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Abstract

In this paper, we present the foundations of Summability Calculus, which places var-
ious established results in number theory, infinitesimal calculus, summability theory,
asymptotic analysis, information theory, and the calculus of finite differences under a
single simple umbrella. Using Summability Calculus, any given finite sum of the form
f(n) =

∑n
k=a sk g(k, n), where sk is an arbitrary periodic sequence, becomes immediately

in analytic form. Not only can we differentiate and integrate with respect to the bound
n without having to rely on an explicit analytic formula for the finite sum, but we
can also deduce asymptotic expansions, accelerate convergence, assign natural values to
divergent sums, and evaluate the finite sum for any n ∈ C. This follows because the
discrete definition of the simple finite sum f(n) =

∑n
k=a sk g(k, n) embodies a unique

natural definition for all n ∈ C. Throughout the paper, many established results are
strengthened such as the Bohr-Mollerup theorem, Stirling’s approximation, Glaisher’s
approximation, and the Shannon-Nyquist sampling theorem. In addition, many celebrated
theorems are extended and generalized such as the Euler-Maclaurin summation formula
and Boole’s summation formula. Finally, we show that countless identities that have
been proved throughout the past 300 years by different mathematicians using different
approaches can actually be derived in an elementary straightforward manner using the
rules of Summability Calculus.
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Chapter 1

Introduction

One should always generalize

Carl Jacobi (1804 – 1851)

1.1 Preliminary Discussion

Generalization has been an often-pursued goal since the early dawn of mathematics. It can
be loosely defined as the process of introducing new systems in order to extend consistently
the domains of existing operations while still preserving as many prior results as possi-
ble. Generalization has manifested in many areas of mathematics including fundamental
concepts such as numbers and geometry, systems of operations such as the arithmetic,
and even domains of functions as in analytic continuation. One historical example of
mathematical generalization that is of particular interest in this paper is extending the
domains of special discrete functions such as finite sums and products to non-integer
arguments. Such process of generalization is quite different from mere interpolation,
where the former is meant to preserve some fundamental properties of discrete functions
as opposed to mere blind fitting. Consequently, generalization has intrinsic significance
that provides deep insights and leads naturally to an evolution of mathematical thought.

For instance if one considers the discrete power sum function Sm(n) given in Eq 1.1.1
below, it is trivial to realize that an infinite number of analytic functions can correctly
interpolate it. In fact, let S be one such function, then the sum of S with any function p(n)
that satisfies p(n) = 0 for all n ∈ N will also interpolate correctly the discrete values of
Sm(n). However, the well-known Bernoulli-Faulhaber formula for the power sum function
additionally preserves the recursive property of Sm(n) given in Eq 1.1.2 for all real values
of n, which makes it a suitable candidate for a generalized definition of power sums. In
fact, it is indeed the unique family of polynomials that enjoys such advantage; hence it is
the unique most natural generalized definition of power sums if one considers polynomials
to be the simplest of all possible functions. The Bernoulli-Faulhaber formula is given in
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CHAPTER 1. INTRODUCTION 5

Eq 1.1.3, where Br are Bernoulli numbers and B1 = −1
2 .

Sm(n) =

n∑
k=1

km (1.1.1)

Sm(n) = nm + Sm(n− 1) (1.1.2)

Sm(n) =
1

m+ 1

n∑
j=0

(−1)j
(
m+ 1

j

)
Bjn

m+1−j (1.1.3)

Looking into the Bernoulli-Faulhaber formula for power sums, it is not immediately
obvious, without aid of the finite difference method, why Sm(n) can be a polynomial
with degree m + 1, even though this fact becomes literally trivial using the simple rules
of Summability Calculus presented in this paper. Of course, once a correct guess of a
closed-form formula to a finite sum or product is available, it is usually straightforward
to prove correctness using the method of induction. However, arriving at the right guess
itself often relies on intricate ad hoc approaches.

A second well-known illustrative example to the subject of mathematical generalization
is extending the definition of the discrete factorial function to non-integer arguments,
which had withstood many unsuccessful attempts by reputable mathematicians such as
Bernoulli and Stirling until Euler came up with his famous answer in the early 1730s in a
series of letters to Goldbach that introduced his infinite product formula and the Gamma
function [16, 14, 59]. Indeed, arriving at the Gamma function from the discrete definition
of factorial was not a simple task, needless to mention proving that it was the unique
natural generalization of factorials as the Bohr-Miller theorem nearly stated [29]. Clearly,
a systematic approach is needed in answering such questions so that it can be readily
applied to the potentially infinite list of special discrete functions such as the factorial-like
hyperfactorial and superfactorial functions, defined in Eq 1.1.4 and Eq 1.1.5 respectively
(for a brief introduction to such family of functions, the reader is kindly referred to [61]
and [57]). Summability Calculus provides us with the answer.

Hyperfactorial: H(n) =

n∏
k=1

kk (1.1.4)

Superfactorial: S(n) =

n∏
k=1

k! (1.1.5)

Aside from obtaining exact closed-form generalizations to discrete functions as well
as performing infinitesimal calculus, which aids in computing nth-order approximation
among other applications, deducing asymptotic behavior is a third fundamental problem
that could have enormous applications, too. For example, Euler showed that the harmonic
sum was asymptotically related to the logarithmic function, which led him to introduce the
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famous constant λ that bears his name, which is originally defined by Eq 1.1.6 [15, 39].
Stirling, on the other hand, presented the famous asymptotic formula for the factorial
function given in Eq 1.1.7, which is used almost ubiquitously such as in the study of
algorithms and data structures [34, 13]. Additionally, Glaisher in 1878 presented an
asymptotic formula for the hyperfactorial function given in Eq 1.1.8, which led him to
introduce a new constant, denoted A in Eq 1.1.8, that is intimately related to Euler’s
constant and the Riemann zeta function [17, 60, 61].

lim
n→∞

{ n∑
k=1

1

k
− log n

}
= λ (1.1.6)

n! ∼
√

2πn
(n
e

)n
(1.1.7)

H(n) ∼ A n
n2+n

2
+ 1

12 e−
n2

4 , A ≈ 1.2824 (1.1.8)

While these results have been deduced at different periods of time in the history of
mathematics using different approaches, a fundamental question that arises is whether
there exists a simple universal calculus that bridges all of these different results together
and makes their proofs almost elementary. More crucially, we desire that such calculus
yield an elementary approach for obtaining asymptotic behavior to oscillating sums as
well, including, obviously, the special important class of alternating sums. The answer
to this question is, in fact, in the affirmative and that universal calculus is Summability
Calculus.

