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We show that it is possible to produce gravitational lenses at laboratory scale by means of a toroidal 
device which strongly intensifies the radial gravitational acceleration at its nucleus, and can make the 
acceleration repulsive besides attractive. This means that a light flux through the toroid can become 
convergent or divergent from its central axis. These lenses are similar to optical lenses and can be very 
useful for telescopes, microscopes, and for the concentration of solar light in order to convert solar 
energy into thermal energy. 
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 1. Introduction 
 
          It is known that Gravitational fields 
can bend light. This effect was confirmed in 
1919 during a solar eclipse, when Arthur 
Eddington observed the light from stars 
passing close to the sun was slightly bent, so 
that stars appeared slightly out of position 
[1]. Einstein realized that a massive 
astronomical object can bend light making 
what is called a gravitational lens. The 
gravitational lensing is one of the predictions 
of Einstein's general theory of relativity. 
Although this phenomenon was first 
mentioned in 1924 by Orest Chwolson [2], 
the effect is more commonly associated with 
Einstein, who published a more famous 
article on the subject in 1936 [3, 4]. 
          Here we show that it is possible to 
produce gravitational lenses at laboratory 
scale, by means of a toroidal device which 
strongly intensifies the radial gravitational 
acceleration at its nucleus, and can make the 
acceleration repulsive besides attractive * [5]. 
This means that a light flux through the 
toroid can becomes convergent or divergent 
from its central axis. These lenses are similar 
to optical lenses and can be very useful for 
telescopes, microscopes, and for the 
concentration of solar light in order to 
convert solar energy into thermal energy. 
  
            
                                           
* De Aquino, F. (2008) Process and Device for Controlling  
    the  Locally  the  Gravitational  Mass   and   the  Gravity  
    Acceleration, BR  Patent Number: PI0805046-5, July 31,  
    2008. 

 2. Theory 
 
          From the quantization of gravity it 
follows that the gravitational mass mg and 
the inertial mass mi are correlated by means 
of the following factor [5]: 
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where  is the rest inertial mass of the 
particle and 

0im
pΔ  is the variation in the 

particle’s kinetic momentum;  is the speed 
of light.   

c

          When pΔ  is produced by the 
absorption of a photon with wavelengthλ , it 
is expressed by λhp =Δ . In this case, Eq. 
(1) becomes 
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where cmh i00 =λ  is the De Broglie 
wavelength for the particle with rest inertial 
mass .   0im
           It has been shown that there is an 
additional effect - Gravitational Shielding 
effect - produced by a substance whose 
gravitational mass was reduced or made 
negative [6]. The effect extends beyond 
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substance (gravitational shielding) , up to a 
certain distance from it  (along the central 
axis of gravitational shielding). This effect 
shows that in this region the gravity 
acceleration, , is reduced at the same 
proportion, i.e.,

1g
gg

11 χ=  where 

01 ig mm=χ  and  is the gravity 
acceleration before the gravitational 
shielding). Consequently, after a second 
gravitational shielding, the gravity will be 
given by

g

ggg
21122 χχχ == , where 

2
χ  is 

the value of the ratio 0ig mm for the second 
gravitational shielding. In a generalized way, 
we can write that after the nth gravitational 
shielding the gravity, , will be given by ng
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          This possibility shows that, by means 
of a battery of gravitational shieldings, we 
can strongly intensify the gravitational 
acceleration.   
          From Electrodynamics we know that 
when an electromagnetic wave with 
frequency and velocity  incides on a  
material  with relative  permittivity 

f c

rε , 
relative magnetic permeability rμ  and 
electrical conductivity σ , its velocity is 
reduced to rncv =  where  is the index of 
refraction of the material, given by [

rn
7]  
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If  ωεσ >> , fπω 2= , Eq. (4) reduces to 
 

( )5
4 0 f

n r
r πε

σμ
=  

 
Thus, the wavelength of the incident 
radiation (See Fig. 1) becomes 
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Fig. 1 – Modified Electromagnetic Wave. The 
wavelength of the electromagnetic wave can be
strongly reduced, but its frequency remains the same.

v = c v = c/nr 

λ = c/f λmod = v/f = c/nr f

nr 

  
 
 
 
