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Abstract

One of causes why Goldbach’s binary problem was unsolved
over a long period is that binary representations of even integer
2n (BR2n) in the view of a sum of two odd primes(VSTOP) are
considered separately from other BR2n. By purpose of this work
is research of connections between different types of BR2n. For re-
alization of this purpose by author was developed the ”Arithmetic
of binary representations of even positive integer 2n” (ABR2n). In
ABR2n are defined four types BR2n. As shown in ABR2n all types
BR2n are connected with each other by relations which represent
distribution of prime and composite positive integers less than 2n
between them. On the basis of this relations (axioms ABR2n) are
deduced formulas for computation of the number of BR2n (NBR2n)
for each types. In ABR2n also is defined and computed Average
value of the number of binary sums are formed from odd prime and
composite positive integers < 2n (AVNBS). Separately AVNBS for
prime and AVNBS for composite positive integers. We also de-
duced formulas for computation of deviation NBR2n from AVNBS.
It was shown that if n go to infinity then NBR2n go to AVNBS that
permit to apply formulas for AVNBS to computation of NBR2n.
At the end is produced the proof of the Goldbach’s binary problem
with help of ABR2n. For it apply method of a proof by contra-
diction in which we make an assumption that for any 2n not exist
BR2n in the VSTOP then make computations other NBR2n and
for all cases we come to contradiction. Hence our assumption is
false and forall 2n > 2 exist BR2n in the VSTOP.

KEYWORDS 0.1 Binary representations of even integer 2n;
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Goldbach’s binary problem; ”strong” ,”even” Goldbach’s conjecture.
MSC: 11P32; 03E75 .

1 Introduction

On 7 June, 1742,the Prussian mathematician Christian Goldbach wrote
a letter to Leonhard Euler in which he proposed the following conjecture:
Every integer greater than 2 can be written as the sum of three primes.
He considered 1 to be a prime number. A modern version of Goldbach’s
original conjecture is: Every integer greater than 5 can be written as the
sum of three primes. Euler, becoming interested in the problem, replied by
noting that this conjecture is equivalent with another version: Every even
integer greater than 2 can be written as the sum of two primes. Euler’s
version is the form in which the conjecture is usually expressed today. It
is also known as the strong,even, or binary Goldbach’s conjecture.

2 General conception

Definition 2.1 The binary representations of even positive integer 2n
in ABR2n are defined as bijective mappings :

f : X → Y (1)

y = 2n− x (2)

Where:
X{x|x ∈ N, 1 ≤ x < n}; (3)

Y {y|y ∈ N, n < y < 2n}; (4)

n- positive integer > 0
|X| = |Y | (5)

Definition 2.2 The set of binary representations of even positive integer
2n are defined as follows :
SBR2n {1 + (2n− 1) = 2n ;
2 + (2n− 2) = 2n ;
...
n− 1 + (2n− (n− 1)) = 2n}
The last is got by represent (2)
in the view of x+ y = 2n.
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Remark 2.1 Since n is not mapped into Y and it is mapped into itself
(automorphism) therefore mapping n → n and corresponding binary rep-
resentation n + n = 2n do not go into SBR2n which is formed only from
bijective mappings .By this reason n do not go into XUY. But it is not de-
noted that as a result of the exception of binary representations: 2+2 = 4
and 3 + 3 = 6 from SBR2n, 4 and 6 have not binary representations in
the view of a sum of two noncomposite positive integers. But it is not the
case.In SBR2n is in existence the binary representations 1 + 3 = 4 and
1 + 5 = 6. It is significant ”1” with primes are took in ABR2n to non-
composite positive integers. At that special status of ”1” in N is ignore in
ABR2n.

Definition 2.3 The set XUY consist of: even positive integers ,
odd positive integers inclusive odd composite positive integers
and noncomposite positive integers (pimes and ”1”).

Proposition 2.1 ∀ n > 1 always is fulfilled the condition |X| = |Y |.

Proof 2.1 Taking into account that 2n do not go into the set XUY
and n is excluded from the set XUY (see remark 2.1)
then we have :

|XUY | = 2n− 2 = 2(n− 1) (6)

Hence |XUY | is even for any n and thus ∀ n > 1 always is fulfilled
the condition |X| = |Y | . �

3 The types of binary representations even

positive integer 2n

In depend of that are x,y in the view of x+ y = 2n prime or composite
it can be four types binary representations of even positive integer 2n:

Definition 3.1 There is Type ”H” if x-odd prime positive integer or”1”
and y- odd prime positive integer.
|H|- the number of binary representations of Type ”H”.
|H|- positive integer > 0 ∀ 2n > 2.
This is the thesis which will be proved below (see sec.13).

Definition 3.2 There is Type ”Q” if x-odd composite positive integer;
and y-odd composite positive integer .
|Q|- the number of binary representations of Type ”Q”.
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|Q|- positive integer > 0 ∀ 2n > 22
exepting 2n = 26; 28; 32; 38; in which |Q| = 0 (see subsec. 16.4) .
The proof that |Q| > 0 ∀ 2n > 120 (see sec. 12) .
|Q| = 0 ∀ 2 < 2n < 24.

Definition 3.3 There is Type ”L” if x- odd prime positive integer or”1”
and y-odd composite positive integer or x-odd composite positive integer
and y- odd prime positive integer.
|L| - the number of binary representations of Type ”L”.
|L|- positive integer > 0 ∀ 2n > 8. (see corollary 8.1)
|L| = 0 ∀ 2 < 2n < 10.

Definition 3.4 There is Type ”E” if x-even positive integer
and y-even positive integer .
|E|- the number of binary representations of Type”E”.
|E|- positive integer > 0 ∀ 2n > 4. (see sec.5 prop.5.2)

4 The axioms of ABR2n

Definition 4.1 p- the number of noncomposite
integers (primes and ”1”) < 2n.
p = round(π(2n) + 1);
round - round -up to the nearest integer.
p− positive integer > 1 ∀ 2n > 2. (see proposition 5.5)

Definition 4.2 π(2n)− the number of primes < 2n

Axiom 4.1 The number of the binary representations type H (NBRH)
is connected with the number of the binary representations type L (NBRL)
as follows:

2|H|+ |L| = p− 1 (7)

∀ 2n > 2.
The expression (7) insists that odd noncomposite positive integers
less than 2n are allotted to types ”H”,” L” in compliance with balance (7).
In (7) the (−1) takes into account that ”2”is not odd noncomposite
positive integer.

Definition 4.3 s0 - the number of odd composite positive integers < 2n.
s0 - positive integer > 0 ∀ 2n > 8 (see proposition 5.4)
s0 = 0 ∀ 2 < 2n < 10.
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Axiom 4.2 The number of the binary representations Type Q (NBRQ) is
connected with the number of the binary representations Type ”L” (NBRL)
as follows:

2|Q|+ |L| = s0 (8)

∀ 2n > 2 .
The expression(8) insists that odd composite positive integers less than 2n
are allotted to types ”Q”, ”L” in compliance with balance (8).

Definition 4.4 G - the general number of binary representations in
SBR2n.
G - positive integer ∀ 2n > 2 (see proposition 5.1).

Axiom 4.3
|Q|+ |L|+ |H|+ |E| = G (9)

Definition 4.5 F -the general number of binary representations
with odd positive integers .
F − positive integer ∀ 2n > 2 (see proposition 5.3).

Axiom 4.4
|Q|+ |L|+ |H| = F (10)

5 The computation of G,F, S0, p, |E|
Proposition 5.1

G = n− 1 (11)

∀n > 1

Proof 5.1 The general number of elements in the set XUY by (6) equals
2(n−1). Taking into account that in forming of each binary representation
participate with two elements from the set XUY then we have: G = n−1.
∀n > 1 �

Proposition 5.2
|E| = [(n− 1)/2] (12)

∀ n > 2
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Proof 5.2 By definitions 2.1 ; 2.2 by elements of the set XUY
are numbers of the natural scale. Half of them are even integers.
Then the number of even integers in the set XUY equals:
1/2|XUY | = 2(1/2)(n− 1) = n− 1 .
Taking into account that in forming of each binary representation
participate by two elements from the set XUY we have: |E| = (n− 1)/2 .
Taking into account that for n - even |E| is not integer
that breaks the status of |E| since |E| is positive integer > 0
then |E| = [(n− 1)/2] is aliquot of (n− 1)/2
then we get : |E| = [(n− 1)/2] ∀ n > 2 �

Proposition 5.3

F = G− |E| = (n− 1)− [(n− 1)/2] (13)

∀ n > 1

Proof 5.3 Subtracting (10) from (9) we get: |E| = G− F
whence F = G− |E| . Taking into account (11), (12) finally we get:
F = (n− 1)− [(n− 1)/2] ∀ n > 1 �

Proposition 5.4

S0 = 2(n− 1)− (2[(n− 1)/2]− 1)− p (14)

∀ n > 1 .

Proof 5.4 By definition 2.3 for computation S0 it needs to subtract from
|XUY | the number of even composite positive integers ( 2|E| − 1) ( here
(-1) takes into accounts that ”2” is even prime integer)
and also the number of noncomposite positive integers- p then we get:
s0 = 2(n− 1)− (2[(n− 1)/2]− 1)− p. ∀ n > 1 �

Definition 5.1 p1 − the first approximation of p.
p2 − the second approximation of p.
p3 − the third approximation of p.

