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Abstract

In a Majorana basis, the Dirac equation for a free spin one-half particle is a 4x4
real matrix differential equation. The solution can be a Majorana spinor, a 4x1 real
column matrix, whose entries are real functions of the space-time.

Can a Majorana spinor, whose entries are real functions of the space-time,
describe the energy, linear and angular momentums of a free spin one-half particle?
We show that it can.

We show that the Majorana spinor is an irreducible representation of the double
cover of the proper orthochronous Lorentz group and of the full Lorentz group. The
Fourier-Majorana and Hankel-Majorana transforms are defined and related to the
linear and angular momentums of a free spin one-half particle.
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1 Introduction

In 1928 Paul Dirac published “The Quantum Theory of the Electron” [1], in which he
introduced a relativistic equation for the electron in interaction with an electromagnetic
potential, consisting of a complex 4x4 matrix differential equation whose solution is a
complex 4x1 column matrix, called Dirac spinor, whose entries are complex functions of
the space-time. Using the algebra of the 4x4 matrices, he related the electron’s spin with
the Lorentz group. He also noticed the existence of negative-energy solutions which he
used later in the prediction of the existence of the anti-electron, the positron.

In 1937 Ettore Majorana published the “Symmetrical theory of the electron and
positron” [2], in which he noted that “it is perfectly, and most naturally, possible to
formulate a theory of elementary neutral particles which do not have negative (energy)
states”. Majorana found a basis where the Dirac equation for the free electron is a real,
instead of complex, 4x4 matrix differential equation whose solution can be a real 4x1 col-
umn matrix, called Majorana spinor, whose entries are real functions of the space-time.

The existence of both positive and negative energy solutions is a consequence of the
extension, through the use of complex numbers, of the free Dirac equation to include
the electromagnetic interaction. For neutral particles, the free Dirac equation do not
have to be extended in the same way it is when including the electromagnetic interaction
and, therefore, it is possible to have a theory without negative energy solutions. Ettore
Majorana disappeared in 1938.

There are applications of the Majorana’s discovery in theories trying to explain phe-
nomena in neutrino physics, dark matter searches, the fractional quantum Hall effect
and superconductivity [3]. There are good references on spinors [4, 5] and on its relation
with the Lorentz group [6]. It is known (section 5 of [7]) that the Majorana spinor is
an irreducible representation of the double cover of the proper orthochronous Lorentz
group. However, we could not find a study (without second quantization operators) of
the Majorana spinor solutions of the free Dirac equation.

In the context of Clifford Algebras, the generalization of the Dirac matrices algebra to
other dimensions and metrics, there is work on the geometric square roots of -1 [8,9] and
on the generalizations of the Fourier transform [10], with applications to image processing.

Our goal is to show that (without second quantization operators) all the kinematic
properties of a free spin 1/2 particle are present in the real solutions of the real free Dirac
equation. In chapter 2 we define the Majorana matrices and spinors. In chapter 3 we
show that the Majorana spinor is an irreducible representation of the double cover of the
proper orthochronous Lorentz group and of the full Lorentz group. In chapter 4 we show
the invariance of the free Dirac equation under the action of the Lorentz group. In 5 and
6 we define the Fourier-Majorana and Hankel-Majorana transforms of a Majorana spinor
whose entries are Lebesgue square integrable real functions of the space coordinates. In
7, by comparison with the particle/anti-particle solutions of the free Dirac equation, we
show that the Majorana transforms are related with the linear and angular momentums
of a free spin 1/2 particle. In 8, we extend the Majorana transforms to include the energy.
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2 Majorana Matrices and Spinors

The Majorana matrices, iγµ with µ = 0, 1, 2, 3, are the Dirac Gamma matrices, γµ,
times the imaginary unit. The notation maintains explicit the relation between the
Majorana and Dirac Gamma matrices.

Definition 2.1. M(m,n,F) is the set of m × n matrices whose entries are elements of
the field F.

Definition 2.2. The Majorana matrices, iγµ ∈ M(4, 4,C), are 4 × 4 complex matrices
with anti-commutator {iγµ, iγν}:

(iγµ)(iγν) + (iγν)(iγµ) = −2gµν , µ, ν = 0, 1, 2, 3 (2.1)

Where g = diag(1,−1,−1,−1) is the Minkowski metric. The pseudo-scalar is iγ5 ≡
−γ0γ1γ2γ3.

The product of 2 Dirac Gamma matrices is minus the product of 2 corresponding
Majorana matrices: γµγν = −iγµiγν .

Definition 2.3. Γ− ≡ {iγ0, iγ5, γ0γ5, iγ5γ0γj : j = 1, 2, 3}
Γ+ ≡ {1, γ0γj, iγj, γ5γj : j = 1, 2, 3}
Γ ≡ Γ− ∪ Γ+

From the anti-commutator of the Majorana matrices, the matrices in Γ± square re-
spectively to ±1, and all matrices in Γ either commute or anti-commute with each other.

Definition 2.4. The sets of matrices that (anti-)commute with a matrix A ∈ Γ are:
Ω±(A) = {B ∈ Γ : AB = ±BA}.

Proposition 2.5. The sets Ω±(A)∩Γ+ and Ω±(A)∩Γ− are not empty for all A ∈ Γ\{1}.

Corollary. The matrices in Γ \ {1} have null trace and determinant 1.

Proof. If A ∈ Γ \ {1}. Since there is B ∈ Ω−(A) ∩ Γ+, we have tr(A) = tr(BAB) =
−tr(A).

Let A ∈ Γ−. Since A2 = −1, then A = e
π
2
A and det(A) = e

π
2
tr(A) = 1.

Let A ∈ ΓS \ {1}. Since there is B ∈ Ω+(A) ∩ Γ−, we have (AB) ∈ Γ− and so
det(AB) = 1. Since det(B) = 1, then det(A) = 1.

Proposition 2.6. Γ is a basis for the space of 4× 4 complex matrices.

Proof. There are only 16 linearly independent 4× 4 complex matrices.
Let B ≡

∑16
i=1 aiAi, where ai ∈ C and Ai ∈ Γ are different elements of the set for each

i. We have tr(A†jB) = 4aj, for j = 1, ..., 16. Then, B = 0 implies that all the scalars ai
are null and so all the elements in Γ are linearly independent.

Proposition 2.7. For all commuting matrices A,B ∈ Γ\{1}, AB = BA: all matrices in
Γ\{1, A,B,AB} anti-commute with A or B. That is, Ω−(A)∪Ω−(B) = Γ\{1, A,B,AB}.
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Definition 2.8. Γ2 is the group of 32 Majorana matrices products:

Γ2 ≡ {±1, ±iγµ, ±γ0γj, ±iγ5γ0γj, ±γµγ5, ±iγ5 : µ = 0, 1, 2, 3, j = 1, 2, 3} (2.2)

Definition 2.9. A 4× 4 representation of the Majorana matrices, M , is a map from the
Majorana matrices to the space of 4× 4 complex matrices, verifying:

{M(iγµ),M(iγν)} = −2gµν , µ, ν = 0, 1, 2, 3 (2.3)

Proposition 2.10. Two 4× 4 representations of the Majorana matrices are related by a
similarity transformation, unique up to a complex factor.

Proof. Given a 4× 4 representation of the Majorana matrices, M , we extend the domain
from the Majorana matrices to Γ, recursively, in such a way that for k1, k2 ∈ Γ2, if we
know M(k1) and M(k2), then M(k1k2) ≡M(k1)M(k2).