The primary statement of Summability Calculus is quite simple: given a discrete finite
sum of the form f(n) =

∑n
k=a g(k, n), then such finite sum is in analytic form. Not only can

we perform differentiation and integration with respect to n without having to rely on an
explicit formula, but we can also immediately evaluate the finite sum for fractional values
of n, deduce asymptotic expressions even if the sum is oscillating, accelerate convergence of
the infinite sum, assign natural values to divergent sums, and come up with a potentially
infinite list of interesting identities as a result; all without having to explicitly extend
the domain of f(n) to non-integer values of n. To reiterate, this follows because the
expression f(n) =

∑n
k=a g(k, n) embodies within its discrete definition an immediate

natural definition of f(n) for all n ∈ C as will be shown in this paper.

Summability Calculus vs. conventional infinitesimal calculus can be viewed in light of
an interesting duality. In traditional calculus, infinitesimal behavior at small intervals is
used to understand global behavior at all intervals that lie within the same analytic disc.
For instance, Taylor series expansion for a function f(x) around a point x = x0 is often
used to compute the value of f(x) for some points x outside x0, sometimes even for the
entire function’s domain. Thus, the behavior of the analytic function at an infinitesimally
small interval is sufficient to deduce global behavior of the function. Such incredible
property of analytic functions, a.k.a. rigidity, is perhaps the cornerstone of traditional
calculus that led its wonders. In Summability Calculus, on the other hand, we follow the
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contrary approach by employing our incomplete knowledge about the global behavior of
a function to reconstruct accurately its local behavior at any desired interval.

The aforementioned duality brings to mind the well-known Sampling Theorem. Here,
if a function is bandlimited, meaning that its non-zero frequency components are restricted
to a bounded region in the frequency domain, then discrete samples taken at a sufficiently
high rate can be used to represent the function completely without loss of any informa-
tion. In such case, incomplete global information, i.e. discrete samples, can be used to
reconstruct the function perfectly at all intervals, which is similar to what Summability
Calculus fundamentally entails. Does Summability Calculus have anything to do with
the Sampling Theorem? Surprisingly, the answer is yes. In fact, we will use results of
Summability Calculus to prove the Sampling Theorem.

Aside from proving the Sampling Theorem using Summability Calculus, there is an-
other more subtle connection between the two subjects. According to the Sampling The-
orem, discrete samples can always be used to perfectly reconstruct the simplest function
that interpolates them, if bandwidth is taken as a measure of complexity. As will be shown
repeatedly throughout this paper, Summability Calculus also operates implicitly on the
simplest of all possible functions that can correctly interpolate discrete values of finite
sums and additionally preserve their defining recursive prosperities. So, if the simplest
interpolating function, using bandwidth as a measure of complexity, happens to satisfy
the defining properties of finite sums, we would expect the resulting function to agree with
what Summability Calculus yields. Indeed, we will show that this is the case.

Sampling necessitates interpolation. One crucial link between interpolation and Summa-
bility Calculus is polynomial fitting. For example, given discrete samples of the power
sum function mentioned earlier in Eq 1.1.1, then such samples can be perfectly fitted
using polynomials. Because polynomials can be reconstructed from samples taken at any
arbitrarily low sampling rate, their bandwidth must be zero regardless of whether or not
polynomials are Fourier transformable in the strict sense of the word. Therefore, if one
were to use bandwidth as a measure of complexity, polynomials are among the simplest
of all possible functions, hence the Bernoulli-Faulhaber Formula is, by this measure, the
unique most natural generalization to power sums. In Summability Calculus, polynomial
fitting is a cornerstone; it is what guarantees Summability Calculus to operate on the
unique most natural generalization to finite sums. It may be counter-intuitive to note
that polynomial fitting arises in the context of arbitrary finite sums, but this result will
be established in this paper. In fact, we will show that the celebrated Euler-Maclaurin
summation formula itself and it various analogues fundamentally arise out of polynomial
fitting!

We have stated that Summability Calculus allows us to perform infinitesimal calculus,
such as differentiation and integration, and evaluate fractional finite sums without having
to explicitly extend the domain of finite sums to non-integer arguments. However, if a
finite sum is discrete in nature, what does its derivative mean in the first place? To answer
this question, we need to digress to a more fundamental question: what does a finite sum
of the form f(n) =

∑n
k=a g(k) fundamentally represent? Traditionally, the symbol

∑
was

meant to be used as a shorthand notation for an iterated addition, and was naturally
restricted to integers. However, it turns out that if we define a finite sum more broadly
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by two properties, we immediately have a natural definition that extends domain to the
complex plane C. The two properties are:

(1)
x∑

k=x

g(k) = g(x)

(2)

b∑
k=a

g(k) +

x∑
k=b+1

g(k) =

x∑
k=a

g(k)

Formally speaking, we say that a finite sum f(n) =
∑n

k=a g(k) is a binary operator
a �g n that satisfies the two properties above. Of course, using these two properties, we
can easily recover the original discrete definition of finite sums as follows:

n∑
k=a

g(k) =
n−1∑
k=a

g(k) +
n∑

k=n

g(k) (by property 2)

=
n−2∑
k=a

g(k) +
n−1∑

k=n−1

g(k) +
n∑

k=n

g(k) (by property 2)

=
a∑

k=a

g(k) +
a+1∑

k=a+1

g(k) + . . .+
n∑

k=n

g(k) (by property 2)

= g(a) + g(a+ 1) + . . .+ g(n) (by property 1)

In addition, by property 2, we derive the recurrence identity given in Eq 1.1.9. Such
recurrence identity is extremely important in subsequent analysis.

f(n) = g(n) + f(n− 1) (1.1.9)

Moreover, we immediately note that the two defining properties of finite sums suggest
unique natural generalization to all n ∈ C if the infinite sum converges. This can be seen
clearly from both properties 1 and 2 as shown in Eq 1.1.10. Here, because

∑∞
k=n+1 g(k) =

g(n + 1) + g(n + 2) + . . . is well-defined for all n ∈ C, by assumption, the finite sum∑n
k=a g(k) can be naturally defined for all n ∈ C, and its value is given by Eq 1.1.10.