Proposition 5.5
p1 = round(2n/ln2n+ 1) (15)

p2 = round(2n/ln2n+ 2n/(ln2n)2 + 1) (16)

p3 = round(2n/ln2n+ 2n/(ln2n)2 + 4n/(ln2n)3 + 1) (17)
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Proof 5.5 As everybody knows [1] that the number of the primes less
than 2n is expressed as follows:
π(2n) = (2n/ln2n)

∫ 1

0
(1− (lny/ln2n) + (ln2y/ln22n) + . . .)dy

We are limited to three of the first terms of the series.
Integrating in parts then we get:
π(2n) = (2n/ln2n)(1 + 1/ln2n+ 2/ln22n)
Whence taking into account def 4.1 then we get :
p = round(2n/ln2n+ 2n/ln22n+ 4n/ln32n+ 1)
Whence we get:
p1 = round(2n/ln2n+ 1);
p2 = round(2n/ln2n+ 2n/ln22n+ 1);
p3 = round(2n/ln2 + 2n/ln22n+ 4n/ln32n+ 1) ; �

6 Corollaries of the axioms of ABR2n

Definition 6.1 |Q| − |H| > 0, ∀2n > 120.
|Q| − |H| < 0, ∀2 < 2n < 120.
Excepting 2n = 4; 94; 96; 100; 106; 118
(see (58) and definitions 8.9; 3.2 ).

Remark 6.1 Only |E| can be computed directly by (12)
others (|Q|, |L|, |H|) if is given one of them.

Corollary 6.1 Let are given |Q|, p then by axiom 4.2 we get:

|L| = s0 − 2|Q| (18)

Taking into account (14) then we get:

|L| = 2(n− 1)− (2[(n− 1)/2]− 1)− p− 2|Q| (19)

Next subtracting (7) from (8) we get:

2|Q| − 2|H| = s0 − p+ 1 (20)

Whence we get:
|H| = (2|Q| − s0 + p− 1)/2 (21)

Taking into account (14) then we get:

|H| = (2|Q| − 2(n− 1) + (2[(n− 1)/2]− 1) + 2p− 1)/2 (22)
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Corollary 6.2 Let are given |L|, p then by axiom 4.2 we get:

|Q| = (s0 − |L|)/2 (23)

Taking into account (14) then we get:

|Q| = (2(n− 1)− (2[(n− 1)/2]− 1)− p− |L|)/2 (24)

Next by axiom 4.1 we get:

|H| = (p− |L| − 1)/2 (25)

Corollary 6.3 Let are given |H|, p then by axiom 4.1 we get:

|L| = p− 2|H| − 1 (26)

Next by axiom 4.2 we get:

|Q| = (s0 − |L|)/2 (27)

Taking into account (26) then we get:

|Q| = (s0 − p+ 2|H|+ 1)/2 (28)

Taking into account (14) then we get:

|Q| = (2(n− 1)− (2[(n− 1)/2]− 1)− 2p+ 2|H|+ 1)/2 (29)

Corollary 6.4 subtract (7) from (8) then we get:

|Q| − |H| = (S0 − p+ 1)/2 (30)

Taking into account (14) then we get:

|Q| − |H| = (2(n− 1)− (2[(n− 1)/2]− 1)− 2p+ 1)/2 (31)

Corollary 6.5 With halp of the axioms 4.3; 4.4 we can control an accu-
racy of computations |Q|, |L|, |H|, |E|.

Remark 6.2 In the formulas (20) , (21) ,(22), (23) ,(24) , (25), (27) ,
(28) ,(29),(30) ,(31)
numerator is always even positive integer (The examples of the proof of
parity of numerator for the some formulas see subsection 16.1) then for
corresponding n the division by ”2” without residue is always possible and
status |Q|, |L|, |H|(positive integer ) is not broken.
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7 The simplified formulas

The formulas (12),(13),(14), (19),(22),(24) ,(29) , (31) can be simplified if
divide its for

n = 2i+ 1, i ∈ N (32)

and
n = 2i, i ∈ N ; (33)

Substituting (32) , (33) to (12)...(31) and making simplifications then
returning to n : (i = (n− 1)/2; i = n/2) (The examples of simplification
for the some formulas see subsection 16.2) we get :

|E| = (n− 1)/2 (34)

∀ n = 2i+ 1, i ∈ N ;n > 1

|E| = n/2− 1 (35)

∀ n = 2i, i ∈ N ;n > 2
F = (n− 1)/2 (36)

∀ n = 2i+ 1, i ∈ N ;n > 1
F = n/2 (37)

∀ n = 2i, i ∈ N ;n > 1
S0 = n− p (38)

∀ n = 2i+ 1, i ∈ N ;n > 1

S0 = n− p+ 1 (39)

∀ n = 2i, i ∈ N ;n > 1
|L| = n− p− 2|Q| (40)

∀ n = 2i+ 1, i ∈ N ;n > 1

|L| = n− p+ 1− 2|Q| (41)

∀ n = 2i, i ∈ N ;n > 1

|H| = (2|Q|+ 2p− n− 1)/2 (42)

∀ n = 2i+ 1, i ∈ N ;n > 1

|H| = (2|Q|+ 2p− n− 2)/2 (43)
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∀ n = 2i, i ∈ N ;n > 1

|Q| = (n− p− |L|)/2 (44)

∀ n = 2i+ 1, i ∈ N ;n > 1

|Q| = (n− p− |L|+ 1)/2 (45)

∀ n = 2i, i ∈ N ;n > 1

|Q| = (n− 2p+ 2|H|+ 1)/2 (46)

∀ n = 2i+ 1, i ∈ N ;n > 1

|Q| = (n− 2p+ 2|H|+ 2)/2 (47)

∀ n = 2i, i ∈ N ;n > 1

|Q| − |H| = (n− 2p+ 1)/2 (48)

∀ n = 2i+ 1, i ∈ N ;n > 1

|Q| − |H| = (n− 2p+ 2)/2 (49)

∀ n = 2i, i ∈ N ;n > 1

Remark 7.1 The examples of use of ABR2n see below (subsection 16.5).

8 The limited values of possible range of

|Q|, |L|, |H|
Definition 8.1 |H|b -lower limit of possible range of |H|.

Axiom 8.1
|H|b = 0 (50)

Definition 8.2 p(n) - the number of noncomposite integers
(primes and ”1”) < n.
p(n)- positive integer > 1 forall n > 1.

Definition 8.3 (p - 1) - the number of odd noncomposite integers in the
set XUY .
(-1) takes into account that ”2” is not odd noncomposite integers.
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Definition 8.4 (p(n) - 1) - the number of odd noncomposite integers in
X .

Definition 8.5 (p − 1) − (p(n) − 1) - the number of odd noncomposite
integers in Y .

Definition 8.6 |H|c-upper limit of possible range of |H|.

Proposition 8.1
|H|c = p− p(n) (51)

Proof 8.1 By Low of distribution of primes the number of odd noncom-
posite integers in X is greater than the number of odd noncomposite inte-
gers in Y : (p(n) - 1) > (p - 1) - (p(n) - 1) .
Since the number of primes decreases with increase of n. Hence maximal
number of pair of odd noncomposite integers in the set XUY equals the
number of odd noncomposite integers in Y : (p - 1) - (p(n) - 1)
then |H|c = p− p(n) . �

Corollary 8.1 The number of unpaired odd noncomposite positive inte-
gers in X equals : 2p(n) − p − 1 and are allotted to type ”L”. Then
|L| > 0 ∀2n > 8

Proof 8.2 The number of unpaired odd noncomposite positive integers in
X by definitions 8.4, 8.5 equals :
(p(n) - 1) - ((p - 1) - (p(n) - 1)) = 2p(n) - p - 1
and are allotted to type ”L”. �

Definition 8.7 |L|b - lower limit of possible range of |L|.

Proposition 8.2
|L|b = 2p(n)− p− 1 (52)

Proof 8.3 Substituting upper limit of |H| by (51) to (7)(axiom 4.1) then
we get lower limit for |L| : |L|b = 2p(n)− p− 1 �

Definition 8.8 |L|c -upper limit of possible range of |L|.

Proposition 8.3
|L|c = p− 1 (53)

Proof 8.4 Substituting lower limit of |H| by (50) to (7)(axiom 4.1) then
we get upper limit for |L| : |L|c = p− 1 �
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Definition 8.9 |Q|b - lower limit of possible range of |Q|.
|Q|b- positive integer > 0 ∀ 2n > 120 .
|Q|b - negative integer < 0 ∀ 2 < 2n < 120 .
excepting 2n = 4; 94; 96; 100; 106; 118; for which |Q|b = 0 (see subsec.16.3).
At that 2n = 120; (|Q|b = 0) is border point.

Proposition 8.4
|Q|b = (n− 2p+ 1)/2 (54)

∀ n = 2i+ 1, i ∈ N ;n > 1

Proof 8.5 Substituting upper limit of |L| by (53) to (8)(axiom 4.2) then
we get lower limit for |Q|: |Q|b = (S0 − p+ 1)/2 Substituting S0 by (38),
then we get: |Q|b = (n− 2p+ 1)/2 ∀ n = 2i+ 1, i ∈ N ;n > 1 �

Proposition 8.5
|Q|b = (n− 2p+ 2)/2 (55)

∀ n = 2i, i ∈ N ;n > 1

Proof 8.6 Substituting upper limit of |L| by (53) to (8)(axiom 4.2) then
we get lower limit for |Q|: |Q|b = (S0 − p+ 1)/2 Substituting S0 by (39),
finally we get: |Q|b = (n− 2p+ 2)/2; ∀ n = 2i, i ∈ N ;n > 1 �

Definition 8.10 |Q|c - upper limit of possible range of |Q|.

