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To My Little Daughter 

 

 
Yes, we all shine on 

Like the moon and the stars and the sun 

Everyone 
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SUMMARY 

This article is about the concept of mass and electric charge: When the fundamental 

relativistic equation                is solved in the complex, this inevitably leads to an 

irreducible representation of the extended Lorentz group as      operating on the complex 

Clifford algebra          in which mass is a complex    -spinor. Spinors are a direct 

consequence of taking the root of the Minkowski square distance. Doing so with the 

Minkowski square of differentials then gives a spinor-valued differential form. With that, 

classical electrodynamics is shown to be extendable into a relativistically invariant theory, in 

fact the simplest possible relativistically invariant one. Its symmetries reveal a unified 

concept of classical charge and mass. A dynamical system based on this, splits into the direct 

sum of a dynamical system of pure electromagnetic charges and one of purely neutral 

particles. In it, charged particles must be fermionic in order to conserve their net charge, and 

neutral non-magnetic ones are bosonic in order to be able to assign to them a positive mass. 

Also, it will be seen that within the Clifford algebra, the Hamiltonian of a self-interacting 

mechanical dynamical system of particles can be given in a closed form. I end the paper with 

a section on superconductivity, where it is shown that superconducting material should 

electromagnetically behave as opaque, dark matter. 
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Introduction 

As Richard P. Feynman once put it, the really precious things offer astounding many views of 

the same topics. Time to have a fresh, unbiased look at a theory that has been overcome by 

one century which is to say, approximately ever since: the classical field theory.   

The subject of Newtonian classical mechanics is the dynamics of a finite number of massy 

bodies in Euclidean space and time. The world then was thought of as consisting of 

individually identifiable, traceable bodies that move according to Newton’s axioms and 

attract each other through the force of gravitation. 

The great, bold step was the identification of gravitational and inert mass: they behaved the 

same, and therefore, they were taken as being the same. 

Because of that, one could calculate the energy of the whole mechanical world (up to an 

inevitable constant). It all culminated into the Poisson equation: 

(1)                 ,  where         (  

   
 ⁄    

   
 ⁄    

   
 ⁄ ),  

Φ is the potential (energy per volume and test mass), ρ is the mass density, and C is a 

constant that can be set equal to 1. 

This equation may be one of the most overlooked in physics: It states nothing but the duality 

and equivalence of field (the left hand side) and mechanical particle. Indeed,  given a system 

of n distinct particles               of mass        , one can calculate         and vice 

versa, given        for a “real mechanical system” its Laplacian,        , in turn yields 

                           ,  δ being the Dirac distribution, which maps 

continuous functions          to  

    ∫                 , 

thus defining the location of a mechanical system of n particles along with their masses as a 

function of time. That gives velocity, momentum, force, and energy of the system as a 

function of time. That field equation therefore states the complete observability of any 

mechanical dynamical system from the outside through its gravitational potential field. 

 

There are two further points to be made: If one ignores tracing each individual particle and 

studies a fluid of particles instead, then a single potential Φ or a smooth particle density ρ(t,x) 

will no more determine the particle velocity, necessitating separate vector potentials        
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and fluxes                     to account for that. Wouldn’t that be over-determining the 

dynamics? Yes, it would: The introduction of flux        e.g. leads to the possibility to have 

a flux        where     ,x)=0. The restriction of          for all           with 

   ,x)=0, would be what in field theory is called a gauge. 

The 2
nd

 point is to the nature of the field  , which is not really a function, but rather a 

bilinear form       ∫                  ∫                  

The moral to the pickiness is: The field equation in the end is proportional to the square of 

masses, not to the single mass itself. 

Electrodynamics then evolved as seemingly distinct from mechanics. Its equations, the 

Maxwell equations, written a relativistically convenient form, are given by: 

(2)                 ,           

where     
  

   
     is the so called d’Alembert operator,       is the charge density, 

and                 is the flux of the charge. 

