
1

COMPLEX NOISE-BITS AND LARGE-SCALE INSTANTANEOUS PARALLEL
OPERATIONS WITH LOW COMPLEXITY

HE WEN(a, b), LASZLO B. KISH(a), AND ANDREAS KLAPPENECKER(c)

(a)Texas A&M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128,
USA

(b)Hunan University, College of Electrical and Information Engineering, Changsha, 410082, China
(c)Texas A&M University, Department of Computer Science, College Station, TX 77843-33112, USA

Received ()
Revised ()

Accepted ()
Communicated by

We introduce the complex noise-bit as information carrier, which requires noise signals in two
parallel wires instead of the single-wire representations of noise-based logic discussed so far. The
immediate advantage of this new scheme is that, when we use random telegraph waves as noise
carrier, the superposition of the first 2N integer numbers (obtained by the Achilles heel operation)
yields non-zero values. We introduce basic instantaneous operations, with O(20) time and hardware
complexity, including bit-value measurements in product states, single-bit and two-bit noise gates
(universality exists) that can instantaneously operate over large superpositions with full parallelism.
We envision the possibility of implementing instantaneously running quantum algorithms on classical
computers while using similar number of classical bits as the number of quantum bits emulated
without the necessity of error corrections. Mathematical analysis and proofs are given.

Keywords: Noise-based logic; noise-based computations; deterministic logic.

1. Introduction
Very recently, new types of deterministic logic systems and computing have been
introduced, noise-based logic, where the information carrier is a random noise [1-9]. The
bit values can be represented by various types of independent (orthogonal) random noises,
their products (including their set-theoretical products for brain logic), and their
superposition [1]. The independent base noises and their superpositions form the logic
base and its space and the products of independent noise form the logic hyperspace [1].
Generally, from N independent base noises, which are called noise-bits, a hyperspace of

 2N dimensions can be formed, which means 22N

 logic values when superpositions are
utilized [2,3].

Noise-based logic versions have been classified according to their signals (continuum
[1,2], spikes [3-5], random-telegraph waves [4-7], etc.), or their way of evaluating logic
values (correlator-based [1,2] or instantaneous [4,5]). All these logic schemes have been
proven universal [1,4,5] when they represent Boolean logic variables.

Also an efficient string verification algorithm [7] has been introduced that is utilizing
product vectors in the hyperspace while computing the hash function during its operation.

H. Wen, L.B. Kish, and A. Klappenecker

2

In the present paper, we shall introduce a new instantaneous logic scheme, which
corresponds to the universal logic system of quantum computers while using less
hardware and time complexity for operations. Some of the advantages of the scheme that
it is free from decoherence-related errors and it can be realized by today's technology. In
Section 2, we introduce the concepts and illustrate them

2. The earlier, real number based RTW representation
In the present paper, we will utilize discrete-time, two-state random telegraph waves
(RTW) [4,5,7] , which are two-state random noises to identify the noise-bit and its value.
This is not strictly necessary however it has practical advantages during practical
realization. Our RTWs have either +1 or -1 value, which is randomly selected with 50%
probability at the beginning of each clock period, and this value does not change during
the rest of the clock interval. Two product of independent RTWs will be a new RTW that
is statistically independent from the original ones thus the product does not require higher
bandwidth than the original RTWs do [7].
Let the stochastic time functions Ak Ak (t) and Bk Bk (t) (k = 1, ...n) be independent,
discrete-time RTW signals with ±1 random values, each value with 50% probability. In
the earlier, real number based RTW representation, the k-th noise bit and its values are
defined as:

0k = Ak and

1k = Bk (1)

The noise representing the product state

x1x2...xn = X1X 2...X n (bit string) of n noise-

bits (where

xm

 is the actual noise-bit value, 0 or 1, and

X m is its RTW) will also be an

RTW, which is statistically independent from any of the RTWs in the product [7]. Such a
representation can be utilized for hashing and efficient string verification [7]. It is a great
advantage of this system that the k-th noise-bit's logic value can instantaneously be
inverted (NOT operation) by multiplying the product by