n∑
k=a

g(k) =
∞∑
k=a

g(k)−
∞∑

k=n+1

g(k) (1.1.10)

This might appear trivial to observe but it is crucial to emphasize that such “obvious”
generalization is actually built on an assumption that does not necessarily follow from
the definition of finite sums. Here, it is assumed that since the infinite sum converges
if n → ∞ and n − a ∈ N, then the sum converges to the same limit as n → ∞ in
general. This is clearly only an assumption! For example, if one were to define

∑n
k=0 x

k

by 1−xn+1

1−x + sin 2πn, then both initial condition and recurrence identity hold but the limit

limn→∞
∑n

k=0 x
k no longer exists even if |x| < 1. However, it is indeed quite reasonable to

use Eq 1.1.10 as a definition of fractional sums for all n ∈ C if the infinite sums converge.
After all, why would we add any superficial constraints when they are not needed?
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Therefore, it seems obvious that a unique most natural generalization can be defined
using Eq 1.1.10 if the infinite sum converges. At least, this is what we would expect if the
term “natural generalization” has any meaning. What is not obvious, however, is that a
natural generalization of finite sums is uniquely defined for all n and all g(k). In fact, even
a finite sum of the, somewhat complex, form f(n) =

∑n
k=a g(k, n) has a unique natural

generalization that extends its domain to the complex plane C. However, the argument
in the latter case is more intricate as will be shown later.

In addition, we will also show that the study of divergent series and analytic summabil-
ity theory is intimately tied to Summability Calculus. Here, we will assume a generalized
definition of infinite sums T and describe an algebra valid under such generalized definition.
Using T, we will show how the study of oscillating sums is greatly simplified. For
example, if a divergent series

∑∞
a g(k) is defined by a value V ∈ C under T, then,

as far as Summability Calculus is concerned, the series behaves exactly as if it were a
convergent sum! Here, the term “summable” divergent series, loosely speaking, means
that a natural value can be assigned to the divergent series following some reasonable
arguments. For example, one special case of T is Abel summability method, which
assigns to a divergent series

∑∞
a g(k) the value limz→1−

∑∞
k=a g(k)zk−a if the limit exists.

Intuitively speaking, this method appeals to continuity as a rational basis for defining
divergent sums, which is similar to the arguments that sin z/z = 1 and z log z = 0 at
z = 0. Abel summability method was used prior to Abel; in fact, Euler used it quite
extensively and called it the “generating function method” [55]. In addition, Poisson also
used it frequently in summing Fourier series [21].

Using the generalized definition of sums given by T, we will show that summability
theory generalizes the earlier statement that a finite sum is naturally defined by Eq 1.1.10,
which otherwise would only be valid if the infinite sums converge. Using T, on the other
hand, we will show that the latter equation holds, in general, if the infinite sums exist in
T, i.e. even if they are not necessarily convergent in the strict sense of the word. However,
not all divergent sums are defined in T so a more general statement will be presented.

With this in mind, we are now ready to see what the derivative of a finite sum actually
means. In brief, since we are claiming that any finite sum implies a unique natural
generalization that extends its domain from a discrete set of numbers to the complex plane
C, the derivative of a finite sum is simply the derivative of its unique natural generalization.
The key advantage of Summability Calculus is that we can find such derivative of a finite
sum without having to find an analytic expression to its unique natural generalization. In
fact, we can integrate as well. So, notations such as d

dt

∑t and even
∫ ∑t dt will become

meaningful.

In summary, this paper presents the foundations of Summability Calculus, which
bridges the gap between various well-established results in number theory, summability
theory, infinitesimal calculus, and the calculus of finite differences. In fact, and as will
be shown throughout this paper, it contributes to more branches of mathematics such as
approximation theory, asymptotic analysis, information theory, and the study of acceler-
ating series convergence. However, before we begin discussing Summability Calculus, we
first have to outline some terminologies that will be used throughout this paper.
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1.2 Terminology and Notation

f(n) =
∑n

k=a g(k) f(n) =
∏n
k=a g(k) (SIMPLE)

f(n) =
∑n

k=a g(k, n) f(n) =
∏n
k=a g(k, n) (CONVOLUTED)

Simple finite sums and products are defined in this paper to be any finite sum or
product given by the general form shown above, where k is an iteration variable that is
independent of the bound n. In a convoluted sum or product, on the other hand, the
iterated function g(k) depends on both the iteration variable k and the bound n as well.
Clearly, simple sums and products are special cases of convoluted sums and products.

Because the manuscript is quite lengthy, we will strive to make it as readable as
possible. For instance, we will typically use f(n) to denote a discrete function and let
fG(n) : C → C denote its unique natural generalization in almost every example. Here,
the notation C→ C is meant to imply that both domain and range are simply connected
regions, i.e. subsets, of the complex plane. In other words, we will not explicitly state the
domain of every single function since it can often be inferred without notable efforts from
the function’s definition. Statements such as “let K ⊂ C − {0}” and “Y = R + {±∞}”
will be avoided unless deemed necessary. Similarly, a statement such as “f converges to
g” will be used to imply that f approaches g whenever g is defined and that both share
the same domain. Thus, we will avoid statements such as “f converges to g in C−{s} and
has a simple pole at s”, when both f and g have the same pole. Whereas Summability
Calculus extends the domain of a finite sum

∑n
k=a g(k, n) from a subset of integers to the

complex plane n ∈ C, we will usually focus on examples for which n is real-valued.

In addition, the following important definition will be used quite frequently.

Definition 1. A function g(x) is said to be asymptotically of a finite differentiation order
if a non-negative integer m exists such that gm+1(x) → 0 as x → ∞. The minimum
non-negative integer m that satisfies such condition for a function g will be called its
asymptotic differentiation order.

In other words, if a function g(x) has an asymptotic differentiation order m, then only
the function up to its mth derivative matter asymptotically. For example, any polynomial
with degree n has the asymptotic differentiation order n + 1. A second example is the
function g(x) = log x, which has an asymptotic differentiation order of zero because its 1st

derivative vanishes asymptotically. Non-polynomially bounded functions such as ex and
the factorial function x! have an infinite asymptotic differentiation order.