Because 
  

    is negatively definite, I prefer 

(3)                     ,           

Because it is needed later, I summarize what is well-known (see the appendix for details): 

The kernel of the wave operator   , i.e: the space of functions   for which       is the 

space of plain waves (which are sourceless by nature), and restricting to         , one can 

solve for     δ, where δ        is the Dirac distribution, which gives         

  
 

    
     as Fourier transform of the function   

 

    
, which is a spherical wave with the 

origin as source propagating on the forward and the backwards light cone, hence       are 

called forward and backward propagators, resp. . So, given a smooth function   from 

        ,, the solution of       is given by     ∫             , * being the so 

called convolution. 

 

These Maxwell equations still posed some questions: they are not Lorentz invariant, but 

transform as a contravariant 4-vector, where each transformation needs a special choice of 

gauge. Moreover, the vector field              has curl, so – as shown by Poincaré – the 

differential 1-form                         cannot be integrated into a 0-form, 

that is, the forces aren’t conservative. Lastly, the equations can be solved by means of Fourier 
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transformation, but that necessarily results in complex waves for           . Not that 

complex waves are bad – quite the contrary – as they allow us to understand Huygens optics. 

But: if the left hand side of the equations           is complex and even phase symmetric, 

shouldn’t the right hand side         either be complex and even phase symmetric? 

At this stage Albert Einstein entered: All mechanical systems are to transform according to 

the laws of electromagnetism! Since Einstein, mechanics is no more ruled by the laws of 

gravitation, but by electromagnetism! Doesn’t that mean that the nature of mass should 

ideally be contained within electromagnetism? As far as I know, there is no mention of 

Einstein having considered this. Instead, he proceeded straight with the general relativity. 

 

Lorentz Invariant Formulation of Maxwell’s Equations  

Let’s answer the question for the non-invariance of Maxwell’s equations first: 

They are not invariant due to not regarding the test charge: that also changes from one 

Lorentz transformation to another. If we put it back in (as done above) that gives a Hermitian 

or bilinear form with one 4-vector to the left, one to the right: 

In order to avoid all technical complications, let’s suppose             is smooth on   , 

and that for each               all         vanishes outside a bounded set (i.e.: is of 

compact support). Let                   mapping   to 1 by square root of volume, 

then                              and             
       

    
. Hence, Maxwell’s 

equations equivalently rewrite as 

(4)                     ,         ,  

where the    are square root densities of charge flow, rather than densities, i.e.: where  

∫   
            

     is the square of the total charge. 

This allows expressing Maxwell’s equations as a Lorentz invariant bilinear form: 

        ∫                   ∫                 , 

So that in particular for       with     :  

∫                      ∫                   . 

That bilinear form is Lorentz invariant, since for a Lorentz transformation   on the    

∫                    ∫                     ∫                   where    

    is the transpose of  . 
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Phase Invariance in Maxwell’s Equations  

To get at the desired phase invariance, the bilinear form         ∫                  

should and could be changed into the Hermititian form         ∫       ̅̅ ̅̅ ̅̅ ̅̅ ̅          , 

where   ̅is the complex conjugate of  . That would give: 

∫        ̅̅ ̅̅ ̅̅ ̅̅ ̅               ∫                       . 

That paves the way. I would like to write    as value of   under an operator   , i.e.: writing 

      :   ∫   ̃
 
        ∫   ̃

 
            ∫(    

 

    ̃)
 

     
 

     , where 

* denotes complex conjugation. 

Dropping the integration would then give the scalar equations:    
 
        ,       . 

However, there are two obstacles: 

The first, minor one is that the last step mandates to shovel       from    over to   ̃, while 

the integration is over the spatial volume, only. To solve that, we can introduce a sequence of 

smooth (infinitely differentiable) cut-off functions             which are equal 1 on the 

interval        and vanish outside             . Now,   ∫        ̅̅ ̅̅ ̅̅ ̅̅ ̅              is 

a distribution, and ∫            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                allows       to be shoveled over from 

         to              by partial integration. Then ∫            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅              

converges (weakly) to        ̅̅ ̅̅ ̅̅ ̅̅ ̅              as    , so that, in the distributional sense, 

we can indeed shovel       from the     part to the left factor   ̅. 

The 2
nd

 obstacle is more involved: Whatever the root of     is, it cannot be symmetric in the 

above sense, because    is not a positive operator: Negative spectral values arise from the 

negative spatial derivatives, namely the Laplacian  . And with this,       

Instead, we have to redefine the Hermititian form:         ∫        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          , where 

  is a suitable unitary (or orthogonal) parity operator such that  ∫   ̃           

 ∫ (     
 

   ̃)      
 

     holds, in other words   and     
 

  can be hoped for to be 

symmetric only w.r.t. this parity-twisted Hermititan form. 