Ak Bk and this holds even for the

superposition of such product strings, indicating a large parallelism. Similar other
operations are also possible by multiplying the system state with a polynomial expression
of the RTWs representing noise bits, see Section 3. However, measurements of bit values
in large products and interacting bit operations need the use of "ghost" states which are
the most powerful tools for large parallelism, see Section 2.3.
However, the computing potential of this scheme is greatly reduced when we generate the

superposition Y (2n) of the first 2n integer numbers by Achilles heel operation [2]:

Y (2n) =
1

2n

01 + 11() 02 + 12()... 0n + 1n() (2)

Unfortunately, the Y (2n) time function will be zero most of the time because the
probability that the sum within one parenthesis is not zero is 50% therefore the probability

that the whole product is non-zero during a given clock period is 1 / 2n . Thus even though

we can do a NOT operation on 2n bits in a parallel and instantaneous way, we will not be

3

able to observe the result within a reasonable time frame by using the representation
shown in Eq. 1.

The complex representation given below is free from this deficiency.

3. Complex RTW representation and its basic properties

3.1. Real vs imaginary representation of bit values

Let the stochastic time functions Ak Ak (t) and Bk Bk (t) (k = 1, ...n) be independent,
discrete-time RTW signals with ±1 random values, each value with 50% probability. The
k-th complex noise bit is defined as:

0k = Ak and

1k = iBk (3)

where the presence of the imaginary unit i in a term indicates that the given RTW is in the
"Im" wire while the absence of i indicates that the given RTW is in the "Re" wire.

To do algebra on the set of noise-bits, the rules of operations on complex numbers are
applied. For example, the product state is built up by the complex product of the noise-bits
where the rules of multiplying complex numbers are applied. Thus, a gate producing a
product has 4 input wires and 2 output wires. Therefore, the product state

x1x2 ...xn of n

noise-bits will also be a complex number with the absolute value of 1. Typical noise-gates
will perform operations so that the absolute value of the output complex signal remains 1.

For example, the NOT operation will swap the real and imaginary parts and Hadamard
operation will produce:

Hk 0k =
1

2
0k + 1k() =

1

2
(Ak + iBk) (4)

Hk 1k =
1

2
0k 1k() =

1

2
(Ak - iBk) (5)

A particular advantage of this representation is that the Achilles heel operation results in
the product of complex numbers with unit absolute values thus the absolute value of

 Y (2n) is always 1 and never zero:

H. Wen, L.B. Kish, and A. Klappenecker

4

Y (2n) =
1

2n

01 + 11() 02 + 12()... 0n + 1n() =

 =
A1 + iB1()

2

A2 + iB2()
2

...
An + iBn()

2

(7)

3.2. Complex conjugate representation of bit values

Let the stochastic time functions Ak Ak (t) and Bk Bk (t) (k = 1, ...n) be independent,
discrete-time RTW signals with ±1 random values, each value with 50% probability. The
k-th complex noise bit is defined as:

0k =
Ak + iBk

2
 and

1k =
Ak - iBk

2
 (8)

Similarly to the other complex representation shown above, to do algebra on the set of
noise-bits, the rules of operations on complex numbers are applied. Therefore, the product
state

x1x2 ...xn of n noise-bits will also be a complex number with unity absolute value.

Typical noise-gates will perform operations so that the absolute value of the output
complex signal remains 1.

