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Abstract

The Majorana matrices are the Dirac Gamma matrices times the imaginary unit.
They are 4x4 real matrices in the Majorana representation. The Dirac equation for
the free fermion is written only with Majorana matrices.

We show that the Majorana spinor is an irreducible representation of the re-
stricted Lorentz group. The Fourier-Majorana and Hankel-Majorana transforms
are defined and related to the linear and angular momentums of free fermion fields.
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1 Introduction

The Majorana matrices, iγµ, are the Dirac Gamma matrices times the imaginary unit.
In the Majorana bases, the Majorana matrices are 4× 4 real matrices and the Majorana
spinors are 4 dimensional real vectors.

The Dirac equation for the free fermion is written only with Majorana matrices:
(iγµ∂µ −m)Ψ(x) = 0. The solution can be a Majorana spinor. Due to this fact, Ettore
Majorana noted in 1937 that “it is perfectly, and most naturally, possible to formulate
a theory of elementary neutral particles which do not have negative (energy) states” [1].
The Majorana fermions, the hypothetical particles represented by Majorana spinors, are
their own anti-particles and, therefore, neutral. There are applications of Majorana
fermions in neutrino physics, dark matter searches, the fractional quantum Hall effect
and superconductivity [2].

The Dirac spinors are 4 dimensional complex vectors. They represent particles dif-
ferent from their anti-particles. In 1967, David Hestenes tried to found a geometric role
for the imaginary unit in Dirac spinors: “As the increasing theoretical importance of an-
tiparticle conjugation tends to show, the appearance of this (−1)1/2 is no triviality. We
submit that the (−1)1/2 in Dirac’s equation can be interpreted geometrically and (...) is
inseparable from spin” [3]. In 2008 he was still working on his theory [4].

Weyl spinors are 2 dimensional complex vectors and are irreducible representations of
the restricted Lorentz group. They represent massless particles in one helicity state that
are different from their anti-particles. The Electroweak theory is based on Weyl spinors,
used as building blocks of any kind of spinor [5]. In this construction, the imaginary unit
is implicitly considered inseparable from spin, although its interpretation is not usually
discussed.

The generalization of the Dirac Gamma matrices algebra to other dimensions and
metrics is called Clifford algebra. In the context of Clifford Algebras, there are people
working on the geometric square roots of −1 [6] and on the generalizations of the Fourier
transform [7], with applications to image processing.

Our goal is to show that the kinematic properties of a free fermion can be described
by the Majorana spinors verifying Dirac equation. In chapter 2 we define the Majorana
Matrices and spinors. In chapter 3 we show that the Majorana spinor is an irreducible
representation of the restricted Lorentz group. In 4 and 5 we define the Fourier-Majorana
and Hankel-Majorana transforms of a Majorana spinor. In 6, using the solutions to the
Dirac equation, we show that the Majorana transforms are related to the linear and
angular momentums of a free fermion. In 7, we extend the Majorana transforms to
include the energy.

2 Majorana Matrices and Spinors

The Majorana matrices, represented by the symbol iγµ, µ = 0, 1, 2, 3, are the Dirac
Gamma matrices, γµ, times the imaginary unit. The notation maintains explicit the
relation between the Majorana and Dirac Gamma matrices.

Definition 2.1. The Majorana matrices, iγµ, are 4 × 4 unitary matrices with anti-
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commutator {iγµ, iγν}:

(iγµ)(iγν) + (iγν)(iγµ) = −2gµν , µ, ν = 0, 1, 2, 3 (2.1)

Where g = diag(1,−1,−1,−1) is the Minkowski metric. The pseudo-scalar is iγ5 ≡
−γ0γ1γ2γ3.

The product of 2 Dirac Gamma matrices is minus the product of 2 corresponding
Majorana matrices: γµγν = −iγµiγν .

Definition 2.2. ΓA ≡ {iγ0, iγ5, γ0γ5, iγ5γ0γj}, ΓS ≡ {1, γ0γj, iγj, γ5γj}, Γ ≡ ΓS ∪ ΓA,
where j = 1, 2, 3.

All matrices in Γ either commute or anti-commute with each other. Since the Majo-
rana matrices are unitary, the matrices in ΓA are skew-hermitian while in ΓS are hermi-
tian.

Definition 2.3. The set of matrices that anti-commute with a matrix A is Ω(A) = {B ∈
Γ : AB = −BA}.

Proposition 2.4. Ω(A) ∩ ΓS is not empty for A ∈ Γ \ {1}.

Corollary. The matrices A ∈ Γ \ {1} have null trace: tr(A) = tr(BAB) = −tr(A), for
B ∈ Ω(A) ∩ ΓS.

Proposition 2.5. Γ is a basis for the space of 4× 4 complex matrices.

Proof. There are only 16 linearly independent 4× 4 complex matrices.
Let B ≡

∑16
i=1 aiAi, where ai are coefficients and Ai ∈ Γ are different elements of the

set for each i. We have tr(A†jB) = 4aj, for j = 1, ..., 16. Then, B = 0 implies that all the
coefficients are null and so all the elements in Γ are linearly independent.

Proposition 2.6. For all commuting matrices A,B ∈ Γ\{1}, AB = BA: all matrices in
Γ \ {1, A,B,AB} anti-commute with A or B. That is, Ω(A)∪Ω(B) = Γ \ {1, A,B,AB}.

Definition 2.7. Γ2 = {±1, ±iγµ, ±γ0γj, ±iγ5γ0γj, ±γµγ5, ±iγ5}, with µ = 0, 1, 2, 3
and j = 1, 2, 3, is the group of 32 Majorana matrices products.

Definition 2.8. A 4× 4 unitary representation of the Majorana matrices, M , is a map
from the group Γ2 to the space of 4× 4 unitary matrices, verifying:

{M(γµ),M(γν)} = −2gµν , µ, ν = 0, 1, 2, 3 (2.2)

M(k1)M(k2) = M(k1k2), k1, k2 ∈ Γ2 (2.3)

Proposition 2.9. The 4×4 unitary representations of the Majorana matrices are related
by unitary similarity transformations.

Proof. Let A and B be 4 × 4 unitary representations of the Majorana matrices. Let a
and b be 4 dimensional complex vectors, verifying:

a =
1 + A(γ1γ0)

2

1 + A(γ2γ5)

2
a, a†a = 1 (2.4)

b =
1 +B(γ1γ0)

2

1 +B(γ2γ5)

2
b, b†b = 1 (2.5)

3



We define the matrix U as:

U =
1

8

∑
g∈Γ2

B(g−1)b a†A(g) (2.6)

For all h ∈ Γ, it verifies UA(h) = B(h)U :

UA(h) =
1

8

∑
g∈Γ2

B(g−1)b a†A(gh) (2.7)

=
1

8

∑
l∈Γ2

B(hl−1)b a†A(l) = B(h)U (2.8)

Consequently, U †UA(h) = A(h)U †U . Since Γ is a basis, then U †U must be equal to the
identity matrix times a coefficient. To check what the coefficient is:

tr(U †U) =
1

64

∑
l,g∈Γ2

b†B(gl−1)b a†A(lg−1)a (2.9)

=
1

2

∑
k∈Γ2

b†B(k−1)b a†A(k)a (2.10)

From proposition 2.6, we have that a†A(k)a = b†B(k−1)b = 0, for all k 6= ±1,±γ1γ0,±γ2γ5,±iγ3.
For the eight remaining k, a†A(k)a = b†B(k−1)b = ±1. Then, tr(U †U) = 4 which implies
that U is unitary.