 

Now I need to solve for the root of the wave operator   , and there are – as is well-known – 

two different ways: By Fourier transformation,    becomes the multiplication operator 

           
              , so task is  to take the square root of    

       . The 1
st
, 
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obvious solution is  √  
      , which is the one normally taken in classical physics. But it 

is just a partial solution, since it still does not solve for either space and charge inversion. The 

other one is by the use of the Clifford algebra, as had been introduced into physics by P.A.M. 

Dirac (see: [1], Ch. IX):        
                           ,  

where the    is a Hermititian and the            anti-Hermititian    -matices. 

 

Let’s derive affairs from ground up: 

Definition: An algebra A over   is a complex vector space with a bilinear vector 

multiplication        . The algebra A is said to be associative if the vector 

multiplication is associative, and it is called unitary if A contains a neutral element 1 w.r.t. the 

multiplication. Further, we say that two algebras A,B over   are isomorphic if there exists a 

vector space isomorphism       for which                   holds for all 

     . A subset     is said to generate   if and only if a vector space basis of   can be 

chosen from the set {                        of all products of  .  

Let                    
       

      
      

     be the Hermititian 

Minkowski pseudo-scalar product which in particular is a Hermititian form. 

Then the (Hermititian) Clifford algebra          is defined as unitary, associative sub-algebra 

of        for some vector space    for which the following conditions hold:  

(1) there is a vector space embedding             , such that    ̅             for 

all      

(2) the set       generates        . 

Now, it’s not the Clifford algebra that is of my concern; my concern are the irreducible 

representations of that algebra in the algebra        of linear operators on some vector space 

 : Let me 1
st
 define what that is and then explain why:  For a complex vector space   the 

space        of linear operators       is obviously an algebra, and vice versa, since 

          is a linear operator on the vector space   for each    , every algebra   

can be embedded into        for some  . Next, a projection on   is a linear mapping 

      for which         . With this, an irreducible representation of         is an 

embedding                such that the only projections on   which commute with all 

elements of         are the identity and the zero projection. 

Let me now explain why: given the Minkowski metrics as Hermititian quadratic form   on 

   into  , then, given that         is any representation into       , and that the space   is 



Hans Detlef Hüttenbach / Classical Field Theory / 8 

 

of finite dimensions (so that its Euclidian scalar product 〈   〉 and its unit vectors are well-

defined), then      〈           〉  〈               〉 for all unit vectors     and 

all unitary operators   on  . That is: the unitary operators on   give a symmetry group for  , 

and if that representation is even irreducible, then the dimension of X is the dimension of the 

internal symmetries of  . In other words: The irreducible representation of         into 

       will disambiguate the internal symmetries of  , and choice of a unit vector     

will be exactly what physically is called a gauge (for the Lorentz invariant theory)!   

Finally, let’s show that (such a representation of         exists):  

Let             be the (normalized) Dirac matrices 

        (

  
  

  
  

  
  

   
   

) ,           (

  
  

  
  

   
   

  
  

), 

        (

  
  

   
  

  
   

  
  

),   and           (

  
  

  
   

   
  

  
  

) . 

Then these matrices define (span) a complex, unitary and associative algebra A, for which  

                     satisfies    ̅                   . Therefore,   is a 

representation for         into         , which clearly is irreducible, and which will be 

denoted by        , either. That makes     , the unitary operators on   , its symmetry 

group. It is as well-known as evident that         is of dimension ∑ (
 
 
)           : a 

vector base basis consists of factorial 1 monomials            , the unity 1 plus 4 factorial 2 

duplets           , 4 triplets, and one quadruplet            . That makes         a 

complete, metrizable, simply connected, locally compact vector space which is as is as easy 

to deal with as any   . 

In particular, what was said about   -valued functions, derivatives, tempered distributions 

and Fourier transforms (in the appendix) readily applies to        -valued functions. 

 

All that said, within        , the root of                    is given by 

(5)                                   . 