Finally, in addition to the hyperfactorial and superfactorial functions described earlier,
the following functions will be used frequently throughout this paper:

Generalized Harmonic Numbers: Hm,n =
∑n

k=1 k
−m

Gamma Function: Γ(n) =
∫∞

0 e−ttn−1dt

Gauss PI Function: Π(n) = Γ(n+ 1) = n!

Log-Factorial Function: $(n) = log Π(n) = logn!
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Digamma Function: ψ(n) = d
dn log Γ(n)

Riemann Zeta Function: ζ(s) =
∑∞

k=1 k
−s, for s > 1

Here, it is worth mentioning that the superfactorial function S(n) is also often defined
using the double gamma function or Barnes G-function [11, 57]. All of these definitions are
essentially equivalent except for minor differences. In this paper, we will exclusively use the
superfactorial function as defined earlier in Eq 1.1.5. Moreover, we will almost always use
the log-factorial function log Γ(n+ 1), as opposed to the log-Gamma function. Legendre’s
normalization n! = Γ(n+ 1) is unwieldy, and will be avoided to simplify mathematics. It
is perhaps worthwhile to note that avoiding such normalization of the Gamma function is
not a new practice. In fact, Legendre’s normalization has been avoided and even harshly
criticized by some 20th century mathematicians such as Lanczos, who described it as “void
of any rationality” [30].

1.3 Historical Remarks

It is probably reasonable to argue that the subject of finite sums stretches back in time to
the very early dawn of mathematics. In 499 A.D., the great Indian mathematician Aryab-
hata investigated the sum of arithmetic progressions and presented its closed-form formula
in his famous book Aryabhatiya when he was 23 years old. In this book, he also stated
formulas for sums of powers of integers up to the summation of cubes. Unfortunately,
mathematical notations were immature during that era and the great mathematician had
to state his mathematical equations using plain words: “Diminish the given number of
terms by one then divide by two then . . . ” [56]. In addition, the Greeks were similarly
interested as Euclid demonstrated in his Elements Book IX Proposition 35, in which he
presents the well-known formula for the sum of a finite geometric series. Between then
and now, countless mathematicians were fascinated with the subject of finite sums.

Given the great interest mathematicians have placed in summations and knowing that
this paper is all about finite sums, it should not be surprising to see that a large number
of the results presented herein have already been discovered at different points in time
during the past 2,500 years. In fact, some of what can be rightfully considered as the
building blocks of Summability Calculus were deduced 300 years ago, while others were
published as recently as 2010.

The earliest work that is directly related to Summability Calculus is Gregory’s quadra-
ture formula, whose original intention was in numerical integration [25, 44]. We will show
that Gregory’s formula indeed corresponds to the unique most natural generalization of
simple finite sums. Later around the year 1735, Euler and Maclaurin independently came
up with the celebrated Euler-Macluarin summation formula that also extends the domain
of simple finite sums to non-integer arguments [5, 38]. The Euler-Maclaurin formula
has been widely applied, and was described as one of “the most remarkable formulas
of mathematics” [53]. Here, it is worth mentioning that neither Euler nor Maclaurin
published a formula for the remainder term, which was first developed by Poisson in 1823
[53]. The difference between the Euler-Macluarin summation formula and Gregory’s is
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that finite differences are used in the latter formula as opposed to infinitesimal derivatives.
Nevertheless, they are both formally equivalent, and one can be derived from the other [44].
In 1870, George Boole introduced his summation formula, which is the analog of the Euler-
Maclaurin summation formula for alternating sums [10]. Boole summation formula agrees,
at least formally, with the Euler-Macluarin summation formula, and there is evidence that
suggests it was known to Euler as well [9].

In this manuscript, we will derive these formulas, generalize them to convoluted sums,
prove their uniqueness for being the most natural generalization to finite sums, generalize
them to oscillating sums, and present their counterparts using finite differences as opposed
to infinitesimal derivatives. We will show that the Euler-Maclaurin summation formula
arises out of polynomial fitting, and show that Boole summation formula is intimately
tied with the subject of divergent series. Most importantly, we will show that it is
more convenient to use them in conjunction with the foundational rules of Summability
Calculus.

The second building block of Summability Calculus is asymptotic analysis. Ever
since Stirling and Euler presented their famous asymptotic expressions to the factorial
and harmonic number respectively, a deep interest in the asymptotic behavior of special
functions such as finite sums was forever instilled in the hearts of mathematicians. This
includes Glaisher’s work on the hyperfactorial function and Barnes work on the super-
factorial function, to name a few. Here, Gregory quadrature formula, Euler-Maclaurin
summation formula, and Boole summation formula proved indispensable. For example,
a very nice application of such asymptotic analysis in explaining a curious observation
of approximation errors is illustrated in [9]. In this paper, we generalize the Euler-like
family of summation formulas to the case of oscillating sums, which makes the task of
deducing asymptotic expressions to such finite sums nearly elementary. We will also prove
equivalence of all asymptotic formulas.

The third building block of Summability Calculus is summability theory. Perhaps, the
most famous summability theorist was again Euler who did not hesitate to use divergent
series. According to Euler, the sum of an infinite series should carry a more general
definition. In particular, if a sequence of algebraic operations eventually arrive at a
divergent series, the value of the divergent series should assume the value of the algebraic
expression from which it was derived [26]. However, Euler’s approach was ad-hoc based,
and the first systematic and coherent theory of divergent sums was initiated by Cesaro
who introduced what is now referred to as the Cesaro mean [21]. Cesaro summability
method, although weak, enjoys the advantage of being stable, regular, and linear, which
will prove to be crucial for mathematical consistency. In the 20th century, the most well
renowned summability theorist was Hardy whose classic book Divergent Series remains
authoritative.

Earlier, we stated that summable divergent series behave “as if they were convergent”.
So, in principle, we would expect a finite sum to satisfy Eq 1.1.10 if infinite sums are
summable. Ramanujan realized that summability of divergent series might be linked
to infinitesimal calculus using such equation [6]. However, his statements were often
imprecisely stated and his conclusions were occasionally incorrect for reasons that will
become clear in this paper. In this paper, we state results precisely and prove correctness.
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We will present the generalized definition of infinite sums T in Chapter 4, which allows us
to integrate the subject of summability theory with the study of finite sums into a single
coherent framework. As will be shown repeatedly throughout this paper, this generalized
definition of sums is indeed one of the cornerstones of Summability Calculus. It will also
shed important insights into the subject of divergent series. For example, we will present
a method of deducing analytic expressions and “accelerating convergence” of divergent
series. In addition, we will also introduce a new summability method Ξ, which is weaker
than T but it is strong enough to “correctly” sum almost all examples of divergent sums
that will referred to in this manuscript. So, whereas T is a formal construct that is
decoupled from any particular method of computation, results will be deduced using T
and verified numerically using Ξ.

