orbital angular momentum space

A good reference for this part is [6]. We define the angular momentum operator ~L as:

~Lk = −iγ0εijk xi∂j (7.1)

Where εijk is the Levi-Civita symbol. Note that the usual definition for the angular
momentum has i instead of iγ0.

One solution to the equations (m stands for the angular momentum, not for the mass):

(L3 −m)Y (~x) = 0 (7.2)

(~L2 − l(l + 1))Y (~x) = 0 (7.3)

Is the Majorana matrix:

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
P

(m)
l (cos θ)eiγ

0mϕ (7.4)

P
(m)
l (ξ) =

(−1)m

2ll!
(1− ξ2)m/2 dl+m

dξl+m
(ξ2 − 1)l (7.5)

Ylm are the spherical harmonics and Pm
l are the associated Legendre functions of the first

kind. θ and ϕ are the angles of ~x in spherical coordinates, r is the radius. Note that the
usual definition for the spherical harmonics has the i instead of iγ0.
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The orbital momentum space defined by (l,m) is complete, that is:∫
d(cosθ)dϕY †l′m′(θ, ϕ)Y (θ, ϕ)lm = δl′lδm′m (7.6)∑

lm

Y †lm(θ′, ϕ)Y (θ′, ϕ)lm = δ(cosθ′ − cosθ)δ(ϕ′ − ϕ) (7.7)

We don’t need to show this because the definition of the spherical harmonics is similar
to the standard definition, with iγ0 in place of i.

8 Total angular momentum space

The operator ~σ · ~L is:

~σ · ~L = −iγ0εijk σ
kxi∂j (8.1)

= −[σi, σj]xi∂j (8.2)

=
γiγj − γjγi

2
xi∂j (8.3)

i, j ∈ 1, 2, 3 (8.4)

It verifies:

i/∂ = iγr(∂r −
1

r
~σ · ~L) (8.5)

~σ · ~L = γθγr∂θ + γϕγr
1

sinθ
∂ϕ (8.6)

θ and ϕ are the angles of ~x in spherical coordinates, r is the radius.
We define the spherical matrices, in a basis independent form, as:

Ωlm(θ, ϕ) =
(
−
√
l −m
2l + 1

Yl,m(θ, ϕ) +

√
l +m+ 1

2l + 1
Yl,m+1(θ, ϕ)σ1

)1 + σ3

2
(8.7)

+
(√ l +m

2l − 1
Yl−1,m(θ, ϕ)σ1 +

√
l −m− 1

2l − 1
Yl−1,m+1(θ, ϕ)

)1− σ3

2
(8.8)

with

l ∈ {1, 2, . . .} (8.9)

m ∈ {−l,−l + 1, . . . , l − 1} (8.10)

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
P

(m)
l (cos θ)eα

3mϕ (8.11)

P
(m)
l (ξ) =

(−1)m

2ll!
(1− ξ2)m/2 dl+m

dξl+m
(ξ2 − 1)l (8.12)

Where Ylm are called the spherical harmonics and Pm
l are the associated Legendre func-

tions of the first kind.
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The spherical matrices verify:

(~L3 +
σ3

2
) Ωlm = (m+

1

2
)Ωlm (8.13)

~σ · ~L Ωlm = −Ωlm(lσ3 + 1) (8.14)

σr Ωlm = −Ωlmσ
1 (8.15)

~σ · ~Liγr Ωlm = iγrΩlm(lσ3 − 1) (8.16)

Now, we note that:∫
d(cosθ)dϕ

1 + ε′σ3

2
Ω†(θ, ϕ)l′m′Ω(θ, ϕ)lm

1 + εσ3

2
= 0 (8.17)

For l′,m′, ε′ 6= l,m, ε and ε′, ε = ±1, because the matrices correspond to different eigen-
values of hermitic operators.