Proposition 8.6
|Q|c = (n− 2p(n) + 1)/2 (56)

∀ n = 2i+ 1, i ∈ N ;

Proof 8.7 Substituting lower limit of |L| by (52) to (8)(axiom 4.2) then
we get upper limit for |Q|: |Q|c = (S0− (2p(n)− p− 1))/2 Substituting S0

by (38) finally we get: |Q|c = (n− 2p(n) + 1)/2; ∀ n = 2i+ 1, i ∈ N ; �

Proposition 8.7
|Q|c = (n− 2p(n) + 2)/2 (57)

∀ n = 2i, i ∈ N ;

Proof 8.8 Substituting lower limit of |L| by (52) to (8)(axiom 4.2) then
we get upper limit for |Q|: |Q|c = (S0− (2p(n)− p− 1))/2 Substituting S0

by (39) finally we get: |Q|c = (n− 2p(n) + 2)/2; forall n = 2i, i ∈ N ; �
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Proposition 8.8
|Q| − |H| = |Q|b (58)

Proof 8.9 By (48), (49) we have: |Q| − |H| = (n − 2p + 1)/2; ∀ n =
2i+1, i ∈ N ; |Q|− |H| = (n−2p+2)/2 ∀ n = 2i, i ∈ N, By (54), (55) we
have: |Q|b = (n− 2p+ 1)/2; ∀ n = 2i+ 1, i ∈ N ; |Q|b = (n− 2p+ 2)/2;
∀ n = 2i, i ∈ N ; Whence we get: |Q| − |H| = |Q|b �

9 Average value of the number of binary

sums are formed from odd composite

positive integers < 2n

Definition 9.1 S−ordered set of odd composite positive integers < 2n
s− element of S
|S|0 − power of S
si − vary over all s
sj − vary over all s

Definition 9.2 V {vk|vk ∈ N, vk = si + sj}
is a set by elements of which are every possible binary sums of odd
composite integers < 2n. (each with all the rest )
Since si < 2n; sj < 2n then max vk < 4n.
|V | - the power of set V.

Definition 9.3 W{w|w ∈ N,w = 2k, 1 ≤ k ≤ 2n}
is a set of even composite positive integers < 4n+ 2
(inf W = 2; sup W = 4n).
|W | − the power of set W ; |W | = 2n.

Definition 9.4 |Q|m - mean quantity of binary sums are formed of
odd composite positive integers < 2n which are mapped into W at
surjective mapping :
f : V ⇒ W
si + sj = 2k
where: k - positive integer situated in the range: 11 < k < 2n

|Q|m = |V |/|W | (59)

i.e. uniform mapping regardless of real.
|Q|m − positive rational number > 0 ∀ 2n > 22.
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Proposition 9.1
|V | = SXS = S2

0 (60)

Proof 9.1 Since |V | - is the number of every possible binary sums are
formed of odd composite positive integers < 2n in the view of vk = si + sj
which as well known equals Cartesian product: |V | = SXS = S2

0 �

Proposition 9.2
|Q|m = s20/2n (61)

Proof 9.2 By (59), (60), def.9.3 we have : |Q|m = |V |/|W | = s20/2n �

Proposition 9.3
|Q|m = (n− p)2/2n (62)

∀ n = 2i+ 1, i ∈ N ;n > 6

Proof 9.3 Substituting s0 by (38) to (61) then we get :
|Q|m = (n− p)2/2n;
∀ n = 2i+ 1, i ∈ N ;n > 7 �

Proposition 9.4
|Q|m = (n− p+ 1)2/2n (63)

∀ n = 2i, i ∈ N ;n > 4

Proof 9.4 Substituting S0 by (39) to (61) then we get :
|Q|m = (n− p+ 1)2/2n; ∀ n = 2i, i ∈ N ;n > 4 �

10 Average value of the number of binary

sums are formed from odd

noncomposite positive integers < 2n

Definition 10.1 P - ordered set of odd noncomposite positive integers
< 2n;
p - elements of P ;
|P | = (p− 1) - power of P ;
pi- vary over all p ;
pj - vary over all p ;
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Definition 10.2 T{tk|tk ∈ N, tk = pi + pj};
is a set by elements of which are every possible binary sums of odd non-
composite integers < 2n. (each with all the rest ) Since pi < 2n; pj < 2n
then max tk < 4n.
|T | - the power of set T.

Definition 10.3 |H|m is mean quantity of binary sums are formed of odd
noncomposite positive integers < 2n which are mapped into W at surjective
mapping :
f : T ⇒ W
pi + pj = 2k
where: k - positive integer situated in the range: 1 < k < 2n

|H|m = |T |/|W | (64)

i.e. uniform mapping regardless of real.
|H|m-positive rational number > 0 ∀2n > 2.

Proposition 10.1
|T | = PXP = (p− 1)2 (65)

Proof 10.1 Since |T | is the number of every possible binary sums are
formed of odd noncomposite positive integers < 2n in the view of pi+pj =
2k . Which as well known equals Cartesian product. Taking into account
definition 8.3 we get: |T | = P X P = (p− 1)2 �

Proposition 10.2
|H|m = (p− 1)2/2n (66)

∀ 2n > 2

Proof 10.2 By (64),(65),def.9.3 we have : |H|m = (p− 1)2/2n ∀ 2n > 2
�

11 The deviation of |Q|, |H| from |Q|m, |H|m
Definition 11.1 The deviation of |Q| from |Q|m is:

∆|Q| = |Q|m − |Q|
∆|Q| > 0 if |Q|m > |Q|
∆|Q| < 0 if |Q|m < |Q|
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Definition 11.2 The deviation of |H| from |H|m is:
∆|H| = |H|m − |H| ;
∆|H| > 0 if |H|m > |H| ;
∆|H| < 0 if |H|m < |H|

Proposition 11.1 ∀ n = 2i, i ∈ N ;

∆|Q| = ∆|H| (67)

FOR ∆|Q| > 0;∆|H| > 0
OR ∆|Q| < 0;∆|H| < 0
exepting the cases:
∆|Q| < 0;∆|H| > 0
∆|Q| > 0;∆|H| < 0

Proof 11.1 Case 11.1 We computate |Q|m − |H|m;∀ n = 2i, i ∈ N ;
By (63), (66) we have:
(n− p+ 1)2/2n− (p− 1)2/2n = (n− 2p+ 2)/2
Taking into account (55) we get:
|Q|m − |H|m = |Q|b
Next by definitions 11.1 , 11.2 we have;
FOR ∆|Q| > 0;∆|H| > 0
(|Q|+∆|Q|)− (|H|+∆|H|) = |Q|b
or
|Q| − |H|+∆|Q| −∆|H| = |Q|b
Taking into account (58) finally we get:
∆|Q| −∆|H| = 0
or
∆|Q| = ∆|H|

Case 11.2 FOR ∆|Q| < 0;∆|H| < 0 we have:
(|Q| −∆|Q|)− (|H| −∆|H|) = |Q|b
|Q| − |H| −∆|Q|+∆|H| = |Q|b
Taking into account (58) finally we get:
−∆|Q|+∆|H| = 0
or
∆|Q| = ∆|H|

Case 11.3 FOR the case of ∆|Q| > 0;∆|H| < 0 We have:
(|Q|+∆|Q|)− (|H| −∆|H|) = |Q|b
|Q| − |H|+∆|Q|+∆|H| = |Q|b
Taking into account (58) finally we get:
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∆|Q|+∆|H| = 0
whence ∆|Q| = 0;∆|H| = 0;
We come to contradiction since by definitions 11.1,11.2
∆|Q| > 0; ∆|H| > 0;∆|Q| < 0;∆|H| < 0
By this reason the combination: ∆|Q| > 0;∆|H| < 0 is excluded.
Analogously the combination: ∆|Q| < 0;∆|H| > 0 is also excluded. �

Proposition 11.2 ∀ n = 2i+ 1, i ∈ N ;
FOR ∆|Q| > 0;∆|H| > 0

∆|Q| = ∆|H| −K (68)

FOR ∆|Q| < 0;∆|H| < 0

∆|Q| = ∆|H|+K (69)

FOR ∆|Q| < 0;∆|H| > 0

∆|Q| = −∆|H|+K (70)

Where:K = (n− 2p+ 1)/2n

Proof 11.2 Case 11.4 We computate (|Q|m−|H|m) ∀ n = 2i+1, i ∈ N ;
By (62), (66) we have:
(n − p)2/2n − (p − 1)2/2n = (n2 − 2np + 2p − 1)/2n = (n2 − 2np + n +
2p−1−n)/2n = (n−2p+1)/2+(2p/n− (1/n)−1)/2 = (n−2p+1)/2−
(n− 2p+ 1)/2n
Taking into account (54) we get:
|Q|m − |H|m = |Q|b −K
∀ n = 2i+ 1, i ∈ N ;
Where:K = (n− 2p+ 1)/2n
Next by definitions 11.1 , 11.2 we have:
FOR ∆|Q| > 0;∆|H| > 0
(|Q|+∆|Q|)− (|H|+∆|H|) = |Q|b −K
|Q| − |H|+∆|Q| −∆|H| = |Q|b −K
Taking into account (58) we get:
∆|Q| −∆|H| = −K;
or
∆|Q| = ∆|H| −K

Case 11.5 FOR ∆|Q| < 0;∆|H| < 0 we have:
(|Q| −∆|Q|)− (|H| −∆|H|) = |Q|b −K
or
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|Q| − |H| −∆|Q|+∆|H| = |Q|b −K
Taking into account (58) we get:
−∆|Q|+∆|H| = −K ;
or
∆|Q| = ∆|H|+K
∀ n = 2i+ 1, iN .