Equivalently, transforming the above equation with   , which is its own inverse,     

         holds, which allows to rewrite it in covariant manner as:          , and at 

the same time proves that    must be the parity (space inversion). 
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(Note, that         aren’t Hermititian, however their products             are.)  

 

Integrability of Maxwell’s Equations 

Likewise, the root of      is     
 

                              . 

Now, what is S? Let                 be a smooth be a smooth function on space and 

time,    into the Clifford algebra        . Then  

(6)                   
        

        
        

      

is a mapping of   to the differential 1-form              in the Clifford algebra 

       . This is a covariant version of the Euclidian, differential 1-form which differs from it 

by replacing     by       and replacing the partial derivative    by     . 

By Poincaré’s lemma,   is integrable if and only if its external derivative    vanishes, i.e.: if 

and only if     . That would mean that the integral ∫        along a continuous path  , 

connecting two points x(0) and x(1) and not touching the light cone, would depend only on 

the end points, ∫           (    )             (see [2]). The function       

therefore is called the integral     =∫    . Taking the partial derivatives of      gives: 

            . So, the integrals      are the inverses of        . (Note that  , above, is 

not symmetric, but     and     are.) 

Now, we already have a solution for the wave operator, hence:       ∑          holds 

(within the time like cones and outside the support of  , wich we assume to be bounded). All 

in all we proved two things: There is a well-defined solution for          in        , and 

  is the integral of     , which is an action integral: it is a wave representing the action of 

the charged particle. Plus, the path integration is covariant, depending only on the end points 

in every Lorentz transformed system.  

Up to now,      ∫     is defined only on paths not touching the light cone. But it can be 

extended (by analytic continuation) to all points on the light cone, for which the limit exists.  

Let’s prove even more: The Fourier transform                 ∫                  is 

given by           
 

    
       , and by Cauchy theorem (integrating clockwise around 

the pole 0): ∫
    

 
              , where   is the Heavyside function, which is defined on 

  to be ½ for s=0, 0 for s<0, and 1 for s>0. Hence, taking the Fourier inverse of        we 

get: 
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    (  )
  

   {

∫                       

  
         

(
 

 
) ∫                      

  
         

 ∫                      

           

            , 

(which in particular maps functions that vanish outside bounded sets into ones that equally 

vanish outside bounded sets, i.e.: the target of those functions is in the range again) see:  [3, 

p. eq. 14.59]. 

Therefore,              if and only if         . So, let’s prove:         :  

We have: 

   (       )  ∑           (         )        , and, since j is integrable w.r.t. 

 , for    , therefore the path integration along any small rectangle in the   -plane, which 

is a closed curve, is zero, and with            the result follows.  

Finally, we note that   is symmetric w.r.t. the Hermititian mapping 

             ∫     ̅̅ ̅̅ ̅̅ ̅̅  , ie.:                  holds.  

And with this, we can put it all together:  

Multiplying Maxwell’s equations                     ,      , to the left 

componentwise with a jet  ̃  gives:  

  ̃               ̃                 
 

   ̃      
 

      ,      , where 

    
 

        
 , and with       ,       , and  ̃   , we can sum up, giving 

     
 
        

 
            

 
  ̃       

 
     

       
 
       

 
                  ̅      

So, in particular,      
     . 
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Resume 

Let us resume: Starting with a jet of charged particles        we proved that Maxwell’s 

equations                          , are integrable w.r.t.  , i.e.:      

  ∫         is path independent (within the time-like light cones), and we have         

           , i.e:    is the  -th component of    . 

This is nothing but the relativistic formulation of the action integral of a free particle system 

in non-relativistic classical mechanics: 

In non-relativistic classical mechanics, when we have a system of n particles         with 

momenta    such that ∫ ∑             
  

  
 up to an additive constant exists as a path-

independent function of          , then that function is the action integral of the free 

Lagrangian. 

The difference in relativistic mechanics comes entirely from the fact that the Minkowski 

metrics is the (indefinite) quadratic form            (its canonical conjugated momenta 

have the same metrics, either). Taking its root yields the Dirac spinor terms. 

 

So, obviously, the Maxwell equations disregard the interaction of the charged particles with 

themselves as an idealization, and its objective is what action that system will have on its 

environment. 