Therefore, we have orthogonality:∫
d(cosθ)dϕ Ω†(θ, ϕ)l′m′Ω(θ, ϕ)lm = (8.18)

δl′lδm′m

∑
ε=±1

∫
d(cosθ)dϕ

1 + εσ3

2
Ω†(θ, ϕ)lmΩ(θ, ϕ)lm

1 + εσ3

2
(8.19)

= δl′lδm′m (8.20)

The space is complete:∑
lm

Ω(θ′, ϕ′)lmΩ†(θ, ϕ)lm =
∑
lmε

Ω(θ′, ϕ′)lm
1 + εσ3

2
Ω†(θ, ϕ)lm (8.21)

= δ(cosθ′ − cosθ)δ(ϕ′ − ϕ) (8.22)

This can be shown in the same way it is shown for the standard spin spherical harmonics,
with iγ0 playing the role of the imaginary unit. For instance, one can note that for each
set of quantum numbers l.m, ε, there is only one eigen-vector.

9 Radial Space

We define the matrix:

Λnlm =
(fnl(r)

r
+
gnl(r)

r
iγr
)

Ωlm
1 + σ3

2
(9.1)

+
(g′nl(r)

r
+
f ′nl(r)

r
iγr
)

Ωlm
1− σ3

2
(9.2)

Where f, g, f ′, g′ are such that the equation hold:

iγ0(i~/∂ −m)Λnlm = EnlΛnlmiγ
0 (9.3)
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The last equation can be written as:(
− Enl −Hl(r)

) [
f ′

g′

]
= 0 (9.4)

(
Enl −Hl(r)

) [
f
g

]
= 0 (9.5)

Where the operator H is given by:

H(r)l = m
[
+1 0
0 −1

]
+ ∂r

[
0 −1
+1 0

]
+
l

r

[
0 +1
+1 0

]
(9.6)

We will not solve these equations here, the solution can be seen in [7]. We just need to
know that the solutions exist for discrete n and that all solutions verify: f(r = 0) = 0
and f(r → +∞) = 0 where f can be replaced by f, g, f ′, g′. Therefore, H is hermitic and

since the vectors
[
f ′

g′

]
and

[
f
g

]
have distinct eigenvalues, they are orthogonal.

We also have:

iγrΩlm = −iγ5γrγ5Ωlm = −iγ5σr Ωlm = iγ5Ωlmσ
1 = (−1)mΩl,−m−1(θ, ϕ)iγ5 (9.7)

Now, we can show that:∫
r2drd(cosθ)dϕ Λ†(r, θ, ϕ)n′l′m′Λ(r, θ, ϕ)nlm = (9.8)

δn′nδl′lδm′m (9.9)

The space is complete:∑
nlm

Λ(r′, θ′, ϕ′)nlmΛ†(r, θ, ϕ)nlm =
δ(r − r′)

r2
δ(cosθ′ − cosθ)δ(ϕ′ − ϕ) (9.10)

10 Hydrogen Atom

The Dirac equation for the Hydrogen atom is:

iγ0(i/∂ − e /A−m)Ψ = 0 (10.1)

With Ai = 0, A0 = − e
r
. The term with the potential is imaginary, therefore, the equation

is complex.
We define the matrix:

Λnlmε =
(fnl(r)

r
+
gnl(r)

r
iγr
)

Ωlm
1 + εσ3

2
(10.2)

If f and g are such that the following equations hold:

(Enl +
e2

r
−m)

fnl(r)

r
+ (∂r +

1− εl
r

)
gnl(r)

r
= 0 (10.3)

(−Enl −
e2

r
−m)

gnl(r)

r
+ (∂r +

1 + εl

r
)
fnl(r)

r
= 0 (10.4)
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The last equations are the same equations as for the Dirac fermion in the hydrogen
atom. That is, one can obtain the same solution for the Hydrogen atom, absent from the
imaginary unit, using Majorana fermions. We will not solve these equations here, the
solution can be seen in [7].

Then Λ verifies:

iγ0(i~/∂ −m)Λnlmε
1 + γ0

2
= i(Enl +

e2

r
)Λnlmε

1 + γ0

2
(10.5)

The solution to Dirac equation is:

Ψ = Λnlmεe
−iγ0Enlx

0 1 + γ0

2
ψ (10.6)

Where ψ is a fixed spinor.
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