Let A and B be 4 × 4 representations of the Majorana matrices. Let a and b be 4
dimensional complex vectors, verifying:

a =
1 + A(γ1γ0)

2

1 + A(γ2γ5)

2
a, a†a = 1 (2.4)

b =
1 +B(γ1γ0)

2

1 +B(γ2γ5)

2
b, b†b = 1 (2.5)

We define the matrix S as:

S ≡ 1

8

∑
g∈Γ2

B(g−1)b a†A(g) (2.6)

For all h ∈ Γ, it verifies SA(h) = B(h)S:

SA(h) =
1

8

∑
g∈Γ2

B(g−1)b a†A(gh) (2.7)

=
1

8

∑
l∈Γ2

B(hl−1)b a†A(l) = B(h)S (2.8)

We define the matrix T as:

T ≡ 1

8

∑
g∈Γ2

A(g−1)a b†B(g) (2.9)

For all h ∈ Γ, it verifies TB(h) = A(h)T . Consequently, TSA(h) = A(h)TS.
Since γµ and A(γµ) obey to the same commutation relations, the set {A(k), k ∈ Γ} is

also a basis for the space of 4× 4 matrices. Therefore, TS is equal to the identity matrix
times a coefficient. To check what the coefficient is:

tr(TS) =
1

64

∑
l,g∈Γ2

b†B(gl−1)b a†A(lg−1)a (2.10)

=
1

2

∑
k∈Γ2

b†B(k−1)b a†A(k)a (2.11)
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From proposition 2.7, we have that a†A(k)a = b†B(k−1)b = 0, for all k 6= ±1,±γ1γ0,±γ2γ5,±iγ3.
For the eight remaining k, a†A(k)a = b†B(k−1)b = ±1. Then, tr(TS) = 4 which implies
that T = S−1.

Suppose that for all h ∈ Γ, S ′ is invertible and also verifies S ′A(h) = B(h)S ′. Then
S ′−1SA(h) = A(h)S ′−1S and again S ′−1S must be proportional to the identity. Let c ∈ C
be such that S ′−1S = c. Multiplying on the left by S ′, we get S = cS ′.

The Majorana matrices are themselves a 4×4 representation of the Majorana matrices.
Therefore, choosing a 4×4 representation of the Majorana matrices is the same as choosing
a basis.

Proposition 2.11. Two 4 × 4 unitary representations of the Majorana matrices are
related by an unitary similarity transformation, unique up to a phase.

Proof. Let A and B be unitary representations of the Majorana matrices. Then there
is an invertible matrix S, unique up to a complex scalar, such that A(γµ)S = SB(γµ).
Multiplying on the left by A† and on the right by B† and making the hermitian conjugate
of the equation, we get B(γµ)S† = S†A(γµ).

So, for some complex c, S† = cS−1. Applying the determinant, we get c = |det(S)|2
is real and positive. So, (c−

1
2S)†(c−

1
2S) = 1.

Let both S and S ′ ≡ cS, for some complex c, be unitary. Then, (cS)†(cS) = |c|2 = 1,
so c = eiθ for some real θ.

In the Majorana bases, the Majorana matrices are 4× 4 real orthogonal matrices. An
example of the Majorana matrices in a particular Majorana basis is:

iγ1 =

[
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

]
iγ2 =

[
0 0 +1 0
0 0 0 +1

+1 0 0 0
0 +1 0 0

]
iγ3 =

[
0 +1 0 0

+1 0 0 0
0 0 0 −1
0 0 −1 0

]

iγ0 =

[
0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

]
iγ5 =

[
0 −1 0 0

+1 0 0 0
0 0 0 +1
0 0 −1 0

]
= −γ0γ1γ2γ3

(2.12)

Proposition 2.12. Two 4× 4 real representations of the Majorana matrices are related
by a real similarity transformation, unique up to a real factor.

Proof. Let A and B be real representations of the Majorana matrices. Then there is
an invertible matrix S, unique up to a complex factor, such that A(γµ)S = SB(γµ).
Conjugating the equation, we get that, for some complex c, S∗ = cS. Applying the
module of the determinant, we get c = eiθ for some real θ and (ei

θ
2S)∗ = (ei

θ
2S).

Definition 2.13. The Dirac spinor is a 4× 1 complex column matrix, M(4, 1,C).

The space of Dirac spinors is a 4 dimensional complex vector space.

Definition 2.14. Let S be an invertible matrix such that SiγµS−1 is real, for µ =
0, 1, 2, 3.

The set of Majorana spinors, Pinor, is the set of Dirac spinors verifying the Majorana
condition:

Pinor ≡ {u ∈M(4, 1,C) : S−1S∗u∗ = u} (2.13)

Where ∗ denotes complex conjugation.
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Remark 2.15. Let W be a subset of a vector space V over C. W is a real vector space
iff:

1) 0 ∈ W ;
2) If u, v ∈ W , then u+ v ∈ W ;
3) If u ∈ W and c ∈ R, then cu ∈ W .

From the previous remark, the set of Majorana spinors is a 4 dimensional real vector
space. Note that the linear combinations of Majorana spinors with complex scalars do
not verify the Majorana condition. The Majorana spinor, in the Majorana bases, is a
4× 1 real column matrix.

Definition 2.16. End(Pinor) is the set of endomorphisms of Majorana spinors, that is,
the set of linear maps from and to Majorana spinors.

End(Pinor) is a 16 dimensional real vector space, generated by the linear combi-
nations with real scalars of the 16 matrices in the basis Γ. In the Majorana bases,
End(Pinor) = M(4, 1,R).

3 Majorana representation of the Lorentz group

3.1 Double cover of the Lorentz group

We define some symbols for the sets we will use:

Definition 3.1. GL(n,F) is the group of n× n invertible matrices over the field F.
SL(n,F) is the group of n×n invertible matrices over the field F with determinant 1.
O(n) is the group of n× n real orthogonal matrices.
SO(n) is the group of n× n real orthogonal matrices with determinant 1.
SPD(n) is the set of n× n real symmetric positive definite matrices.

Definition 3.2. The set of Lorentz matrices, O(1, 3) ≡ {Λ ∈M(4, 4,R) : ΛTgΛ = g}, is
the set of real matrices that leave the metric, g = diag(1,−1,−1,−1), invariant.

Definition 3.3. In a basis where the Majorana matrices are unitary, the set Maj is
defined as:

Maj ≡ {M ∈ End(Pinor) : (iγ5)M(−iγ5) = −M, (iγ0)M(−iγ0) = −M †} (3.1)

The only matrices in Γ that are also in Maj are the Majorana matrices, iγµ, therefore
Maj is the 4 dimensional real space of the linear combinations with real coefficients of
Majorana matrices.

Definition 3.4. Pin(3, 1) [6] is the set of endomorphisms of Majorana spinors which
leave the space Maj invariant, that is:

Pin(3, 1) ≡
{
S ∈ End(Pinor) : det(S) = 1, S−1(iγµ)S ∈Maj, µ = 0, 1, 2, 3

}
(3.2)
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Proposition 3.5. The map Λ : Pin(3, 1)→ O(1, 3) defined by:

(Λ(S))µνiγ
ν ≡ S−1(iγµ)S (3.3)

is two-to-one and surjective.

Proof. 1) Let S ∈ Pin(3, 1). Since the Majorana matrices are a basis of the real vector
space Maj, there is an unique real matrix Λ(S) such that:

(Λ(S))µνiγ
ν = S−1(iγµ)S (3.4)

Therefore, Λ is a map with domain Pin(3, 1). Now we can check that Λ(S) ∈ O(1, 3):

(Λ(S))µαg
αβ(Λ(S))νβ = −1

2
(Λ(S))µα{iγα, iγβ}(Λ(S))νβ = (3.5)

= −1

2
S{iγµ, iγν}S−1 = SgµνS−1 = gµν (3.6)

We have proved that Λ is a map from Pin(3, 1) to O(1, 3).
2) Since any λ ∈ O(1, 3) conserve the metric, the matrices M(iγµ) ≡ λµνiγ

ν are a
representation of the Majorana matrices:

{M(iγµ),M(iγν)} = −2λµαg
αβλνβ = −2(λgλT )µν = −2gµν (3.7)

In a basis where the Majorana matrices are real, from 2.12 there is a real invertible matrix
SΛ, unique up to a real factor, such that λµνiγ

ν = S−1
λ (iγµ)Sλ. Setting det(S) = 1 we fix

the real factor up to a signal ±1. Therefore, ±Sλ ∈ Pin(3, 1) and we proved that the
map Λ : Pin(3, 1)→ O(1, 3) is two-to-one and surjective.