For example, the NOT operation is a simple complex conjugation. Similarly to the other
complex representation above, Achilles heel operation results in the product of numbers

with unit absolute values (these numbers are real) thus the absolute value of Y (2n) is
always 1 and never zero:

Y (2n) =
1

2n

01 + 11() 02 + 12()... 0n + 1n() = A1A2 ...An (9)

4. Ghost states and operations on products and superpositions

As we have mentioned above, many operations with large parallelism are possible on
noise-bit product strings and their superposition by using simple algebraic manipulations
such us multiplying the state with a polynomial expression of noise-bits, see in Section 3.
However, the most powerful trick to do large-parallelism operations on noise-bits,
including interacting noise-bits, and measurements, is based on "ghost" bits. Let us

suppose that we have the superposition Y (2n) of 2n product strings:

Y (2n) = ck x1k x2k ...xnk

k=1

2n

= ck X1k X 2k ...X nk

k=1

2n

(10)

5

We can generate another superposition Y
*(2n) that has exactly the same logic values but

one or more of noise-bits are replaced by their "ghost" version, which are alternative
RTWs that are independent of the original 2n RTWs of the original scheme. Note, the star
 * does not stand for complex conjugation but it indicates one or more ghost bits in the
superposition, or if a star * is used with a noise bit, it indicates a ghost bit. That means,
if we want to create the ghost bits of m noise-bits, we will need 2m extra independent
RTW sources.

To illustrate the advantages of "ghost" bits, which are clearly due to the classical physical
information properties of noise-based logic, let us see a few important examples. First let

us generate Y
*(2n) with a ghost bit at the r-th position. Then the system states and RTWs

are as follows:

Y (2n) = ck x1k x2k ...xnk

k=1

2n

= ck X1k ...X rk ...X nk

k=1

2n

(11)

Y
* (2n) = ck x1k x2k ...xnk

k=1

2n

= ck X1k ...X rk
* ...X nk

k=1

2n

, (12)

where

X rk

* is the ghost bit. Thus we have two alternate systems, which represent the same
logic superpositions, but the r-th noise bit values in them are represented by different
RTWs. Some important applications are shown below. Without the restriction of
generality, suppose the "real vs imaginary representation" of bit values.

i) Measurement of the value of a given bit in an arbitrary product string without knowing
the values of the other bits. The product is:

Y (n) = x1x2 ...xr ...xn = X1X 2...X r ...X n (13)

The task is to measure the value of the r-th bit. We generate the product with the same bit
values but with ghost bit at the r-th position.

Y

*(n) = x1x2 ...xr ...xn = X1X 2...X r

*...X n (14)

Then we apply the following procedure:

 Y (n)Y *(n) = X 1X1X 2X 2...X r X r

*...X nX n = X r X r

* (15)

where the upper bar means complex conjugation and we used the

X X = X

2
= 1 relation.

H. Wen, L.B. Kish, and A. Klappenecker

6

Thus the Y (n)Y *(n) product is one of these two possibilities:

if

xr = 0 then Y (n)Y *(n) = Ar Ar

* , or if

xr = 1, then Y (n)Y *(n) = Br Br

* (16)

The

Ar Ar

* and

Br Br

* RTWs must be generated and compared with the Y (n)Y *(n) RTW,
see the relevant string verification method [7]. Observing just 83 clock steps, the

probability is less than 10 25 [7] that we do not have the decision because the RTWs look
identical during this time period. Thus, the measurement time and hardware does not

depend on the length of the product when means the measurement requires (20)
hardware and time complexity.

ii) Measure the weights of having 0 and 1 values at the r-th noise-bit in the
superposition. The system states can be written as:

Y (2n) = r 0r + r 1r = r Ar + riBr , (17)

Y

*(2n) = r 0r + r 1r = r Ar

*
+ riBr

* , (18)

where
 r

 and
 r

 are noise timefunctions related to the zero and 1 values of the r-th
noise-bit. In the case of a single product string, one of them is zero and the other one is the
product of RTWs (thus it is itself an RTW) representing the values of the rest of the bits in
the string. In the case of a superposition of product strings,

 r
 and

 r
 will also be

superpositions and in large systems, a Gaussian noise properties can be expected.

