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Abstract

Lorentz Invariance implies definite structural constraints on the massive particles. It is shown, from the basic physics
of luminal waves of any kind, that multi-component wave systems conform to the usual relativistic mechanics for matter.
This motivates further consideration of luminal wave models of matter. The usual length contraction and time dilation
phenomena are shown in such models, leading to a paradox-free wave interpretation of Lorentz Invariance and the conclusion
that internal movements referred to the co-moving frame will be luminal in any Lorentz invariant particle model.
PACS: 03.30.+p, 03.65.Ud, 11.30.Cp Keywords: Solitons; Lorentz Invariance; nonlinear Classical Fields

1 Introduction

“But the division into matter and field is, after
the recognition of the equivalence of mass and energy,
something artificial and not clearly defined. Could we
not reject the concept of matter and build a pure field
physics? What impresses our senses as matter is really
a great concentration of energy into a comparatively
small space. We could regard matter as the regions in
space where the field is extremely strong. In this way
a new philosophical background could be created.” -
Einstein & Infeld [1].

Relativistic wave equations, especially the d’Alembert,
Helmholtz and Dirac [2] equations, are indispensable to Mod-
ern Physics. For example, the nonrelativistic Schroedinger
wave equation is contained in the Dirac Equation as the low
velocity, no spin limit. These relativistic equations either fea-
ture propagation at the characteristic velocity, c, or, in the
language of the operator formalism, a velocity operator of
constant modulus equal to c [3]. There are also many Lorentz
invariant classical field theories in the literature, including
nonlinear theories with subluminal soliton solutions that serve
as candidate models for the fermions. [4] - [10] are just a few
to illustrate the diverse range of approaches.

This Article considers the basic mechanics of luminal wave
systems, i.e. systems of waves that propagate at c. We shall
adapt the Newtonian momentum equation, p = mv, for use
with constant speed luminal waves and then apply universally
accepted basic principles of mechanics to luminal waves. This
leads to a general structural analysis of luminal wave systems
that is inherently relativistic without asserting any princi-
ple of relativity. The usual relativistic mechanics of matter
can therefore be interpreted as the basic mechanics of sub-
luminally moving systems constructed entirely from luminal
waves. It is also shown that this interpretation is uniquely
simple and free of all paradoxes.

The first, necessary step towards achieving Einstein’s goal
for a pure field physics is therefore to recognise that, whether
it appears as radiation or as matter, energy is a propaga-
tive phenomenon. The proposed luminal wave ontology also
provides new perspectives on many issues including the Dirac

velocity operator, angular momentum quantisation, the struc-
ture of Electromagnetics [11], gravity [12], the existence of
nonlocal relations between observables, and interference phe-
nomena in matter beams.

Section 2 defines the basic principles of mechanics that
are regarded as universally accepted and identifies the simple
general relationship that governs the connection between in-
ertial frames for systems of luminal wave momenta. Section 3
shows that the usual relativistic momentum equation for par-
ticles applies to systems of luminal wave momenta. Section 4
derives the (forward) relativistic transformation of wave mo-
menta in a form that is useful for analysing wave systems
as a whole. Section 5 extends the results to any kind of lu-
minal wave system, provided a wave vector in the direction
of propagation can be defined, linear momentum is locally
conserved, and propagation is luminal. In particular, linear
superposition of field variables is not required so the method
is applicable to nonlinear wave systems with subluminal soli-
ton solutions. For luminal waves the speed of propagation is,
by definition, fixed and any luminal wave model of a sublumi-
nal massive particle is immediately subject to the kinematic
constraint that, when the speed of the particle changes, the
speed of its constituent wave components does not. Sections 6
and 7 show that length contraction and time dilation are the
consequences of this kinematic constraint so luminal systems
display all the usual relativistic phenomena.

Section 8 addresses the question how the physical phe-
nomena of length contraction and time dilation constrain the
coordinate transformations. Selleri has analysed this in detail
[13, 14]. He showed that, subject mainly to the use of Ein-
stein clock synchronisation, Lorentz Transformations follow
directly from length contraction and time dilation, which are
derived here from the basic principles of mechanics without
making any further assumptions. As discussed in Subsection
8.2, the proposed wave interpretation is also equipped with a
readily observable preferred frame, eliminating the paradoxes
usually associated with the relativist interpretation of Lorentz
Invariance. It remains only to point out, in Section 9, that
any form of non-luminal structure for the massive particles
is implausible, hence the conclusion that the relativistic phe-
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nomena imply the luminal structure. Section 10 then outlines
the reasons why Lorentz Invariance does not preclude nonlo-
cal relations between observables in this pure field context.

2 Basic Physics of Luminal Waves

2.1 The Basic Principles of Mechanics

The usual classical field approach to mechanics in wave sys-
tems begins by choosing wave or field equations. Any analysis
is immediately limited to the mechanics of one particular kind
of wave system. We would identify various solutions to the
chosen equations, which are in general expressed as spatial
distributions of some field variables. Field energy and mo-
mentum densities must be induced from these field variables.
After evaluating the spatial integrals of the energy and mo-
mentum densities we would arrive at expressions for the mo-
menta and energies of the wave solutions and we could begin
the mechanics.

Unfortunately, in many circumstances we do not know
what equations to use, much less their solutions. Moreover,
the great variety of Lorentz covariant wave equations suggests
that relativistic mechanics is a general feature that many wave
systems have in common. What kind of wave systems? As
mentioned in the introduction, the leading relativistic wave
equations feature the characteristic velocity, suggesting that,
when the field energy-momentum in a wave system is con-
strained to propagate at c (i.e. luminally), then the system
displays the usual relativistic mechanics.

Therefore, instead of taking the usual fields approach to
mechanics let us take a mechanics approach to fields, ap-
plying the basic principles of mechanics directly to a field
energy-momentum density that propagates at c. The univer-
sally accepted principles to rely upon can be stated as follows:

1. The momentum of an object is defined as the product of
its inertia times its velocity. Similarly, field momentum
density is the product of inertia density and velocity.

2. Momentum is conserved. Field momentum is locally
conserved.

3. The principle of local action means that wave objects,
as defined below, may interact with each other only in
regions of space where they overlap.

4. The force acting on an object is equal to its rate of
change of momentum.

5. The resulting change in the energy of the object is given
by the work integral.

6. Energy is conserved. Field energy is locally conserved.

Here ‘wave object’ means: some set of functions on a
3-space1, which together induce a field momentum density,
~ρp(x, y, z, t), that a) propagates luminally according to a

unique unit wave vector, k̂(x, y, z, t) and b) whose spatial in-

tegral,
∫ ∫ ∫ +∞

−∞ ~ρp(x, y, z, t)dxdydz, is finite.2,3,4

We are interested in the mechanics of systems that com-
prise multiple wave objects. This begins with non-interacting
systems where the wave objects are not presently interact-
ing with each other. The next Subsection focusses on the
case where each object’s unit wave vector, k̂(x, y, z, t), is a
constant vector, independent of x, y, z and t. The momentum
density distribution of such wave objects moves through space
in a self similar form at c. We shall refer to this special kind
of wave object as a light flash.

2.2 Application to Light

Consider a source that simultaneously emits a set of N light
flashes in various directions. The development here can be
applied to any kind of light flashes, including individual pho-
tons, short segments of laser beams, or collimated beams in
general, monochromatic or not. We require only that each
flash propagates at c, carrying a finite linear momentum in a
well-defined direction in space.

Let the ith light flash carry linear momentum pi. Accord-
ing to the first basic principle, momentum equals the product
of inertia and velocity and the wave inertia of the ith light
flash is therefore defined as mi = pi/c, where pi = |pi| is the
magnitude of the momentum of the ith light flash, also called
the ‘scalar momentum’:

pi = mic (1)

This Article is essentially a consistent application of the ba-
sic mechanics principles, using (1) in place of the familiar
p = mv, where the speed v is a variable. Note that, prima
facie, the inertia, mi, of a wave propagating in a well-defined
direction in space has nothing to do with the mass of a parti-
cle. However we use the symbol mi because, unless they ALL
propagate in the same direction, the total inertia of a set of N
waves will be found to correspond to the usual (relativistic)
particle mass. The time differential of (1) is:

dpi
dt

= c
dmi

dt
(2)

Having fixed the propagation speed, c, changes of the scalar
momentum are thus associated with changes of the wave in-
ertia. It will become clear in Sect. 8 that the inertia changes
we will be discussing throughout this Article are in fact fre-
quency changes. Such changes may be due to a change of
observer or they may be physical changes due to any forces
that are acting on the wavefield.