Lemma 3.6. Pin(3, 1) = Pin′(3, 1), where Pin′(3, 1) is, in a basis where the Majorana
matrices are unitary:

Pin′(3, 1) ≡
{
S ∈ End(Pinor) :(iγ5)S = aS(iγ5), (3.8)

(iγ0)S = bS−1†(iγ0), (3.9)

det(S) = 1; a, b ∈ {−1, 1}
}

(3.10)

Proof. 1) For all S ∈ Pin′(3, 1), S−1(iγµ)S ∈Maj and so Pin′(3, 1) ⊂ Pin(3, 1).
2) In a basis where the Majorana matrices are unitary, for all S ∈ Pin(3, 1), since

S−1(iγµ)S ∈Maj, we have:

(iγ5)S−1(iγµ)S(−iγ5) = −S(iγµ)S = S−1(iγ5)(iγµ)(−iγ5)S (3.11)

(iγ0)S−1(iγµ)S(−iγ0) = −S†(iγµ)†S−1† = S†(iγ0)(iγµ)(−iγ0)S−1† (3.12)

On the other hand:

(iγ5)S−1(iγµ)S(−iγ5) = (−Λ(S))µν(iγ
ν) (3.13)

(iγ0)S−1(iγµ)S(−iγ0) = (Λ(S)g)µν(iγ
ν) (3.14)

We can easily check that (−Λ), (Λg) ∈ O(1, 3). From proposition 3.5, we get that the
matrices in Pin(3, 1) corresponding to (−Λ), (Λg) ∈ O(1, 3) are unique up to a sign.
Therefore, Pin(3, 1) ⊂ Pin′(3, 1).
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Definition 3.7. In a basis where the Majorana matrices are unitary, the subset Spin+(3, 1) ⊂
Pin(3, 1) is:

Spin+(3, 1) ≡
{
S ∈ End(Pinor) :(iγ5)S = S(iγ5), (3.15)

(iγ0)S = S−1†(iγ0), (3.16)

det(S) = 1
}

(3.17)

Proposition 3.8. 1) Pin(3, 1) and Spin+(3, 1) are groups.
2) In a basis where the Majorana matrices are unitary, if S ∈ Pin(3, 1) (Spin+(3, 1))

then S† ∈ Pin(3, 1) (Spin+(3, 1)).

Proof. Pin(3, 1) and Spin+(3, 1) are subsets of the group SL(4,C). They include the
identity matrix, 1 ∈ Pin(3, 1), Spin+(3, 1).

Let S± ∈ Pin(3, 1). Then, in a basis where the Majorana matrices are unitary, for
some a±, b± ∈ {−1, 1}:

(iγ5)S± = a±S±(iγ5), (iγ0)S± = b±S
−1†
± (iγ0) (3.18)

Making the inverse (hermitian conjugate) of the equation on the left and the hermitian
conjugate (inverse) of the equation on the right we get:

−S−1
± (iγ5) = −a±(iγ5)S−1

± , −S†±(iγ0) = −b±(iγ0)S−1
± (3.19)

−S†±(iγ5) = −a±(iγ5)S†±, −S−1
± (iγ0) = −b±(iγ0)S†± (3.20)

Therefore, S†± ∈ Pin(3, 1) and the product S+S
−1
− ∈ Pin(3, 1):

(iγ5)S+S
−1
− = (a+a−)S+S

−1
− (iγ5) (3.21)

(iγ0)S+S
−1
− = (b+b−)S−1†

+ S†−(iγ0) (3.22)

In the particular case S± ∈ Spin+(3, 1), we have a±, b± = 1. Then S†± ∈ Spin+(3, 1)
and the product S+S

−1
− ∈ Spin+(3, 1).

Definition 3.9. The discrete pin subgroup ∆ ⊂ Pin(3, 1) is:

∆ ≡ {±1,±iγ0,±γ0γ5,±iγ5} (3.23)

Lemma 3.10. For all S ∈ Pin(3, 1), there are only two factors ±d ∈ ∆ and correspond-
ingly only two ±S ′ ∈ Spin+(3, 1), such that S = (±d)(±S ′).

Proof. Let S ∈ Pin(3, 1) and a, b ∈ {−1, 1} be such that, in a basis where the Majorana
matrices are unitary:

(iγ5)S = aS(iγ5), (iγ0)S = bS−1†(iγ0) (3.24)

There are always only two factors ±d ∈ ∆, such that d−1S ∈ Spin+(3, 1):

a = b = 1, d = ±1 (3.25)

a = −b = 1, d = ±(iγ5) (3.26)

−a = b = 1, d = ±(iγ0) (3.27)

−a = −b = 1, d = ±(γ0γ5) (3.28)
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Remark 3.11. 1) Every real invertible matrix can be uniquely factored as the product of
an orthogonal matrix and a symmetric positive definite matrix.

2) For all real symmetric positive definite matrix Π, there is an unique symmetric
matrix B such that Π = eB.

3) For all real orthogonal matrix with determinant 1, Θ, there is a skew-symmetric
matrix A such that Θ = eA.

Lemma 3.12. Spin+(3, 1) = Spin′+(3, 1), where:

Spin′+(3, 1) ≡ {eθjiγ5γ0γjebjγ0γj : θj, bj ∈ R, j = 1, 2, 3} (3.29)

Note that there is a sum in the index j.

Proof. In a Majorana basis, since S is invertible and real, from point 1) in remark 3.11,
there is an unique Θ ∈ O(4) and unique Π ∈ SPD(4) such that S = ΘΠ.

From point 2) in remark 3.11, there is an unique symmetric B such that Π = eB.
Since S, S† ∈ Spin+(3, 1), also S†S = e2B ∈ Spin+(3, 1) and we have:

(iγ5)e2B = e2B(iγ5), (iγ0)e2B = e−2B(iγ0) (3.30)

From the uniqueness of B we get (iγ5)B = B(iγ5) and (iγ0)B = −B(iγ0). In a Majorana
basis, the only symmetric matrices in Γ satisfying the previous equations are γ0γj, j =
1, 2, 3. Therefore, there are unique bj ∈ R, j = 1, 2, 3, such that Π = eb

jγ0γj . Since γ0γj

is traceless, det(Π) = 1 and Π ∈ Spin+(3, 1).
Since det(S) = det(Π) = 1, also det(Θ) = 1. We can write:

(iγ5)ΘeB = ΘeB(iγ5), (iγ0)ΘeB = Θe−B(iγ0) (3.31)

Multiplying the equations by e−B on the right, also Θ ∈ Spin+(3, 1):

(iγ5)Θ = Θ(iγ5), (iγ0)Θ = Θ(iγ0) (3.32)

From point 3) in remark 3.11, there is a skew-symmetric A such that Θ = eA. In
a Majorana basis, the only skew-symmetric matrices in Γ are in the commuting sets
{iγ0, γ0γ5, iγ5} and {iγ5γ0γj : j = 1, 2, 3}. Therefore, there are θj, aj ∈ R, j = 1, 2, 3,
such that C ≡ a1iγ0 + a2γ0γ5 + a3iγ5 and Θ = eCeθ

jiγ5γ0γj . We can write:

(iγ5)eCeθ
jiγ5γ0γj = eCeθ

jiγ5γ0γj(iγ5), (iγ0)eCeθ
jiγ5γ0γj = eCeθ

jiγ5γ0γj(iγ0) (3.33)

Multiplying the equations by e−θ
jiγ5γ0γj on the right we get:

(iγ5)eC = eC(iγ5), (iγ0)eC = eC(iγ0) (3.34)

The last equations imply that ea
1iγ0+a2γ0γ5+a3iγ5 = e−a

1iγ0+a2γ0γ5−a3iγ5 and so (iγj)eC =
eC(iγj), for j = 1, 2, 3. Then, eC commutes with all matrices in Γ and so it must be
proportional to the identity. From det(eC) = 1 we get that eC = ±1.