The Majorana matrices are themselves a 4×4 unitary representation of the Majorana
matrices. Therefore, choosing a 4× 4 unitary representation of the Majorana matrices is
the same as choosing an orthonormal basis.

In the Majorana bases, the Majorana matrices are 4× 4 real orthogonal matrices. An
example of the Majorana matrices in a particular Majorana basis is:

iγ1 =

[
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

]
iγ2 =

[
0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0

]
iγ3 =

[
0 +1 0 0

+1 0 0 0
0 0 0 −1
0 0 −1 0

]

iγ0 =

[
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

]
iγ5 =

[
0 −1 0 0

+1 0 0 0
0 0 0 +1
0 0 −1 0

]
= −γ0γ1γ2γ3

(2.11)

Definition 2.10. The Dirac spinor is a 4 dimensional complex vector.

The space of Dirac spinors is a 4 dimensional complex vector space.

Definition 2.11. Let U be an unitary matrix such that UiγµU † is real, for µ = 0, 1, 2, 3.
The Majorana spinor u is a Dirac spinor verifying the Majorana condition:

U †U∗u∗ = u (2.12)

Where ∗ denotes complex conjugation.
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The space of Majorana spinors is a 4 dimensional real vector space. Note that a linear
combinations of Majorana spinors with complex coefficients do not verify the Majorana
condition. The Majorana spinor, in the Majorana bases, is a 4 dimensional real vector.

The linear transformations from and to Majorana spinors, are generated by the linear
combinations with real coefficients of the 16 matrices in the basis Γ.

If p, q are Lorentz vectors, we define /p = γµpµ and p · q = pµqν . Given a mass m ≥ 0,
we define:

~pi = pi, i = 1, 2, 3 (2.13)

~/p = ~γ · ~p (2.14)

Ep =
√
~p2 +m2 (2.15)

/p = γ0p0 − ~γ · ~p (2.16)

[/p] = γ0Ep − ~γ · ~p (2.17)

Note that /p is not necessarily on-shell, while [/p] is on-shell, that is ([/p])2 = m2. Both Ep
and [/p] do not depend on p0.

3 Majorana representation of the Lorentz group

3.1 Lorentz group

We define some symbols for the sets we will use:

Definition 3.1. M(n,R) is the set of n× n real matrices.
GL(n,R) is the group of n× n real invertible matrices.
O(n) is the group of n× n real orthogonal matrices.
SO(n) is the group of n× n real orthogonal matrices with determinant 1.
SPD(n) is the set of n× n real symmetric positive definite matrices.

Definition 3.2. The Lorentz group, O(1, 3) = {Λ ∈ M(4,R) : ΛTgΛ = g}, is the set
of matrices that leave the metric, g = diag(1,−1,−1,−1), invariant. Their elements are
the Lorentz matrices.

Proposition 3.3. O(1, 3) is a group, with the matrix product as the group operation.

Proof. 1) The matrix product is associative.
2) The identity matrix 1 ∈ O(1, 3): 1Tg1 = g.
3) From the equation defining O(1, 3), we get that det2(Λ) = 1 and so Λ is invertible.

Multiplying the equation by (Λ−1)T on the left and Λ−1 on the right, we get:

g = (Λ−1)TgΛ−1 (3.1)

The inverse matrix Λ−1 ∈ O(1, 3). 4) For Λ1,Λ2 ∈ O(1, 3), the product Λ1Λ2 ∈ O(1, 3):

ΛT
2 ΛT

1 gΛ1Λ2 = ΛT
2 gΛ2 = g (3.2)
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Note. If Λ ∈ O(1, 3), also the transpose matrix ΛT ∈ O(1, 3). Multiplying eq. (3.1) by
ΛT on the left and Λ on the right, we get ΛgΛT = g.

Definition 3.4. The discrete Lorentz group is the subgroup ∆ = {1, g,−g,−1}, where
1 is the identity matrix and g the metric.

The parity and time-reversal transformation matrices are g and −g.

Definition 3.5. The restricted Lorentz group is the subset

SO+(1, 3) = {Λ ∈ O(1, 3) : det(Λ) = 1, Λ00 ≥ 1} (3.3)

It is also called the special, or proper (det(Λ) = 1) orthochronous (Λ00 ≥ 1), Lorentz
group.

Proposition 3.6. The restricted Lorentz group SO+(1, 3) is a group.

Proof. 1) SO+(1, 3) is a subset of a group. It includes the identity matrix, 1 ∈ SO+(1, 3).

2) If Λ ∈ O(1, 3), let vΛ =
√∑3

i=1 Λ2
0i. We have:

(ΛgΛT )00 = Λ2
00 − v2

Λ = 1 =⇒ Λ2
00 ≥ 1, Λ2

00 ≥ v2
Λ (3.4)

If Λ ∈ SO+(1, 3), then Λ00 > vΛ.
Given Λ,Λ′ ∈ SO+(1, 3), the product ΛΛ

′−1 ∈ SO+(1, 3):

det(Λ1Λ−1
2 ) =

det(Λ1)

det(Λ2)
= 1 (3.5)

(ΛΛ
′−1)00 = (ΛgΛ

′Tg)00 = Λ00Λ′00 −
3∑
i=1

Λ0iΛ
′
0i > Λ00Λ′00 − vΛvΛ′ > 0 (3.6)

Since (ΛΛ′)2
00 ≥ 1, then (ΛΛ′)00 > 0 =⇒ (ΛΛ′)00 ≥ 1.

We will now see how a Lorentz matrix can be factorized in matrices of the restricted
and discrete Lorentz groups.

Proposition 3.7. For all Lorentz matrices Λ ∈ O(1, 3), there is an unique discrete
Lorentz group matrix d ∈ ∆ and an unique restricted orthogonal Lorentz matrix Λ′ ∈
SO+(1, 3), such that:

Λ = dΛ′ (3.7)

Proof. All Λ ∈ O(1, 3) verify det(Λ) = ±1 and aΛ00 ≥ 1, with a = ±1. In each case there
is an unique d ∈ ∆, such that Λ′ = dΛ ∈ SO+(1, 3):

+a = +det(Λ) = 1 =⇒ d = +1, Λ′ = +1Λ (3.8)

+a = −det(Λ) = 1 =⇒ d = +g, Λ′ = +gΛ (3.9)

−a = +det(Λ) = 1 =⇒ d = −1, Λ′ = −1Λ (3.10)

−a = −det(Λ) = 1 =⇒ d = −g, Λ′ = −gΛ (3.11)
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Remark 3.8. Every real invertible matrix can be uniquely factored as the product of an
orthogonal matrix and a symmetric positive definite matrix.

Lemma 3.9. For all Lorentz matrices Λ ∈ O(1, 3), there is an unique orthogonal matrix
Θ ∈ O(4) and an unique symmetric positive definite matrix Π ∈ SPD(4), such that
Λ = ΘΠ. These are Lorentz matrices Θ,Π ∈ O(3, 1).

Proof. From remark 3.8, for all Λ ∈ O(3, 1), there are unique Θ ∈ O(4) and unique
Π ∈ SPD(4) such that Λ = ΘΠ. This implies:

ΘΠgΠTΘT = ΘΠgΠΘT = g (3.12)

ΠTΘTgΘΠ = ΠΘTgΘΠ = g (3.13)

We multiply the first equation by ΠΘT on the left and by ΘΠ on the right. Using the
second equation, we get:

Π2gΠ2 = g (3.14)

For all symmetric positive definite matrix Π, there is a unique symmetric matrix B such
that Π = eB. From the above equation:

e2Bge2B = e2Beg2Bgg = g (3.15)

Since B is unique, we get B = −gBg, eBgeB = g and:

ΘΠgΠTΘT = ΘgΘT = g (3.16)

So, Θ,Π ∈ O(3, 1).