1That is, spatial distributions of field variables.
2In addition to inducing the field momentum density, the space functions that define wave objects in a nonlinear field theory may also act as

sufficient causes for any interactions that there may be.
3Note that infinite plane waves are not wave objects.
4Neither the propagation of the space functions nor their relation to the linear momentum density are specified here. This allows for wave

objects with intrinsic field angular momentum and, more generally, the definition accommodates two kinds of internal evolution, via the internal
movements of an otherwise invariant set of functions and via their individual time evolutions.
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In general, if a force acts on a light flash then, since (2) is
the force component parallel to the light flash’s motion, the
work integral is:

W =

∫ pf

ps

dp

dt
.ds =

∫ mf

ms

c
dm

dt
cdt = (mf −ms)c

2 (3)

Where subscripts s and f refer to the words ‘start’ and ‘finish’.
The radiation reaction force that acts on a light flash reflected
by a moving mirror is an example that highlights the role of
the work integral in a basic mechanics calculation5. According
to the fifth basic principle, the work done equals the energy
change, and we may assume that a light flash that has zero
momentum requires zero energy, so the energy of the ith flash
is:

Ei = mic
2 = cpi (4)

According to the second basic principle, momentum is con-
served so the total momentum of a set of N wave objects is
given by the vector sum over their momenta:

P =

N∑
i=1

pi (5)

Suppressing the summation range henceforth, we write the
total inertia as me =

∑
imi. The total energy of the set is

then:

E =
∑
i

cpi = mec
2 (6)

According to the (first and second) basic principles, the veloc-
ity of the centre of inertia of a system of objects is the inertia
weighted average velocity, V =

∑
imivi/

∑
imi, so that:

V =

∑
i pi

me
⇒ P = meV (7)

For a relativistic analysis, these basic Equations (1) - (7) must
of course be good for any observer, however, since we intend
inter alia to show it, no principle of relativity is asserted a
priori.

Consider an incremental change that affects the system of
light flashes as a whole. For example, an incremental change
in the condition of motion of the observer would at once alter
all his observations of the pi. Similarly, a single observer con-
sidering light flashes emitted by otherwise identical sources
that are in different conditions of motion will find different val-
ues for the pi. Since these two cases are not a priori assumed
equivalent, consider the latter one, and consider, specifically,
two otherwise identical sources moving at velocities v and
v + dv in the inertial frame of a single inertial observer.

This scenario closely corresponds to applying a Lorentz
boost to a system of wave momenta. We may write the mo-
menta of the light flashes as pi and pi + dpi respectively and
their totals as P and P + dP. We are interested in how the

dpi are related to dP. As shown in Appendix 2, this is de-
termined by the relevant known facts, the relativistic Doppler
shift and aberration phenomena, which together imply:

dpi =
pi
mec

dP (8)

We are assuming neither special relativity nor the relativ-
ity principle by referring to these phenomena. Indeed, while
Lorentz Transformations correctly imply each of them, there
exist other coordinate transformations [13] that also correctly
predict these observables [15]. Because (8) is a direct conse-
quence of the phenomena themselves6, it necessarily applies
to any theory that correctly accounts for them.

It is nonetheless relevant to consider what, if anything,
the facts here are introducing over and above the basic prin-
ciples stated above. If our coordinate transformations are to
be linear and homogeneous, as is usually assumed, then dpi

will be linear in pi. Similarly, when considering the case of
a single light flash, (the case N = 1), dpi should be linear
in, and parallel to, any incremental change of momentum of
the light source, dPLS , prior to emission. Since the same ap-
plies to each of the light flashes in our system it follows that
dpi ∝ dP and we can safely assume that: dpi = αipidP.

Eq. (8) means that all the weights, αi, are the same, αi =
α. Summing over i gives α = 1/mec (since

∑
i dpi = dP).

In particular, under an incremental momentum boost of the
whole system, the Doppler shift and aberration results require
that the momentum shifts, dpi, applied to the various wave
momenta, pi, depend linearly on their energies but not on
their directions of propagation, k̂i

The next two sections show how the incremental mo-
mentum boost, (8), governs the connection between inertial
frames for systems of luminal wave momenta. In order to
avoid asserting the relativity principle, the boost will not
presently be associated with a change of observer. It will turn
out to work relativistically, but for the present purposes (8)
has only the restricted meaning of an incremental change dv
in the velocity of a light source, the result of which is to add
dP to the total wave momentum by adding wave momentum
dpi to each of the N constituent light flashes7.

3 The Relativistic Momentum

This section shows that systems of luminal wave momenta
that are connected by incremental momentum boosts obey
the usual relativistic momentum equation for particles.

In subsection 2.2, the incremental change in the scalar mo-
mentum of the ith light flash, dpi, is given by the component
of dpi parallel to pi, namely:

dpi = dpi ·
pi

pi

Substituting (8) in this gives mec dpi = pi · dP. Noting that∑
dpi = c dme, summing over i gives:

c2medme = P · dP
5See Appendix 1, which shows that the ratio of reflected and incident momenta is the square of the relativistic doppler shift.
6When Appendix 1 is generalised to the case of non-normal incidence, the result is the product of the two relativistic Doppler shift and aberration

operations involved. The basic principles are thus arguably sufficient to derive (8) by themselves, however the analysis is tedious.
7Note that we do not need to assume that dV = dv
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Integrating this we obtain the common expression for the in-
variance of the 4-momentum:

m2
ec

2 = P 2 +m2
0c

2 (9)

Where m0 is the value of me for P = 0. Let β = V/c as usual
so β is a +ve real number in the interval [0, 1]. The basic
equations of relativistic mechanics, P = γm0V andme = γm0,
where γ = 1√

1−β2
, follow upon substituting (7) into (9).

4 Wave System Transformations in Mo-
mentum Space

In this section we show how the momenta of individual wave
objects in a multi-object wave system transform under the
action of (8).

By analogy to the usual comoving frame for massive parti-
cles, let us define the rest frame of a multi-object wave system
as the (unique) inertial frame for which the right hand side of
(5) vanishes. This definition is convenient, but not essential.
Given the definition, let us now adopt the perspective of a
single inertial observer who compares systems of light flashes
emitted by two otherwise identical sources in different con-
ditions of motion such that he considers one system’s centre
of inertia to be at rest, i.e. P = 0 in (5) and V = 0 in (7),
and the other’s to be moving at speed V in the x-direction,
so that, from Section 3, P = γm0V .

Let us refer to these two systems of light flashes as
the ‘rest system’ and the ‘moving system’ respectively. We
shall use a 0 subscript to refer to rest system momenta,
so P0 =

∑
i pi0 = 0. The analysis is expressed in

momentum coordinates and it does not involve anything
about spatial relations between the waves until Section 6.

Figure 1: Binary light flash systems whose centers of inertia are
(a) at rest (b) moving at speed V = βc.

The simplest case of a compound wave system where
P0 = 0 consists of 2 light flashes of equal scalar momentum,
p10 = p20 = p0, propagating in opposite directions, as shown
in Fig. 1a. The moving system is shown in Fig. 1b, where the
x-components of the wave momenta, p10 and p20, have been
modified in accordance with (8) so that the centre of inertia
moves at speed V in the x-direction.