If eC = −1, the signal can be absorbed. We define |θ| ≡
√
θjθj. If |θ| is null, then

Θ = eπiγ
5γ0γ1 ; if not, then Θ = e(1+ π

|θ| )θ
jiγ5γ0γj .

Checking that eθ
jiγ5γ0γj , eb

jγ0γj ∈ Spin+(3, 1) for all θj, bj ∈ R, j = 1, 2, 3, we have
completed the prove.
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Proposition 3.13. O(1, 3) is a group, the Lorentz group, and the map Λ : Pin(3, 1) →
O(1, 3), defined in proposition 3.5, is a group homomorphism.

Proof. The matrix product is associative and Λ(1) = 1 ∈ O(1, 3).
For all S, S ′ ∈ Pin(3, 1), we have:

(Λ(SS ′))µβiγ
β = S ′−1S(iγµ)SS ′ = (Λ(S))µαS

′−1iγαS ′ (3.35)

= (Λ(S))µα(Λ(S ′))αβiγ
β (3.36)

This implies that Λ−1(S) = Λ(S−1) ∈ O(1, 3) and Λ(S)Λ(S ′) = Λ(SS ′) ∈ O(1, 3). Since
the map Λ is surjective, then O(1, 3) is a group and the map Λ is a group homomorphism.

Definition 3.14. The proper orthochronous Lorentz group SO+(1, 3) is:

SO+(1, 3) ≡ {Λ(S) : S ∈ Spin+(1, 3)} (3.37)

Where Λ is the map defined in proposition 3.5.

Since there is a two-to-one surjective group homomorphism, Pin(3, 1) is a double
cover of O(1, 3) and Spin+(3, 1) is a double cover of SO+(1, 3).

In a Majorana basis, by identifying i with iγ5 and γ0γj with the Pauli matrices σj,
we can see that Spin+(3, 1) is isomorphic to SL(2,C).

3.2 Majorana Spinor representation

Definition 3.15. A representation (MG, V ) of a group G is defined by:
1) the representation space V , which is a vector space;
2) the representation map M : G→ GL(V ) from the group elements to the automor-

phisms of the representation space, verifying for Λ1,Λ2 ∈ G:

M(Λ1)M(Λ2) = M(Λ1Λ2) (3.38)

Definition 3.16. The Majorana spinor representation of Pin(3, 1) is defined by:
1) the representation space V = Pinor is the space of Majorana spinors;
2) In a basis where the Majorana matrices are unitary, the representation map is:

M(S) = S, S ∈ Pin(3, 1) (3.39)

The Majorana spinor representation of the subgroup Spin+(3, 1) ⊂ Pin(3, 1) is ob-
tained from the representation of Pin(3, 1) by restricting the domain of the representation
map to the subgroup Spin+(3, 1) ⊂ Pin(3, 1).

Definition 3.17. Let W be a subspace of V . (MG,W ) is a subrepresentation of (MG, V )
if W is invariant under the group action, that is, for all w ∈ W : (M(g)w) ∈ W , for all
g ∈ G.

Definition 3.18. W⊥ is the orthogonal complement of the subspace W of the vector
space V if:

1) all v ∈ V can be expressed as v = w + x, where w ∈ W and x ∈ W⊥;
2) if w ∈ W and x ∈ W⊥, then x†w = 0.

10



Definition 3.19. The representation (MG, V ) is semi-simple if for all subrepresentation
(MG,W ) of (MG, V ) , (MG,W

⊥) is also a subrepresentation of (MG, V ), where W⊥ is
the orthogonal complement of the subspace W .

Lemma 3.20. Consider a representation (MG, V ) of a group G. For all g ∈ G, if there
is h ∈ G such that M(h) = M †(g), then the representation (MG, V ) is semi-simple.

Proof. Let (MG,W ) be a subrepresentation of (MG, V ). W⊥ is the orthogonal comple-
ment of W .

For all x ∈ W⊥, w ∈ W and g ∈ G, (M(g)x)†w = x†(M †(g)w).
Since W is invariant and there is h ∈ G, such that M(h) = M †(g), then w′ ≡

(M †(g)w) ∈ W .
Since x ∈ W⊥ and w′ ∈ W , then x†w′ = 0.
This implies that if x is in the orthogonal complement of W (x ∈ W⊥), also M(g)x

is in the orthogonal complement of W (M(g)x ∈ W⊥), for all g ∈ G.

Proposition 3.21. The Majorana spinor representation of Spin+(3, 1) is semi-simple.

Proof. From point 1) in lemma 3.12 and lemma 3.20.

Definition 3.22. A representation (MG, V ) is irreducible if their only sub-representations
are the trivial sub-representations: (MG, V ) and (MG, {0}), where {0} is the null space.

Lemma 3.23. Consider a semi-simple representation (MG, V ) of a group G. If the set of
hermitian automorphisms of V that square to 1 and commute with M(g), for all g ∈ G,
is {+1,−1}, then the representation (MG, V ) is irreducible (1 is the identity matrix).

Proof. Let (MG,W ) and (MG,W
⊥) be sub-representations of (MG, V ), where W⊥, the

orthogonal complement of W .
There is an automorphism P : V → V , such that, for w,w′ ∈ W , x, x′ ∈ W⊥,

P (w + x) = (w − x). P 2 = 1 and P is hermitian:

(w′ + x′)†(P (w + x)) = w′†w − x′†x = (P (w′ + x′))†(w + x) (3.40)

Let w′ ≡M(g)w ∈ W and x′ ≡M(g)x ∈ W⊥:

M(Λ)P (w + x) = M(Λ)(w − x) = (w′ − x′) (3.41)

PM(Λ)(w + x) = P (w′ + x′) = (w′ − x′) (3.42)

Which implies that P commutes with M(g) for all g ∈ G.
If P = +1, then W = V :

+(w + x) = P (w + x) = (w − x) =⇒ x = 0 (3.43)

If P = −1, then W is the null space:

−(w + x) = P (w + x) = (w − x) =⇒ w = 0 (3.44)

Proposition 3.24. The Majorana spinor representation of Spin+(3, 1) is irreducible.

11



Proof. The hermitian linear transformations from and to Majorana spinors, are generated
by the linear combinations with real coefficients of the 10 matrices in the basis ΓS ≡
{1, γ0γj, iγj, γ5γj}, where j = 1, 2, 3.

The only matrix in ΓS commuting with all S ∈ Spin+(3, 1) is the identity matrix.
Therefore, the set of hermitian automorphisms of the Majorana spinors that square to
1 and commute with all S ∈ Spin+(3, 1), is {+1,−1}. Applying proposition 3.21 and
lemma 3.23 the proposition is proved.

The Majorana spinor representation of the group Pin+(3, 1) is also irreducible because
it is already irreducible for the subgroup Spin+(3, 1) ⊂ Pin+(3, 1).

4 Majorana spinor solutions of the free Dirac equa-

tion

Definition 4.1. L2(Rn) is the Hilbert space of real functions of n real variables whose
square is Lebesgue integrable in Rn. The internal product is:

< f, g >≡
∫
dnxf(x)g(x), f, g ∈ L2(Rn) (4.1)

Remark 4.2. If f ∈ L2(Rn), then fs, fc ∈ L2(Rn):

fc(p) ≡
∫
dnx cos(p · x)f(x) (4.2)

fs(p) ≡
∫
dnx sin(p · x)f(x) (4.3)

The Dirac delta δn is a well defined operator of the Hilbert space L2(Rn):

δn(x) ≡
∫

dnp

(2π)n
cos(p · x) (4.4)

f(0) =

∫
dnx δn(x)f(x) (4.5)

The domain of integration is Rn.