Utilizing the facts that

Ar

2

= Ar

*

2

= Br

2

= Br

*

2

= 1 , and that Ar , Ar

*
, Br and Br

*

and known (reference) RTWs, this linear system of equation can easily be solved when

Ar Br Ar

*
Br

* :

r =
Y (2n)Br Y

*(2n)Br

*

Ar Br Ar

*
Br

*

r = i
Y

*(2n) Ar

*
Y (2n) Ar

Ar Br Ar

*
Br

*
(19)

The weights of the

0

r and

1

r bit values are given by the time averages

r

2

t

 and

r

2

t

 , respectively.

Note, when

Ar Br = Ar

*
Br

* , the denominators in Equation 19 are zero thus that clock
period must be omitted or we can use more parallel ghost operations due their low

7

hardware complexity and use that ghost amplitude, which satisfies the inequality. If we

sue m parallel ghost bits, the probability that we still have a problem is 1/ 2
m thus, it

disappears fast with increasing m.

iii) Single noise-bit operations in a large superposition of product strings. The procedure
is as follows.

a) Follow the protocol described at point ii) until
 r

 and
 r

 are determined via Equation

19. Then multiply
 r

 and
 r

 by the relevant RTWs generated by the given logic gate

acting on

0

r and

1

r . In this way, the system's output state Yout (2
n) is synthesized

where the r-th noise-bit values are replaced by the output of the logic gate depending on
the actual values of the r-th bit in the given product string.

Example 1: To have the NOT gate acting on the r-th bit in all superposition terms, the
following sum is needed:

Yout (2

n) = NOTr Y (2n)

= r 1r + r 0r = i rBr + r Ar (20)

Note, by making the sum in Equation 20, we applied the NOT gate on the r-th bit in 2n

independent product strings. The hardware and time complexity we used go that is

negligible and it is independent of n, thus it is (20) complexity.

Example 2: To have the Hadamard gate acting on the r-th bit in all superposition terms,
the following sum is needed:

Yout (2
n) = Hr Y (2n)

= r

0r + 1r

2
+ r

0r 1r

2
= r

Ar + iBr

2
+ r

Ar iBr

2
 (21)

By making the sum in Equation 21, we applied the Hadamard gate on the r-th bit in 2n

independent product strings. The hardware and time complexity we used go that is

negligible and it is independent of n, thus it is (20) complexity.

iv) Two noise-bit operations in a large superposition of product strings. The same concept
as in iii) however now we must set up and solve the linear equations for both noise-bits
which requires only two new RTWs to construct three pairs of ghost bit values and four
independent linear equations. Considering the p-th and the r-th bits, we suppose that the

two new RTWs are

Ap

* and

Ar

* . Thus the three pairs of ghost bit values can be expressed
as

H. Wen, L.B. Kish, and A. Klappenecker

8

Ap
*

, Bp and Ar , Br

Ap, Bp and Ar
*

, Br

Ap
*

, Bp and Ar
*

, Br

(22)

And the interacting noise-bits are

Y (2n) = pr 0 p0r + pr 0 p1r + pr 1p0r + pr 1p1r =

 = pr Ap Ar + i pr ApBr + i prBp Ar prBpBr

(23)

Y
*

2
n

 = pr Ap

*
Ar + i pr Ap

*
Br + i prBp Ar prBpBr

Y
**

2
n

 = pr Ap Ar

*
+ i pr ApBr + i prBp Ar

*

prBpBr

Y

2
n

 = pr Ap

*
Ar

*
+ i pr Ap

*
Br + i prBp Ar

*

prBpBr

(24)

After solving the (23-24) system of equations for
 pr ,

 pr ,
 pr and

 pr , we can obtain

pr =

Y Y
*

 Y

**
Y

Ap Ap
*

 Ar Ar

*

pr =

Ar
*

Y
*

Y

 + Ar Y

**
Y

iBr Ap Ap
*

 Ar Ar

*

pr =

Ap
*

Y
**

Y

 + Ap Y

*
Y

iBp Ap Ap
*

 Ar Ar

*

pr =

Ar
*

ApY
*

Ap
*
Y

 + Ar Ap

*
Y

**
ApY

BpBr Ap Ap
*

 Ar Ar

*

(25)

In accordance with Eq. 23, multiplying
 pr ,

 pr ,
 pr and

 pr by the relevant RTWs

will synthesize the original superposition. In this way, the system's output state Yout (2
n)

is synthesized where the p-th and r-th noise-bit values are replaced by the output of the
logic gate depending on the values of the p-th and r-th bit in the given product string.