Now we will study the symmetric positive definite matrix Π.

Lemma 3.10. All symmetric positive definite Lorentz matrices Π ∈ SPD(4) ∩ O(1, 3)
are restricted Lorentz matrices Π ∈ SO+(1, 3).

Proof. Π ∈ SPD(4) verifies det(Π) > 0 and uTΠu > 0 for all non-zero real vectors u.
Choosing u0 = 1 and ui = 0, i = 1, 2, 3, we obtain Π00 > 0.

Π ∈ O(1, 3) verifies det2(Π) = 1 and Π2
00 ≥ 1.

Π ∈ SPD(4) ∩O(1, 3) verifies det(Π) = 1 and Π00 ≥ 1.

The symmetric positive definite Lorentz matrices represent the Lorentz boost trans-
formations.

It follows the study of the orthogonal restricted Lorentz matrices.

Lemma 3.11. The set of orthogonal restricted Lorentz matrices O(4) ∩ SO+(1, 3) is a
group. For all Θ ∈ O(4)∩SO+(1, 3), there is an unique 3× 3, determinant 1, orthogonal
matrix θ ∈ SO(3) such that:

Θ =

[
1 0 0 0
0
0 θ
0

]
(3.17)
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Proof. The intersection of 2 subgroups is a subgroup. O(4) and SO+(1, 3) are subgroups
of the group of real invertible 4×4 matrices. Let the orthogonal restricted Lorentz matrix
Θ be given by:

Θ =

[
a vT

u θ

]
(3.18)

Where a is a real number, u, v are real 3 dimensional column vectors and φ is a 3× 3 real
matrix.

From the Lorentz group condition:

ΘTgΘg = 1 =⇒ a2 − uTu = 1 (3.19)

ΘgΘTg = 1 =⇒ a2 − vTv = 1 (3.20)

From the orthogonality:

ΘTΘ = 1 =⇒ a2 + uTu = 1 (3.21)

ΘΘT = 1 =⇒ a2 + vTv = 1 (3.22)

We get v = u = 0 and θT θ = 1. From the proper and orthochronous conditions, we get
a = 1 and det(θ) = 1.

The orthogonal restricted Lorentz matrices represent the spacial rotations.

Theorem 3.12. All Λ ∈ O(1, 3) can be factored uniquely in the product of a discrete
Lorentz group matrix d ∈ ∆, a spacial rotation Θ′ ∈ O(4) ∩ SO+(1, 3) and a Lorentz
boost Π ∈ SPD(4) ∩ SO+(1, 3).

In the particular case of a restricted Lorentz matrix Λ ∈ SO+(1, 3), d = 1.

Proof. From propositions 3.9 and 3.10, there are unique Θ ∈ O(4) ∩ O(1, 3) and Π ∈
SPD(4) ∩ SO+(1, 3), such that Λ = ΘΠ.

From proposition 3.7, there are unique d ∈ ∆ and Θ′ ∈ O(4) ∩ SO+(1, 3), such that
Θ = dΘ′.

Since Θ′,Π ∈ SO+(1, 3), the product Θ′Π ∈ SO+(1, 3).
In the particular case Λ ∈ SO+(1, 3), since the factors are unique, d = 1.
From proposition 3.7, there are unique d′ ∈ ∆ and Λ′ ∈ SO+(1, 3), such that Λ = d′Λ′.

From the uniqueness of the factors, we have d′ = d and Λ′ = Θ′Π.
In the particular case Λ ∈ SO+(1, 3), these are the unique factors d′ = 1 ∈ ∆ and

Λ′ = Λ ∈ SO+(1, 3) that satisfy Λ = d′Λ′.

3.2 Restricted Lorentz group

Definition 3.13. The boost generators are the matrices:

K1 =

[
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
, K2 =

[
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

]
, K3 =

[
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

]
(3.23)

The rotation generators are the matrices:

J1 =

[
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

]
, J2 =

[
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

]
, J3 =

[
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
(3.24)
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They verify the Lie algebra:

[Ji, Jj] =− εijkJk (3.25)

[Ji, Kj] =− εijkKk (3.26)

[Ki, Kj] =εijkJk (3.27)

Where i, j, k = 1, 2, 3 and ε is the Levi-Civita symbol.

Remark 3.14. Let A and B be square matrices. The Baker-Campbell-Hausdorff formula
[8], expresses the product eAeB as an exponential of a series of nested commutators of A
and B.

Lemma 3.15. The restricted Lorentz group is the set of exponentials of the linear com-
binations of generators. That is SO+(1, 3) = E, where:

E = {eθiJi+biKi , θi, bi ∈ R, i = 1, 2, 3} (3.28)

Proof. Using proposition 3.10, any Lorentz boost Π ∈ SPD(4) ∩ SO+(1, 3) can be given
by Θ = eb

iKi , for unique bi ∈ R, i = 1, 2, 3.
For all orthogonal matrix with determinant 1, θ, there is a skew-symmetric matrix A

such that θ = eA. From proposition 3.11, any spacial rotation Θ ∈ O(4) ∩ SO+(1, 3) can
be given by Θ = eθ

iJi , for some θi ∈ R, i = 1, 2, 3.
From theorem 3.12, for all Λ ∈ SO+(3), there are θi, bi ∈ R such that:

Λ = eθ
iJieb

iKi (3.29)

From the Baker-Campbell-Hausdorff formula in remark 3.14 and the fact that a series
of nested commutators of the generators can be expressed by a linear combination of
generators, we get eθ

iJieb
iKi = eφ

iJi+c
iKi for some φi, ci ∈ R, and so Λ ∈ E.

For all θi, bi ∈ R, we have:

Λn ≡ (e
θiJi
n e

biKi
n )n (3.30)

eθ
iJi+b

iKi = lim
n→∞

Λn (3.31)

Λn is the n times product of restricted Lorentz matrices, which verifies det(Λn) = 1 and
(Λn)00 ≥ 1, even in the limit n→∞. So, eθ

iJi+b
iKi ∈ SO+(1, 3).

3.3 Majorana Spinor representation

Definition 3.16. A representation (MG, V ) of a group G is defined by:
1) the representation space V , which is a vector space;
2) the representation map M : G→ GL(V ) from the group elements to the automor-

phisms of the representation space, verifying for Λ1,Λ2 ∈ G:

M(Λ1)M(Λ2) = M(Λ1Λ2) (3.32)

Two examples of representations of the restricted Lorentz group are the real scalar
(M(Λ) = 1 and V = R) and the real Lorentz vector (M(Λ) = Λ and as representation
space the real Lorentz vectors V = R4) representations, where Λ ∈ SO+(1, 3).
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Definition 3.17. The Majorana spinor representation is defined by:
1) the representation space V is the space of Majorana spinors;
2) For θi, bi ∈ R, i = 1, 2, 3, the representation map is:

M(eθ
iJi+b

iKi) = e(θiiγ5+bi) 1
2
γ0γi (3.33)

Where iγ5 = −γ0γ1γ2γ3.

Proposition 3.18. The Majorana spinor representation is a representation of the re-
stricted Lorentz group.