Remark 4.3. The derivative ∂i, i = 1, ..., n, is a skew-symmetric operator of the Hilbert
space L2(Rn): ∫

dnx(∂if(x))g(x) = −
∫
dnxf(x)(∂ig(x)), f, g ∈ L2(Rn) (4.6)

The free Dirac equation is:

(iγµ∂µ −m)Ψ(x) = 0 (4.7)

We are looking for solutions where Ψ(x) ∈ Pinor ⊗ L2(R4) is a Majorana spinor, whose
entries are square integrable functions of the space-time.
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If we change xµ → (Λ(S))µνx
ν and Ψ(x) → SΨ(x), where S ∈ Pin(3, 1), and we

multiply the equation on the left by S−1 we get:

S−1(iγµgµν(Λ(S))ναg
αβ∂β −m)SΨ(x) = (4.8)

= (iγδ(Λ(S))µδgµν(Λ(S))ναg
αβ∂β −m)Ψ(x) = (4.9)

= (iγδ∂δ −m)Ψ(x) = 0 (4.10)

The equation stays invariant.
If we multiply by −iγ0 on the left, the equation can be rewritten as:

(∂0 + iH(~x))Ψ(x) = 0 (4.11)

iH(~x) ≡ γ0γj∂j − iγ0m, j = 1, 2, 3 (4.12)

The solution is:

Ψ(x) = e−iH(~x)x0ψ(~x) (4.13)

Where ψ(~x) ∈ Pinor⊗ L2(R3) is a Majorana spinor, whose entries are square integrable
functions of the space.

Now we can write ψ(~x) = M(~x)χ, where M(~x) ∈ End(Pinor)⊗L2(R3) is a Majorana
spinor endomorphism, whose entries are square integrable functions of the space and
χ ∈ Pinor is a Majorana spinor. Suppose that for some E ∈ R, M verifies the equation:

iH(~x)M(~x) = M(~x)iγ0E (4.14)

In the next two sections we will see that these matrices satisfying the above equation
have interesting properties. Now we have:

Ψ(x) = M(~x)e−iγ
0Ex0χ (4.15)

Before moving to the next section, we will fix notation. If p, q are Lorentz vectors, we
define /p = γµpµ and p · q = pµqµ. Given a mass m ≥ 0, we define:

~pj = pj, j = 1, 2, 3 (4.16)

~/p = ~γ · ~p (4.17)

Ep =
√
~p2 +m2 (4.18)

/p = γ0p0 − ~γ · ~p (4.19)

5 Linear Momentum of Majorana spinors

Definition 5.1. L2
4(Rn) is the Hilbert space Pinor ⊗ L2(Rn), that is, Majorana spinors

whose entries are square integrable functions of Rn. The internal product is:

< Ψ,Φ >≡
∫
dnx Ψ†(x)Φ(x), Ψ,Φ ∈ L2

4(Rn) (5.1)
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Definition 5.2. The Fourier-Majorana Transform ψ(~p) of a Majorana spinor Ψ(~x) ∈
L2

4(R3) is the Majorana spinor:

ψ(~p) ≡
∫
d3~x O(~p, ~x)Ψ(~x) (5.2)

O(~p, ~x) ≡ e−iγ
0~p·~x /pγ0 +m√

Ep +m
√

2Ep
(5.3)

Where m ≥ 0 p0 = Ep =
√
~p2 +m2.

Proposition 5.3. The Fourier-Majorana Transform ψ(~p) of a Majorana spinor Ψ(~x) ∈
L2

4(R3) is also in the Hilbert space L2
4(R3).

Proof. In the Majorana bases, O(~p, ~x) and Ψ(~x) are real and so is ψ(~p).
We have:

|[ /pγ0 +m√
Ep +m

√
2Ep

]ij|2 ≤
Ep +m

2Ep
≤ 1, i, j = 1, 2, 3, 4 (5.4)

|ψi(~p)|2 ≤
4∑
j=1

|
∫
d3~x cos(~p · ~x)Ψj(~x)|2 + |

∫
d3~x sin(~p · ~x)Ψj(~x)|2 (5.5)

From remark 4.2, we have that both
∫
d3~x cos(~p · ~x)Ψj(~x) and

∫
d3~x sin(~p · ~x)Ψj(~x) are

square integrable and therefore |ψi(~p)|2 is square integrable.

Proposition 5.4. The inverse Fourier-Majorana transform of ψ(~p) is:

Ψ(~x) =

∫
d3~p

(2π)3
O†(~p, ~x)ψ(~p) (5.6)

O†(~p, ~x) =
/pγ0 +m√

Ep +m
√

2Ep
eiγ

0~p·~x (5.7)

O† is the hermitian conjugate of O.

Proof. The matrix O†(~p, ~x) verifies:

O†(~p, ~x) =
/p

m
O†(~p, ~x)γ0 (5.8)

iγ0(i~/∂ −m)O†(~p, ~x) = −γ0~/pO
†(~p, ~x)iγ0 − γ0

/pO
†(~p, ~x)iγ0 (5.9)

= −O†(~p, ~x)iγ0Ep (5.10)

From remark 4.3, the operator iγ0(i~/∂ −m) is skew-hermitian, implying:∫
d3~xO(~q, ~x)O†(~p, ~x)iγ0Ep =

∫
d3~xiγ0EqO(~q, ~x)O†(~p, ~x) (5.11)

Noting that Ep + Eq > 0, this implies that:∫
d3~xe−iγ

0~q·~x
~/qγ0(Ep +m) +~/pγ0(Eq +m)√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

eiγ
0~p·~x = 0 (5.12)
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Therefore, we get:∫
d3~xO(~q, ~x)O†(~p, ~x) =

∫
d3~xe−iγ

0~q·~x (Ep +m)(Eq +m) +~/qγ0~/pγ0√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

eiγ
0~p·~x (5.13)

=

∫
d3~xe−iγ

0(~q−~p)·~x (Ep +m)(Eq +m) +~/qγ0~/pγ0√
Eq +m

√
2Eq

√
Ep +m

√
2Ep

(5.14)

= (2π)3δ3(~q − ~p)(Ep +m)(Ep +m) + ~p2

(Ep +m)2Ep
(5.15)

= (2π)3δ3(~q − ~p)(Ep +m)(Ep +m) + (Ep +m)(Ep −m)

(Ep +m)2Ep
(5.16)

= (2π)3δ3(~q − ~p) (5.17)

The other way around:∫
d3~p

(2π)3
O†(~p, ~y)O(~p, ~x) =

∫
d3~p

(2π)3

/pγ0 +m√
Ep +m

√
2Ep

eiγ
0~p·(~y−~x) /pγ0 +m√

Ep +m
√

2Ep
(5.18)

=

∫
d3~p

(2π)3
ei

/p

m
~p·(~y−~x)/pγ

0

Ep
(5.19)

=

∫
d3~p

(2π)3
cos(~p · (~y − ~x))+ (5.20)

+

∫
d3~p

(2π)3
(− cos(~p · (~y − ~x))

~/pγ0

Ep
+ sin(~p · (~y − ~x))

miγ0

Ep
(5.21)

= δ3(~y − ~x) (5.22)

Note that both cos(~p · (~y − ~x))
~/pγ0

Ep
and sin(~p · (~y − ~x))miγ

0

Ep
are odd in ~p and therefore do

not contribute to the integral.

6 Angular momentum of Majorana spinors

6.1 Majorana Spin

Definition 6.1. The Majorana spin operators 1
2
σk are defined as:

1

2
σk ≡1

2
γkγ5, k = 1, 2, 3 (6.1)

They verify the angular momentum algebra:

[
1

2
σi,

1

2
σj] =iγ0εijk

1

2
τ k (6.2)

Where εijk is the Levi-Civita symbol. Note that iγ0 commutes with σk and squares to
−1, so it plays the role of the imaginary unit in the angular momentum algebra.