        If a lamina with thickness equal toξ  
contains  atoms/mn 3, then the number of 
atoms per area unit is ξn . Thus, if the 
electromagnetic radiation with frequency 

incides on an area  of the lamina it 
reaches
f S

ξnS  atoms. If it incides on the total 
area of the lamina, , then the total number 
of  atoms reached by the radiation is 

fS

ξfnSN = .  The number of atoms per unit of 
volume, , is given by n
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where  is the 
Avogadro’s number; 

kmoleatomsN /1002.6 26
0 ×=

ρ  is the matter density 
of the lamina (in kg/m3) and A is the molar 
mass(kg/kmole).                
          When an electromagnetic wave incides 
on the lamina, it strikes  front atoms, 
where

fN
( ) mff SnN φ≅  , mφ  is the “diameter” of 

the atom. Thus, the electromagnetic wave 
incides effectively on an area mf SNS=  , 

where 2
4
1

mmS πφ=  is the cross section area of 
one atom. After these collisions, it carries out 

 with the other atoms (See Fig.2).   collisionsn
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Fig. 2 – Collisions inside the lamina.   
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Thus, the total number of collisions in the 
volume ξS is 
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The power density, , of the radiation on the 
lamina can be expressed by 

D
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           We can express the total mean number 
of collisions in each atom, , by means of 
the following equation  

1n

 

( )101 N
Nn

n collisionsphotonstotal=

 
Since in each collision a momentum λh  is 
transferred to the atom, then the total 
momentum transferred to the lamina will be 

( ) λhNnp 1=Δ . Therefore, in accordance 
with Eq. (1), we can write that 
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Since Eq. (8) gives ξSnN lcollisions = , we get 

( ) (122 ξSn
hf
PNn lcollisionsphotonstotal ⎟⎟

⎠
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⎝
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=

Substitution of Eq. (12) into Eq. (11) yields 
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Substitution of P given by Eq. (9) into Eq. 
(13) gives 
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Substitution of ( ) mflf SnN φ≅  and mf SNS =   
into Eq. (14) results 
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where ( ) ( ) ( )llli Vm ρ=0 .  
         Now, considering that the lamina is 
inside an ELF electromagnetic field with 
E and B , then we can write that [8] 
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Substitution of Eq. (16) into Eq. (15) gives 
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In the case in which the area is just the 
area of the cross-section of the lamina

fS
( )αS , 

we obtain from Eq. (17), considering that 
( ) ( ) ξρ αSm lli =0 , the following expression 

 

( )

( )

( )

( )
( )1811

2
121

2

22
0

2223

0 ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

λρμ

φα

fc
ESSnn

m
m

l

mmllr

li

lg

 
)

 



 4
If the electrical conductivity of the lamina, 

( )lσ , is such that ( ) ωεσ >>l , then the value of 
λ is given by Eq. (6), i.e., 

( )194
mod σμ

πλλ
f

==

Substitution of Eq. (19) into Eq. (18) gives  
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Note that tEE m ωsin= .The average value 
for 2E  is equal to 2

2
1

mE  because E  varies 
sinusoidaly (   is the maximum value 

for
mE

E ). On the other hand, 2mrms EE = . 
Consequently we can change 4E  by , 
and the equation above can be rewritten as 
follows 

4
rmsE
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          Now consider the Artificial 
Gravitational Lenses shown in Fig.3.  
          Basically they are rectangular toroids. 
Inside them there are two dielectric rings 
with 1≅rε  and an Aluminum ring with mass 
density  (See Fig.3). The 
rectangular toroid is filled with air at ambient 
temperature and 1atm. Thus, inside the tube, 
the air density is 

3.2700 −= mkgρ

 
( )22.2.1 3−≅ mkgairρ

 
The number of atoms of air (Nitrogen) per 
unit of volume, , according to Eq.(7), is 
given by 

airn

 

( )23/1016.5 3250 matoms
A

N
n

N

air
air ×==

ρ

 

Here, the area refers to the area of the 
ring inside the air toroid, with average radius 

αS

2ie rrr += and heightα , i.e.,  
   

( ) ( )eiei rrrrS +=+= παπαα 22
 
where  is the inner radius and  the outer 
radius of the rectangular toroid. For 

ir er

mmri 400= , mmre 650=  and mm60=α , 
we get 
 

( ) ( )24198.0 2mrrS ei =+= παα

 
          The parallel metallic plates (p), shown 
in Fig.3 are subjected to different drop 
voltages. The two sets of plates (D), placed 
on the extremes of the toroid, are subjected to 

( ) VV rmsD 2.576=  at Hzf 5.2= , while the central 

set of plates (A) is subjected to 
( ) kVV rmsA 7.19= at Hzf 5.2= . Since mmd 98= , 

then the intensity of the electric field, which 
passes through the 36 cylindrical air laminas 
(each one with 5mm thickness) of the two 
sets (D), is  .  
 