Proof. The commutation relations of the Lorentz generators Ji and Ki are verified by
their correspondent Majorana matrices J ′i = 1

2
iγ5γ0γi and K ′i = 1

2
γ0γi:

[J ′i , J
′
j] = [

1

2
iγ5γ0γi,

1

2
iγ5γ0γj] = −εijk

1

2
iγ5γ0γk = −εijkJ ′k (3.34)

[J ′i , K
′
j] = [

1

2
iγ5γ0γi,

1

2
γ0γj] = −εijk

1

2
γ0γk = −εijkK ′k (3.35)

[K ′i, K
′
j] = [

1

2
γ0γi,

1

2
γ0γj] = εijk

1

2
iγ5γ0γk = εijkJ

′
k (3.36)

From the Baker-Campbell-Hausdorff formula in remark 3.14, we get for Λ1,Λ2 ∈ SO+(1, 3):

M(Λ1)M(Λ2) = M(Λ1Λ2) (3.37)

Definition 3.19. Let W be a subspace of V . (MG,W ) is a subrepresentation of (MG, V )
if W is invariant under the group action, that is, for all w ∈ W : (M(g)w) ∈ W , for all
g ∈ G.

Definition 3.20. W⊥ is the orthogonal complement of the subspace W of the vector
space V if:

1) all v ∈ V can be expressed as v = w + x, where w ∈ W and x ∈ W⊥;
2) if w ∈ W and x ∈ W⊥, then x†w = 0.

Definition 3.21. The representation (MG, V ) is semi-simple if for all subrepresentation
(MG,W ) of (MG, V ) , (MG,W

⊥) is also a subrepresentation of (MG, V ), where W⊥ is
the orthogonal complement of the subspace W .

Lemma 3.22. Consider a representation (MG, V ) of a group G. For all g ∈ G, if there
is h ∈ G such that M(h) = M †(g), then the representation (MG, V ) is semi-simple.

Proof. Let (MG,W ) be a subrepresentation of (MG, V ). W⊥ is the orthogonal comple-
ment of W .

For all x ∈ W⊥, w ∈ W and g ∈ G, (M(g)x)†w = x†(M †(g)w).
Since W is invariant and there is h ∈ G, such that M(h) = M †(g), then w′ ≡

(M †(g)w) ∈ W .
Since x ∈ W⊥ and w′ ∈ W , then x†w′ = 0.
This implies that if x is in the orthogonal complement of W (x ∈ W⊥), also M(g)x

is in the orthogonal complement of W (M(g)x ∈ W⊥), for all g ∈ G.
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Proposition 3.23. The Majorana spinor representation of the restricted Lorentz group
is semi-simple.

Proof. In the Majorana spinor representation, for all θi, bi ∈ R, i = 1, 2, 3:

M †(eθ
iJi+b

iKi) = e(−θiiγ5+bi) 1
2
γ0γi = M(e−θ

iJi+b
iKi) (3.38)

Since −θ ∈ R, from lemma 3.22, the Majorana spinor representation is semi-simple.

Definition 3.24. A representation (MG, V ) is irreducible if their only sub-representations
are the trivial sub-representations: (MG, V ) and (MG, {0}), where {0} is the null space.

Lemma 3.25. Consider a semi-simple representation (MG, V ) of a group G. If the set of
hermitian automorphisms of V that square to 1 and commute with M(g), for all g ∈ G,
is {+1,−1}, then the representation (MG, V ) is irreducible (1 is the identity matrix).

Proof. Let (MG,W ) and (MG,W
⊥) be sub-representations of (MG, V ), where W⊥, the

orthogonal complement of W .
There is an automorphism P : V → V , such that, for w,w′ ∈ W , x, x′ ∈ W⊥,

P (w + x) = (w − x). P 2 = 1 and P is hermitian:

(w′ + x′)†(P (w + x)) = w′†w − x′†x = (P (w′ + x′))†(w + x) (3.39)

Let w′ ≡M(g)w ∈ W and x′ ≡M(g)x ∈ W⊥:

M(Λ)P (w + x) = M(Λ)(w − x) = (w′ − x′) (3.40)

PM(Λ)(w + x) = P (w′ + x′) = (w′ − x′) (3.41)

Which implies that P commutes with M(g) for all g ∈ G.
If P = +1, then W = V :

+(w + x) = P (w + x) = (w − x) =⇒ x = 0 (3.42)

If P = −1, then W is the null space:

−(w + x) = P (w + x) = (w − x) =⇒ w = 0 (3.43)

Proposition 3.26. The Majorana spinor representation of the restricted Lorentz group
is irreducible.

Proof. The hermitian linear transformations from and to Majorana spinors, are generated
by the linear combinations with real coefficients of the 10 matrices in the basis ΓS ≡
{1, γ0γj, iγj, γ5γj}, where j = 1, 2, 3.

The only matrix in ΓS commuting with M(Λ), for all Λ ∈ SO+(1, 3) is the identity
matrix. Therefore, the set of hermitian automorphisms of the Majorana spinors that
square to 1 and commute with M(Λ), for all Λ ∈ SO+(1, 3), is {+1,−1}. Applying
proposition 3.23 and lemma 3.25 the proposition is proved.
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3.4 Discussion on the Dirac Spinor representation decomposi-
tion

In the Dirac spinor representation the Dirac spinors are the representation space, the
representation map M is the same of the Majorana spinor representation. The matrix
γ5 = −i(iγ5) is an hermitian automorphism of the Dirac spinors that squares to 1 and
commutes with M(Λ), for all Λ ∈ SO+(1, 3).

The subspaces of Dirac spinors u±, related with Weyl spinors, verifying u± = 1±γ5
2
u±

are invariant: M(Λ)u± = 1±γ5
2
M(Λ)u±, for all Λ ∈ SO+(1, 3). So, the Dirac spinor

representation is reducible. The invariant spinors u± are the representation spaces of the
subrepresentations.

The subsets of Dirac spinors v±, related with Majorana spinors, verifying in the
Majorana bases v∗± = ±v± are also linear subspaces for linear combinations with real co-
efficients. Since in the Majorana bases, M(Λ) is real, then v± are also invariant subspaces
over the real numbers. v± are the representation spaces of two subrepresentations of the
Dirac spinor representation.

Note that for linear combinations with complex coefficients, the spinors v± do not
form a subspace, that is, they are only subspaces over the real numbers, not over the
complex numbers.

The reader should not be confused by the fact that usually in the literature, the Dirac
spinor is only decomposed in Weyl spinors, with no mention to the Majorana spinors.
The reason for this is that in many successful theories, from Quantum Mechanics to
Quantum Field Theory, the vector spaces are over the complex numbers.

Some readers might have the respectful belief that modern Physics must be based
on vector spaces over the complex numbers. Such belief, even if it is founded, should
not confuse them when judging the correctness of proposition 3.26, because the fact is
that the representation theory is valid for vector spaces over the real numbers, complex
numbers or any other field.

The Jordan-Holder theorem implies that if a semi-simple representation of a subgroup
H of a group G is decomposable in two non-trivial irreducible subrepresentations, then
this decomposition is unique up to an isomorphism. But it does not imply that the
isomorphism is valid when considering the larger group G. For instance, if we consider the
subgroup of rotations SO+(1, 3)∩O(4), then the subspaces of Dirac spinors w± verifying

w± = 1±γ0
2
w± are invariant: M(Λ)w± = 1±γ0

2
M(Λ)w±, for all Λ ∈ SO+(1, 3) ∩ O(4).

It can be shown that the subrepresentations where the representation spaces are w± or
u±, are irreducible. Although there is an isomorphism between the subrepresentations
w± and u±, through the correspondence between γ0 and γ5, valid for the subgroup of
rotations, the isomorphism is no longer valid when considering the restricted Lorentz
group.