In non-relativistic mechanics that action is by itself both instantaneous and gratis, i.e.: it does 

not cost the system any energy to deliver that action. However, in relativistic affairs, the 

action spreads at the speed of light: it is not instantly everywhere else. But does it now cost 

energy to propel that action? Relying on Poincaré invariance which includes invariance w.r.t. 

time displacement, an isolated particle at rest must still retain its energy over time. So, even 

in relativistic conditions the action should spread without energy cost. 
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Charge Inversion, Inert Mass & Neutral States 

Using the Clifford algebra, we can rewrite Maxwell’s equations as 

(7)            

which can formally be rewritten into a gravitational equation just by substituting the electric 

charge by the (neutral) inert mass. Moreover, the        -representation actually is a superset 

of what would be needed to formulate electromagnetism: 

Let                        be the projections onto the 1
st
 two and last two rows of 

       -representation with the Dirac matrices, resp., and let  

                 (

  
  

  
  

   
   

  
  

), where             . 

Since   anti-commutes with    and commutes with         ,   is the energy inversion. With 

this,      is defined as charge inversion (or equivalently the particle inversion), so that we 

get the fundamental relation      ., In particular,   is a self-adjoint conjugation, i.e. 

satisfies      and         divides    into the direct sum           of two 2-

dimensional eigenspaces of   with eigenvalue 1 and -1, respectively. Because the inverse 

charge of   should be –  ,  the elements of    must be the charges, and    therefore is the 

space of neutral composites of charges. With    
and    

being the projections of          

onto    and    resp., that means the following for the spinor-flux                

         splits into the sum of a (purely) charged current    
   and a neutral constituent  

   
  . (A jet of charged particles will be called purely charged, if its neutral constituent is 

negligible.) 

Starting with the basic relativistic equation       
 
    for a mechanical particle of rest 

mass   , we can solve it in         again, and will get a mass/energy tensor         , 

where positive and negative mass can be identified with positive and negative electrical 

charges, if and only if charges will transform in terms of         equivalently to mass: 

We have 

                                                                ,  

So, reinserting c and putting                 we can solve for  : 

(8)                     (
 

 
)   . 
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Not surprisingly,             (
  

  
)     indeed transforms as the mass under Lorentz 

transformation. 

Moreover,            (
 

 
)    is a transformation of trace zero: in particular that means 

that the net charge is conserved in a Lorentz boost: under a Lorentz boost, a particle appears 

to acquire positive and negative charge altogether at equal rate. 

To calculate the trace, rotate the velocity onto the 1
st
 special axis, expand 

      (
 

 
)              (

 

 
)      (      (

 

 
)  (    (

 

 
))

 

  ), 

applying            and       , the terms are seen to be proportional to either    or 

  , both of which have trace zero, so       (
 

 
)    has zero trace. 

 

For a charged flux         , we know that                               is the 

4-vector potential, so that for a separated and real-valued charged fluxes      (i.e.:    and   are 

real-valued and have a disjoint spatial support with for each t), ∫                      is the 

interaction energy of   and    at time t. So, we postulate that for arbitrary, separated complex-

valued fluxes      their interaction energy at time t be given by: ∫        ̅̅ ̅̅ ̅̅ ̅̅ ̅             .  

Then, up to a scaling factor   , we expect the same relation for the interaction energy to hold 

for neutral fluxes either, and we can set        (instead of       ). This makes it 

possible to state the Hamiltonian for both kinds of fluxes, charged or neutral, in a closed 

form: 

 

Non-Free, Interacting Electrodynamic Fields 

In terms of the Clifford algebra, the Hamiltonian for a free system of (square root) mass or 

charge density is: 

(9)                                                           , 

and let    be the action integral defined as before. Therefore,                      is 

the source of   , and since   propagates at the speed of light, the total action should be the 

integral of all actions of          on the backward light cone              

{                                      .  

So, the relation ∫  ̅            ∫   ̅         suggests the self-interacting Hamiltonian  



Hans Detlef Hüttenbach / Classical Field Theory / 14 

 

(10)                      ∫      ̅̅ ̅̅ ̅̅ ̅                 
     

   

for charged and neutral particles, where it is assumed that the maximum absolute 

velocity is uniformly bounded       and 

(11)                                         with             

is the (forward) propagator of the spherical wave (see e.g. [4], Ch. 21). 