In Fig. 1a, m0 = (p10 + p20)/c = 2p0/c. Recalling from
Section 3 that me = γm0, the sum of scalar momenta in the
moving system of Fig. 1b is:

p1 + p2 = mec = 2γp0 (10)

Whilst the total momentum, P = meV is the vector sum of
momenta:

p1 + p2 = P =
2γp0

c
V = 2γβp0 î

Consider the vector p′ in Figure 1b, where p1 = P/2+p′ and
p2 = P/2−p′. Using the law of cosines, its magnitude, p′, is
such that:

p2
1 = p′2 + (γβp0)2 + 2γβp0p

′ cos θ (11)

p2
2 = p′2 + (γβp0)2 − 2γβp0p

′ cos θ (12)

Where θ is the angle p′ makes with the x-axis. Upon elim-
inating p1 and p2 from (10)-(12) we find that p′ = p′(θ) is the
ellipsoid:

p′(θ) =
p0√

1− β2 cos2 θ
(13)

Let us write the momenta in component form as
(pix, piy, piz)i=1,2. In Cartesian coordinates (13) is then the
ellipsoid:

(p′ix/γ)2 + p2
iy0 + p2

iz0 = p2
i0

where p′ix = pix−γβpi0, so that the moving system momenta
satisfy the following equation:

(
pix − γβpi0

γ
)2 + p2

iy0 + p2
iz0 = p2

i0 (14)

Eq. (14) is here derived only for the case N=2, however
this equation also covers the general case, as we shall now
show. Consider as initial condition an arbitrary system of
light flashes, comprising a number N ≥ 2 of wave momenta
of scalar momentum, pi0, whose directions of propagation
are distributed in space such that P0 =

∑
i pi0 = 0 and∑

i pi0 = m0 c. In the rest system components are such that:

p2
ix0 + p2

iy0 + p2
iz0 = p2

i0 (15)

Figure 2: Individual momenta in an isotropic wave system mod-
ified such that V = βc.

The example for N = 2 above suggests that after (8) acts

on the set, bringing the total momentum to P = γm0V î,
then (14) applies to the moving system momenta. Fig. 2
shows the moving system momenta when all the rest system
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scalar momenta are the same, i.e. pi0 = p0 for all i. Dif-
ferentiating (14) with respect to β using dγ/dβ = γ3β and
dγ−1/dβ = −γβ leads to:

dpix
dβ

= γ(pi0 + γβpix) (16)

Expanding the first term in (14) and using γ2β2 = γ2 − 1

(twice) gives:

pi =
pi0 + γβpix

γ
(17)

As Px = γm0V , we also have dPx = γ3m0 dV , so that:

dpix =
dpix
dV

dV =
dpix
dβ

dPx

γ3m0c
(18)

Finally, substituting (16) and (17) in (18):

dpix =
pi

γm0c
dPx

This is the x-component of (8). Due to the choice of coordi-
nates, the y and z components of momentum were unaffected,
so the ellipsoidally modified distribution (14) is generated by
the action of (8) on our arbitrary initial condition as expected.
Comparing (14) and (15), the components of the moving sys-
tem wave momenta are:

pix = γ(pix0 + βpi0) , piy = piy0 , piz = piz0 (19)

Note that these physical transformations due to changes in the
condition of motion of a light source are identical to Lorentz
Transformations of wave momenta between different reference
frames in standard configuration. However, as we are not as-
serting the Principle of Relativity there is no guarantee (so
far) that our analysis works relativistically, and (19) corre-
sponds only to the forward transformations of wave momenta
in relativity theory.

We can now calculate the relative velocity of the ith light
flash, which is to say its velocity relative to the centre of iner-
tia of the system, which our observer considers to be moving
at V in the x-direction. The total velocity of the ith flash has
components vix = cpix/pi, viy = cpiy0/pi, and viz = cpiz0/pi.
Using γ2β2 = γ2 − 1 with (17) and (19), it is readily shown
that the relative velocity, vri, has components8:

vrix = vix − V =
cpix0

γpi

vriy = viy =
cpiy0

pi
; vriz = viz =

cpiz0

pi
Finally, if vri makes the angle ϑi with the x-axis, then:

tanϑi =
√
v2

riy + v2
riz/vrix = γ tanϑi0 (20)

where ϑi0 is the corresponding angle in the rest system. Sect.
6 shows how this basic kinematic relationship leads to length
contraction in ‘pure field’ models of the massive particles
where all the field energy propagates luminally. Such models
are discussed in the next section.

5 Luminal Wave Models of Matter

Up to this point the analysis has dealt with the linear momen-
tum of systems of light flashes emitted by identical sources in
different conditions of motion. No functional description of
the light flashes was required, neither as photons nor as so-
lutions to any particular wave equation. The fact that these
systems obey the usual relativistic momentum equation for
particles strongly suggests that the massive particles should
also be thought of as luminally propagating field systems.
This Section discusses how the basic mechanics principles can
be applied quite generally to compound, interacting systems
of wave objects that are commensurate with modelling sub-
luminally moving systems.

5.1 Compound Wave Systems

At any point in a system of disjoint light flashes (i.e. whose
momentum densities do not overlap), there is a single field
momentum density associated to a well defined unit wave vec-
tor. This field momentum density might, at least in principle,
be induced from a set of space functions in accordance with
the definition of a wave object, so the entire system can be
thought of as a single wave object. However, there are also
wave systems that cannot be represented as single wave ob-
jects.

Consider instead a system of N light flashes that propa-
gate towards each other. When the field momentum densities
of the various light flashes meet and overlap, the physical sit-
uation is inevitably such that there are multiple waves coex-
isting at the same place, propagating in different directions9.
Since the set of space functions that comprises a wave object
induces only a single momentum density at each point, when
wave objects collide a luminal wave description of the result-
ing system inherently requires us to consider multiple wave
objects coexisting at the same place and time.

We shall now see that interactions between these distinct
entities are required in order to construct luminal wave mod-
els of subluminally moving matter.

5.2 Forces, Field Variables and Superposition

The force operating on a wave object is, by definition, equal
to its rate of change of momentum, which is to say the space
integral of the rate of change of its momentum density10. Mo-
mentum is locally conserved, so forces necessarily manifest
as reciprocal local exchanges of momentum between the mo-
mentum densities of the participating wave objects. These
exchanges necessarily sum to zero locally as well as globally,
so ‘local action’ can only mean that the objects’ momentum
densities must overlap.

8Since V, vi and vri are all referred to the same observer
9Note that the vector addition of two non-collinear luminal wave vectors is not a luminal wave vector because there is no wave actually

propagating at c in the direction of the resultant vector.
10There is also generally a rate of change of a wave object’s momentum density at every fixed point due to the movement of the object, but the

space integral of such changes obviously vanishes.
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When the momentum density distribution of a wave ob-
ject changes then so must the field variables that induce it,
so the essential nature of forces in a wave theory is to modify
wave objects.

In a compound wave system formed by intersecting light
flashes, if there were no forces between wave objects, then the
momentum distributions pertaining to each object would not
change as they move through each other, the same space func-
tions could be retained for each wave object throughout the
encounter and it is reasonable to think of each object’s field
variables as being the same as if it were by itself. A linear field
theory is then appropriate. In Electromagnetics, for example,
the wavefields interact with charges but not with each other.
The chosen field variables, E and H, are force fields defined
by the force that the wavefield exerts on a standard reference
system, a 1 coulomb point charge. The global values of these
field variables are given as linear superpositions of the disjoint
values pertaining to individual wavefields.

In linear field theory, wave components evolve indepen-
dently of each other, there are no interactions amongst the
waves and any superposition must dissipate unless all the
wave vectors are parallel, in which case the motion of the
centre of inertia of the wave group is V = c. Electromag-
netic field models of the massive particles are thus excluded.
The idea that a finite subluminal image can be formed as an
interference pattern can also be excluded as it requires infi-
nite wave trains which requires infinite energy. Therefore, the
construction of luminal wave models for the massive particles
requires multiple distinct wavefields that share the same space
and interact with each other to form bounded systems, which
is to say they form wave solitons.