The fourth building block of Summability Calculus is polynomial approximation. Un-
fortunately, little work has been made to define fractional finite sums using polynomial
approximations except notably for the fairly recent work of Müeller and Schleicher [32]. In
their work, a fractional finite sum is defined by using its asymptotic behavior. In a nutshell,
if a finite sum can be approximated in a bounded region by a polynomial and if the error
of such approximation vanishes as this bounded region is pushed towards ∞, we might
then evaluate a fractional sum by evaluating it asymptotically and propagating values
backwards using the recursive property in Eq 1.1.9. However, the work of Müeller and
Schleicher is restricted to simple finite sums

∑n
k=a g(k), in which g(n) is asymptotically of

a finite differentiation order (see Definition 1). In this paper, we will present a closed-form
formula for such approximating polynomials and prove that such choice of polynomials
indeed corresponds to the unique most natural generalization of finite sums. Furthermore,
we will generalize this approach to oscillating sums and convoluted sums as well, and show
that the Euler-like family of summation formulas arise out of polynomial fitting.

The fifth building block of Summability Calculus is the Calculus of Finite Differences,
which was first systematically developed by Jacob Stirling in 1730 [25], although some
of its most basic results can be traced back to the works of Newton such as Newton’s
interpolation formula. In this paper, we will derive the basic results of the Calculus of
Finite Differences from Summability Calculus and show that they are closely related.
For example, we will show that the summability method Ξ introduced in Chapter 4
is intimately tied to Newton’s interpolation formula and present a geometric proof to
the Sampling Theorem using the generalized definition T and the Calculus of Finite
Differences. In fact, we will prove a stronger statement, which we will call the Half
Sampling Theorem. The Sampling Theorem was popularized in the 20th century by
Claude Shannon in his seminal paper “Communications in the Presence of Noise” [41],
but its origin date much earlier. A brief excellent introduction to the Sampling Theorem
and its origins is given in [31].

Finally, Summability Calculus naturally yields a rich set of identities related to fun-
damental constants such as λ, π, and e, and special functions such as the Riemann
zeta function and the Gamma function. Some of those identities shown in this paper
appear to be new while others were proved at different periods of time throughout the
past three centuries. It is intriguing to note that while many of such identities were
proved at different periods of time by different mathematicians using different approaches,
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Summability Calculus yields a simple set of tools for deducing them immediately.

1.4 Outline of Work

The rest of this manuscript is structured as follows. We will first introduce the foun-
dational rules of performing infinitesimal calculus, such as differentiation, integration,
and computing series expansion, on simple finite sums and products, and extend the
calculus next to address convoluted sums and products. After that, we introduce the
generalized definition of infinite sums T and show how central it is to Summability
Calculus. Using T, we derive foundational theorems for oscillating finite sums that
simplify their study considerably, and yield important insights to the study of divergent
series and series convergence acceleration. Next, we present a simple method for directly
evaluating finite sums f(n) =

∑n
k=a g(k, n) for all n ∈ C. Throughout these sections, we

will repeatedly prove that we are always dealing with the exact same generalized definition
of finite sums, meaning that all results are consistent with each other and can be used
interchangeably. Using such established results, we finally extend the calculus to arbitrary
discrete functions, which leads immediately to some of the most important basic results in
the Calculus of Finite Differences among other notable conclusions, and show how useful
it is in the study of finite sums and products.



Chapter 2

Simple Finite Sums

Simplicity is the ultimate
sophistication

Leonardo da Vinci (1452 – 1519)

We will begin our treatment of Summability Calculus on simple finite sums and
products. Even though results of this section are merely special cases of the more general
results presented later in which we address the more general case of convoluted sums and
products, it is still important to start with these basic results since they are encountered
more often, and can serve as a good introduction to what Summability Calculus can
markedly accomplish. In addition, the results presented herein for simple finite sums and
products are themselves used in establishing the more general case for convoluted sums
and products in the following chapter.

2.1 Foundations

Suppose we have the simple finite sum f(n) =
∑n

k=a g(k) and let us denote its generalized
definition fG(n) : C → C1. As shown in Section 1.1, the two defining properties of finite
sums imply that Eq 2.1.1 always holds if fG(n) exists. As will be shown later, the function
fG(n) always exists.

fG(n) =

{
g(n) + fG(n− 1) for all n

g(a) if n = a
(2.1.1)

From the recurrence identity given in Eq 2.1.1, and because fG(n) : C → C by
assumption, it follows by the basic rules of differentiation that the following identity holds:

f ′G(n) = g′(n) + f ′G(n− 1) (2.1.2)

1Kindly refer to Section 1.2 for a more accurate interpretation of this notation

15
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Unfortunately, such recurrence identity implicitly requires a definition of fractional finite
sums, which has not been established yet. Luckily, however, a rigorous proof of Eq 2.1.2
can be made using the two defining properties of finite sums as follows:

f ′G(n)− f ′G(n− 1) = lim
h→0

1

h

{n+h∑
k=a

g(k)−
n∑
k=a

g(k)−
n−1+h∑
k=a

g(k) +

n−1∑
k=a

g(k)
}

= lim
h→0

1

h

{n+h∑
k=a

g(k)−
n−1+h∑
k=a

g(k)−
n∑
k=a

g(k) +
n−1∑
k=a

g(k)
}

= lim
h→0

1

h

{ n+h∑
k=n+h

g(k)−
n∑

k=n

g(k)
}

(by property 2)

= lim
h→0

1

h

{
g(n+ h)− g(n)

}
(by property 1)

= g′(n)

Upon combining the recurrence identities in Eq 2.1.1 and Eq 2.1.2, Eq 2.1.3 follows
immediately, where P (n) is an arbitrary periodic function with unit period. Since a is
constant with respect to n, f ′(a − 1) is constant as well. However, f ′(a − 1) is not an
arbitrary constant and its exact formula will be given later.