Note that the propagator is non-negative and its spinor is unity, that is, it is not spinor-

dependent. Therefore, a positive mass is propagated into a positive mass. 

In particular, for neutral fluxes, we get a field which in the non-relativistic limit converges to 

the gravitational field.  

 

(Equation (10) could serve to extend the theory of strong interactions into classical theory:  

The symmetry group             (capturing hadrons and isospin) naturally embeds into 

    , our symmetry group of Lorentz invariance.) 

 

Let’s shortly see how to get back the “ordinary” Maxwell equations from (7): Multiply from 

the left with a charge flow     and integrate over space-time, bring the differential operator on 

     ̅̅ ̅̅ ̅̅  over to            by partial integration, then drop the integral and take the limit 

   ∑  . That gives the Maxwell equations in terms of the Dirac matrices. Then 

(temporarily) drop or disregard the 2 negative energetic rows at the bottom of these matrices, 

which reduces the equations to ones in terms of 2x2-matrices, namely the unit matrix    and 

the Pauli matrices             . To finally get rid of the matrices, take the root of the 

square of these matrices, each, respecting the sign of the charge (and at last, transform to the 

density of the charge flow on either side).  

In all, there are two major steps as to it: the 1st is to forget about negative energetic charges, 

and the 2nd is to average over oscillations (taking the square root of velocity squares), which 

is just what statistical mechanics is doing. 

That renders classical electrodynamics as a statistical mechanics for charged particles – with 

a disregarded negative-energetic part. In that sense, the          model of electrodynamics 

converges to the “ordinary”, spinor-free theory in the statistical limit (and the same holds for 

the gravitation of masses). 
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Spin & Superconductivity 

Let’s examine parity/spin:  

For a free jet of charged particles we have in terms of (square root) densities and the 4-

velocity  :                       , where the    are the components of the energy –

momentum (square root) density and    is the density at rest. So, the    and    are real-

valued functions (of time and space coordinates), and in addition, they all have the scalar 

value of electronic charge,   , as a common factor. But, in terms of the Clifford  

algebra,         the charge at rest is not a scalar value, but to be defined as equivalence class  

    {    √  (
    
     

)             }, of which     √     is a representative. 

So, we should multiply the above equation by   , which gives in terms of the 4-vector 

       : 

                                  . 

Because    is supposed to be real-valued,      is a self adjoint operator, and because the  

                                                       where       as 

well as the             are real-valued, scalar quantities,    is the electronic charge 

density (at rest), and the    are the components of the 4-velocity.  

The three 2x2 Pauli matrices    (
  
  

),    (
  
   

),    (
  
   

) allow to define 

three Hermititian spin operators    (
    

    
)         , which all commute with the 

parity   , and each    commutes with   , but anti-commutes with the other two. For each    

   and    have a mutual non-degenerate spectral representation, and, since the Pauli matrices 

all decompose into a one-dimensional eigenspaces for the eigenvalues   , they uniquely 

define a conjugation    which commutes with    and interchanges the +1-unit-eigenvector 

with the negative -1-unit-eigenvector.    is called spin inversion. Not only do the spin 

operators commute with parity   , they also commute with the charge inversion   , so that 

for each of the spin operators the pair         is a socalled “complete set of observables”. In 

their diagonalized spectral forms, spin inversion is the interchange of the 1
st
 spin-up 

component with the 2
nd

 spin-down component and the 3
rd

 (spin-up) with the 4
th

 (spin-down) 

component of the complex ket/bra quadruplet. The space    of d symmetric w.r.t. the ket/bra-
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quadruplets therefore decomposes into the direct sum of  eigenvectors of the  spin inversion 

with eigenvalue 1, called fermions, and those of  eigenvalue -1, the bosons. 

 

To see what    is about, I choose   -axis as direction of motion. With this, the equation of 

motion of the free jet of particles becomes: 

(12)        (

  
  

  
   

  
   

  
  

)   . 