When the wavefields in a model do interact with each
other, the forces that are actually operating on a given wave
object still superpose (by definition). However, as discussed
above, the definition of force also implies that wave objects
are distorted under interaction. If the wave object is defined
by force field variables, as in Electromagnetics, then its force
fields (which are propensities to exchange momentum as op-
posed to actual forces) are not the same under interaction as
would be the case if it had been disjoint. Furthermore, if a
wave object in an interacting system persists in a self-similar
form then that form depends in an essential way on the forces
that are operating on it. It is obviously counterfactual to
consider such a wave object as if it were disjoint from the
other wave objects that are actually present. If they were not
present, it would be a different object.

Overall, once we include interactions between wave ob-
jects, the global values of field variables cannot be expressed
as a linear superposition of disjoint values so a nonlinear the-
ory is required. If the chosen field variables are force fields,
then global values are by definition still given as a linear super-
position, but this is a linear superposition of conjoint values
that correspond to actual transfers of wave momentum from
one object to another.

Of course one might choose other field variables besides
force fields. With water waves for example the vertical dis-
placement of the water surface is commonly used as a field

variable. Such alternatives also do not generally superpose
linearly. However, whatever field variables we may choose
and however they may induce it, the field momentum density
is locally conserved. As we shall see in the next two sections,
the field momentum density is also the physical basis for any
mechanical quantities that we may observe including not just
momenta but also lengths and times.

5.3 Wave Trajectories

Whereas a field variables description immediately confronts
us with some unknown nonlinearity, we can focus directly on
the inherently linear field momentum density by considering
a wave trajectories description. This kind of description is of-
ten useful in Electromagnetics, where it arises from the field
variables description as follows. Electromagnetic waves in a
vacuum obey the well known d’Alembert wave equation:

{∇2 − 1

c2
∂2

∂t2
}ψ = 0 (21)

Where ψ(x, y, z, t) may be any component of either the Elec-
tric field E or the Magnetic field H. The individual field
components are not linear momenta, but nor do they ex-
ist in isolation. Electromagnetic waves involve both Electric
and Magnetic fields and there is a linear momentum density,
−→ρ p = S/c2, where the Poynting vector S = E ×H is aligned
with the wave vector, k (which by definition points in the
direction of propagation). The field lines of the wave vector
trace out well defined trajectories at the ray velocity vray = c
(in vacuo) [16, 17], and the linear momentum carried by the
Electromagnetic wave propagates along these trajectories at
the characteristic velocity.

Any luminal wave theory, linear or nonlinear, has a wave
vector pointing in the direction of propagation, and once we
have a wave vector, the wave trajectories description works
as in Electromagnetics.

5.4 Closed Wave Systems

Whether we consider a subatomic particle or some macro-
scopic object, it is a basic premise that the energy that con-
stitutes a persistent subluminally moving system must remain
in the same general vicinity as the object. From the perspec-
tive of a luminal wave model where the energy is moving at
c, any trajectory of the wave vector will remain bound to
the system because any wave trajectory that leaves the sys-
tem bleeds energy from it. Therefore, when considering lumi-
nal wave models for matter, we can restrict our attention to
closed trajectory systems. The trajectories may or may not
form closed loops, but any given trajectory will remain within
some finite distance of the centre of inertia of the system.

5.5 Towards Coordinate Transformations

In order for wave trajectories to remain bound to a sublumi-
nally moving centre of inertia they must be curved. Therefore,
the unit wave vector for any given wave object in a closed sys-
tem must be position dependent and may in general also be
time dependent. Consequently, space functions that describe
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light flashes, where the unit wave vector is constant (see for
example [18]-[20]), will generally be unsuitable for describing
closed systems, so we cannot think that the massive particles
are constructed of light flashes. Therefore, we now require
the incremental momentum boosts to operate directly on the
momentum densities.

Eqs. (1) - (7) can be rewritten in terms of momentum den-
sities, however it is more convenient to preserve the notation
by converting momentum densities into momenta as follows.
Let the entire space be divided into small regions of dimen-
sion δx = δy = δz = δl, where δl is sufficiently small that
any of the momentum densities, −→ρ pi(x, y, z, t), can be con-
sidered constant within each region so that −→ρ pi(x, y, z, t) δl

3

is a linear momentum propagating at c in a definite direction
in space. Introducing a new subscript, k, to label the regions,
we write the linear momentum of the ith field in the kth re-
gion as pik(t) = −→ρ pi(rk, t) δl

3, where rk is the position vector
to the centre of the kth region. Since the space integral of
the momentum boost must recover (8) for all possible light
flashes, the incremental momentum boost operating on the
pik can only be:

dpik =
pik
mec

dP (22)

Where:
P =

∑
k

∑
i

pik

me =
∑
k

∑
i

mik =
1

c

∑
k

∑
i

|−→ρ pi(rk, t)| δl3

and the rest goes through as before.
The rest system in Sect. 4 could be a particle or any

macroscopic system that is comoving with the observer. The
moving system’s internal momenta, pik, are related to the
pik0 by (19), with an additional k subscript inserted. The
system’s momentum is P = γm0V, where the velocity of the
centre of inertia of the wavegroup, V, is simply the observed
velocity of the system. The relative velocity we developed at
the end of the last section, vrik = vik −V, describes the in-
ternal movements of the system as seen by an observer who
considers it to be moving at V.

Since internal movements obviously change in response to
changes in the observed velocity, neither the shape nor the in-
ternal evolution of a subluminally moving wave system can be
assumed to be velocity independent so that, in order to de-
termine coordinate transformations, we must first calculate
the impacts this has on rulers and clocks constructed from
luminal wave energy.

However, before moving onto the analysis of length con-
traction and time dilation in luminal wave models let us con-
trast (22) with the Newtonian concept of a force field as ap-
plied to a point-like massive particle. According to the fourth
basic principle, the force acting on an interacting field is, by
definition, equal to its rate of change of momentum. Donev
and Tashkova [20] have also developed this within a field vari-
ables approach to luminally propagating bivector fields. It
might appear at first blush that:

dpik

dt
=

pik
mec

dP

dt
(23)

and the left hand side of (23) should be interpreted as the
force acting on the ith wave object in the kth region when
the total externally applied force acting on the particle is
F = dP/dt. Such a dynamic interpretation requires mak-
ing unreasonable extraneous assumptions, including not least
a uniform applied field. This is unnecessary for our analy-
sis, for which (22) simply governs the relationship between
systems in steady state conditions, before and after (but not
necessarily during) some physical process that results in an
incremental boost to the system’s momentum. A one to one
correspondence between the momentum densities of rest and
moving systems is assumed, but without such an assumption
no inherently relativistic structure would be possible because
we could never equate a boost with a change of observer.

6 The Lorentz-Fitzgerald Contraction

This section shows that closed wave trajectory systems con-
tract in the direction of motion. This is easily understood by
considering the special case of a rest system where the wave
vector is transverse to the direction to the centre of inertia
so that the system evolves under rotations and any wave tra-
jectory exists on the surface of a sphere. Such systems are
of particular interest because the group of transformations in
Special Relativity that preserves the linear momentum of a
particle is the Little Group and the usual interpretation is
that rest particles evolve under the action of members of the
group of rotations [21].