f ′G(n) =
n∑
k=a

g′(k) + f ′G(a− 1) + P (n) (2.1.3)

Now, in order to work with the unique most natural generalization to simple finite
sums, we choose P (n) = 0 in accordance with Occam’s razor principle that favors sim-
plicity. Note that setting P (n) = 0 is also consistent with the use of bandwidth as a
measure of complexity as discussed earlier in the Chapter 1. In simple terms, we should
select P (n) = 0 because the finite sum itself carries no information about such periodic
function. A more precise statement of such conclusion will be made shortly. Therefore,
we always have:

f ′G(n) =
n∑
k=a

g′(k) + c, c = f ′G(a− 1) (2.1.4)

Also, from the recurrence identity in Eq 2.1.1 and upon noting that the initial condition
always holds by assumption, we must have

∑a−1
k=a = 0. In other words, any consistent

generalization of the discrete finite sum function f(n) =
∑n

k=a g(k) must also satisfy the
condition fG(a − 1) = 0. This can be proved from the defining properties of finite sums
as follows:

a−1∑
k=a

g(k) +

n∑
k=a

g(k) =

n∑
k=a

g(k) (by property 2) (2.1.5)

Thus, we always have
∑a−1

k=a g(k) = 0 for any function g(k). This last summation is
commonly thought of as a special case of the empty sum and is usually defined to be zero
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by convention. However, we note here that the empty sum is zero by necessity, i.e. not a
mere convention. In addition, while it is true that

∑a−1
k=a g(k) = 0, it does not necessarily

follow that
∑a−b

k=a g(k) = 0 for b > 0. For example, and as will be shown later,
∑0

k=1
1
k = 0

but
∑−1

k=1
1
k = ∞. In fact, using Property 1 of finite sums and the empty sum rule, we

always have:

a−b∑
k=a

g(k) = −
a−1∑
a−b+1

g(k) (2.1.6)

The empty sum rule and Eq 2.1.6 were proposed earlier in [32], in which polynomial
approximation is used to define a restricted class of simple finite sums as will be discussed
later in Chapter 6. Finally, the integral rule follows immediately from the differentiation
rule given earlier in Eq 2.1.4, and is given by Eq 2.1.7. In fact, if we denote h(n) =∑n

k=a

∫ k
g(t) dt, then c1 = −h′(a − 1). Thus, the integration rule in Eq 2.1.7 yields a

single arbitrary constant only as expected, which is c2.∫ n t∑
k=a

g(k) dt =
n∑
k=a

∫ k

g(t) dt+c1n+c2, c1 = − d

dx

x∑
k=a

∫ k

g(t) dt
∣∣∣
x=a−1

(2.1.7)

Using the above rules for simple finite sums, we can quickly deduce similar rules for
simple finite products by rewriting finite products as

∏n
k=a g(k) = exp{

∑n
k=a log g(k)}

and using the chain rule, which yields the differentiation rule given in Eq 2.1.8.

d

dn

n∏
k=a

g(k) =
n∏
k=a

g(k)
( n∑
k=a

g′(k)

g(k)
+ c
)
, c = f ′G(a− 1) (2.1.8)

Similar to the case of finite sums, we have
∏a−1
k=a g(k) = 1, which again holds by

necessity. For example, exponentiation, which can be written as xn =
∏n
k=a x implies

that x0 =
∏0
k=1 x = 1. Similarly, the factorial function, given by n! =

∏n
k=1 k implies that

0! = 1. Table 2.1 summarizes key results. Again, it is crucial to keep in mind that the
empty product rule only holds for

∏a−1
k=a. For example,

∏a−2
k=a may or may not be equal to

one.

Rule 1: Derivative rule for simple finite sums f ′G(n) =
∑n
k=a g

′(k) + c1

Rule 2: Integral rule for simple finite sums
∫ n∑t

k=a g(k) dt =
∑n
k=a

∫ k
g(t) dt+ c1n+ c2

Rule 3: Empty sum rule
∑a−1
k=a g(k) = 0

Rule 4: Derivative rule for simple finite products d
dn

∏n
k=a g(k) =

∏n
k=a g(k)

(∑n
k=a

g′(k)
g(k) + c1

)
Rule 5: Empty product rule

∏a−1
k=a g(k) = 1

Table 2.1: A summary of foundational rules. In each rule, c1 is a non-arbitrary constant.



CHAPTER 2. SIMPLE FINITE SUMS 18

Now, looking into Rule 1 in Table 2.1, we deduce that the following general condition
holds for some constants cr:

f (r)(n) =

n∑
k=a

g(r)(k) + cr (2.1.9)

Keeping Eq 2.1.9 in mind, we begin to see how unique generalization of simple finite sums
can be naturally defined. To see this, we first note from Eq 2.1.9 that we always have:

f (r)(n)− f (r)(n− 1) = g(r)(n), for all r ≥ 0 (2.1.10)

Eq 2.1.10 is clearly a stricter condition than the basic recurrence identity Eq 2.1.1 that we
started with. In fact, we will now establish that the conditions in Eq 2.1.10 are required
in order for the function f(n) to be smooth, i.e. infinitely differentiable.

First, suppose that we have a simple finite sum f(n) =
∑n

k=0 g(k). If we wish to find
a continuous function fG(n) defined in the interval [0, 2] that is only required to satisfy
the recurrence identity Eq 2.1.1 and correctly interpolates the discrete finite sum, we can
choose any function in the interval [0, 1] such that fG(0) = g(0) and fG(1) = g(0) + g(1).
Then, we define the function fG(n) in the interval [1, 2] using the recurrence identity. Let
us see what happens if we do this, and let us examine how the function changes as we try
to make fG(n) smoother.