( ) ( ) mVdVE rmsDrmsD /1088.5 3×==
 
and the intensity of the electric field, which 
passes through the 9 cylindrical air laminas 
of the two sets (A), is given by  
 

( ) ( ) mVdVE rmsArmsA /1097.1 5×==   
 
Note that the metallic rings (5mm thickness) 
are positioned in such way to block the 
electric field out of the cylindrical air  
laminas (also 5mm thickness). The objective 
is to turn each one of these laminas into a 
Gravity Control Cell (GCC) [6]. Thus, the 
system shown in Fig. 3 has 4 sets of GCC. 
Two with 18 GCC each  and two with 9 GCC 
each. The two sets with 18 GCC each are 
positioned at the extremes of the tube (D). 
They work as gravitational decelerator while 
the other two set with 9 GCC (A) each works 
as a gravitational accelerator, intensifying 
the gravity acceleration produced by the 
Aluminum ring. According to Eq. (3), this 
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gravity after the GCC becomes , 
where 

th9 0
9

9 gg χ=

( ) ( )lilg mm=χ  given by Eq. (21), and 
can be calculated starting from the 

expression of the gravitational mass of the 
half-toroid of Aluminum, 

0g

( toroidgM
2
1 ) , which is 

given by 
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On the other hand, we have that 
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whence we get 
 

( ) ( )262r
rrrG

g iie −−=
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which gives the value of  produced by the 
half-toroid at a point inside the nucleus of the 
toroid, distant 

g

r  from the center of the cross-
section of the rectangular toroid. Thus, the 
value of  , due to the first half-
toroid is  

0g ′ ( )0rr =
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The value of , due to the opposite half-
toroid is  

0g ′′
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Consequently, the resultant is 
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In the case of , the equation above 
reduces to 

0rri >>

( )272
0

0 i
ie r

r
rr

Gg ⎟⎟
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where  is the inner radius of the toroid;  
is the distance between the center of the 
cross-section of the Aluminum ring and the 
surface of the first GCC of the set (A); 

ir 0r

α is 
the thickness of the Aluminum ring. Here, 

mmr 350 = and mm60=α  (See Fig. 3 (a)).  
          The objective of the sets (D), with 18 
GCC each, is to reduce strongly the value of 
the external gravity along the rectangular 
toroid of air in D region. In this case, the 
value of the external gravity, , is reduced 

by the factor , where 
extg

extd g18χ 210−=dχ . For 

example, if  then this value is 

reduced to and, after the set A, it is 
increased by . Since the system is 
designed for 

2/81.9 smgext =

extd g18χ
9χ

1.627−=χ , then the gravity 
acceleration on the Aluminum ring 
becomes , 
this value is smaller than 

210189 /1047.1 smg extd
−×=χχ

( )[ ] 282
00 .109.9 −−×=−−≅ smrrrrGg iieπρα .  

         The electrical conductivity of air, inside 
the dielectric tube, is equal to the electrical 
conductivity of Earth’s atmosphere near the 
land, whose average value is 

mSair /101 14−×≅σ [9].  This value is of 
fundamental importance in order to obtain 
the convenient values of χ  and dχ , which 
are given by Eq. (21), i.e., 
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where ( ) 1≅= rrairrn με , since ( )ωεσ << ; 

, , 325 /1016.5 matomsnair ×= mm
101055.1 −×=φ

2202 1088.14 mS mm
−×==πφ  and Hzf 5.2= . 