Consider a system of concentric spherical surfaces con-
structed about the rest system’s centre of inertia, which we
shall assume is at the origin. Given the abovementioned con-
dition, all rest system wave trajectories through a given point,
rk0, lie instantaneously in the tangent plane at that point to
the sphere of radius rk0. Without loss of generality, let us
consider the trajectories passing through a point in the xy
plane where the tangent plane makes the angle θ0 with the x-
axis, as shown in the top left of Fig. 3. The wave momentum
along a trajectory lying in this plane has components in the
following form:

px0 = p0 cos θ0 cosφ0 ; py0 = p0 sin θ0 cosφ0 ; pz0 = p0 sinφ0

Where φ0 is the angle the trajectory makes with the xy plane.
Note that this is just the component form of any of the pik0.
The i and k subscripts can be omitted without ambiguity: px0

means pikx0 and so on. Using (19), the components of the cor-
responding wave momentum in the moving system are:

px = p0γ(cos θ0 cosφ0 + β) ; py = py0 ; pz = pz0

The moving system momenta for different values of φ0 are not
coplanar. As shown in the top right of Figure 3, they lie on
a conical surface whose vertex is at the origin of momentum
coordinates, and whose base is the intersection of the plane
at angle θ, where tan θ = tan θ0/γ, with the moving system
momentum distribution. This elliptical intersection is shown
in the bottom right of Figure 3 .
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Figure 3: Momenta and Positions in Rest and Moving Luminal Wave Particle Models

The (total) velocity for each of these momenta has com-
ponents vx = cpx/p ; vy = cpy/p ; vz = cpz/p where, from (17)
above, the moving system scalar momenta are:

p =
p0 + γβpx

γ
=
p0

γ
(1 + γ2β(cos θ0 cosφ0 + β)) (24)

The group velocity is V î, so using (24) the relative velocity
components are:

vrx =
cpx − pV

p
=
cp0 cos θ0 cosφ0

γp

vry =
cp0 sin θ0 cosφ0

p
; vrz =

cp0 sinφ0

p

The ratio vry/vrx = γ tan θ0 is independent of φ0 (and φ),
so the velocities that lay in a given tangent plane in the rest
system transform into relative velocities lying in a correspond-
ing moving plane, tangent to the moving trajectory system11.
Let α be the angle between the plane at θ and the tangent
plane, as shown in the bottom left of Figure 3. The moving
system tangent plane makes the angle α+ θ with the x-axis,
where tan(θ + α) = vry/vrx = γ tan θ0 = γ2 tan θ. Using the
angle sum trigonometric relations we obtain:

tanα =
β2 sin θ cos θ

1− β2 cos2 θ
(25)

The set of all tangent planes defines the surface up to a
scale factor. Due to rotational symmetry we can anticipate
being able to write the equation describing this surface in the
form r = r(ψ), where ψ is the angle from the position vector
to the x-axis. For any function r(ψ) the angle between the

tangent plane and the plane transverse to the radius vector
is:

tanα′ =
1

r

dr

dψ
(26)

Consider as trial function the ellipsoid:

r(ψ) =
λ√

1− β2 sin2 ψ
(27)

for which

tanα′ =
β2 cosψ sinψ

1− β2 sin2 ψ
(28)

independent of the scale parameter λ. With ψ = π/2− θ, this
is identical to (25), which therefore describes an ellipsoid of
revolution (27), such that the plane at θ is transverse to the
position vector, r, shown in the bottom left of Figure 3.

The scale factor, λ, is readily found by inspection. The
moving system equatorial plane is the plane x = V t and
ψ = π/2. The tangent plane at any point in the equatorial
plane is parallel to the x-axis so the dpik at these points lie
in the tangent plane. Therefore the equatorial tangent planes
are not altered by the action of (22). Therefore the radius of a
circumferential trajectory in the equatorial plane is invariant
under the dimensional transformation (27), and λ = r0/γ,
where r0 is the radius of the spherical surface in the rest sys-
tem.

The result is that, for our rest observer, any wave trajec-
tory in the moving system lies on the surface of an ellipsoid
moving along the x-axis at speed V and of the form:

r(ψ) =
r0

γ
√

1− β2 sin2 ψ
(29)

The moving system wave trajectories are thus physically
compressed by the factor γ in the direction of motion. Let us

11Recall that we showed in Section 4 that the relative velocity of any trajectory is rotated by the kinematic relation tanϑ = γ tanϑ0, where ϑ is
the angle the relative velocity makes with the x-axis. We now see the consequence of the Little Group for luminal wave particle models. Locally
flat surfaces formed by sets of trajectories at a given point in the rest system transform into locally flat moving surfaces, rotated so that the tangent
of the angle the moving surface makes with the x-axis is γ tan θ0, where θ0 is the angle the rest system surface makes with the x-axis.
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now consider general wave trajectories that are not confined
to the surfaces of spheres in the rest system. The analysis
above shows that any short segment of the general trajec-
tory is rotated so that the ratio of its dimensions parallel
and transverse to V is suppressed by γ. Since this applies to
every segment it applies to entire trajectories and since we
have already identified specific trajectories whose transverse
dimensions are invariant, the same scale factor applies to the
general case.

Therefore, closed luminal wave trajectory systems are
physically compressed by the factor γ in the direction of mo-
tion with the result that any macroscopic physical objects,
including rulers, that are constructed entirely from luminal
wave energy undergo the usual Lorentz-Fitzgerald length con-
traction.

7 Time Dilation

In this section it is shown that all internal processes in closed
wave systems slow down according to dt/dt0 = 1/γ. A
fixed overall rate of spatiotemporal evolution can then be
defined in the usual way by a 4-dimensional line element
c2dt20 − dx2

0 = c2dt2 where t0 and t are the rates of rest and
moving clocks respectively and dx0 is traversed by the mov-
ing clock. The analysis is similar to the standard analysis of a
light clock, but let us first explain the main idea qualitatively.

According to (7) and as illustrated in Fig. 2, the group
velocity of a wave system is the result of spatial correlations
amongst the directions of propagation k̂i(x, y, z, t) of internal
momenta. As the group velocity approaches the characteris-
tic velocity, the trajectories rotate towards the group veloc-
ity: k̂ → V̂. But if all the trajectories of a wave system
were exactly parallel as it moved through an observer’s refer-
ence frame the spatial configuration of the system would not
change and the observer would conclude that nothing happens
in the inertial frame of the group. While spatial correlations
amongst trajectories are essential for the movement through
space, internal evolution requires decorrelations. There is a
direct tradeoff between external evolution in space and in-
ternal evolution in time, so time dilation is the direct conse-
quence of constructing variable speed entities from fixed speed
primitives.

The same kind of tradeoff is also found in the Dirac Equa-
tion. Consider the equation for the time dependence of the
velocity operator in the Heisenberg representation of the Dirac
theory [22]:

−→α (t) = (−→α (0)− p

H
) exp (−2iHt) +

p

H
(30)

Where p and H are both constants, c = 1 and the group ve-
locity is p/H = vg = const.. The first term on the right is
routinely interpreted to represent the internal movements of
the electron, the ‘Zitterbewegung’. Its quantum mechanical
expectation is:

< Ψ | (−→α (0)− vg) | Ψ > / < Ψ | Ψ >

which (noting that −→α has real eigenvalues) varies with vg as√
1− v2g . The zitterbewegung slows down by a Lorentz factor

as the group velocity increases.

We shall now show that internal processes in luminal wave
systems slow down according to dt/dt0 = 1/γ.

With respect to the rest system’s wave trajectory system,
consider any closed trajectory formed by n segments, where
the ith segment has length li0 and makes the angle θi0 with
the x-axis. The speed on all segments is v0 = c so the period
around the closed trajectory is T0 = 1

c

∑n
i=1 li0, where T0 is

the time elapsed on a clock in the rest frame to traverse the
trajectory in the rest system. Lengths in the rest system may
be written in component form such that:

l2i0 = l2ix0 + l2iy0 + l2iz0

Let the trajectory system now move in the x-direction at
speed V . Given the length contraction, x-components con-
tract by the factor γ and the corresponding relationship is:

l2i =
l2ix0

γ2
+ l2iy0 + l2iz0

It is readily shown that:

l2i = l2i0(1− β2 cos2 θi0) (31)

The moving and rest system angles are related by tan θi =
γ tan θi0, from which we get:

cos θi
cos θi0

=

√
1− β2 sin2 θi (32)

The relative velocity on the ith segment in the moving system,
vri, is constrained by:

(vri cos θi + V )2 + v2
ri sin2 θi = c2 (33)

Which leads to: vri+V cos θi = c
√

1− β2 sin2 θi. From which,
using (32):

vri =
cos θi(c− V cos θi0)

cos θi0
=
lix0c(1− β cos θi0)

γli cos θi0

The time taken to traverse the ith segment in the moving sys-
tem is li/vri = l2i /vrili, so, using (31), we may write the period
elapsed on clocks in the rest system for traversals around the
Lorentz contracted closed trajectory of the moving system as
follows:

TV
0 =

n∑
i=1

l2i /vrili =

n∑
i=1

γl2i0 cos θi0(1− β2 cos2 θi0)

lix0c(1− β cos θi0)

=
γ

c

n∑
i=1

li0(1 + β cos θi0)

Since
∑

i li0 cos θi0 = 0 it follows that TV
0 = γT0. It might

be argued that trajectories need not form closed loops, but a
path that crosses a given plane transverse to V must even-
tually either recross the same plane or become confined to
a smaller region, in which it must either routinely recross a
transverse plane or become confined to an even smaller re-
gion and so on. In steady state, the trajectories can only be
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transverse or regularly recross a transverse plane. The anal-
ysis above also covers open paths between points in the same
transverse plane, for which the condition

∑
i li0 cos θi0 = 0 is

also fullfilled. The time between such crossing points dilates
by γ. We conclude that the internal processes of a luminal
wave system slow down by the factor γ. The argument from
internal processes to real world clocks is well established [23],
and tested [24, 25, 26], so moving clocks will run slow accord-
ing to the usual relation dt/dt0 = 1/γ.