The restricted Lorentz group is a subgroup of the group of symmetries of Quantum
Field Theory. The Jordan-Holder theorem implies that there is an isomorphism between
the Weyl and Majorana spinor representations of the restricted Lorentz group. But Weyl
fermions have charge and no mass, Majorana fermions have mass and no charge, so they
are not isomorphic in Quantum Field Theory.
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4 Linear Momentum of Majorana spinors

Definition 4.1. L2(Rn) is the Hilbert space of real functions of n real variables whose
square is Lebesgue integrable in Rn. The internal product is:

< f, g >≡
∫
dnxf(x)g(x), f, g ∈ L2(Rn) (4.1)

Remark 4.2. The Fourier transform is injective in the space of complex square integrable
functions.

If f ∈ L2(Rn), then fs, fc ∈ L2(Rn):

fc(p) ≡
∫
dnx cos(p · x)f(x) (4.2)

fs(p) ≡
∫
dnx sin(p · x)f(x) (4.3)

Also, the Dirac delta δn is well defined:

δn(x) ≡
∫

dnp

(2π)n
cos(p · x) (4.4)

f(0) =

∫
dnx δn(x)f(x) (4.5)

The domain of integration is Rn.

Remark 4.3. The derivative ∂i, i = 1, ..., n, is a skew-symmetric operator of the Hilbert
space L2(Rn): ∫

dnx(∂if(x))g(x) = −
∫
dnxf(x)(∂ig(x)), f, g ∈ L2(Rn) (4.6)

Definition 4.4. L2
4(Rn) is the Hilbert space of Majorana spinors whose 4 real components

in the Majorana bases are in L2(Rn). The internal product is:

< Ψ,Φ >≡
∫
dnx Ψ†(x)Φ(x), Ψ,Φ ∈ L2

4(Rn) (4.7)

Definition 4.5. The Fourier-Majorana Transform ψ(~p) of a Majorana spinor Ψ(~x) ∈
L2

4(R3) is the Majorana spinor:

ψ(~p) ≡
∫
d3~x O(~p, ~x)Ψ(~x) (4.8)

O(~p, ~x) ≡ e−iγ
0~p·~x /pγ0 +m√

Ep +m
√

2Ep
(4.9)

Where m ≥ 0 p0 = Ep =
√
~p2 +m2.

Proposition 4.6. The Fourier-Majorana Transform ψ(~p) of a Majorana spinor Ψ(~x) ∈
L2

4(R3) is also in the Hilbert space L2
4(R3).
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Proof. In the Majorana bases, O(~p, ~x) and Ψ(~x) are real and so is ψ(~p).
We have:

|[ /pγ0 +m√
Ep +m

√
2Ep

]ij|2 ≤
Ep +m

2Ep
≤ 1, i, j = 1, 2, 3, 4 (4.10)

|ψi(~p)|2 ≤
4∑
j=1

|
∫
d3~x cos(~p · ~x)Ψj(~x)|2 + |

∫
d3~x sin(~p · ~x)Ψj(~x)|2 (4.11)

From remark 4.2, we have that both
∫
d3~x cos(~p · ~x)Ψj(~x) and

∫
d3~x sin(~p · ~x)Ψj(~x) are

square integrable and therefore |ψi(~p)|2 is square integrable.

Proposition 4.7. The inverse Fourier-Majorana transform of ψ(~p) is:

Ψ(~x) =

∫
d3~p

(2π)3
O†(~p, ~x)ψ(~p) (4.12)

O†(~p, ~x) =
/pγ0 +m√

Ep +m
√

2Ep
eiγ

0~p·~x (4.13)

O† is the hermitian conjugate of O.

Proof. The matrix O†(~p, ~x) verifies:

O†(~p, ~x) =
/p

m
O†(~p, ~x)γ0 (4.14)

iγ0(i~/∂ −m)O†(~p, ~x) = −γ0~/pO
†(~p, ~x)iγ0 − γ0

/pO
†(~p, ~x)iγ0 (4.15)

= −O†(~p, ~x)iγ0Ep (4.16)

From remark 4.3, the operator iγ0(i~/∂ −m) is skew-hermitian, implying:∫
d3~xO(~q, ~x)O†(~p, ~x)iγ0Ep =

∫
d3~xiγ0EqO(~q, ~x)O†(~p, ~x) (4.17)

Noting that Ep + Eq > 0, this implies that:∫
d3~xe−iγ

0~q·~x
~/qγ0(Ep +m) +~/pγ0(Eq +m)√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

eiγ
0~p·~x = 0 (4.18)

Therefore, we get:∫
d3~xO(~q, ~x)O†(~p, ~x) =

∫
d3~xe−iγ

0~q·~x (Ep +m)(Eq +m) +~/qγ0~/pγ0√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

eiγ
0~p·~x (4.19)

=

∫
d3~xe−iγ

0(~q−~p)·~x (Ep +m)(Eq +m) +~/qγ0~/pγ0√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

(4.20)

= (2π)3δ3(~q − ~p)(Ep +m)(Ep +m) + ~p2

(Ep +m)2Ep
(4.21)

= (2π)3δ3(~q − ~p)(Ep +m)(Ep +m) + (Ep +m)(Ep −m)

(Ep +m)2Ep
(4.22)

= (2π)3δ3(~q − ~p) (4.23)

14



The other way around:∫
d3~p

(2π)3
O†(~p, ~y)O(~p, ~x) =

∫
d3~p

(2π)3

/pγ0 +m√
Ep +m

√
2Ep

eiγ
0~p·(~y−~x) /pγ0 +m√

Ep +m
√

2Ep
(4.24)

=

∫
d3~p

(2π)3
ei

/p

m
~p·(~y−~x)/pγ

0

Ep
(4.25)

=

∫
d3~p

(2π)3
cos(~p · (~y − ~x))+ (4.26)

+

∫
d3~p

(2π)3
(− cos(~p · (~y − ~x))

~/pγ0

Ep
+ sin(~p · (~y − ~x))

miγ0

Ep
(4.27)

= δ3(~y − ~x) (4.28)

Note that both cos(~p · (~y − ~x))
~/pγ0

Ep
and sin(~p · (~y − ~x))miγ

0

Ep
are odd in ~p and therefore do

not contribute to the integral.

5 Angular momentum of Majorana spinors

5.1 Majorana Spin

Definition 5.1. The Majorana spin operators 1
2
σk are defined as:

1

2
σk ≡1

2
γkγ5, k = 1, 2, 3 (5.1)

They verify the angular momentum algebra:

[
1

2
σi,

1

2
σj] =iγ0εijk

1

2
σk (5.2)

Where εijk is the Levi-Civita symbol. Note that iγ0 commutes with σk and squares to
−1, so it plays the role of the imaginary unit in the angular momentum algebra.

The eigenstates of 1
2
σ3 are the Majorana spinors ψ verifying:

ψ± =
1± σ3

2
ψ± (5.3)

The eigenvalues are 1
2
σ3ψ± = ±1

2
ψ±.