Case 11.6 FOR ∆|Q| > 0;∆|H| < 0 we have:
(|Q|+∆|Q|)− (|H| −∆|H|) = |Q|b −K
or
|Q| − |H|+∆|Q|+∆|H| = |Q|b−K
Taking into account (58) we get:
∆|Q|+∆|H| = −K
We come tu contradiction since sum of positive numbers can not be equal
to negative number.
By this reason the combination: ∆|Q| > 0;∆|H| < 0; is excluded.

Case 11.7 FOR the case of ∆|Q| < 0;∆|H| > 0 we have:
(|Q| −∆|Q|)− (|H|+∆|H|) = |Q|b −K
or
|Q| − |H| −∆|Q| −∆|H| = |Q|b −K
Taking into account (58) we get:
−∆|Q| −∆|H| = −K
∆|Q|+∆|H| = K
∆|Q| = −∆|H|+K �

12 The existence of minimal value of ”Q”

Theorem 12.1 ∀2n > 120 there is no less than |Q|b of representations
of the type ”Q” .

Proof 12.1 We need to prove that |Q|b > 0 ∀2n > 120. By (54) we have
|Q|b > 0 if (n + 1) > 2p. And by (55) we have |Q|b > 0 if (n + 2) > 2p.
Let F1(2n) = n − 2p + 1 and F2(2n) = n − 2p + 2. Substituting for p its
the second- order approximation by (16). Then we get:
F3(2n) = n−2(2n/ln2n+2n/ln22n+1)+1 = n−4n/ln2n−4n/ln22n−1.
F4(2n) = n−2(2n/ln2n+2n/ln22n+1)+2 = n−4n/ln2n−4n/ln22n . We
compute F ′

3(2n) = (ln42n− 4ln32n+ 8ln2n)/ln42n . F ′
3(2n) > 0 ∀2n > 2

then F3(2n) increase ∀2n > 2.
F ′
4(2n) = (ln42n − 4ln32n + 8ln2n)/ln42n . F ′

4(2n) > 0 ∀2n > 2 then
F4(2n) increase ∀2n > 2. Hence |Q|b increases ∀2n > 2 . Next we shall
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find the point of intersection of |Q|b(2n) with abscissa axis. For it we need
to test of fulfillment of conditions: (F1(2n) = 0 ; F1(2n+ 2) > 0)
and (F2(2n) = 0;F2(2n + 2) > 0). As follows from numerical solution
(see subsection 16.3). The point of intersection is 2n = 120. Since
conditions are fulfilled only for its. Thus |Q|b > 0 ∀2n > 120 . �

Corollary 12.1 ∀ 2 < 2n < 120; |Q|b is negative integer
excepting 2n = 4; 94; 96; 100; 106; 118. In which |Q|b = 0 .

Proof 12.2 From the beginning we need to prove that |Q|b is integer
∀2n > 2 . By (54) |Q|b = (n− 2p+ 1)/2 for n is odd.
By (55) |Q|b = (n− 2p+ 2)/2 for n is even .
By definition 2.1 n- positive integer > 0.
By definition 4.1 p -positive integer > 1.
Then (n− 2p+ 1) is integer and (n− 2p+ 2) is integer .
then for n is odd - (n− 2p+ 1) is even
and for n is even - (n− 2p+ 2) is even .
And for any n the division by ”2” in formulas (54),(55) without residue
is always possible . And status |Q|b is not broken. |Q|b is integer ∀ 2n >
2 . By proof 12.1 follows ∀2 < 2n < 120 2p > n + 1; 2p > n +
2 then |Q|b < 0. By direct computation we find 2n for which |Q|b =
0(see subsection 16.3) :. Which are excluded from the stated range.
Thus |Q|b is negative integer in the range 2 < 2n < 120 .
Excepting 2n = 4; 94; 96; 100; 106; 118; in which |Q|b = 0 . �

Proposition 12.1 In the range of 2 < 2n < 120 if fulfilled the condition
|H| = |Q|b then |Q| = 0 .

Proof 12.3 By (58) and corollary 12.1 we have for 2 < 2n < 120 :
|H| = |Q|+ |Q|b.
Let |Q| = 0; then |H| = |Q|b .
Thus if it is fulfilled the condition |H| = |Q|b then |Q| = 0 . �

13 The solution of the Goldbach’s binary

problem

Lemma 13.1 ∀ 2 < 2n < 120 exists at least one representation of type
”H”.

Proof 13.1 Taking into account (58) and corollary 12.1 we have :
|H| = |Q|+ |Q|b. Since in the range of 2 < 2n < 120 by corollary12.1
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|Q|b ̸= 0 then |H| > 0 excepting 2n = 4; 94; 96; 100; 106; 118; in which
|Q|b = 0. For this 2n the truth of lemma follows thereout for 2n in which
|Q|b = 0 then |Q| > 0 in this points since the points of exclusion for |Q|
don’t coincidence with |Q|b. Excepting point 2n = 4 for which the truth of
lemma is controled directly. Thus |H| > 0 ∀ 2 < 2n < 120 �

Theorem 13.1 ∀ 2n > 2 exists at least one representation of even posi-
tive integer 2n in the view of a sum of two odd prime positive integers or
”1” and odd prime positive integer.

Proof 13.2 For the proof of the theorem we need to prove that
|H| > 0 ∀ 2n > 2 for the five cases:

The condition 13.2.1
n = 2i, i ∈ N, n > 60, ∆|Q| > 0, ∆|H| > 0, ∆|Q| = ∆|H| .

The condition 13.2.2
n = 2i, i ∈ N ;n > 60, ∆|Q| < 0, ∆|H| < 0, ∆|Q| = ∆|H|

The condition 13.2.3
n = 2i+ 1, i ∈ N, n > 60, ∆|Q| > 0, ∆|H| > 0, ∆|Q| = ∆|H| −K

The condition 13.2.4
n = 2i+ 1, i ∈ N, n > 60, ∆|Q| < 0, ∆|H| < 0, ∆|Q| = ∆|H|+K

The condition 13.2.5
n = 2i+ 1, i ∈ N, n > 60, ∆|Q| < 0, ∆|H| > 0, ∆|Q| = −∆|H|+K

The case 1 of 5: The proof with condition 13.2.1
Let for any value of 2n > 120, |H| = 0 . Then by definition 11.2
∆|H| = |H|m; for |H| = 0. Taking into account (66) ∆|H| = (p−1)2/2n.
Taking into account (67)

∆|Q| = (p− 1)2/2n (71)

By definition 11.1 and condition 13 .2.1 we have : |Q| = |Q|m − ∆|Q| .
Taking into account (55), (63), (71) and |Q| = |Q|b; for |H| = 0 we get:
|Q|b = |Q|m −∆|Q| or (n− 2p + 2)/2 = (n− p + 1)2/2n− (p− 1)2/2n.
Then we get identity: n− 2p+2 = n− 2p+2 We come to contradiction :
as follows from identity each n correspond to more than one p . The last
is impossible since each n correspond to one p by (15) . (16), (17).

The case 2 of 5: The proof with condition 13.2.2
Let for any value of 2n > 120, |H| = 0. Then by definition 11.2
∆|H| = |H|m; for |H| = 0 Taking into account (66) ∆|H| = (p−1)2/2n.
Taking into account (67) ∆|Q| = (p − 1)2/2n By definition 11.1 and
condition 13.2.2 we have :

∆|Q| = (p− 1)2/2n (72)
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Taking into account (55), (63), (72) and |Q| = |Q|b; for |H| = 0 we get:
|Q|b = |Q|m +∆|Q| or (n− 2p + 2)/2 = (n− p + 1)2/2n + (p− 1)2/2n
Then we get : p2− 2p+1 = 0 This quadratic equation has one solution in
positive integers: p = 1 We come to contradiction since p > 1 by definition
4.1

The case 3 of 5: The proof with condition 13.2.3
Let for any value of 2n > 120, |H| = 0 Then by definition 11.2
∆|H| = |H|m; for |H| = 0 Taking into account (66) ∆|H| = (p− 1)2/2n
Taking into account (68),

∆|Q| = (p− 1)2/2n− (n− 2p+ 1)/2n (73)

By definition 11.1 and condition 13.2.3 we have : |Q| = |Q|m − ∆|Q| .
Taking into account (54), (62), (73) and |Q| = |Q|b; for |H| = 0 we get:
|Q|b = |Q|m −∆|Q| or (n − 2p + 1)/2 = (n − p)2/2n − ((p − 1)2/2n −
(n− 2p+ 1)/2n) Then we get identity: n− 2p+ 1 = n− 2p+ 1 We come
to contradiction : as follows from identity each n correspond to more than
one p . The last is impossible since each n correspond to one p by (15)
.(16), (17).