The eigenstates of 1
2
σ3 are the Majorana spinors ψ verifying:

ψ± =
1± σ3

2
ψ± (6.3)

The eigenvalues are 1
2
σ3ψ± = ±1

2
ψ±.
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6.2 Majorana orbital angular momentum

Definition 6.2. A set S of elements of an Hilbert space H with internal product <,>,
is an orthonormal basis if:

1) For all a ∈ S: < a, a >= 1;
2) (orthogonality) For all a, b ∈ S, with a 6= b: < a, b >= 0;
3) (completeness) For all f, g ∈ H, < g, f >=

∑
a∈S < g, a >< a, f >.

Definition 6.3. Let ~x ∈ R3. The spherical coordinates parametrization is:

~x = r(sin(θ) sin(ϕ)~e1 + sin(θ) sin(ϕ)~e2 + cos(θ)~e3) (6.4)

where {~e1, ~e2, ~e3} is an orthonormal basis of R3 and r ∈ [0,+∞[ θ ∈ [0, π], ϕ ∈ [−π, π].

Definition 6.4. L2(S2) is the Hilbert space of real functions with domain S2 ≡ {~x ∈
R3 : |~x| = 1}, whose square is Lebesgue integrable in S2. The internal product is:

< f, g >≡
∫
d(cos θ)dϕf(θ, ϕ)g(θ, ϕ), f, g ∈ L2(S2) (6.5)

Definition 6.5. L2
4(S2) is the Hilbert space of Majorana spinors whose 4 real components

in the Majorana bases are in L2(S2). The internal product is:

< Ψ,Φ >≡
∫
d(cos θ)dϕ Ψ†(θ, ϕ)Φ(θ, ϕ), Ψ,Φ ∈ L2

4(S2) (6.6)

Definition 6.6. The Majorana angular momentum operators ~Lk are:

~Lk ≡
∑

i,j=1,2,3

−iγ0εijkx
i∂j, k = 1, 2, 3 (6.7)

Where εijk is the Levi-Civita symbol.

The operators verify the angular momentum algebra:

[~Li, ~Lj] =iγ0εijk~Lk (6.8)

In spherical coordinates:

iγ0~L3 = ∂ϕ (6.9)

(~L)2 = − sin(θ)∂θ

(
sin(θ)∂(θ)

)
− 1

sin2(θ)
∂2
ϕ (6.10)

Definition 6.7. The cosine spherical harmonics Y c
lm, sine spherical harmonics Y s

lm and
associated Legendre functions of the first kind Plm are:

Y c
lm(θ, ϕ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) cos(mϕ) (6.11)

Y s
lm(θ, ϕ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) sin(mϕ) (6.12)

Pm
l (ξ) ≡ (−1)m

2ll!
(1− ξ2)m/2

dl+m

dξl+m
(ξ2 − 1)l (6.13)

where θ ∈ [0, π], ϕ ∈ [−π, π], ξ ∈ [−1, 1] and l,m are integer numbers l ≥ 0, −l ≤ m ≤ l.
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The spherical harmonics verify [11]:

∂ϕY
c
lm(θ, ϕ) = −mY s

lm(θ, ϕ) (6.14)

∂ϕY
s
lm(θ, ϕ) = mY c

lm(θ, ϕ) (6.15)

−
(

sin(θ)∂θ

(
sin(θ)∂θ

)
+

1

sin2(θ)
∂2
ϕ

)
Y a
lm = l(l + 1)Y a

lm, a = c, s (6.16)

Remark 6.8. The spherical harmonics verify:

< Y s
l′m′ , Y c

lm > = 0 (6.17)

< Y s
l′m′ , Y s

lm > + < Y c
l′m′ , Y c

lm > = δl′lδm′m (6.18)

For all f, g ∈ L2(S2):

< g, f >=
∑

a=c,s, l≥0, −l≤m≤l

< g, Y a
lm >< Y a

lm, f > (6.19)

Definition 6.9. The Majorana spherical harmonics Ylm are:

Ylm(θ, ϕ) ≡ Y c
lm(θ, ϕ) + iγ0Y s

lm(θ, ϕ) (6.20)

=

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eiγ

0mϕ (6.21)

The Majorana spherical harmonics are similar to the standard Laplace spherical har-
monics definition, with iγ0 in place of i. The properties are also similar.

They verify:

(~L3 −m)Ylm(~x) = 0 (6.22)

(~L2 − l(l + 1))Ylm(~x) = 0 (6.23)

Proposition 6.10. The columns of the Majorana spherical harmonics matrices form an
orthonormal basis of the Hilbert space L2

4(S2).

Proof. We apply the remark 6.8 to directly obtain:∫
d(cos θ)dϕY †l′m′(θ, ϕ)Ylm(θ, ϕ) = δl′lδm′m (6.24)

For all Φ,Ψ ∈ L2
4(S2):

< Φ,Ψ > =
∑

l≥0, −l≤m≤l

< Φ, Ylmψlm > (6.25)

ψlm ≡
∫
d(cos θ)dϕY †lm(θ, ϕ)Ψ(θ, ϕ) (6.26)
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6.3 Majorana total angular momentum space

The operator ~σ · ~L is:

~σ · ~L = −iγ0εijk σ
kxi∂j (6.27)

= − [σi, σj]

2
xi∂j (6.28)

=
γiγj − γjγi

2
xi∂j, i, j = 1, 2, 3 (6.29)

In spherical coordinates:

i/∂ = iγr(∂r −
1

r
~σ · ~L) (6.30)

~σ · ~L = γθγr∂θ + γϕγr
1

sinθ
∂ϕ (6.31)

θ and ϕ are the angles of ~x in spherical coordinates, r is the radius.
It verifies:

~σ · ~L = (~L+
1

2
~σ)2 − ~L2 − 3

4
(6.32)

The term ~L+ 1
2
~σ is the sum of two angular momentum operators of integer and one-half

spin.

Remark 6.11. Let ~L be an integer spin angular momentum operator, with orthonor-
mal eigenstates |l,m >. Let 1

2
~σ be a spin one-half angular momentum operator, with

orthonormal eigenstates |1
2
, s >, where s = ±1

2
. Then, the orthonormal eigenstates of the

operator ~L+ 1
2
~σ, are given by [11]:

|j, µ, (j + 1/2) >=−

√
j − µ+ 1

2j + 2
|j + 1/2, µ− 1/2 > |1

2
,+

1

2
> (6.33)

+

√
j + µ+ 1

2j + 2
|j + 1/2, µ+ 1/2 > |1

2
,−1

2
> (6.34)

|j, µ, (j − 1/2) >= +

√
j + µ

2j
|j − 1/2, µ− 1/2 > |1

2
,+

1

2
> (6.35)

+

√
j − µ− 1

2j
|j − 1/2, µ+ 1/2 > |1

2
,−1

2
> (6.36)

Where j = 1
2
, 3

2
, ... and −j ≤ µ ≤ j. They satisfy:

(~L3 +
σ3

2
)|j, µ, (j ± 1/2) > = µ|j, µ, (j ± 1/2) > (6.37)

(~L+
~σ

2
)2|j, µ, (j ± 1/2) > = j(j + 1)|j, µ, (j ± 1/2) > (6.38)

~σ · ~L|j, µ, (j ± 1/2) > = −(±(j + 1/2) + 2)|j, µ, (j ± 1/2) > (6.39)

σr |j, µ, (j + 1/2) > = −|j, µ, (j − 1/2) > (6.40)
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Definition 6.12. The Majorana spherical matrices are:

Ωlµ(θ, ϕ) ≡
(
−
√

l − µ
2l + 1

Yl,µ(θ, ϕ) +

√
l + µ+ 1

2l + 1
Yl,µ+1(θ, ϕ)σ1

)1 + σ3

2
(6.41)

+
(√ l + µ

2l − 1
Yl−1,µ(θ, ϕ)σ1 +

√
l − µ− 1

2l − 1
Yl−1,µ+1(θ, ϕ)

)1− σ3

2
(6.42)

with the integers l ≥ 1 and −l ≤ µ ≤ l. Ylµ the Majorana spherical harmonics.