5.2 Majorana orbital angular momentum

Definition 5.2. A set S of elements of an Hilbert space H with internal product <,>,
is an orthonormal basis if:

1) For all a ∈ S: < a, a >= 1;
2) (orthogonality) For all a, b ∈ S, with a 6= b: < a, b >= 0;
3) (completeness) For all f, g ∈ H, < g, f >=

∑
a∈S < g, a >< a, f >.
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Definition 5.3. Let ~x ∈ R3. The spherical coordinates parametrization is:

~x = r(sin(θ) sin(ϕ)~e1 + sin(θ) sin(ϕ)~e2 + cos(θ)~e3) (5.4)

where {~e1, ~e2, ~e3} is an orthonormal basis of R3 and r ∈ [0,+∞[ θ ∈ [0, π], ϕ ∈ [−π, π].

Definition 5.4. L2(S2) is the Hilbert space of real functions with domain S2 ≡ {~x ∈
R3 : |~x| = 1}, whose square is Lebesgue integrable in S2. The internal product is:

< f, g >≡
∫
d(cos θ)dϕf(θ, ϕ)g(θ, ϕ), f, g ∈ L2(S2) (5.5)

Definition 5.5. L2
4(S2) is the Hilbert space of Majorana spinors whose 4 real components

in the Majorana bases are in L2(S2). The internal product is:

< Ψ,Φ >≡
∫
d(cos θ)dϕ Ψ†(θ, ϕ)Φ(θ, ϕ), Ψ,Φ ∈ L2

4(S2) (5.6)

Definition 5.6. The Majorana angular momentum operators ~Lk are:

~Lk ≡
∑

i,j=1,2,3

−iγ0εijkx
i∂j, k = 1, 2, 3 (5.7)

Where εijk is the Levi-Civita symbol.

The operators verify the angular momentum algebra:

[~Li, ~Lj] =iγ0εijk~Lk (5.8)

In spherical coordinates:

iγ0~L3 = ∂ϕ (5.9)

(~L)2 = − sin(θ)∂θ

(
sin(θ)∂(θ)

)
− 1

sin2(θ)
∂2
ϕ (5.10)

Definition 5.7. The cosine spherical harmonics Y c
lm, sine spherical harmonics Y s

lm and
associated Legendre functions of the first kind Plm are:

Y c
lm(θ, ϕ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) cos(mϕ) (5.11)

Y s
lm(θ, ϕ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) sin(mϕ) (5.12)

Pm
l (ξ) ≡ (−1)m

2ll!
(1− ξ2)m/2

dl+m

dξl+m
(ξ2 − 1)l (5.13)

where θ ∈ [0, π], ϕ ∈ [−π, π], ξ ∈ [−1, 1] and l,m are integer numbers l ≥ 0, −l ≤ m ≤ l.
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The spherical harmonics verify [9]:

∂ϕY
c
lm(θ, ϕ) = −mY s

lm(θ, ϕ) (5.14)

∂ϕY
s
lm(θ, ϕ) = mY c

lm(θ, ϕ) (5.15)

−
(

sin(θ)∂θ

(
sin(θ)∂θ

)
+

1

sin2(θ)
∂2
ϕ

)
Y a
lm = l(l + 1)Y a

lm, a = c, s (5.16)

Remark 5.8. The spherical harmonics verify L2(S2):

< Y s
l′m′ , Y c

lm > = 0 (5.17)

< Y s
l′m′ , Y s

lm > + < Y c
l′m′ , Y c

lm > = δl′lδm′m (5.18)

For all f, g ∈ L2(S2):

< g, f >=
∑

a=c,s, l≥0, −l≤m≤l

< g, Y a
lm >< Y a

lm, f > (5.19)

Definition 5.9. The Majorana spherical harmonics Ylm are:

Ylm(θ, ϕ) ≡ Y c
lm(θ, ϕ) + iγ0Y s

lm(θ, ϕ) (5.20)

=

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eiγ

0mϕ (5.21)

The Majorana spherical harmonics are similar to the standard Laplace spherical har-
monics definition, with iγ0 in place of i. The properties are also similar.

They verify:

(~L3 −m)Ylm(~x) = 0 (5.22)

(~L2 − l(l + 1))Ylm(~x) = 0 (5.23)

Proposition 5.10. The columns of the Majorana spherical harmonics matrices form an
orthonormal basis of the Hilbert space L2

4(S2).

Proof. We apply the remark 5.8 to directly obtain:∫
d(cos θ)dϕY †l′m′(θ, ϕ)Ylm(θ, ϕ) = δl′lδm′m (5.24)

For all Φ,Ψ ∈ L2
4(S2):

< Φ,Ψ > =
∑

l≥0, −l≤m≤l

< Φ, Ylmψlm > (5.25)

ψlm ≡
∫
d(cos θ)dϕY †lm(θ, ϕ)Ψ(θ, ϕ) (5.26)
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5.3 Majorana total angular momentum space

The operator ~σ · ~L is:

~σ · ~L = −iγ0εijk σ
kxi∂j (5.27)

= − [σi, σj]

2
xi∂j (5.28)

=
γiγj − γjγi

2
xi∂j, i, j = 1, 2, 3 (5.29)

In spherical coordinates:

i/∂ = iγr(∂r −
1

r
~σ · ~L) (5.30)

~σ · ~L = γθγr∂θ + γϕγr
1

sinθ
∂ϕ (5.31)

θ and ϕ are the angles of ~x in spherical coordinates, r is the radius.
It verifies:

~σ · ~L = (~L+
1

2
~σ)2 − ~L2 − 3

4
(5.32)

The term ~L+ 1
2
~σ is the sum of two angular momentum operators of integer and one-half

spin.

Remark 5.11. Let ~L be an integer spin angular momentum operator, with orthonor-
mal eigenstates |l,m >. Let 1

2
~σ be a spin one-half angular momentum operator, with

orthonormal eigenstates |1
2
, s >, where s = ±1

2
. Then, the orthonormal eigenstates of the

operator ~L+ 1
2
~σ, are given by [9]:

|j, µ, (j + 1/2) >=−

√
j − µ+ 1

2j + 2
|j + 1/2, µ− 1/2 > |1

2
,+

1

2
> (5.33)

+

√
j + µ+ 1

2j + 2
|j + 1/2, µ+ 1/2 > |1

2
,−1

2
> (5.34)

|j, µ, (j − 1/2) >= +

√
j + µ

2j
|j − 1/2, µ− 1/2 > |1

2
,+

1

2
> (5.35)

+

√
j − µ− 1

2j
|j − 1/2, µ+ 1/2 > |1

2
,−1

2
> (5.36)

Where j = 1
2
, 3

2
, ... and −j ≤ µ ≤ j. They satisfy:

(~L3 +
σ3

2
)|j, µ, (j ± 1/2) > = µ|j, µ, (j ± 1/2) > (5.37)

(~L+
~σ

2
)2|j, µ, (j ± 1/2) > = j(j + 1)|j, µ, (j ± 1/2) > (5.38)

~σ · ~L|j, µ, (j ± 1/2) > = −(±(j + 1/2) + 2)|j, µ, (j ± 1/2) > (5.39)

σr |j, µ, (j + 1/2) > = −|j, µ, (j − 1/2) > (5.40)
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Definition 5.12. The Majorana spherical matrices are:

Ωlµ(θ, ϕ) ≡
(
−
√

l − µ
2l + 1

Yl,µ(θ, ϕ) +

√
l + µ+ 1

2l + 1
Yl,µ+1(θ, ϕ)σ1

)1 + σ3

2
(5.41)

+
(√ l + µ

2l − 1
Yl−1,µ(θ, ϕ)σ1 +

√
l − µ− 1

2l − 1
Yl−1,µ+1(θ, ϕ)

)1− σ3

2
(5.42)

with the integers l ≥ 1 and −l ≤ µ ≤ l. Ylµ the Majorana spherical harmonics.