The case 4 of 5: The proof with condition 13.2.4
Let for any value of 2n > 120, |H| = 0 Then by definition 11.2
∆|H| = |H|m; for |H| = 0. Taking into account (66) ∆|H| = (p−1)2/2n
Taking into account (69)

∆|Q| = (p− 1)2/2n+ (n− 2p+ 1)/2n (74)

By definition 11.1 and condition 13.2.4 we have : |Q| = |Q|m + ∆|Q| .
Taking into account (54), (62), (74) and |Q| = |Q|b ; for |H| = 0 we
get:|Q|b = |Q|m+∆|Q| or (n− 2p+1)/2 = (n− p)2/2n +((p− 1)2/2n+
(n − 2p + 1)/2n) Then we get : p2 − 2p + 1 = 0 This quadratic equation
has one solution in positive integers:p = 1 We come to contradiction since
p > 1 by definition 4.1.

The case 5 of 5: The proof with condition 13.2.5
Let for any value of 2n > 120, |H| = 0. Then by definition 11.2
∆|H| = |H|m; for |H| = 0. Taking into account (66) ∆|H| = (p−1)2/2n
Taking into account (70)

∆|Q| = −(p− 1)2/2n+ (n− 2p+ 1)/2n (75)

By definition 11.1 and condition 13.2. 5 we have : |Q| = |Q|m + ∆|Q|
. Taking into account (54), (62), (75) and |Q| = |Q|b ; for- |H| = 0 we
get:|Q|b = |Q|m +∆|Q| or (n− 2p+1)/2 = (n− p)2/2n− (p− 1)2/2n+
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(n− 2p+ 1)/2n
Then we get identity: (n−2p+1) = (n−2p+1) We come to contradiction
: as follows from identity each n correspond to more than one p . The
last is impossible since each n correspond to one p by (15) .(16), (17).

We come to contradiction for all cases. Hence our assumption that
|H| = 0 is false and |H| > 0 ∀2n > 120 .

Earlier by Lemma we proved that |H| > 0 ∀ 2 < 2n < 120.
Thus we proved that |H| > 0 ∀ 2n > 2 .

Hence ∀ 2n > 2 exists at least one representation of even positive integer
2n in the view of a sum of two odd prime positive integers or ”1” and odd
prime positive integer. �

Remark 13.1 Thereby it is proved thesis formulated in def.3.1 .

14 The computation of the real values of

|Q|, |H|

14.1 The relative accuracy of computation of |Q|, |H|
Definition 14.1 The relative accuracy of computation of |Q| as follows
below :

δQ =

(
∆|Q|
|Q|m

100

)
% (76)

Definition 14.2 The relative accuracy of computation of |H| as follows
below:

δH =

(
∆|H|
|H|m

100

)
% (77)

Proposition 14.1
100(p2 − n)

(n− p)2
> δQ (78)

∀ n = 2i+ 1, i ∈ N,n > 60;

Proof 14.1 By definition 11.1 we have |Q| = |Q|m − ∆|Q|. By defin.
14.1
we have: ∆|Q| = δQ

100
|Q|m then we get : |Q| = |Q|m − δQ

100
|Q|m.

By definition 8.9 |Q|m − δQ
100

|Q|m > |Q|b , ∀ 2n > 60 .

Whence it follows that 100(|Q|m−|Q|b)
|Q|m > δQ.
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Taking into account (62) and (54). Then we get:
100

(n−p)2

2n
−100

(n−2p+1)
2

(n−p)2

2n

>

δQ.

Hence 100(p2−n)
(n−p)2

> δQ.∀ n = 2i+ 1, i ∈ N, n > 60; �

Proposition 14.2
100(p− 1)2

(n+ 1− p)2
> δQ (79)

∀ n = 2i, i ∈ N,n > 60;

Proof 14.2 By definition 11.1 we have |Q| = |Q|m−∆|Q|. By defin 14.1
we have :
∆|Q| = δQ

100
|Q|m then we get: |Q| = |Q|m − δQ

100
|Q|m.

By definition 8.9 |Q|m − δQ
100

|Q|m > |Q|b, ∀ n > 60.

Whence it follows that 100(|Q|m−|Q|b)
|Q|m > δQ.

Taking into account (63) and (55) then we get:
100

(n+1−p)2

2n
−100

(n−2p+2)
2

(n+1−p)2

2n

> δQ.

Hence 100(p−1)2

(n+1−p)2
> δQ.∀ n = 2i, i ∈ N,n > 60; �

14.2 The character of dependence of δ(2n)

Theorem 14.1 If n → ∞ then δQ → 0.

Proof 14.3 We replace δQ with its estimation by (78) δQ = 100 (p2−n)
(n−p)2

.

Replacing p with its first order approximation by (15) we get: δQ =

4n2−n ln2 2n
(n ln 2n−2n)2

; We represent it in the view of δQ =
(4− ln2 2n

n
)

ln2 2n−4 ln 2n+4
. The nu-

merator of this expression → 4 if n → ∞ and the denominator → ∞ if
n → ∞. Whence follows that if n → ∞ then δQ → 0. ∀ n = 2i + 1, i ∈
N, n > 60; �

Remark 14.1 For ∀ n = 2i, i ∈ N, n > 60 the proof by analogy with
proof 14.3.

Theorem 14.2 If n → ∞ then δH → 0.

Proof 14.4 By theorem 14.1 δQ → 0 if n → ∞ then by definition 14.1
∆|Q| → 0 if n → ∞ then by proposition 11.1 ∆|H| → 0 if n → ∞ then
by definition 14.2 δH → 0 if n → ∞. ∀ n = 2i, i ∈ N, n > 60; �
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14.3 The character of dependence of |Q|(2n), |H|(2n)
Theorem 14.3 If n → ∞ then |Q| → |Q|m .

Proof 14.5 By Theorem 14.1 δQ → 0 if n → ∞ then by Defenition
14.1 ∆|Q| → 0 . Whence by Definition 11.1 we have: If n → ∞
then |Q| → |Q|m. �

Theorem 14.4 If n → ∞ then |H| → |H|m.

Proof 14.6 By Theorem 14.2 δH ;→ 0 if n → ∞ then by Defenition
14.2 ∆|H| → 0 . Whence by Definition 11.2 we have : If n → ∞
then |H| → |H|m; �

14.4 The formulas for computation of the real values
of |Q|, |H|

|Q| = round(
(n− p)2

2n
) (80)

∀ n = 2i+ 1, i ∈ N, n > 19

|Q| = round(
(n− p+ 1)2

2n
) (81)

∀ n = 2i, i ∈ N, n > 19
Where p = round( 2n

ln2n
+ 2n

ln2 2n
+ 1). By (16)

In this formulas |Q| = |Q|m . An estimation of such replace has a big value
at the beginning of region of values of 2n. But it decreaces by theorem
14.1.

The computed value of |Q| it can be used for
computation of |H| by (42) (43):

|H| = (2|Q|+ 2p− n− 1)/2 ∀ n = 2i+ 1, i ∈ N, n > 19
|H| = (2|Q|+ 2p− n− 2)/2 ∀ n = 2i, i ∈ N, n > 19

15 RESUME

With help of the ”Arithmetic of binary representations of even integer
2n”(ABR2n) it is got one of possible solutions of the Goldbach’s binary
problem.
With help of the ABR2n it can also be solved other arithmetical problems.
In ABR2n are given formulas for computation of the number of binary
representations even integer 2n for basic types of BR2n. Particularly for
values inaccessible for computer programs.
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16 Appendix

16.1 The examples of the proof of parity of
numerator for the some formulas

Example 16.1 For formulas (21),(22) we have:
|H| = (2|Q| − s0+ p− 1)/2 = (2|Q| − (2(n− 1)− (2[(n− 1)/2]− 1)− p)+
p− 1)/2.
if n = 2i+ 1, i ∈ N then :
|H| = (2|Q| − (4i− (2i− 1)− p) + p− 1)/2 = (2|Q| − 2i+ 2p− 2)/2
if n = 2i, i ∈ N then:
|H| = (2|Q| − (4i− 2− (2i− 3)− p) + p− 1)/2 = (2|Q| − 2i+ 2p− 2)/2

Example 16.2 For formulas (23),(24) we have:
|Q| = (2(n− 1)− (2[(n− 1)/2]− 1)− p− |L|)/2
if n = 2i+ 1, i ∈ N then :
|Q| = (4i − (2i − 1) − (p + |L|)/2 = (2i − (p + |L|) + 1)/2 is even since
(p+ |L|) is odd by (40) and −(p+ |L|) + 1 is even .
if n = 2i, i ∈ N then :
|Q| = (4i− 2− (2i− 3)− (p+ |L|)/2 = (2i− (p+ |L|)+ 1)/2 is even since
(p+ |L|) is odd by (41) and −(p+ |L|) + 1 is even .

Example 16.3 For formula (25) we have:
|H| = (p− |L| − 1)/2
if n = 2i+ 1, i ∈ N then :
(p− |L| − 1) is even since (p− |L|) is odd by (40) and p− |L| − 1 is even
. if n = 2i, i ∈ N then :
(p−|L|− 1) is even since (p−|L|) is odd by (41) and p−|L|− 1 is even .