Proposition 6.13. The columns of the Majorana spherical harmonics matrices form a
complete orthonormal basis of the Hilbert space L2

4(S2).

Proof. Using remark 6.11, after some calculations, we get:∫
d(cos θ)dϕΩ†l′µ′(θ, ϕ)Ωlµ(θ, ϕ) = δl′lδµ′µ (6.43)∑

l≥1, −l≤µ≤l

∫
d(cos θ)dϕ Φ†(θ, ϕ)Ωlµ(θ, ϕ)ψlµ =

∫
d(cos θ)dϕ Φ†(θ, ϕ)Ψ(θ, ϕ) (6.44)

For all Φ ∈ L2
4(S2).

Using remark 6.11, the Majorana spherical matrices verify:

(~L3 +
σ3

2
) Ωlµ = (µ+

1

2
)Ωlµ (6.45)

~σ · ~L Ωlµ = −Ωlµ(lσ3 + 1) (6.46)

σr Ωlµ = −Ωlµσ
1 (6.47)

iγrΩlµ = (−1)µΩl,−µ−1iγ
5 (6.48)

~σ · ~Liγr Ωlµ = iγrΩlµ(lσ3 − 1) (6.49)

6.4 Radial Momentum Space

Remark 6.14. The spherical Bessel functions of the first kind, jl : R+ → R with the
integer l ≥ 0, verify:

(∂2
r +

2

r
∂r −

l(l + 1)

r2
)jl(pr) = −p2jl(pr) (6.50)∫ +∞

0

dr r2jl(pr)jl(p
′r) =

πδ(p− p′)
2p2

(6.51)∫ +∞

0

dp 2p2

π
jl(pr)jl(pr

′) =
δ(r − r′)

r2
(6.52)

Where the Dirac delta δ is such that for all f ∈ L2(R):

f(0) =

∫
dx δ(x)f(x) (6.53)
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Definition 6.15. The Hankel-Majorana Transform ψ(p, l, µ) of a Majorana spinor Ψ(~x) ∈
L2

4(R3) is the Majorana spinor:

ψ(p, l, µ) ≡
∫
drd(cosθ)dϕr2Λ†(p, l, µ, r, θ, ϕ)Ψ(r, θ, ϕ) (6.54)

Λ(p, l, µ, r, θ, ϕ) ≡
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωlµ(θ, ϕ)

1 + σ3

2
(6.55)

+
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωlµ(θ, ϕ)
1− σ3

2
(6.56)

Where Λ are the Hankel-Majorana matrices, m, p ≥ 0, Ep =
√
p2 +m2 and the integers

l ≥ 1,−l ≤ µ ≤ l.

Proposition 6.16. Let ψ(p, l, µ) be the Hankel-Majorana Transform of a Majorana
spinor Ψ ∈ L2

4(R3). The inverse Hankel-Majorana Transform of ψ(p, l, µ) is:

Ψ′(r, θ, ϕ) ≡
∑

l≥1,−l≤µ≤l

∫ +∞

0

dp (Ep +m)

Epπ
Λ(p, l, µ, r, θ, ϕ)ψ(p, l, µ) (6.57)

It verifies, for all Φ ∈ L2
4(R3):∫

d(cosθ)dϕ dr r2 Φ†(r, θ, ϕ)Ψ′(r, θ, ϕ) =

∫
d(cosθ)dϕ dr r2Φ†(r, θ, ϕ)Ψ(r, θ, ϕ) (6.58)

Proof. The following equation is verified:

iγ0(i~/∂ −m)Λ(p, l, µ) = EpΛ(p, l, µ)iγ0 (6.59)

Since the operator iγ0(i~/∂ −m) is skew-Hermitic the equation above implies that:

iγ0Ep′I = Iiγ0Ep (6.60)

I ≡
∫
d(cosθ)dϕ dr r2 Λ†(p′, l′, µ′, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ) (6.61)

As Ep + Ep′ > 0, in the integral I the terms odd in iγr are null. From the orthogonality
of the spherical matrices, we get that the Λ matrices are orthogonal:

I = δl′lδµ′µ

∫
d(cosθ)dϕ dr r2 (6.62)(

p′jl(p
′r)pjl(pr) + (Ep′ −m)jl−1(p′r)(Ep −m)jl−1(pr)

1 + σ3

2
(6.63)

+ p′jl−1(p′r)pjl−1(pr) + (Ep′ −m)jl(p
′r)(Ep −m)jl(pr)

1− σ3

2

)
(6.64)

= δl′lδµ′µ
πδ(p− p′)

2p2
(Ep −m)2Ep = δl′lδµ′µ

πEpδ(p− p′)
Ep +m

(6.65)
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To show completeness, using iγrΩlµ = (−1)µΩl,−µ−1iγ
5, we first show that:∑

l′µ′

∫
d(cosθ)dϕ ψ†(p, l′, µ′)Λ†(p, l′, µ′, r, θ, ϕ)Ωlµ(θ, ϕ) = (6.66)

= ψ†(p, l, µ)p(jl(pr)
1 + σ3

2
+ jl−1(pr)

1− σ3

2
) (6.67)

+ ψ†(p, l,−µ− 1)(−1)µ(Ep −m)(−jl(pr)
1− σ3

2
+ jl−1(pr)

1 + σ3

2
)iγ5 (6.68)

=

∫
d(cosθ′)dϕ′dr′(r′)2 Ψ†(r′, θ′, ϕ′)

(
(6.69)

pjl(pr
′)
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωlµ(θ′, ϕ′)

1 + σ3

2
(6.70)

+ pjl−1(pr′)
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωlµ(θ′, ϕ′)
1− σ3

2
(6.71)

(−1)µ(Ep −m)jl−1(pr′)
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωl,−µ−1(θ′, ϕ′)

1 + σ3

2
iγ5 (6.72)

− (−1)µ(Ep −m)jl(pr
′)
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωl,−µ−1(θ′, ϕ′)
1− σ3

2
iγ5 (6.73)

=

∫
d(cosθ′)dϕ′dr′(r′)2 Ψ†(r′, θ′, ϕ′)

(
(6.74)

pjl(pr
′)
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωlµ(θ′, ϕ′)

1 + σ3

2
(6.75)

+ pjl−1(pr′)
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωlµ(θ′, ϕ′)
1− σ3

2
(6.76)

(Ep −m)jl−1(pr′)
(
pjl(pr) + (Ep −m)jl−1(pr)iγr

)
Ωl,µ(θ′, ϕ′)

1− σ3

2
(6.77)

− (Ep −m)jl(pr
′)
(
pjl−1(pr)− (Ep −m)jl(pr)iγ

r
)

Ωl,µ(θ′, ϕ′)
1 + σ3

2
(6.78)

=

∫
d(cosθ′)dϕ′dr′(r′)2 Ψ†(r′, θ′, ϕ′)Ωlµ

2p2Ep
Ep +m

(
(6.79)

jl(pr
′)jl(pr)

1 + σ3

2
+ jl−1(pr′)jl−1(pr)

1− σ3

2

)
(6.80)

If we integrate on p and use the completeness of the spherical Bessel functions, we get:∫
d(cosθ)dϕΨ

′†(r, θ, ϕ)Ωlµ(θ, ϕ) =

∫
d(cosθ)dϕΨ†(r, θ, ϕ)Ωlµ(θ, ϕ) (6.81)

Since the columns of the spherical matrices Ωlµ are a complete basis, we have shown the
completeness of the Hankel-Majorana transform:∫

d(cosθ)dϕdr r2 Ψ
′†(r, θ, ϕ)Φ(r, θ, ϕ) =

∫
d(cosθ)dϕdr r2Ψ†(r, θ, ϕ)Φ(r, θ, ϕ) (6.82)

For all Φ ∈ L2
4(R3).
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7 Relation between the Dirac and Majorana Mo-

mentums

The Dirac equation for the free fermion can be written as:

iγ0(i/∂ −m)Ψ(x) = 0 (7.1)

Where Ψ is a spinor. Note that the equation contains only Majorana matrices. The
Fourier or Hankel Transforms of the equation are:

(∂0 + iγ0Ep)Ψ(x0, p) = 0 (7.2)

The solutions can be written as:

Ψ(x) =

∫
d3~p

(2π)3

/pγ0 +m√
Ep +m

√
2Ep

e−iγ
0p·xψ(~p) (7.3)

Where p0 = Ep and ψ(~p) is an arbitrary spinor. If ψ(~p) is a Majorana spinor, then the
solution Ψ(x) is also a Majorana spinor.