First, we will define fG(n) as follows:

fG(n) =

{
a0 + a1n if n ∈ [0, 1]

g(n) + fG(n− 1) if n > 1
(2.1.11)

The motivation behind choosing a linear function in the interval [0, 1] is because any
continuous function can be approximated by polynomials (see Weierstrass Theorem [35]).
So, we will initially choose a linear function and add higher degrees later to make the
function smoother. To satisfy the conditions fG(0) = g(0) and fG(1) = g(0) + g(1), we
must have:

fG(n) =

{
g(0) + g(1)n if n ∈ [0, 1]

g(n) + fG(n− 1) if n > 1
(2.1.12)

Clearly, Eq 2.1.12 is a continuous function that satisfies the required recurrence identity
and boundary conditions. However, f ′G(n) is, in general, discontinuous at n = 1 because
f ′G(1−) = g(1) whereas f ′G(1+) = g(1) + g′(1). To improve our estimate such that both
fG(n) and f ′G(n) become continuous throughout the interval [0, 2], we make fG(n) a
polynomial of degree 2 in the interval [0, 1]. Here, to make f ′G(n) a continuous function,
it is straightforward to see that we must satisfy the condition in Eq 2.1.10 for r = 1. The
new set of conditions yields the following approximation:

fG(n) =

{
g(0)

1 +
(g(1)

1 −
g′(1)

2

)
n+ g(2)(1)

2 n2 if n ∈ [0, 1]

g(n) + fG(n− 1) if n > 1
(2.1.13)
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Now, fG(n) and f ′G(n) are both continuous throughout the interval [0, 2], and the

function satisfies recurrence and boundary conditions. However, the 2nd derivative is now
discontinuous. Again, to make it continuous, we improve our estimate by making fG(n)
a polynomial of degree 3 in the interval [0, 1] and enforcing the condition in Eq 2.1.10 for
all r ∈ {0, 1, 2}. This yields:

fG(n) =

{
g(0)
1 +

( g(1)
1 −

g′(1)
2 + g(2)(1)

12

)
n
1! +

( g′(1)
1 − g(2)(1)

2

)
n2

2! + g(2)(1)
1

n3

3! if n ∈ [0, 1]

g(n) + fG(n− 1) if n > 1
(2.1.14)

Now, we begin to see a curious trend. First, it becomes clear that in order for the function
to satisfy the recurrence identity and initial condition in Eq 2.1.1 and at the same time be
infinitely differentiable, it must satisfy Eq 2.1.10. Second, its mth derivative seems to be

given by f
(m)
G (0) =

∑∞
r=0(−1)r brr! g

(r+m−1)(1), where br = {1, 1
2 ,

1
12 , . . .}. Indeed this result

will be established later, where the constants br are Bernoulli numbers!
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Exact Natural Generalization

Figure 2.1: The successive polynomial approximation method applied to
∑n

k=0
1

k+1 .
Clearly, the method converges to a unique function.

Figure 2.1 illustrates the previous process for the simple finite sum
∑n

k=0
1

k+1 . The
finite sum enumerates the constants Hn+1, where Hn is the nth harmonic number. One
well-known generalization of harmonic numbers to non-integer arguments can be expressed
using the well-known digamma function d

dn log Γ(n), which is also depicted in the figure.
Interestingly, it is clear from the figure that the 2nd degree approximation is already almost
indistinguishable from what we would have obtained had we defined fG(n) in terms of the
digamma function. More precisely, the successive approximation method converges the
function d

dn log Γ(n+ 2)− λ, where Γ is the Gamma function and λ is Euler’s constant.

This brings us to the following central statement:
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Theorem 2.1.1 (Statement of Uniqueness). Given a simple finite sum f(n) =
∑n

k=a g(k),
where g(k) is analytic in the domain [a,∞), define pm(n) to be a polynomial of degree m,
and define fG,m(n) by:

fG,m(n) =

{
pm(n) if n ∈ [a, a+ 1]

g(n) + fG,m(n− 1) otherwise

If we require that fG,m+1(n) be m-times differentiable in the domain [a,∞), then the
sequence of polynomials pm(n) is unique. In particular, its limit fG(n) = limm→∞ fG,m(n)

is unique and satisfies both initial condition fG(a) = g(a) and recurrence identity f
(r)
G (n) =

g(r)(n) + f
(r)
G (n− 1).

Proof. By construction of Eq 2.1.14.

Theorem 2.1.1 shows that a natural generalization of simple finite sums to the complex
plane C can be uniquely defined despite the fact that infinitely many functions qualify to
generalize finite sums. According to Theorem 2.1.1, while infinitely many functions exist
that can correctly satisfy both initial condition and recurrence identity, there is one and
only one function that can arise out of the successive polynomial approximations method
given in the Theorem. Why is this significant? This is because, in a loose sense, that unique
function is the simplest possible generalization; as you incorporate additional information
about the original finite sum, you gain additional information about its unique natural
generalization.

Of course, the argument of being a “natural” generalization is intricate. One has to
agree on what “natural” means in the first place. However, as shown in Theorem 2.1.1, a
reasonable statement of natural generalization can be made. In addition, we stated earlier
in Eq 2.1.3 that periodic functions P (n) will not be artificially added because the original
finite sum carries no information about such functions. We will show later that such
choice of P (n) = 0 is exactly what the statement of Theorem 2.1.1 entails. Furthermore,
we will show additional properties of unique natural generalization. For instance, if f(n) =∑n

k=a g(k) tends to a limit V as n→∞ then its unique natural generalization also tends
to same limit V ∈ C. In the latter case, unique natural generalization is given by the
“natural” expression in Eq 1.1.10 that was discussed earlier. Moreover, we will show
that if the finite sum f(n) =

∑n
k=a g(k) asymptotically behaves as a polynomial, then its

unique natural generalization also converges to the same polynomial asymptotically, and
others.

In the sequel, we will derive a complete set of rules for performing infinitesimal calculus
on simple finite sums and products without having to know what the generalized definition
fG(n) actually is. We will also show that the foundational rules given in Table 2.1 indeed
correspond to the unique most natural generalization to simple finite sums and products.
However, before this is done, we present a few elementary illustrative examples first.
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2.2 Examples to Foundational Rules

For our first example, we return to the power sum function presented earlier in Eq 1.1.1.
The first point we note about this function is that its (m+ 2)th derivative is zero, which
follows immediately from Rule 1 in Table 2.1. Thus, the unique most natural generalized
definition of the power sum function has to be a polynomial of degree (m + 1). Because
there exists sufficiently many sample points to the discrete power sum function, infinite
to be more specific, that polynomial has to be unique. Of course, those polynomials are
given by the Bernoulli-Faulhaber formula.