Example 16.4 For formulas (27),(28),(29) we have:
|Q| = (2(n− 1)− (2[(n− 1)/2]− 1)− 2p+ 2|H|+ 1)/2
if n = 2i+ 1, i ∈ N then :
|Q| = (4i− (2i− 1)− 2p+ 2|H|+ 1)/2 = (2i− 2p+ 2|H|+ 2)/2
if n = 2i, i ∈ N then :
|Q| = (4i− 2− (2i− 3)− 2p+ 2|H|+ 1)/2 = (2i− 2p+ 2|H|+ 2)/2

16.2 The examples of simplification for the some
formulas

Example 16.5 If n = 2i+ 1, i ∈ N then by (29) at |H| = 0 we get:

|Q|b =
2(2i+1−1)−(2[ 2i+1−1

2 ]−1)−2p+1

2
= 4i−(2i−1)−2p+1

2
= n−2p+1

2
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Example 16.6 If n = 2i, i ∈ N then by (29) at |H| = 0 we get:

|Q|b =
2(2i−1)−(2[ 2i−1

2 ]−1)−2p+1

2
= 4i−2−(2i−3)−2p+1

2
= n−2p+2

2

Example 16.7 If n = 2i+ 1, i ∈ N then by (29) we get:

|Q| = 2(2i+1−1)−(2[ 2i+1−1
2 ]−1)−2p+2|H|+1

2
= 4i−(2i−1)−2p+2|H|+1

2
= n−2p+2|H|+1

2

Example 16.8 If n = 2i, i ∈ N then by (29) we get:

|Q| = 2(2i−1)−(2[ 2i−1
2 ]−1)−2p+2|H|+1

2
= 4i−2−(2i−3)−2p+2|H|+1

2
= n−2p+2|H|+2

2

Example 16.9 If n = 2i+ 1, i ∈ N then by (13) we get:
F = 2i+ 1− 1−

[
2i+1−1

2

]
= i = n−1

2

Example 16.10 If n = 2i, i ∈ N then by (13) we get:
F = 2i− 1−

[
2i−1
2

]
= i = n

2

Example 16.11 If n = 2i+ 1, i ∈ N then by (14) we get:
S0 = 2(2i+1−1)−(2[2i+1−1

2
]−1)−p = 4i−(2i−1)−p = 2i+1−p = n−p

Example 16.12 If n = 2i, i ∈ N then by (14) we get:
S0 = 2(2i−1)−(2[2i−1

2
]−1)−p = 4i−2−(2i−3)−p = 2i+1−p = n−p+1

16.3 The numerical solution of |Q|b = 0 in the range
2 < 2n < 134

Remark 16.1 If n is prime then value of p is decreased per 1. p∗ = p−1
since n excluded from XUY (see remark 2.1).

2n = 4;n = 2; p∗ = 2; |Q|b = 0 by (55).
2n = 6;n = 3; p∗ = 3; |Q|b = −1 by (54).
2n = 8;n = 4; p = 5; |Q|b = −2 by (55).
2n = 10;n = 5; p∗ = 4; |Q|b = −1 by (54).
2n = 12;n = 6; p = 6; |Q|b = −2 by (55).
2n = 14;n = 7; p∗ = 6; |Q|b = −2 by (54).
2n = 16;n = 8; p = 7; |Q|b = −2 by (55).
2n = 18;n = 9; p = 8; |Q|b = −3 by (54).
2n = 20;n = 10; p = 9; |Q|b = −3 by (55).
2n = 22;n = 11; p∗ = 8; |Q|b = −2 by (54).
2n = 24;n = 12; p = 10; |Q|b = −3 by (55).
2n = 26;n = 13; p∗ = 9; |Q|b = −2 by (54).
2n = 28;n = 14; p = 10; |Q|b = −2 by (55).
2n = 30;n = 15; p = 11; |Q|b = −3 by (54).
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2n = 32;n = 16; p = 12; |Q|b = −3 by (55).
2n = 34;n = 17; p∗ = 11; |Q|b = −2 by (54).
2n = 36;n = 18; p = 12; |Q|b = −2 by (55).
2n = 38;n = 19; p∗ = 12; |Q|b = −2 by (54).
2n = 40;n = 20; p = 13; |Q|b = −2 by (55).
2n = 42;n = 21; p = 14; |Q|b = −3 by (54).
2n = 44;n = 22; p = 15; |Q|b = −3 by (55).
2n = 46;n = 23; p∗ = 14; |Q|b = −2 by (54).
2n = 48;n = 24; p = 16; |Q|b = −3 by (55).
2n = 50;n = 25; p = 16; |Q|b = −3 by (54).
2n = 52;n = 26; p = 16; |Q|b = −2 by (55).
2n = 54;n = 27; p = 17; |Q|b = −3 by (54).
2n = 56;n = 28; p = 17; |Q|b = −2 by (55).
2n = 58;n = 29; p∗ = 16; |Q|b = −1 by (54).
2n = 60;n = 30; p = 18; |Q|b = −3 by (55).
2n = 62;n = 31; p∗ = 18; |Q|b = −2 by (54).
2n = 64;n = 32; p = 19; |Q|b = −2 by (55).
2n = 66;n = 33; p = 19; |Q|b = −2 by (54).
2n = 68;n = 34; p = 20; |Q|b = −2 by (55).
2n = 70;n = 35; p = 20; |Q|b = −2 by (54).
2n = 72;n = 36; p = 21; |Q|b = −2 by (55).
2n = 74;n = 37; p∗ = 21; |Q|b = −2 by (54).
2n = 76;n = 38; p = 22; |Q|b = −2 by (55).
2n = 78;n = 39; p = 22; |Q|b = −2 by (54).
2n = 80;n = 40; p = 23; |Q|b = −2 by (55).
2n = 82;n = 41; p∗ = 22; |Q|b = −1 by (54).
2n = 84;n = 42; p = 24; |Q|b = −2 by (55).
2n = 86;n = 43; p∗ = 23; |Q|b = −1 by (54).
2n = 88;n = 44; p = 24; |Q|b = −1 by (55).
2n = 90;n = 45; p = 25; |Q|b = −2 by (54).
2n = 92;n = 46; p = 25; |Q|b = −1 by (55).
2n = 94;n = 47; p∗ = 24; |Q|b = 0 by (54).
2n = 96;n = 48; p = 25; |Q|b = 0 by (55).
2n = 98;n = 49; p = 26; |Q|b = −1 by (54).
2n = 100;n = 50; p = 26; |Q|b = 0 by (55).
2n = 102;n = 51; p = 27; |Q|b = −1 by (54).
2n = 104;n = 52; p = 28; |Q|b = −1 by (55).
2n = 106;n = 53; p∗ = 27; |Q|b = 0 by (54).
2n = 108;n = 54; p = 29; |Q|b = −1 by (55).
2n = 110;n = 55; p = 30; |Q|b = −2 by (54).
2n = 112;n = 56; p = 30; |Q|b = −1 by (55).
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2n = 114;n = 57; p = 31; |Q|b = −2 by (54).
2n = 116;n = 58; p = 31; |Q|b = −1 by (55).
2n = 118;n = 59; p∗ = 30; |Q|b = 0 by (54).
2n = 120;n = 60; p = 31; |Q|b = 0 by (55).
2n = 122;n = 61; p∗ = 30; |Q|b = +1 by (54).
2n = 124;n = 62; p = 31; |Q|b = +1 by (55).
2n = 126;n = 63; p = 31; |Q|b = +1 by (54).
2n = 128;n = 64; p = 32; |Q|b = +1 by (55).
2n = 130;n = 65; p = 32; |Q|b = +1 by (54).
2n = 132;n = 66; p = 33; |Q|b = +1 by (55).

16.4 The numerical solution of |Q| = 0 in the range
8 < 2n < 134

2n = 10; |Q| = 0; (10− 9 = 1) .
2n = 12; |Q| = 0; (12− 9 = 3) .
2n = 14; |Q| = 0; (14− 9 = 5) .
2n = 16; |Q| = 0; (16− 9 = 7) .
2n = 18; |Q| = 0; (18− 9 = 9) excluded as automorphism.
2n = 20; |Q| = 0; (20− 9 = 11) .
2n = 22; |Q| = 0; (22− 9 = 13) .
2n = 24; |Q| > 0; (24− 9 = 15) .
2n = 26; |Q| = 0; (26− 9 = 17) .
2n = 28; |Q| = 0; (28− 9 = 19) .
2n = 30; |Q| > 0; (30− 9 = 21) .
2n = 32; |Q| = 0; (32− 9 = 23) .
2n = 34; |Q| > 0; (34− 9 = 25) .
2n = 36; |Q| > 0; (30− 9 = 21) .
2n = 38; |Q| = 0; (38− 9 = 29) .
2n = 40; |Q| > 0; (40− 15 = 25) .
2n = 42; |Q| > 0; (42− 9 = 33) .
2n = 44; |Q| > 0; (44− 9 = 35) .
2n = 46; |Q| > 0; (46− 21 = 25) .
2n = 48; |Q| > 0; (48− 9 = 39) .
2n = 50; |Q| > 0; (50− 15 = 35) .
2n = 52; |Q| > 0; (52− 25 = 27) .
2n = 54; |Q| > 0; (54− 9 = 45) .
2n = 56; |Q| > 0; (56− 21 = 35) .
2n = 58; |Q| > 0; (58− 9 = 49) .
2n = 60; |Q| > 0; (60− 9 = 51) .
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2n = 62; |Q| > 0; (62− 9 = 21) .
2n = 64; |Q| > 0; (64− 9 = 55) .
2n = 66; |Q| > 0; (66− 9 = 57) .
2n = 68; |Q| > 0; (68− 33 = 35) .
2n = 70; |Q| > 0; (70− 15 = 55) .
2n = 72; |Q| > 0; (72− 9 = 63) .
2n = 74; |Q| > 0; (74− 9 = 21) .
2n = 76; |Q| > 0; (76− 21 = 55) .
2n = 78; |Q| > 0; (78− 9 = 69) .
2n = 80; |Q| > 0; (80− 15 = 65) .
2n = 82; |Q| > 0; (82− 25 = 57) .
2n = 84; |Q| > 0; (84− 9 = 75) .
2n = 86; |Q| > 0; (86− 9 = 77) .
2n = 88; |Q| > 0; (88− 25 = 63) .
2n = 90; |Q| > 0; (90− 9 = 81) .
2n = 92; |Q| > 0; (92− 15 = 77) .
2n = 94; |Q| > 0; (94− 9 = 85) .
2n = 96; |Q| > 0; (96− 9 = 87) .
2n = 98; |Q| > 0; (98− 21 = 77) .
2n = 100; |Q| > 0; (100− 15 = 85) .
2n = 102; |Q| > 0; (102− 9 = 93) .
2n = 104; |Q| > 0; (104− 9 = 95) .
2n = 106; |Q| > 0; (106− 15 = 91) .
2n = 108; |Q| > 0; (108− 9 = 99) .
2n = 110; |Q| > 0; (110− 15 = 95) .
2n = 112; |Q| > 0; (112− 21 = 91) .
2n = 114; |Q| > 0; (114− 9 = 105) .
2n = 116; |Q| > 0; (116− 21 = 95) .
2n = 118; |Q| > 0; (118− 25 = 93) .
2n = 120; |Q| > 0; (120− 9 = 111) .
2n = 122; |Q| > 0; (122− 35 = 87) .
2n = 124; |Q| > 0; (124− 9 = 115) .
2n = 126; |Q| > 0; (126− 9 = 117) .
2n = 128; |Q| > 0; (128− 9 = 119) .
2n = 130; |Q| > 0; (130− 9 = 121) .
2n = 132; |Q| > 0; (132− 9 = 123) .
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16.5 The examples of use of ariphmetic of binary
representations of positive even integer 2n