The solutions can also be written as:

Ψ(x0, r, θ, ϕ) =
∑

l≥1,−l≤µ≤l

∫ +∞

0

dp(Ep +m)

Epπ
Λ(p, l, µ, r, θ, ϕ)e−iγ

0Ep·x0ψ(p, l, µ) (7.4)

Where ψ(p, l, µ) is an arbitrary spinor and Λ are the Hankel-Majorana matrices.
The set of quantum numbers (~p) and (p, l, µ) are related with the linear and spherical

momentums of Dirac spinors. The Majorana spin is related with the Dirac spin. For
instance, to obtain the Dirac spinor solution for the free electron, we just set ψe(~p) =
1+γ0

2
ψe(~p) and we get:

Ψe(x) =

∫
d3~p

(2π)3

/p+m√
Ep +m

√
2Ep

e−ip·x
1 + γ0

2
ψe(~p) (7.5)

The matrix γ0 was replaced by the identity matrix 1, due to the presence of the projector.
The same thing happens with the spherical solution and with the spin.

To obtain the Dirac spinor solution for the free positron, we just set ψp(~p) = 1−γ0
2
ψp(~p)

and the matrix γ0 gets replaced by −1.

8 Energy-momentum space

Now we can extend our transforms to define an energy-momentum space. We will use
the notation:

[/p] = γ0Ep − ~γ · ~p (8.1)

Note that /p is not necessarily on-shell, while [/p] is on-shell, that is ([/p])2 = m2. Both Ep
and [/p] do not depend on p0.
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Definition 8.1. Given a Majorana spinor Ψ ∈ L2
4(R4), the Fourier-Majorana transform

in space-time is defined as:

ψ(p) ≡
∫
d4xO(p, x)Ψ(x) (8.2)

Where O(p, x) is:

O(p, x) ≡ eiγ
0p0x0O(~p, ~x) = eiγ

0p·x [/p]γ0 +m√
Ep +m

√
2Ep

(8.3)

Note that Ep and [/p] = γ0Ep − ~γ · ~p don’t depend on p0, but p · x = p0x0 − ~p · ~x does.

Proposition 8.2. The inverse Fourier-Majorana transform in space-time is given by:

Ψ(x) =

∫
d4p

(2π)4
O†(p, x)ψ(p) (8.4)

Where O† is the hermitian conjugate of O, given by:

O†(p, x) = O†(~p, ~x)e−iγ
0p0·x0 =

[/p]γ0 +m√
Ep +m

√
2Ep

e−iγ
0p·x (8.5)

Proof.∫
d4p

(2π)4
O†(p, y)O(p, x) =

∫
d3~p

(2π)3
O†(~p, ~y)

(∫ dp0

2π
e−iγ

0p0(y0−x0)
)
O(~p, ~x) (8.6)

= δ(y0 − x0)

∫
d3~p

(2π)3
O†(~p, ~y)O(~p, ~x) (8.7)

= δ4(y − x) (8.8)

∫
d4xO(q, x)O†(p, x) =

∫
dx0eiγ

0q0x0
(∫

d3~xO(~q, ~x)O†(~p, ~x)
)
e−iγ

0p0x0 (8.9)

= (2π)3δ3(~q − ~p)
∫
dx0eiγ

0(q0−p0)x0 (8.10)

= (2π)4δ4(q − p) (8.11)

Definition 8.3. The Hankel-Majorana transform in space-time of a Majorana spinor
Ψ ∈ L2

4(R4) is:

ψ′(p0, p, l, µ) ≡
∫
dx0eiγ

0p0x0ψ(x0, p, l, µ) (8.12)

Where ψ(x0, p, l, µ) is the Hankel-Majorana transform in space of Ψ.
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Proposition 8.4. Let ψ(p0, p, l, µ) be the Hankel-Majorana Transform in space-time of
a Majorana spinor Ψ ∈ L2

4(R4). The inverse Hankel-Majorana Transform of ψ(p0, p, l, µ)
is:

Ψ′(x0, r, θ, ϕ) ≡
∑

l≥1,−l≤µ≤l

∫ +∞

0

dp(Ep +m)

Epπ

∫ +∞

−∞

dp0

2π
Λ(p, l, µ, r, θ, ϕ)e−iγ

0p0·x0ψ(p0, p, l, µ)

(8.13)

It verifies, for all Φ ∈ L2
4(R4):∫

dx0d(cosθ)dϕ dr r2 Φ†(x0, r, θ, ϕ)Ψ′(x0, r, θ, ϕ) = (8.14)

=

∫
dx0d(cosθ)dϕ dr r2Φ†(x0, r, θ, ϕ)Ψ(x0, r, θ, ϕ) (8.15)

Proof. The matrices Λ(p, l, µ, r, θ, ϕ)e−iγ
0p0·x0 are orthogonal:∫

dx0d(cosθ)dϕ dr r2 eiγ
0p′0·x0Λ†(p′, l′, µ′, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ)e−iγ

0p0·x0 = (8.16)

= δl′lδµ′µ
πEpδ(p− p′)
Ep +m

∫
dx0eiγ

0p′0·x0e−iγ
0p0·x0 = δl′lδµ′µ

πEpδ(p− p′)
Ep +m

2πδ(p′0 − p0)

(8.17)

To show completeness, we first show that:∑
l′µ′

∫ +∞

0

dp′ (E ′p +m)

E ′pπ

∫
d(cosθ)dϕdr r2 (8.18)

ψ†(p0, p′, l′, µ′)eiγ
0p0·x0Λ†(p′, l′, µ′, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ) = (8.19)

= ψ†(p0, p, l, µ)eiγ
0p0·x0 (8.20)

=

∫
dx′0d(cosθ)dϕdr r2Ψ†(x′0, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ)e−iγ

0p0x′0eiγ
0p0·x0 (8.21)

If we integrate on p0, we get:∫
d(cosθ)dϕdr r2Ψ

′†(x0, r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ) =

∫
d(cosθ)dϕdr r2Ψ†(r, θ, ϕ)Λ(p, l, µ, r, θ, ϕ)

(8.22)

Since the columns of the Hankel matrices Λ(p, l, µ, r, θ, ϕ) are a complete basis, we have
shown the completeness of the Hankel-Majorana transform in space-time:∫

dx0d(cosθ)dϕdr r2 Ψ
′†(x0, r, θ, ϕ)Φ(x0, r, θ, ϕ) = (8.23)

=

∫
dx0d(cosθ)dϕdr r2Ψ†(x0, r, θ, ϕ)Φ(x0, r, θ, ϕ) (8.24)

For all Φ ∈ L2
4(R4).
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9 Conclusion

We fulfilled our goal to show that (without second quantization operators) all the
kinematic properties of a free spin 1/2 particle with mass are present in the real solutions
of the real free Dirac equation.

Since we live in a world where the Lorentz symmetries are important, we hope that
the Majorana transforms can have some applications. I personally think that the study
of the Majorana spinor properties will be useful in our understanding of the Standard
Model. In particular, since the Majorana spinors are an irreducible representation of the
double cover of the proper orthochronous Lorentz group, like the Weyl spinor, as well as
the full Lorentz group, unlike the Weyl spinor, I think that their study might improve
our knowledge about the discrete symmetries of the Lorentz group and the interactions
that violate them.
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