8 Coordinate Transformations

We have shown length contraction and time dilation as phys-
ical effects in luminal wave models subject to the basic me-
chanics Eqs. (1) - (7) and the incremental momentum boost
generator (22). The analyses were constructed from the per-
spective of a single observer so the principle of relativity, co-
variance, coordinate independence, and coordinate transfor-
mations were all irrelevant.

Let us now focus on the question of how these physical
phenomena of length contraction and time dilation constrain
the coordinate transformations. Selleri has studied this ques-
tion in some detail [13, 14]. He considered three assumptions,
namely: length contraction, time dilation and constancy of
the 2-way velocity of light. He showed that any two of
these assumptions both implies the third and constrains the
coordinate transformations between a preferred rest frame,
S0 = (x0, y0, z0, t0) and a frame S = (x, y, z, t) in standard
configuration moving with speed v to the following form:

x =
(x0 − βct0)√

1− β2

y = y0 ; z = z0

t =
√

1− β2 t0 + e1(x0 − βct0)

Where β = v/c and e1 is a synchronisation parameter. Setting
e1 = −β/(c

√
1− β2) corresponds to the usual Einstein clock

synchronisation convention and reduces this to the Lorentz
Transformation. Our coordinate transformations are there-
fore Lorentz Transformations and the relativity principle and
the constant speed of light for all observers are therefore re-
sults, not postulates. It is also now finally clear that the wave
inertia changes we have analysed are frequency changes corre-
sponding to the relativistic Doppler shift, as opposed to, say,
amplitude changes.

8.1 Other Synchronisation Protocols

Selleri also discusses alternative clock synchronisation pro-
tocols, especially the case e1 = 0 which corresponds to using
Einstein synchronisation in a preferred rest frame, and setting
clocks in the moving frame to coincide with nearby clocks in
the rest frame at t = 0. Both sets of observers agree that
clocks in the moving system run slow, and they also agree on
the simultaneity of spatially separated events. The transfor-
mations in this case, known as the inertial transformations,
were first found by Tangherlini [27]. The empirical conse-
quences of inertial transformations have been shown to com-
ply with experimental evidence in a wide variety of situations

[28]. As far as the present article is concerned, Appendix 2
derives (8) from the relativistic Doppler shift and aberration
results, which apply equally well to inertial transformations
[15], and therefore so do the structural consequences devel-
oped above.

Selleri and others have advanced various arguments in
favour of absolute simultaneity [29] - [34] (notably a simpli-
fied analysis on the rotating platform), but nothing that ques-
tions the Lorentz form within the domain of inertial frames.
Inertial transformations do not preserve the line element,
ds2 = c2dt2 − dx2 − dy2 − dz2, the physical laws are frame de-
pendent, the inverse transformation is different, the relative
velocity of the origin of S as seen by S0 does not equal the
relative velocity of S0 as seen by S and the inertial transfor-
mations do not form a group [14]. In short, they fail to deliver
elegant and simple analysis in most physical situations.

The conventional nature of the Einstein protocol has, of
course, always been stipulated in relativity theory and what
Selleri has in fact shown is that, like the choice between Carte-
sian and Spherical coordinates, the choice of a clock synchro-
nisation protocol really is only a matter of convenience. Pro-
vided they use it consistently, physicists solving problems on a
rotating platform and engineers developing GPS satellite net-
works (which use an inertial clock synchronisation protocol)
can use whatever protocol is most effective.

The self-evident fact remains that the events that hap-
pen in the world cannot depend on the coordinate systems
we use to describe them. Coordinate independence is one
of the most powerful practical tools for the development of
new physics. Other coordinate transformations may be em-
pirically adequate, but special status is rightly afforded to
Lorentz Transformations on the basis of symmetry and util-
ity, not uniqueness, and what we have shown is that their
‘natural habitat’ is field theory.

8.2 Objective Simultaneity and the Preferred
Frame

An immediate consequence of the Einstein synchronisation
protocol is that observers in relative motion find themselves
in disagreement over intrinsically objective facts such as the
rates of their respective clocks and the temporal ordering of
spacelike separated events.

Philosophical relativism sought to leave these conflicts un-
resolved on the basis, ultimately, that a preferred frame can-
not be observed. This approach induces numerous paradoxes
that have been criticised for over a century [35]. More re-
cently, Hardy [32] and Percival [33, 34] have each shown that
relativity of simultaneity when combined with quantum non-
locality leads to more than just conflicts between observers.
It leads to manifest contradictions for individual observers.

Percival’s double Bell paradox, for example, considers two
EPR/Bell experiments in relative motion. According to rela-
tivity of simultaneity, a temporal loop can be constructed by
using the measurement results in one arm of each experiment
to select the measurement axis in the corresponding arm of
the other experiment. Given the quantum predictions for in-
dividual EPR/Bell experiments, he showed that an observable
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measurement result is, on at least some occasions, inverted by
the loop becoming equal to its own opposite which is a mani-
fest contradiction. Therefore, either the quantum predictions
are incorrect or relativity of simultaneity is invalid.

The long standing loopholes [36] in EPR experiments are
rapidly closing, for example [37], but the evidence is perhaps
still not quite crystal clear and it may still be possible to
assert that the quantum predictions are ”wrong” when they
correctly predict these experimental outcomes.

Alternatively, we can simply admit what good sense al-
ways demanded: When two observers disagree regarding the
rates of clocks or the temporal order of spacelike separated
events, only one of them can be right. We then require two
concepts of simultaneity, apparent and objective. Apparent
simultaneity is what appears to observers using a given clock
synchronisation protocol. Provided the protocol corresponds
to a definite value for the synchronisation parameter, e1, ap-
parent simultaneity is sufficient for making predictions. Rela-
tivistic simultaneity is just the apparent simultaneity for ob-
servers using the Einstein protocol but there is no need to
assert the truth value of this clock synchronisation protocol.

As far as objective simultaneity is concerned, the anal-
ysis above shows that motion induces objective changes in
clocks and rulers that are constructed entirely from luminal
waves, whilst we shall see in the next Section that nonluminal
structures can effectively be ruled out. The luminal wave in-
terpretation of Lorentz Invariance also allows us to determine
an observer’s velocity relative either to the medium in which
the wave energy propagates or to the universe as a whole,
which in turn allows us to define simultaneity objectively.

In a wave theory, the nett observed Doppler shift for a
given source and detector depends only on the relative veloc-
ity and the direction to the source. We cannot isolate the
detector velocity. However, with a large number of sources
lying in different directions whose individual masses and con-
ditions of motion are independent of the direction in space,
we can determine the detector velocity relative to the centre
of mass of the group as a whole. Similarly, measurements on
an a priori isotropic radiation bath are sufficient [38] to de-
termine the detector velocity relative to the rest frame of the
bath, as defined in Section 4.