Since ( ) mVE rmsA /1097.1 5×= ,  
, we get 

( ) mVE rmsD /1088.5 3×=

 
( )301.627−=χ

 
and 
 

( )3110 2−≅dχ
 
          Then the gravitational acceleration 
after the 9th gravitational shielding is  
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   It is known that gravitational fields can 
bend light, and that due to this effect, a light 
ray that passes very close to a body with 
gravitational mass  is deviated of an 
angle 

gM
δ (deflection angle) given by [3] 

 

( )33
4

2dc
GM g−=δ

 
where d is the distance of closest approach.               
          Here, we can obtain the expression of 
δ as follows: by comparing Eq. (26) with Eq. 
(25) we obtain . Substitution of 
this expression into Eq. (33) leads to the 
following equation 

2grGM g =

 

( )34
4

2

2

dc
gr

=δ

 
For 0rr = we have and equation above 
can be rewritten as follows 

0gg =

 

( )35
4

2

2
00

dc
rg

=δ

 
However, considering the symmetry of the 
gravitational lenses shown in Fig.3, it is easy 
to see that  Eq. (35) must be rewritten as 
follows 
 

( )36
44

2

2
00

2

2
00

dc
rg

dc
rg

′′
−

′
=δ

 
where d ′ and d ′′ are respectively, the 
distances of closest approach of the light ray 
with respect to the two sides of  the 
Aluminum ring (See Fig 3 (b)).   
          When the gravitational lenses are 
activated the value of  is amplified to 

, then Eq. (36) becomes 
0g

0
9 gχ
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χχ
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Note that, for dd ′′=′ (light ray at the center 
of the Gravitational lens) Eq. (37) gives 

0=δ  ( null deflection). On the other hand, if 
dd ′′<′ we have 0>δ  (the light ray is 

gravitationally attracted to the inner edge of 
rectangular toroid). Under these conditions, 
when a light flux crosses the gravitational 
lens (nucleus of the rectangular toroid), it 
becomes divergent in respect to the central 
axis of the toroid (See Fig. 3(c)). If 

dd ′′>′ then Eq. (37) shows that 0<δ  (the 
light ray is gravitationally repelled from the 
inner edge of rectangular toroid). In this case, 
when a light flux crosses the gravitational 
lens, it becomes convergent in respect to the 
central axis of the toroid (See Fig. 3(b)).   
          Substitution of the known values into 
Eq. (37) yields 
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          Note that the values of δ  can be easily 
controlled simply by controlling of the value 
of χ . Also note that the curvatures of the 
light rays are proportional to the distances 

and , similarly to the curvature of the 
light rays in the optical lenses. Then it is easy 
to see that these gravitational lenses can be 
very useful in building of telescopes, 
microscopes, and in concentrating solar light 
in order to convert solar energy into thermal 
energy. 

d ′ d ′′

 
 
 
          I would like to thank Physicist André 
Luis Martins (RJ, Brazil) who came up with 
the original idea to build Artificial 
Gravitational Lens using sets of Gravitational 
Shieldings, as shown in my previous papers.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 8
  
  
 
 
 
 
 
 
 
 
 

 
 

(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

(c) 
 

Fig. 3 – Artificial Gravitational Lens. (a) Cross-section of the Artificial Gravitational Lens. (b)
Cross-section of a Convergent Gravitational Lens. The light rays are gravitationally repelled from 
the inner edge of toroid (c) Cross-section of a Divergent Gravitational Lens. The light rays are
gravitationally attracted to the inner edge of toroid.    
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We show that it is possible to produce gravitational lenses at laboratory scale by means of a toroidal device which strongly intensifies the radial gravitational acceleration at its nucleus, and can make the acceleration repulsive besides attractive. This means that a light flux through the toroid can become convergent or divergent from its central axis. These lenses are similar to optical lenses and can be very useful for telescopes, microscopes, and for the concentration of solar light in order to convert solar energy into thermal energy.

         Key words: Modified theories of gravity, Gravitational lenses, Solar instruments. 

          PACS: 04.50.Kd, 98.62.Sb, 95.55.Ev. 

 1. Introduction

          It is known that Gravitational fields can bend light. This effect was confirmed in 1919 during a solar eclipse, when Arthur Eddington observed the light from stars passing close to the sun was slightly bent, so that stars appeared slightly out of position [1]. Einstein realized that a massive astronomical object can bend light making what is called a gravitational lens. The gravitational lensing is one of the predictions of Einstein's general theory of relativity. Although this phenomenon was first mentioned in 1924 by Orest Chwolson [2], the effect is more commonly associated with Einstein, who published a more famous article on the subject in 1936 [3, 4].


          Here we show that it is possible to produce gravitational lenses at laboratory scale, by means of a toroidal device which strongly intensifies the radial gravitational acceleration at its nucleus, and can make the acceleration repulsive besides attractive 
 [5]. This means that a light flux through the toroid can becomes convergent or divergent from its central axis. These lenses are similar to optical lenses and can be very useful for telescopes, microscopes, and for the concentration of solar light in order to convert solar energy into thermal energy.