Under the premise that this equation is   -symmetric, in order to guarantee the constancy of 

net charge, for a purely charged jet, it is necessary and sufficient that the gauge quadruple 

          be chosen such that       and      . These elements are anti-symmetric 

w.r.t. the spin-inversion (along the 3
rd

 special axis). Such particles then are fermions. For a 

neutral jet, however,           must be chosen such that        and       , in order 

that the net mass increases with velocity according to the Lorentz transformation. These 

tuples are symmetric w.r.t. spin inversion. Such particles are bosons (Note that due to the 

charge inversion symmetry of the neutral particles, one may always choose the mass to be 

non-negative). So, in particular, it explains why electrically charged particles are fermions, 

why (purely) neutral particles (with zero magnetic momentum) are bosons, why spin-up and 

spin-down particles come in equal ratios, and why fermions follow the exclusion principle, 

i.e.: avoid being in the same state. 

 

Within the classical context above, what I termed to be spin-up and spin-down now implies 

that the spin-up charges should increase their charge with velocity, whereas the spin-down 

charges should decrease their charge. That would suggest a rough test to see whether the 

above notion of spin coincides with the quantum mechanical one: The two jets of silver 

atoms produced by the Stern-Gerlach experiment should be charged: the spin-up jet should be 

negative, the spin-down jet positively charged. 

 

Let us now concentrate on purely charged jets, i.e.: jets with negligible neutral constituent:  

Equation (12) allows the magnetic field to be explained as the polarization of charges 

according to the spins:1
st
 row up, 2

nd
 down, 3

rd
 up, 4

th
 down, where the self-inductivity is 

proportional to the charge in motion, which is its electric “mass of inertia”. For a jet running 
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in a ferromagnetic conductor, the ferromagnetic material itself can then be imagined as 

running charges internally, i.e.: the magnetic field will become the charge polarization of 

moving charged particles. Particularly, let   be a flux of electrons moving with constant speed 

   along the   -axis. Leaving out retardation effects, its action function   is (up to an 

additive constant) given by  

              (
 

   
)                          √  

    
    . 

Next, superimpose that electronic current by an ionic current of speed   
  of opposite sign 

along the   -axis, which will result in an action function which up to the velocity   
  is the 

negative of  . Then, considering the mutual interaction of the (positively charged) ions with 

the electrons, their sum cancels, and we are left with the magnetic overall interaction (due to 

the velocity difference), as expected:                              √  
    

   . We 

now know two further things: Firstly, we know that this action is purely magnetic, where the 

magnetic field is at least roughly proportional to the   -term of equation (12), and secondly, 

we saw above the gauge quadrupel           demands       and       which means 

that the spin-up and spin-down particles must come at equal rate. 

At low temperature (around 4-5° K) for many ferromagnetic materials the Meißner-

Ochsenfeld effect sets in, leading to a rapid decay of the internal magnetic field to zero in 

what thermodynamically is known to be a phase transition to a superconducting state. 

What that means is that the action within the conductor will become zero. That material does 

therefore hide its internal electromagnetic inertia to the outside, in other words, it cannot 

scatter in this state with electromagnetic particles and fields. That explains why a jet of such 

particles does not stop at thin insulation barriers, and it explains why the resistance drops to 

zero. So, matter in the state of superconductivity not running a current at its surface will be 

electromagnetically plain dark! 

Now, if we look for how the magnetic field can drop to zero in the phase transition to 

superconductivity, it is evident that a coupling of spin up and down charges should be made 

responsible. At this point we can readily dock at the BCS theory, supplying it with the 

necessary spin pairs, the so called Cooper pairs that this theory still appears to be missing. 

 

In all, the existence of superconducting matter outside the electromagnetically visible edges 

of the galaxies, where it is relatively cold, would only show up through the light from 
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external galaxies as an increased curvature of space time, due to the neutral, massy content of 

the superconductors. 
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APPENDIX 

Solving the wave equation    (
  

   
   )   : 

The wave equation can best be solved on a topological vector space, on which the d’Alembert 

operator is everywhere defined and continuous and on which the Fourier transformation is an 

isomorphism. That will be the space        of tempered distributions (see [5], Ch. 25, p. 264 

ff.): Let    {        be the natural numbers including 0,                
 , let    

denote the  th partial derivative and      
     

  , (    
 ). Then       is defined as 

locally convex vector space of indefinitely differentiable, complex-valued functions on   of 

rapid decrease and equipped with the seminorms:  

                            (  |  |),  (      
 ). 