Proposition 5.13. The columns of the Majorana spherical harmonics matrices form a
complete orthonormal basis of the Hilbert space L2

4(S2).

Proof. Using remark 5.11, after some calculations, we get:∫
d(cos θ)dϕΩ†l′µ′(θ, ϕ)Ωlµ(θ, ϕ) = δl′lδµ′µ (5.43)∑

l≥1, −l≤µ≤l

∫
d(cos θ)dϕ Φ†(θ, ϕ)Ωlµ(θ, ϕ)ψlµ =

∫
d(cos θ)dϕ Φ†(θ, ϕ)Ψ(θ, ϕ) (5.44)

For all Φ ∈ L2
4(S2).

Using remark 5.11, the Majorana spherical matrices verify:

(~L3 +
σ3

2
) Ωlµ = (µ+

1

2
)Ωlµ (5.45)

~σ · ~L Ωlµ = −Ωlµ(lσ3 + 1) (5.46)

σr Ωlµ = −Ωlµσ
1 (5.47)

iγrΩlµ = (−1)µΩl,−µ−1iγ
5 (5.48)

~σ · ~Liγr Ωlµ = iγrΩlµ(lσ3 − 1) (5.49)

5.4 Radial Momentum Space

Remark 5.14. The spherical Bessel functions of the first kind, jl : R+ → R with the
integer l ≥ 0, verify:

(∂2
r +

2

r
∂r −

l(l + 1)

r2
)jl(pr) = −p2jl(pr) (5.50)∫ +∞

0

dr r2jl(pr)jl(p
′r) =

πδ(p− p′)
2p2

(5.51)∫ +∞

0

dp 2p2

π
jl(pr)jl(pr

′) =
δ(r − r′)

r2
(5.52)

Where the Dirac delta δ is such that for all f ∈ L2(R):

f(0) =

∫
dx δ(x)f(x) (5.53)
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Definition 5.15. The Hankel-Majorana Transform ψ(p, l, µ) of a Majorana spinor Ψ(~x) ∈
L2

4(R3) is the Majorana spinor:

ψ(p, l, µ) ≡
∫
drd(cosθ)dϕr2Λ†(p, l, µ, r, θ, ϕ)Ψ(r, θ, ϕ) (5.54)

Λ(p, l, µ, r, θ, ϕ) ≡
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωlµ(θ, ϕ)

1 + σ3

2
(5.55)

+
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωlµ(θ, ϕ)
1− σ3

2
(5.56)

Where Λ are the Hankel-Majorana matrices, m, p ≥ 0, Ep =
√
p2 +m2 and the integers

l ≥ 1,−l ≤ µ ≤ l.

Proposition 5.16. Let ψ(p, l, µ) be the Hankel-Majorana Transform of a Majorana
spinor Ψ ∈ L2

4(R3). The inverse Hankel-Majorana Transform of ψ(p, l, µ) is:

Ψ′(r, θ, ϕ) ≡
∑

l≥1,−l≤µ≤l

∫ +∞

0

dp (Ep +m)

Epπ
Λ(p, l, µ, r, θ, ϕ)ψ(p, l, µ) (5.57)

It verifies, for all Φ ∈ L2
4(R3):∫

d(cosθ)dϕ dr r2 Φ†(r, θ, ϕ)Ψ′(r, θ, ϕ) =

∫
d(cosθ)dϕ dr r2Φ†(r, θ, ϕ)Ψ(r, θ, ϕ) (5.58)

Proof. The following equation is verified:

iγ0(i~/∂ −m)Λ(p, l, µ) = EpΛ(p, l, µ)iγ0 (5.59)

Since the operator iγ0(i~/∂ −m) is skew-Hermitic the equation above implies that:

iγ0Ep′I = Iiγ0Ep (5.60)

I ≡
∫
d(cosθ)dϕ dr r2 Λ†(p′, l′, µ′, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ) (5.61)

As Ep + Ep′ > 0, in the integral I the terms odd in iγr are null. From the orthogonality
of the spherical matrices, we get that the Λ matrices are orthogonal:

I = δl′lδµ′µ

∫
d(cosθ)dϕ dr r2 (5.62)(

p′jl(p
′r)pjl(pr) + (Ep′ −m)jl−1(p′r)(Ep −m)jl−1(pr)

1 + σ3

2
(5.63)

+ p′jl−1(p′r)pjl−1(pr) + (Ep′ −m)jl(p
′r)(Ep −m)jl(pr)

1− σ3

2

)
(5.64)

= δl′lδµ′µ
πδ(p− p′)

2p2
(Ep −m)2Ep = δl′lδµ′µ

πEpδ(p− p′)
Ep +m

(5.65)
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To show completeness, using iγrΩlµ = (−1)µΩl,−µ−1iγ
5, we first show that:∑

l′µ′

∫
d(cosθ)dϕ ψ†(p, l′, µ′)Λ†(p, l′, µ′, r, θ, ϕ)Ωlµ(θ, ϕ) = (5.66)

= ψ†(p, l, µ)p(jl(pr)
1 + σ3

2
+ jl−1(pr)

1− σ3

2
) (5.67)

+ ψ†(p, l,−µ− 1)(−1)µ(Ep −m)(−jl(pr)
1− σ3

2
+ jl−1(pr)

1 + σ3

2
)iγ5 (5.68)

=

∫
d(cosθ′)dϕ′dr′(r′)2 Ψ†(r′, θ′, ϕ′)

(
(5.69)

pjl(pr
′)
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωlµ(θ′, ϕ′)

1 + σ3

2
(5.70)

+ pjl−1(pr′)
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωlµ(θ′, ϕ′)
1− σ3

2
(5.71)

(−1)µ(Ep −m)jl−1(pr′)
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωl,−µ−1(θ′, ϕ′)

1 + σ3

2
iγ5 (5.72)

− (−1)µ(Ep −m)jl(pr
′)
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωl,−µ−1(θ′, ϕ′)
1− σ3

2
iγ5 (5.73)

=

∫
d(cosθ′)dϕ′dr′(r′)2 Ψ†(r′, θ′, ϕ′)

(
(5.74)

pjl(pr
′)
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωlµ(θ′, ϕ′)

1 + σ3

2
(5.75)

+ pjl−1(pr′)
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωlµ(θ′, ϕ′)
1− σ3

2
(5.76)

(Ep −m)jl−1(pr′)
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωl,µ(θ′, ϕ′)

1− σ3

2
(5.77)

− (Ep −m)jl(pr
′)
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωl,µ(θ′, ϕ′)
1 + σ3

2
(5.78)

=

∫
d(cosθ′)dϕ′dr′(r′)2 Ψ†(r′, θ′, ϕ′)Ωlµ

2p2Ep
Ep +m

(
(5.79)

jl(pr
′)jl(pr)

1 + σ3

2
+ jl−1(pr′)jl−1(pr)

1− σ3

2

)
(5.80)

If we integrate on p and use the completeness of the spherical Bessel functions, we get:∫
d(cosθ)dϕΨ

′†(r, θ, ϕ)Ωlµ(θ, ϕ) =

∫
d(cosθ)dϕΨ†(r, θ, ϕ)Ωlµ(θ, ϕ) (5.81)