 2. Theory

          From the quantization of gravity it follows that the gravitational mass mg and the inertial mass mi are correlated by means of the following factor [5]:
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 is the De Broglie wavelength for the particle with rest inertial mass 
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           It has been shown that there is an additional effect - Gravitational Shielding effect - produced by a substance whose gravitational mass was reduced or made negative [6]. The effect extends beyond substance (gravitational shielding) , up to a certain distance from it  (along the central axis of gravitational shielding). This effect shows that in this region the gravity acceleration, 
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 is the gravity acceleration before the gravitational shielding). Consequently, after a second gravitational shielding, the gravity will be given by

[image: image15.wmf]g


g


g


2


1


1


2


2


c


c


c


=


=


, where 

[image: image16.wmf]2


c


 is the value of the ratio

[image: image17.wmf]0


i


g


m


m


for the second gravitational shielding. In a generalized way, we can write that after the nth gravitational shielding the gravity,
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          This possibility shows that, by means of a battery of gravitational shieldings, we can strongly intensify the gravitational acceleration.  


          From Electrodynamics we know that when an electromagnetic wave with frequency 
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 incides on a  material  with relative  permittivity 
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, its velocity is reduced to 
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 is the index of refraction of the material, given by [7] 
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If  
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Thus, the wavelength of the incident radiation (See Fig. 1) becomes
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Fig. 1 – Modified Electromagnetic Wave. The 


wavelength of the electromagnetic wave can be 


strongly reduced, but its frequency remains the same. 
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        If a lamina with thickness equal to
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 atoms/m3, then the number of atoms per area unit is
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 is the Avogadro’s number; 
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 is the matter density of the lamina (in kg/m3) and A is the molar mass(kg/kmole).               


          When an electromagnetic wave incides on the lamina, it strikes 
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Fig. 2 – Collisions inside the lamina.   
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Thus, the total number of collisions in the volume 
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The power density,
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, of the radiation on the lamina can be expressed by
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           We can express the total mean number of collisions in each atom,
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, by means of the following equation 
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Since in each collision a momentum 
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 is transferred to the atom, then the total momentum transferred to the lamina will be 
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. Therefore, in accordance with Eq. (1), we can write that
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Since Eq. (8) gives 
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Substitution of Eq. (12) into Eq. (11) yields
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Substitution of 
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given by Eq. (9) into Eq. (13) gives
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Substitution of
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  into Eq. (14) results
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where 
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         Now, considering that the lamina is inside an ELF electromagnetic field with 
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and
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, then we can write that [8]
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Substitution of Eq. (16) into Eq. (15) gives
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In the case in which the area 
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is just the area of the cross-section of the lamina
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If the electrical conductivity of the lamina, 
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Substitution of Eq. (19) into Eq. (18) gives 
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          Now consider the Artificial Gravitational Lenses shown in Fig.3. 

          Basically they are rectangular toroids. Inside them there are two dielectric rings with
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 (See Fig.3). The rectangular toroid is filled with air at ambient temperature and 1atm. Thus, inside the tube, the air density is
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The number of atoms of air (Nitrogen) per unit of volume, 
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, according to Eq.(7), is given by
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Here, the area 
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refers to the area of the ring inside the air toroid, with average radius 
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where 
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 is the inner radius and 
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          The parallel metallic plates (p), shown in Fig.3 are subjected to different drop voltages. The two sets of plates (D), placed on the extremes of the toroid, are subjected to 
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, while the central set of plates (A) is subjected to 
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, then the intensity of the electric field, which passes through the 36 cylindrical air laminas (each one with 5mm thickness) of the two sets (D), is  . 
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and the intensity of the electric field, which passes through the 9 cylindrical air laminas of the two sets (A), is given by 
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Note that the metallic rings (5mm thickness) are positioned in such way to block the electric field out of the cylindrical air  laminas (also 5mm thickness). The objective is to turn each one of these laminas into a Gravity Control Cell (GCC) [6]. Thus, the system shown in Fig. 3 has 4 sets of GCC. Two with 18 GCC each  and two with 9 GCC each. The two sets with 18 GCC each are positioned at the extremes of the tube (D). They work as gravitational decelerator while the other two set with 9 GCC (A) each works as a gravitational accelerator, intensifying the gravity acceleration produced by the Aluminum ring. According to Eq. (3), this gravity after the 
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can be calculated starting from the expression of the gravitational mass of the half-toroid of Aluminum, 
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On the other hand, we have that
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whence we get
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which gives the value of 
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 produced by the half-toroid at a point inside the nucleus of the toroid, distant 
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 from the center of the cross-section of the rectangular toroid. Thus, the value of
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The value of
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Consequently, the resultant is
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In the case of
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, the equation above reduces to