The rules of direct computation of ariphmetic parameters
of binary representations of positive integer 2n . ”1” and ”2” - are positive
noncomposite integers. The representation (1 + (2n − 1)) is of type L
if (2n − 1) -composite positive integer and of type H if (2n − 1)-prime
positive integer. ⊕ -mark positive prime integers or ”1”; ⊗-mark positive
odd composite integers; ⊘-mark positive even integers.

Example 16.13 2n = 24
⊕ 1+23 ⊕ = 24 (H)
⊕ 2+22 ⊘ = 24 (E)
⊕ 3+21 ⊗ = 24 (L)
⊘ 4+20 ⊘ = 24 (E)
⊕ 5+19 ⊕ = 24 (H)
⊘ 6+18 ⊘ = 24 (E)
⊕ 7+17 ⊕ = 24 (H)
⊘ 8+16 ⊘ = 24 (E)
⊗ 9+15 ⊗ = 24 (Q)
⊘ 10+14⊘ = 24 (E)
⊕ 11+13⊕ = 24 (H)
Data of direct computations :
P = 10; S0 = 3; G = 11; F = 6; |E| = 5; |Q| = 1; |L| = 1; |H| = 4;
The computations of parameters of binary representations of the positive
integer 2n = 24 with help of arithmetic stated above
n = 24

2
= 12;

G = n− 1 = 12− 1 = 11;
|E| =

[
n−1
2

]
=

[
12−1
2

]
= 5;

F = G− |E| = 11− 5 = 6;
F = n

2
= 12

2
= 6;

S0 = n− p+ 1 = 12− 10 + 1 = 3;
We take |Q| = 1 from direct computations then
|L| = n− p+ 1− 2|Q| = 12− 10 + 1− 2 = 1;

|H| = 2|Q|+2p−n−2
2

= 2+20−12−2
2

= 4;
We take |L| = 1 from direct computations then

|Q| = n−p−|L|+1
2

= 12−10−1+1
2

= 1;

|H| = p−|L|−1
2

= 10−1−1
2

= 4;
We take |H| = 4 from direct computations then

|Q| = n−2p+1+2|H|+1
2

= 12−20+1+8+1
2

= 1;
|L| = p− 2|H| − 1 = 10− 8− 1 = 1;
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The control :
F = |Q|+ |L|+ |H| = 1 + 1 + 4 = 6;
The compare of data of direct computations with computed values shows
full coincidence of results.

Example 16.14 2n = 26
⊕ 1+25 ⊗ = 26 (L)
⊕ 2+24 ⊘ = 26 (E)
⊕ 3+23 ⊕ = 26 (H)
⊘ 4+22 ⊘ = 26 (E)
⊕ 5+21 ⊗ = 26 (L)
⊘ 6+20 ⊘ = 26 (E)
⊕ 7+19 ⊕ = 26 (H)
⊘ 8+18 ⊘ = 26 (E)
⊗ 9+17 ⊕ = 26 (L)
⊘ 10+16⊘ = 26 (E)
⊕ 11+15⊗ = 26 (L)
⊘ 12+14⊘ = 26 (E)
Data of direct computatios :
P = 9; (since n = 13 is vikolotaya point) S0 = 4; G = 12;
F = 6; |E| = 6; |Q| = 0; |L| = 4; |H| = 2; The computations of
parameters of binary representations of the positive integer 2n = 26 with
help of arithmetic stated above:
n = 26

2
= 13;

G = n− 1 = 13− 1 = 12;
|E| =

[
n−1
2

]
=

[
13−1
2

]
= 6;

F = G− |E| = 12− 6 = 6;
F = n−1

2
= 13−1

2
= 6;

S0 = n− p = 13− 9 = 4;
We take |Q| = 0 from direct computations then
|L| = n− p− 2|Q| = 13− 9− 0 = 4;

|H| = 2|Q|+2p−n−1
2

= 0+18−13−1
2

= 2;
We take |L| = 4 from direct computations then

|Q| = n−p−|L|
2

= 13−9−4
2

= 0;

|H| = p−|L|−1
2

= 9−4−1
2

= 2;
We take |H| = 2 from direct computations then

|Q| = n−2p+2|H|+1
2

= 13−18+4+1
2

= 0;
|L| = p− 2|H| − 1 = 9− 4− 1 = 4;
The control:
F = |Q|+ |L|+ |H| = 0 + 4 + 2 = 6;
The compare of data of direct computations with computed values shows



32

full coincidence of results.

Example 16.15 2n = 28
⊕ 1+27 ⊗ = 28 (L)
⊕ 2+26 ⊘ = 28 (E)
⊕ 3+25 ⊗ = 28 (L)
⊘ 4+24 ⊘ = 28 (E)
⊕ 5+23 ⊕ = 28 (H)
⊘ 6+22 ⊘ = 28 (E)
⊕ 7+21 ⊗ = 28 (L)
⊘ 8+20 ⊘ = 28 (E)
⊗ 9+19 ⊕ = 28 (L)
⊘ 10+18⊘ = 28 (E)
⊕ 11+17⊕ = 28 (H)
⊘ 12+16⊘ = 28 (E)
⊕ 13+15⊗ = 28 (L)
Data of direct computations :
P = 10; S0 = 5; G = 13; F = 7; |E| = 6; |Q| = 0; |L| = 5; |H| = 2;
The computations of parameters of binary representations of the positive
integer 2n = 28 with help of arithmetic stated above:
n = 28

2
= 14;

G = n− 1 = 14− 1 = 13;
|E| =

[
n−1
2

]
=

[
14−1
2

]
= 6;

F = G− |E| = 13− 6 = 7;
F = n

2
= 14

2
= 7;

S0 = n− p+ 1 = 14− 10 + 1 = 5;
We take |Q| = 0 from direct computations then
|L| = n− p+ 1− 2|Q| = 14− 10 + 1− 0 = 5;

|H| = 2|Q|+2p−n−2
2

= 0+20−14−2
2

= 2;
We take |L| = 5 from direct computations then

|Q| = n−p−|L|+1
2

= 14−10−5+1
2

= 0;

|H| = p−|L|−1
2

= 10−5−1
2

= 2;
We take |H| = 2 from direct computations then

|Q| = n−2p+1+2|H|+1
2

= 14−20+1+4+1
2

= 0;
|L| = p− 2|H| − 1 = 10− 4− 1 = 5;
The control:
F = |Q|+ |L|+ |H| = 0 + 5 + 2 = 7;
The compare of data of direct computations with computed values shows
full coincidence of results.