Since the columns of the spherical matrices Ωlµ are a complete basis, we have shown the
completeness of the Hankel-Majorana transform:∫

d(cosθ)dϕdr r2 Ψ
′†(r, θ, ϕ)Φ(r, θ, ϕ) =

∫
d(cosθ)dϕdr r2Ψ†(r, θ, ϕ)Φ(r, θ, ϕ) (5.82)

For all Φ ∈ L2
4(R3).
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6 Dirac equation for the free fermion

The Dirac equation for the free fermion can be written as:

iγ0(i/∂ −m)Ψ(x) = 0 (6.1)

Where Ψ is a spinor. Note that the equation contains only Majorana matrices. The
Fourier or Hankel Transforms of the equation are:

(∂0 + iγ0Ep)Ψ(x0, p) = 0 (6.2)

The solutions can be written as:

Ψ(x) =

∫
d3~p

(2π)3

/pγ0 +m√
Ep +m

√
2Ep

e−iγ
0p·xψ(~p) (6.3)

Where p0 = Ep and ψ(~p) is an arbitrary spinor. If ψ(~p) is a Majorana spinor, then the
solution Ψ(x) is also a Majorana spinor.

The solutions can also be written as:

Ψ(x0, r, θ, ϕ) =
∑

l≥1,−l≤µ≤l

∫ +∞

0

dp(Ep +m)

Epπ
Λ(p, l, µ, r, θ, ϕ)e−iγ

0Ep·x0ψ(p, l, µ) (6.4)

Where ψ(p, l, µ) is an arbitrary spinor and Λ are the Hankel-Majorana matrices.
The set of quantum numbers (~p) and (p, l, µ) are related with the linear and spherical

momentums of free fermions. The Majorana spin is related with the standard spin defini-
tion. For instance, to obtain the usual free electron solution, we just set ψe(~p) = 1+γ0

2
ψe(~p)

and we get:

Ψe(x) =

∫
d3~p

(2π)3

/p+m√
Ep +m

√
2Ep

e−ip·x
1 + γ0

2
ψe(~p) (6.5)

The matrix γ0 was replaced by the identity matrix 1, due to the presence of the projector.
The same thing happens with the spherical solution and with the spin.

To obtain the usual free positron solution, we just set ψp(~p) = 1−γ0
2
ψp(~p) and the

matrix γ0 gets replaced by −1.

7 Energy-momentum space

Now we can extend our transforms to define an energy-momentum space.

Definition 7.1. Given a Majorana spinor Ψ ∈ L2
4(R4), the Fourier-Majorana transform

in space-time is defined as:

ψ(p) ≡
∫
d4xO(p, x)Ψ(x) (7.1)

Where O(p, x) is:

O(p, x) ≡ eiγ
0p0x0O(~p, ~x) = eiγ

0p·x [/p]γ0 +m√
Ep +m

√
2Ep

(7.2)

Note that Ep and [/p] = γ0Ep − ~γ · ~p don’t depend on p0, but p · x = p0x0 − ~p · ~x does.
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Proposition 7.2. The inverse Fourier-Majorana transform in space-time is given by:

Ψ(x) =

∫
d4p

(2π)4
O†(p, x)ψ(p) (7.3)

Where O† is the hermitian conjugate of O, given by:

O†(p, x) = O†(~p, ~x)e−iγ
0p0·x0 =

[/p]γ0 +m√
Ep +m

√
2Ep

e−iγ
0p·x (7.4)

Proof.∫
d4p

(2π)4
O†(p, y)O(p, x) =

∫
d3~p

(2π)3
O†(~p, ~y)

(∫ dp0

2π
e−iγ

0p0(y0−x0)
)
O(~p, ~x) (7.5)

= δ(y0 − x0)

∫
d3~p

(2π)3
O†(~p, ~y)O(~p, ~x) (7.6)

= δ4(y − x) (7.7)

∫
d4xO(q, x)O†(p, x) =

∫
dx0eiγ

0q0x0
(∫

d3~xO(~q, ~x)O†(~p, ~x)
)
e−iγ

0p0x0 (7.8)

= (2π)3δ3(~q − ~p)
∫
dx0eiγ

0(q0−p0)x0 (7.9)

= (2π)4δ4(q − p) (7.10)

Definition 7.3. The Hankel-Majorana transform in space-time of a Majorana spinor
Ψ ∈ L2

4(R4) is:

ψ′(p0, p, l, µ) ≡
∫
dx0eiγ

0p0x0ψ(x0, p, l, µ) (7.11)

Where ψ(x0, p, l, µ) is the Hankel-Majorana transform in space of Ψ.

Proposition 7.4. Let ψ(p0, p, l, µ) be the Hankel-Majorana Transform in space-time of
a Majorana spinor Ψ ∈ L2

4(R4). The inverse Hankel-Majorana Transform of ψ(p0, p, l, µ)
is:

Ψ′(x0, r, θ, ϕ) ≡
∑

l≥1,−l≤µ≤l

∫ +∞

0

dp(Ep +m)

Epπ

∫ +∞

−∞

dp0

2π
Λ(p, l, µ, r, θ, ϕ)e−iγ

0p0·x0ψ(p0, p, l, µ)

(7.12)

It verifies, for all Φ ∈ L2
4(R4):∫

dx0d(cosθ)dϕ dr r2 Φ†(x0, r, θ, ϕ)Ψ′(x0, r, θ, ϕ) = (7.13)

=

∫
dx0d(cosθ)dϕ dr r2Φ†(x0, r, θ, ϕ)Ψ(x0, r, θ, ϕ) (7.14)
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Proof. The matrices Λ(p, l, µ, r, θ, ϕ)e−iγ
0p0·x0 are orthogonal:∫

dx0d(cosθ)dϕ dr r2 eiγ
0p′0·x0Λ†(p′, l′, µ′, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ)e−iγ

0p0·x0 = (7.15)

= δl′lδµ′µ
πEpδ(p− p′)
Ep +m

∫
dx0eiγ

0p′0·x0e−iγ
0p0·x0 = δl′lδµ′µ

πEpδ(p− p′)
Ep +m

2πδ(p′0 − p0)

(7.16)

To show completeness, we first show that:∑
l′µ′

∫ +∞

0

dp′ (E ′p +m)

E ′pπ

∫
d(cosθ)dϕdr r2 (7.17)

ψ†(p0, p′, l′, µ′)eiγ
0p0·x0Λ†(p′, l′, µ′, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ) = (7.18)

= ψ†(p0, p, l, µ)eiγ
0p0·x0 (7.19)

=

∫
dx′0d(cosθ)dϕdr r2Ψ†(x′0, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ)e−iγ

0p0x′0eiγ
0p0·x0 (7.20)

If we integrate on p0, we get:∫
d(cosθ)dϕdr r2Ψ

′†(x0, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ) =

∫
d(cosθ)dϕdr r2Ψ†(r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ)

(7.21)

Since the columns of the Hankel matrices Λ(p, l, µ, r, θ, ϕ) are a complete basis, we have
shown the completeness of the Hankel-Majorana transform in space-time:∫

dx0d(cosθ)dϕdr r2 Ψ
′†(x0, r, θ, ϕ)Φ(x0, r, θ, ϕ) = (7.22)

=

∫
dx0d(cosθ)dϕdr r2Ψ†(x0, r, θ, ϕ)Φ(x0, r, θ, ϕ) (7.23)

For all Φ ∈ L2
4(R4).
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