[image: image132.wmf](


)


27


2


0


0


i


i


e


r


r


r


r


G


g


÷


÷


ø


ö


ç


ç


è


æ


-


-


@


pra




where 
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 is the inner radius of the toroid; 
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 is the distance between the center of the cross-section of the Aluminum ring and the surface of the first GCC of the set (A); 
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 (See Fig. 3 (a)). 


          The objective of the sets (D), with 18 GCC each, is to reduce strongly the value of the external gravity along the rectangular toroid of air in D region. In this case, the value of the external gravity,
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, this value is smaller than 
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         The electrical conductivity of air, inside the dielectric tube, is equal to the electrical conductivity of Earth’s atmosphere near the land, whose average value is 
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[9].  This value is of fundamental importance in order to obtain the convenient values of 
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          Then the gravitational acceleration after the 9th gravitational shielding is 




[image: image162.wmf](


)


(


)


32


2


0


9


0


9


9


ú


û


ù


ê


ë


é


-


-


=


=


r


r


r


r


G


g


g


i


i


e


pra


c


c




   It is known that gravitational fields can bend light, and that due to this effect, a light ray that passes very close to a body with gravitational mass 
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 is deviated of an angle 
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where 
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is the distance of closest approach.              


          Here, we can obtain the expression of 
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as follows: by comparing Eq. (26) with Eq. (25) we obtain 
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. Substitution of this expression into Eq. (33) leads to the following equation
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For 
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and equation above can be rewritten as follows



[image: image172.wmf](


)


35


4


2


2


0


0


d


c


r


g


=


d




However, considering the symmetry of the gravitational lenses shown in Fig.3, it is easy to see that  Eq. (35) must be rewritten as follows
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where 
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are respectively, the distances of closest approach of the light ray with respect to the two sides of  the Aluminum ring (See Fig 3 (b)).  

          When the gravitational lenses are activated the value of 
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Note that, for 
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(light ray at the center of the Gravitational lens) Eq. (37) gives 
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 (the light ray is gravitationally attracted to the inner edge of rectangular toroid). Under these conditions, when a light flux crosses the gravitational lens (nucleus of the rectangular toroid), it becomes divergent in respect to the central axis of the toroid (See Fig. 3(c)). If 
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then Eq. (37) shows that 
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 (the light ray is gravitationally repelled from the inner edge of rectangular toroid). In this case, when a light flux crosses the gravitational lens, it becomes convergent in respect to the central axis of the toroid (See Fig. 3(b)).  

          Substitution of the known values into Eq. (37) yields
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          Note that the values of 
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 can be easily controlled simply by controlling of the value of
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. Also note that the curvatures of the light rays are proportional to the distances 
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, similarly to the curvature of the light rays in the optical lenses. Then it is easy to see that these gravitational lenses can be very useful in building of telescopes, microscopes, and in concentrating solar light in order to convert solar energy into thermal energy.


          I would like to thank Physicist André Luis Martins (RJ, Brazil) who came up with the original idea to build Artificial Gravitational Lens using sets of Gravitational Shieldings, as shown in my previous papers.   
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Fig. 3 – Artificial Gravitational Lens. (a) Cross-section of the Artificial Gravitational Lens. (b) 


Cross-section of a Convergent Gravitational Lens. The light rays are gravitationally repelled from 


the inner edge of toroid (c) Cross-section of a Divergent Gravitational Lens. The light rays are 


gravitationally attracted to the inner edge of toroid.    
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Fig. 3 – Artificial Gravitational Lens. (a) Cross-section of the Artificial Gravitational Lens. (b) Cross-section of a Convergent Gravitational Lens. The light rays are gravitationally repelled from the inner edge of toroid (c) Cross-section of a Divergent Gravitational Lens. The light rays are gravitationally attracted to the inner edge of toroid.   
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Fig. 2 – Collisions inside the lamina.  
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Fig. 1 – Modified Electromagnetic Wave. The wavelength of the electromagnetic wave can be strongly reduced, but its frequency remains the same.
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