9

Example: To have the CNOT gate acting on the r-th bit with the p-th bit as control bit in
all the superposition terms, the following sum is needed:

Yout (2

n) = CNOTpr Y (2n)

= pr Ap Ar + i pr ApBr prBpBr prBp Ar (26)

By making the sum in Eq. 26, we applied the CNOT gate on the p-th and r-th bits in 2n

independent product strings. The hardware and time complexity we used go that is

negligible and it is independent of n, thus it is (20) complexity.

Whenever the zero-denominator problem emerges, it can be removed in the same ways as
it is shown after Eq. 19.

5. Hardware complexity of two-bits operations
It is obvious from Section 3 above that by utilizing ghost states, a CNOT operation can be
done on an exponentially large superposition with a polynomial hardware and time
complexity. However, if the task is to execute k CNOT operations sequentially on
different bit pairs in the product, when the results of all the sequential operations is

extracted, we will need to introduce 2
k ghost RTWs. It is an open question, if this

disadvantageous exponential hardware complexity need persists even for the situation
when we do not need to know the results of all the sequential operations.

6. Conclusion

In this paper we made a further step toward the goal of emulating quantum computing
algorithms by classical noise-based logic. We showed a way to represent the required
product states and their superpositions and how to do the required basic single bit and
two-bit operations with a high parallelism that is characteristics of idealistic quantum
computers.

Reaching the ultimate goal would indicate that to efficiently run the algorithms developed
for quantum computers, a classical noise-based logic hardware, including high-quality
random number generators based on classical statistical physics (e.g. thermal noise), is
enough.

Acknowledgments

This work has partially been supported by the National Natural Science Foundation of
China under grant 61002035.

References
1. L.B. Kish, "Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states",

Physics Letters A 373 (2009) 911–918.
2. L.B. Kish, S. Khatri, S. Sethuraman, "Noise-based logic hyperspace with the superposition of 2N states in a

single wire", Physics Lett. A 373 (2009) 1928–1934.

H. Wen, L.B. Kish, and A. Klappenecker

10

3. S.M. Bezrukov, L.B. Kish, "Deterministic multivalued logic scheme for information processing and
routing in the brain", Physics Lett. A 373 (2009) 2338-2342.

4. L.B. Kish, S. Khatri, F. Peper, "Instantaneous noise-based logic", Fluctuation and Noise Lett. 9 (2010)
323-330.

5. F. Peper, L.B. Kish, "Instantaneous, non-squeezed, noise-based logic", Fluctuation and Noise Lett. 10
(June 2011), open access: http://www.worldscinet.com/fnl/00/0001/open-access/S0219477511000521.pdf

6. Z. Gingl, S. Khatri, L.B. Kish, "Towards brain-inspired computing", Fluctuation and Noise Lett. 9 (2010)
403–412.

7. L.B. Kish, S. Khatri, T. Horvath, "Computation using Noise-based Logic: Efficient String Verification
over a Slow Communication Channel", European Journal of Physics B. 79 (2011) 85-90.

8. H. Wen, L.B. Kish, A. Klappenecker, F. Peper, "New noise-based logic representations to avoid some
problems with time complexity", Fluctuation and Noise Lett., 11(2012), 1250003.
http://arxiv.org/abs/1111.3859.

9. H. Wen, L.B. Kish, " Noise based logic: why noise? A comparative study of the necessity of randomness
out of orthogonality", Fluctuation and Noise Lett. , vol. 11, no. 4, Dec, 2012, In press.
http://arxiv.org/abs/1204.2545.