As discussed in [12] and references therein, two important
cases have already been studied, namely the anisotropies of
(1) the Cosmic Microwave Background Radiation (CMBR)
[38, 39], which gives the Earth’s velocity relative to the
medium and (2) the angular number density of observable
astronomical objects [40], which gives the Earth’s velocity
relative to the rest of the universe. In both cases, an identi-
cal velocity dipole of magnitude ∼ 350 Km/Sec is observed!
It is anticipated that future observations on other isotropic
radiation baths will show the same anisotropy and the same
velocity dipole. Variations in the average red shift of distant
galaxies as a function of the direction in space constitute a
further example that can be tested in the future to confirm
this prediction. Note that these results are at odds with the
relativist interpretation.

On the wave interpretation, the momentum density distri-
bution of any wave system whose centre of inertia has zero ve-
locity relative to the medium “really” has no bias in any given
direction, so that we can safely state that clocks in this condi-
tion of motion “really” do run faster, rulers “really” are longer
and so on. This preferred frame is a necessary consequence
of the analysis and it provides the essential empirical basis
for asserting at last that absolute simultaneity coincides with
the Einstein simultaneity of observers at rest in the CMBR
frame. The wave interpretation presented here has therefore
eliminated all the paradoxes associated with Special Relativ-
ity without sacrificing any of the practical benefits of Lorentz
symmetry, whilst also covering a wider range of observables.

9 Non-luminal Structures

It is of course possible that wave propagation slows down
or stops altogether under interaction, so the wave energy is
transformed into some ill-defined notion of ‘substance’. Noth-
ing prevents applying the same basic mechanics principles to
such non-luminal structures, however once we introduce en-
tities that do not move at c, an immediate casualty is the
work integral connection between momentum and energy. We
would have no choice but to re-define inertia as being funda-
mentally velocity dependent.

Such a flexible approach to so pivotal a definition might
raise eyebrows if it were not for the fact that this particular
step is an integral part of Special Relativity. So, let us assume
that we could somehow make sense of the relativistic inertia
in its own right, as we have done in this Article but on some
other grounds that are also independent of Special Relativity.

As far as the structure of particles is concerned, without
the concept of internal movements it would not seem pos-
sible to provide any account of internal processes (such as
muon decay for example). Likewise, the fact that the massive
particles possess angular momentum implies the existence of
internal movements12. Let us consider internal movements at
speeds other than c. To illustrate the difficulties this causes,
we shall also assume that we can somehow produce Lorentz
contracted moving system trajectories on other grounds that
are also independent of Special Relativity.

We must still use (33), with v2
i replacing c2 on the RHS, to

connect the total and relative velocities on the ith segment (as
both are referred to the same observer). If vi were the same in
the moving and rest systems, then clearly the periods would
not dilate by γ, and yet we know that for any physical sys-
tem, not just luminal systems, periods must dilate by γ under
Lorentz Transformations.

The resolution is most easily seen from Special Relativity.
If the total speed, vi0, on the ith segment as seen by a comov-
ing observer is such that vi0 6= c, then for observers in other
frames, vi 6= vi0 and must in general be calculated according
to the relativistic composition of velocities:

vi =
V + vi0‖ +

√
1− β2vi0⊥

1 + V·vi0

c212The quantisation of angular momenta is also readily explicable as a wave phenomenon [12, 20].
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Now as we Lorentz boost a particle in the frame of a single
observer, there are two possibilities. If vi0 = c, then vi = c
for all i independent of the condition of motion of the par-
ticle, and structural models incorporating length contraction
and the relativistic momentum are readily available. Sect.
8 showed that these phenomena imply Lorentz Transforma-
tions, whose elegance and simplicity therefore has a coherent
explanation based on the very definition of momentum as in-
ertia times velocity, p = mc.

Alternatively, if vi0 6= c the total velocities of internal
movements, vi, must depend on both the particle velocity and
the orientation of individual segments in the above compli-
cated manner. Why? The elegance and simplicity of Lorentz
Transformations then has at its very foundations an implau-
sibly inelegant, complex structure. We are left reasoning in
a circle from Lorentz Transformations to the composition of
velocities to the proposition that such complex structures are
necessary as the basis for our simple coordinate transforma-
tions and we have no physical basis for either length con-
traction or the relativistic momentum. Ockham’s razor in-
sists that we reject nonluminal structures. We therefore con-
clude that, in the comoving frame, Lorentz invariant struc-
tural models of the massive particles will have internal move-
ments at, and only at, c.

10 Does Local Action Imply Retarded In-
teraction?

Local action is the single most basic, self-evident principle in
Physics - interaction requires colocation. Both Newton and
Einstein agreed. This section considers the logic of interac-
tion at a distance, subject to local action, but from a pure
field perspective where ‘mass energy’ propagates luminally.

In Classical Physics it was taken for granted that matter
emits field, leading to the idea that the far fields of a par-
ticle must propagate away from it at c. It then follows that
long-range interactions between particles are retarded and the
unavoidable consequence is that there can be no causal rela-
tions between space-like separated events. On the other hand,
Quantum Mechanics predicts instant causal correlations at
a distance and experiments replicate these predictions [41] -
[43]. However, if matter and field are one and the same, as
Einstein suggested, then the idea that matter emits field is
meaningless and we need to consider whether or not the far
fields propagate away from the centre of inertia in a pure field
particle model.

Section 6 considered a rest system that evolves under ro-
tations, corresponding to SRT’s Little group. Note that the
radius of the rest system sphere was not relevant - the analysis
applies to any radius, and there is no good reason, neither in
our analysis nor in Special Relativity, to distinguish between

the near and far fields of a particle. The distinction in Elec-
tromagnetics between the ‘attached’ field [44] and the ‘body’
of the particle is arguably incompatible with Special Relativ-
ity because it implicitly introduces (radial) field movements
that contravene the Little Group.

Consistent with Einstein’s view that Special Relativity
renders the division into matter and field ‘artificial’, our lumi-
nal wave structure implies that particles are unbounded with
far fields that propagate transverse to the radius13 rather than
radially away from a ‘body’14. There is then no good reason
to presume that local action implies retarded interaction.

The long range interaction between two particles, A and
B, depends on the colocation of their respective fields. It is
an integral over all space that is dominated by terms close to
the two centres, but any far fields of A that become colocated
with the B particle’s centre of inertia did not travel there
from A’s centre of inertia. They are part of an extended wave
system that is comoving, as a whole, with the A centre of in-
ertia so one might anticipate that the direct impact of A’s far
fields on the observed location of the B particle would be in-
stantaneous, whilst only the reaction impact on the observed
location of the A particle would be retarded.

However, it is more apposite simply to observe that field
theory problems are usually formulated and solved on whole
regions evolving subject to local action at all points in par-
allel. The idea of a local realist wave ontology is inherently
Lorentz invariant, but waves are inherently distributed. They
run on correlations at a distance sustained by strictly local ac-
tions. Distributed interactions between distributed waves can
have distributed impacts, occurring simultaneously in differ-
ent places. Waves exemplify Redhead’s conclusion that on-
tological locality does not rule out instant relations between
observables [45]. Trajectories in local realist wave systems
display entanglement as shown in [16], where it was found
that the Helmholtz equation contains Bohmian mechanics’
nonlocal quantum potential within it. The essential conse-
quence is that quantum nonlocality and entanglement might
be interpreted as locally realistic wave phenomena. With spe-
cific reference to the EPR paradox [46], the Bell Inequalities
[47] depend on a causality analysis that uses light cones em-
anating from point events [48], presuming a one to one cor-
respondence with point-like ‘beables’ [49], but for inherently
distributed systems like waves neither beables nor events can
be presumed to be point-like.

11 Discussion

Unlike Electromagnetics, nothing prevents the simple method
used here from applying to the fermions. A wide range of
candidate models for the massive particles, in the form of
subluminal soliton solutions found in typically nonlinear field

13As is also consistent with Electromagnetics’ radial force field because E and H are each transverse to the momentum density S/c2, whilst H
fields cancel in the rest particle due to balanced movements.