Example 16.16 2n = 30
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⊕ 1+29 ⊕ = 30 (H)
⊕ 2+28 ⊘ = 30 (E)
⊕ 3+27 ⊗ = 30 (L)
⊘ 4+26 ⊘ = 30 (E)
⊕ 5+25 ⊗ = 30 (L)
⊘ 6+24 ⊘ = 30 (E)
⊕ 7+23 ⊕ = 30 (H)
⊘ 8+22 ⊘ = 30 (E)
⊗ 9+21 ⊗ = 30 (Q)
⊘ 10+20⊘ = 30 (E)
⊕ 11+19⊕ = 30 (H)
⊘ 12+18⊘ = 30 (E)
⊕ 13+17⊕ = 30 (H)
⊘ 14+16⊘ = 30 (E)
Data of direct computations :
P = 11; S0 = 4; G = 14; F = 7; |E| = 7; |Q| = 1; |L| = 2; |H| = 4;
The computations of parameters of binary representations of the positive
integer 2n = 30 with help of arithmetic stated above:
n = 30

2
= 15;

G = n− 1 = 15− 1 = 14;
|E| =

[
n−1
2

]
=

[
15−1
2

]
= 7;

F = G− |E| = 14− 7 = 7;
F = n−1

2
= 15−1

2
= 7;

S0 = n− p = 15− 11 = 4;
We take |Q| = 1 from direct computations then
|L| = n− p− 2|Q| = 15− 11− 2 = 2;

|H| = 2|Q|+2p−n−1
2

= 2+22−15−1
2

= 4;
We take |L| = 2 from direct computations then

|Q| = n−p−|L|
2

= 15−11−2
2

= 1;

|H| = p−|L|−1
2

= 11−2−1
2

= 4;
We take |H| = 4 from direct computations then

|Q| = n−2p+2|H|+1
2

= 15−22+8+1
2

= 1;
|L| = p− 2|H| − 1 = 11− 8− 1 = 2;
The control:
F = |Q|+ |L|+ |H| = 1 + 2 + 4 = 7;
The compare of data of direct computations with computed values shows
full coincidence of results.

Example 16.17 2n = 32
⊕ 1+31 ⊕ = 32 (H)
⊕ 2+30 ⊘ = 32 (E)
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⊕ 3+29 ⊕ = 32 (H)
⊘ 4+28 ⊘ = 32 (E)
⊕ 5+27 ⊗ = 32 (L)
⊘ 6+26 ⊘ = 32 (E)
⊕ 7+25 ⊗ = 32 (L)
⊘ 8+24 ⊘ = 32 (E)
⊗ 9+23 ⊕ = 32 (L)
⊘ 10+22⊘ = 32 (E)
⊕ 11+21⊗ = 32 (L)
⊘ 12+20⊘ = 32 (E)
⊕ 13+19⊕ = 32 (H)
⊘ 14+18⊘ = 32 (E)
⊗ 15+17⊕ = 32 (L)
Data of direct computations :
P = 12; S0 = 5; G = 15; F = 8; |E| = 7; |Q| = 0; |L| = 5; |H| = 3;
The computations of parameters of binary representations of the positive
integer 2n = 28 with help of arithmetic stated above:
n = 32

2
= 16;

G = n− 1 = 16− 1 = 15;
|E| =

[
n−1
2

]
=

[
16−1
2

]
= 7;

F = G− |E| = 15− 7 = 8;
F = n

2
= 16

2
= 8;

S0 = n− p+ 1 = 16− 12 + 1 = 5;
We take |Q| = 0 from direct computations then
|L| = n− p+ 1− 2|Q| = 16− 12 + 1− 0 = 5;

|H| = 2|Q|+2p−n−2
2

= 0+24−16−2
2

= 3;
We take |L| = 5 from direct computations then

|Q| = n−p−|L|+1
2

= 16−12−5+1
2

= 0;

|H| = p−|L|−1
2

= 12−5−1
2

= 3;
We take |H| = 3 from direct computations then

|Q| = n−2p+1+2|H|+1
2

= 16−24+1+6+1
2

= 0;
|L| = p− 2|H| − 1 = 12− 6− 1 = 5;
The control:
F = |Q|+ |L|+ |H| = 0 + 5 + 3 = 8;
The compare of data of direct computations with computed values shows
full coincidence of results.

Remark 16.2 The following data of direct computations was given with
help of program ”Goldbach” developed by the author . The program real-
izes of binary representations of even integer 2n. It identies type of each
representation and calculates P,E, F,G, S0, |Q|, |L|, |H|, |E| .
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Example 16.18 2n = 10026;
Data of direct computations :
P = 1232; S0 = 3781; G = 5012; F = 2506;
|E| = 2506; |Q| = 1469; |L| = 843; |H| = 194;
The computations of parameters of binary representations of the positive
integer 2n = 10026 with help of arithmetic stated above:
n = 10026

2
= 5013;

G = n− 1 = 5013− 1 = 5012;
|E| =

[
n−1
2

]
=

[
5013−1

2

]
= 2506;

F = G− |E| = 5012− 2506 = 2506;
F = n−1

2
= 5013−1

2
= 2506;

S0 = n− p = 5013− 1232 = 3781;
We take |Q| = 1469 from direct computations then
|L| = n− p− 2|Q| = 5013− 1232− 2938 = 843;

|H| = 2|Q|+2p−n−1
2

= 2938+2464−5013−1
2

= 194;
We take |L| = 843 from direct computations then

|Q| = n−p−|L|
2

= 5013−1232−843
2

= 1469;

|H| = p−|L|−1
2

= 1232−843−1
2

= 194;
We take |H| = 194 from direct computations then

|Q| = n−2p+2|H|+1
2

= 5013−2464+388+1
2

= 1469;
|L| = p− 2|H| − 1 = 1232− 388− 1 = 843;
The control:
F = |Q|+ |L|+ |H| = 1469 + 843 + 194 = 2506;
The compare of data of direct computations with computed values shows
full coincidence of results.

Example 16.19 2n = 20028;
Data of direct computations :
P = 2266; S0 = 7749; G = 10013; F = 5007;
|E| = 5006; |Q| = 3078; |L| = 1593; |H| = 336;
The computation of parameters of binary representations of the positive
integer 2n = 20028 with help of arithmetic stated above:
n = 20028

2
= 10014;

G = n− 1 = 10014− 1 = 10013;
|E| =

[
n−1
2

]
=

[
10014−1

2

]
= 5006;

F = G− |E| = 10013− 5006 = 5007;
F = n

2
= 10014

2
= 5007;

S0 = n− p+ 1 = 10014− 2266 + 1 = 7749;
We take |Q| = 3078 from direct computating then
|L| = n− p+ 1− 2|Q| = 10014− 2266 + 1− 6156 = 1593;

|H| = 2|Q|+2P−n−2
2

= 6156+4532−10014−2
2

= 336;
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We take |L| = 1593 from direct computating then

|Q| = n−p−|L|+1
2

= 10014−2266−1593+1
2

= 3078;

|H| = p−|L|−1
2

= 2266−1593−1
2

= 336;
We take |H| = 336 from direct computating then

|Q| = n−2p+1+2|H|+1
2

= 10014−4532+1+672+1
2

= 3078;
|L| = p− 2|H| − 1 = 2266− 672− 1 = 1593;
The control:
F = |Q|+ |L|+ |H| = 3078 + 1593 + 336 = 5007;
The compare of data of direct computations with computed values shows
full coincidence of results.

Example 16.20 2n = 100030;
Data of direct computations :
P = 9595; S0 = 40420; G = 50014; F = 25007;
|E| = 25007; |Q| = 16385; |L| = 7650; |H| = 972;
The computations of parameters of binary representations of the positive
integer 2n = 100030 with help of arithmetic stated above:
n = 100030

2
= 50015;

G = n− 1 = 50015− 1 = 50014;
|E| =

[
n−1
2

]
=

[
50015−1

2

]
= 25007;

F = G− |E| = 50014− 25007 = 25007;
F = n−1

2
= 50015−1

2
= 25007;

S0 = n− p = 50015− 9595 = 40420;
We take |Q| = 16385 from direct computations then
|L| = n− p− 2|Q| = 50015− 9595− 32770 = 7650;

|H| = 2|Q|+2p−n−1
2

= 32770+19190−50015−1
2

= 972;
We take |L| = 7650 from direct computations then

|Q| = n−p−|L|
2

= 50015−9595−7650
2

= 16385;

|H| = p−|L|−1
2

= 9595−7650−1
2

= 972;
We take |H| = 972 from direct computations then

|Q| = n−2p+2|H|+1
2

= 50015−19190+1944+1
2

= 16385;
|L| = p− 2|H| − 1 = 9595− 1944− 1 = 7650;
The control:
F = |Q|+ |L|+ |H| = 16385 + 7650 + 972 = 25007;
The compare of data of direct computations with computed values shows
full coincidence of results.

Example 16.21 2n = 200032;
Data of direct computations :
p = 17990; S0 = 82027; G = 100015; F = 50008;
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|E| = 50007; |Q| = 33386; |L| = 15255; |H| = 1367;
The computations of parameters of binary representations of the positive
integer 2n = 200032 with help of arithmetic stated above:
n = 200032

2
= 100016;

G = n− 1 = 100016− 1 = 100015;
|E| =

[
n−1
2

]
=

[
100016−1

2

]
= 50007;

F = G− |E| = 100015− 50007 = 50008;
F = n

2
= 100016

2
= 500008;

S0 = n− p+ 1 = 100016− 17990 + 1 = 82027;
We take |Q| = 33386 from direct computations then
|L| = n− p+ 1− 2|Q| = 100016− 17990 + 1− 66772 = 15255;

|H| = 2|Q|+2p−n−2
2

= 66772+35980−100016−2
2

= 1367;
We take |L| = 15255 from direct computations then

|Q| = n−p−|L|+1
2

= 100016−17990−15255+1
2

= 33386;

|H| = p−|L|−1
2

= 17990−15255−1
2

= 1367;
We take |H| = 1367 from direct computations then

|Q| = n−2P+1+2|H|+1
2

= 100016−35980+1+2734+1
2

= 33386;
|L| = p− 2|H| − 1 = 17990− 2734− 1 = 15255;
The control:
F = |Q|+ |L|+ |H| = 33386 + 15255 + 1367 = 50008;
The compare of data of direct computations with computed values shows
full coincidence of results.
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