This makes       a locally convex space, which is even separable, hence sequentially 

complete, since the number of seminorms is countable (see [5], Ch. 10, Ex. IV). Armed with 

sequential completeness, it is straightforward to prove that       is complete. 

A locally convex space X is said to be separated, if for every unequal elements       there 

exist disjoint neighborhoods of   and  , respectively.       therefore is separated as well. 

       then is defined as the space of continuous functionals on      , the dual of      . 

For       
  let     be the space of all          such that the (semi)norm        

                   . Then        ⋃      . The topology on        then is defined 

as the strongest locally convex topology such that the injections             are 

continuous. Again,        is separable and separated, and again it is complete, since a limit 

of a sequence           which is converging w.r.t. all      is a continuous functional on 

     . 

Next, for two locally convex spaces     the direct sum     is the algebraic sum of the two 

spaces equipped with the finest locally convex topology for which the natural injections 

         and          are continuous. 

 

Next, we need two lemmata: 

 

Lemma1: Let X be a complete and separated locally convex space and       

a continuous linear operator on X. Let        {          be the kernel of T, 

         its range. Then   is isomorphic to                    . If moreover   is such 

that           , then                     holds. 

 

Proof: Clearly,                   , so it needs to be proved that 

                     is onto, continuous and open. Since X is separated, its origin {0} 

its closed, and so         is closed as the preimage of a closed set under the continuous 

mapping  . (        is also open in itself topological space.) Let           be the quotient 

space of equivalence classes  ̅            which is given the finest locally convex 

topology for which the canonical projection        ̅            is continuous. With 

this topology   then is also open, i.e.:   maps open sets into open ones (and therefore closed 

into closed ones), and since    is a (surjective) projection,           is open and closed. 

Algebraically   clearly is isomorphic to                  , and by the choice of topology 

on          , the isomorphism is also continuous and open. Then  ̅  ̅            
     defines a surjective linear mapping onto           , therefore          is closed 
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and open (in X), so   is also topologically isomorphic to                    . If moreover 

  is such that            holds, then  ̅ above is also injective, hence          

isomorphic to          , and therefore                    . 

 

Finally, let                 ∫              be the Fourier transformation. Then   

is an isomorphism on      , its transpose therefore an isomorphism on       , and 

                  ∫                   its inverse, which extends through its 

transpose as inverse of   on       .  

Partial integration yields:          ∑         , therefore 

             
     

    
    

         , which again extends to        through 

transposition onto       .  

So, the kernel of   in        is the Fourier inverse of the space of all  ̂         with 

support       ̂        in the forward and backward light cones      , and 

         therefore is the Fourier inverse of the closure of all  ̂         with     ( ̂)  

      {  . Also, clearly            holds. Now, because of the Lemma1 above, 

         is closed in        and   an isomorphism onto         , that is:     is a 

continuous operator on         . 

 

Lemma2:                 is dense in         . 

 

Proof: For     let      {             ,       the characteristic function of     , 

which is 1 on      and 0 outside, let  

      ∫      
  

      
            

  

      
 , (           ), and        for      . 

Then           
For        :                       , so for          :          

        a well-defined infinitely differentiable function of polynomial growth. 

Now, for     let                  . Then                       for every 

        . On the same line,          has support in       if and only if , given 

     {                 
          , (    :                       . So, 

for               and                    :                      .   

Therefore                   is dense in            , which proves Lemma2. 

 

Now, for           the convolution     is well-defined, and                 

holds. Then, by extension,                 for all         and         . 

Therefore, 

               (     
  

|  
 | (|  

 | |  
 | |  

 |)
     )  

   
   

          
  

|  
 | (|  

 | |  
 | |  

 |)
           

|  
 | (|  

 | |  
 | |  

 |)
     

for all                 , and, since     is continuous on         , that relation 

extends onto         . 
 

Extension: The spaces       and its dual        can be generalized to the duality of 

         and          , where          is the space of smooth and rapidly decreasing 

functions         and    : Both spaces are n-tuples of       and       , resp., and 
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we can make use of the scalar product               ∑       to write the bilinear 

form on                     as:         . With this, all of the above also holds for 

  -valued functions and distributions. 
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