14Note that since massive particles have finite energy, the volume integral of the field energy density must not diverge as r →∞. The 1/r2 long
range force fields for the charged particles imply a 1/r4 energy density asymptote for both charged and neutral particles in luminal wave models
[12]. The energy density integral does not then diverge as r →∞ so finite but unbounded luminal wave structures are compatible with the usual
basic physics. They appear as pointlike particles because the field energy is highly concentrated near the centre. For example, according to a 1/r4

energy density asymptote the maximum energy density for a particle with the mass of an electron, at the radius r ∼ 4 × 10−13m, is ∼ 400, 000
times greater than that at a radius of 0.1 Angstrom unit.
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theories, have been reported in the literature. The analyses in
Sects. 2 - 7 show that Lorentz invariance is the consequence
of constructing subluminally moving systems from fields that
are constrained to propagate luminally. The appearance of
Lorentz invariance in so many disparate field models is there-
fore no coincidence as they are all subject to the same basic
kinematic constraints.

While the constraints are simple, the structures of soliton
solutions are generally not simple. For example, evolution
under rotations does not imply spherical symmetry and nor
does it imply that the particle rotates as a whole in a sim-
ple manner, like a solid ball. Due to the kinematic constraint,
trajectories at different radii necessarily evolve at different an-
gular rates and, similarly, wave trajectories at various points
on the same spherical surface in the rest system generally
rotate about different axes.

12 Conclusions

This Article has developed a particularly simple hypothesis:
Energy-momentum propagates at c. It has shown why sub-
luminally moving physical systems, including observers’ mea-
suring devices, then display time dilation and length contrac-
tion, so that an underlying luminal wave reality, although
objective, presents a Lorentz covariant “spacetime” to its ob-
servers. Neither the Relativity Principle nor the invariance of
the observed speed of light were assumed. These two corner-
stones of STR were shown as results, not put in as postulates.

This 3D+t reality also comes equipped with an observ-
able preferred frame that has been observed in practice in at
least two independent ways, providing a natural definition of
objective simultaneity. All the paradoxes formerly associated
with STR’s subjective notions of reality are thus removed,
and, unlike STR, the proposed luminal wave interpretation of
Lorentz invariance is consistent with all the relevant facts.

Although the Lorentz invariance of luminal wave systems
was perhaps already familiar, the basic mechanics underly-
ing Lorentz symmetry remained unnoticed for over a century.
The discovery of this direct link between wave systems and
Lorentz Invariance has wide ranging implications for the in-
terpretation and unification of modern physics.

Rather than replacing Newtonian Mechanics, Einstein’s
relativistic mechanics is the natural step accompanying the
shift in our founding physical ideas from particle to wave
concepts. The wave packet is reformed by giving explicit
recognition to the conservation of momentum between wave
components and particles, which can now be seen as widely
distributed systems with instantly correlated far fields. Quan-
tum nonlocality can be understood within this framework
whilst general covariance is readily incorporated, conceptu-
ally and analytically, with a refractive medium approach to
gravity [12] that produces the relevant phenomena without
the raft of problems flowing from the usual field equations.

Hopefully, this article has highlighted the absence of any
good reason to presume that any non-propagative form of
mass-energy exists. It’s not so much the introduction of a
new hypothesis, as the removal of an old one - the idea of
matter as a distinct ontological class in its own right.
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Appendix 1

Consider a constant momentum density ~ρpi in a region of
transverse crossectional area A and length li. The total mo-
mentum is pi = Aliρpik̂. Let this be normally incident on a

mirror that is moving with velocity v = −vk̂. Let the reflec-
tion begin at t = 0. It then ends at ∆t = li/(c + v), after
which there is a reflected wave with momentum density ~ρpr

that occupies a region of length lr = (c − v)∆t and crossec-
tional area A, so the momentum of the reflected light flash is
pr = −Alrρprk̂.

During the reflection, the rates of change of momentum
for the incident and reflected waves are ṗi = −(c + v)A~ρpi

and ṗr = (c−v)A~ρpr respectively, where a dot over a variable
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indicates the time differential. The total rate of change of
momentum is:

ṗ = ṗi + ṗr = −A((c+ v)ρpi + (c− v)ρpr)k̂

where ρpi = | ~ρpi| and ρpr = | ~ρpr|. As far as scalar momentum
is concerned, for the incident wave ṗi = cṁi = −A(c+ v)ρpi,
for the reflected wave ṗr = cṁr = A(c − v)ρpr and the total
is:

ṗ = cṁ = cṁr + cṁi = A((c− v)ρpr − (c+ v)ρpi)

The work done by the mirror on the incident and re-

flected waves is:
∫
ṗi · dsi = −

∫ ∆t

0
A(c + v)ρpi cdt and∫

ṗr ·dsr =
∫ ∆t

0
A(c−v)ρpr cdt respectively, where dsi and dsr

are the incremental movements of the incident and reflected
waves, in the directions k̂ and −k̂ respectively. The total

work done is just W =
∫ ∆t

0
cṁcdt = (mr −mi)c

2.
The energy change of the light flash is of course equal and

opposite to the work done by the radiation pressure force on
the mirror, so (mr −mi)c

2 = −(−ṗ)(−v)∆t, and it is easily
shown that pr/pi = (c+ v)/(c− v), from which we may infer
the momentum shift factor for light emitted by a source mov-
ing towards an observer as

√
(c+ v)/(c− v), in agreement

with the usual relativistic doppler shift.

Appendix 2

With respect to the system of light flashes in Subsect. 2.2, let
us impose the condition in some inertial frame:

P0 =
∑
i

pi0 = 0

The momentum of the ith light flash, referred to this frame,
is then:

pi0 = pi0(cos θi0 î + sin θi0 cosφi0ĵ + sin θi0 sinφi0k̂)

Where θi0 is the angle with the x-axis and
∑

i pi0 cos θi0 =∑
i pi0 sin θi0 cosφi0 =

∑
i pi0 sin θi0 sinφi0 = 0

Let an observer move relative to this frame with veloc-
ity v = −βĉi. Since pi/pi0 = fi/fi0, the standard relativistic
doppler shift and aberration formulae (with the observer mov-
ing towards the source at speed v) give, respectively:

pi = pi0γ(1 +
v

c
cos θi0)

and

cos θi =
cos θi0 + v

c

1 + v
c cos θi0

Note that the same result also holds for non-monochromatic
light flashes. The scalar momentum of the ith flash in the
observer frame is:

pi = pi0γ(1 + β cos θi0)

Summing over i, the total energy is:

mec
2 = c

∑
i

pi = γc
∑
i

pi0 = γm0c
2

Where me and m0 are as defined in subsection 2.2 and Sec-
tion 3 respectively. Noting that pxi = pi cos θi, the (vector)
momentum of the ith flash is:

pi = pi0(γ(β + cos θi0)̂i + sin θi0 cosφi0ĵ + sin θi0 sinφi0k̂)

Summing over i, the total momentum is:

P =
∑
i

pi = γβ
∑
i

pi0 î

Note that this is the relativistic momentum equation. Differ-
entiating each of the two previous equations with respect to
β:

dpi

dβ
= γ2pi î ;

dP

dβ
= γ3

∑
i

pi0 î = γ2meĉi

So that:
dpi

dβ
=
dP

dβ

pi∑
j pj

=
dP

dβ

pi
mec

Finally, since the above expressions for pi and P are functions
of β alone, the incremental changes can be written as:

dpi =
dpi

dβ
dβ ; dP =

dP

dβ
dβ

Upon which:

dpi =
pi
mec

dP

Therefore (8) holds for a collinear incremental boost.
For transverse boosts, consider as initial condition a system
whose centre of inertia is moving in the y-direction at speed
V , so me = γ(V )m0. We may repeat the above analysis
for an observer moving at speed vx in the x-direction with∑

i pi0 sin θi0 cosφi0 6= 0 and get the result for an incremental
transverse boost:

dpi =
pi

limvx→0(γ(vx)mec)
dP =

pi
mec

dP

So, (8) holds for an incremental transverse boost. In SRT, the
general boost decomposes into a collinear boost, a transverse
boost and a rotation (a Thomas precession). As the latter
has no impact on linear momenta,

(8) is generally valid for incremental boosts of systems of
luminal wave momenta in SRT.
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