Second, assume that a = 1 and let fm(n) =
∑n

k=1 k
m then we have by Rule 2:∫ n

0

t∑
k=1

km dt =
1

m+ 1

n∑
k=1

km+1 + c1n+ c2 (2.2.1)

Using the empty sum rule, i.e. Rule 3 in Table 2.1, and after setting n = 0, we have
c2 = 0. Now, if we let fG,m(n) denotes the polynomial

∑n
k=1 k

m, we have by Eq 2.2.1 the
following simple recursive rule for deducing closed-form expressions of power sums:

fG,m+1(n) = (m+ 1)

∫ n

0
fG,m(t) dt− (m+ 1)

(∫ 1

0
fG,m(t) dt

)
n (2.2.2)

Third, because we always have
∑n

k=1 k
m =

∑n
k=0 k

m, Rule 3 can be used in either
case to deduce that fG,m(0) = fG,m(−1) = 0. That is, n(n+ 1) is always a proper factor
of power sum polynomials. The fact that n(n+ 1) is always a proper factor was observed
as early as Faulhaber himself in his book Academia Algebrae in 1631 [22]. The recursive
solution of power sums given in Eq 2.2.2 is well known and was used by Bernoulli himself
[51, 8]. Due to its apparent simplicity, it has been called the “Cook-Book Recipe” by some
mathematicians [42]. Nevertheless, its simple two-line proof herein illustrates efficacy of
Summability Calculus in deducing closed-form expressions of finite sums.

Our second example is the function f(n) given in Eq 2.2.3. Before we deduce a closed-
form expression fG(n) of this function using Summability Calculus, we know in advance
that fG(0) = fG(−1) = 0 because we could equivalently take the lower bound of k inside
the summation to be zero without changing the function itself, which is similar to the
power sum function discussed earlier. In other words, since

∑n
k=1 kx

k and
∑n

k=0 kx
k

share the same boundary condition and recurrence identity, they correspond to the exact
same function. Consequently, the empty sum rule can be applied in either case.

f(n) =
n∑
k=1

k xk (2.2.3)

Using Rule 1, we have:

f ′G(n) =
n∑
k=1

xk + log x fG(n) + c =
1− xn+1

1− x
+ log x fG(n) + c (2.2.4)
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Eq 2.2.4 is a first-order linear differential equation whose solution is available in closed-
form [52]. Using initial condition fG(1) = x, and after rearranging the terms, we obtain the
closed-form expression given Eq 2.2.5. Note that fG(0) = fG(−1) = 0 holds as expected.

fG(n) =
x

(1− x)2

(
xn(n(x− 1)− 1) + 1

)
(2.2.5)

Our third example is the power function xn =
∏n
k=1 x. Because g(k) = x is inde-

pendent of k, we have g′(k) = 0. Using Rule 4, we deduce that d
dnx

n = cxn, for some
constant c, which is indeed an elementary result in calculus. Fourth, if we let f(n) be the
discrete factorial function and denote its generalization using the PI symbol Π, as Gauss
did, then, by Rule 4, we have Π′(n)/Π(n) =

(∑n
k=1 1/k+ c

)
, which is a well-known result

where the quantity Π′(n)/Π(n) is ψ(n + 1) and ψ is the digamma function. Here, in the
last example, c is Euler’s constant.

For a fifth example, let us consider the function
∑n

k=0 sin k. If we denote β1 =

f ′G(0) and β2 = f
(2)
G (0) and by successive differentiation using Rule 1, we note that the

generalized function fG(n) can be formally expressed using the series expansion in Eq
2.2.6. Thus, fG(n) = β1 sinn− β2(1− cosn), where the constants β1 and β2 can be found
using any two values of f(n). This can be verified readily to be correct.

fG(n) =
β1

1!
n− β2

2!
n2 − β1

3!
n3 +

β2

4!
n4 +

β1

5!
n5 · · · (2.2.6)

The previous five examples illustrate why the constant c in the derivative rules, i.e.
Rule 1 and Rule 4, is not an arbitrary constant. However, if it is not arbitrary, is there
a systematic way of deducing its value? We have previously answered this question in
the affirmative and we will present a formula for c later. Nevertheless, it is instructive
to continue with one additional example that illustrates, what is perhaps, the most
straightforward special case in which we could deduce the value of c immediately without
having to resort to its, somewhat, involved expression. This example also illustrates the
concept of natural generalization of discrete functions and why a finite sum embodies
within its discrete definition a natural analytic continuation to all n ∈ C.

Our final example in this section is the function Hn =
∑n

k=1 1/k, which is also known
as the Harmonic number. Its derivative is given by Rule 1 and it is shown in Eq 2.2.7.

d

dn
Hn = −

n∑
k=1

1

k2
+ c (2.2.7)

Now, because ∆f(n) → 0 as n → ∞, we expect its natural generalization fG(n) to
exhibit the same behavior as well (as will be shown later, this statement is, in fact, always
correct). Thus, we expect f ′G(n) → 0 as n → ∞. Plugging this condition into Eq 2.2.7
yields the unique value c = ζ2. Of course, this is indeed the case if we generalize the
definition of harmonic numbers using the digamma function ψ and Euler’s constant λ as
shown in Eq 2.2.8 (for a brief introduction into the digamma and polygamma functions,
see [62, 1, 2]). Again, using Eq 2.2.8, H0 = 0 as expected but H−1 = ∞ 6= 0. In this
example, therefore, we used both the recursive property of the discrete function as well as
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one of its visible natural consequences to determine how its derivative should behave at
the limit n→∞. So, in principle, we had a macro look at the asymptotic behavior of the
discrete function to deduce its local derivative at n = 0, which is the interesting duality
we discussed earlier in Chapter 1. Validity of this approach will be proved rigorously in
the sequel.

Hn = ψ(n+ 1) + λ (2.2.8)

2.3 Semi-Linear Simple Finite Sums

In this section, we present fundamental results in Summability Calculus for an important
special class of discrete functions that will be referred to as semi-linear simple finite sums
and their associated products. The results herein are extended in the next section to
the general case of all simple finite sums and products. We start with a few preliminary
definitions.

Definition 2. (Nearly-Convergent Functions) A function g(k) is called nearly con-
vergent if limk→∞ g

′(k) = 0 and one of the following two conditions holds:

1. g(k) is asymptotically non-decreasing and concave. More precisely, there exists k0

such that for all k > k0, g′(k) ≥ 0 and g(2)(k) ≤ 0.

2. g(k) is asymptotically non-increasing and convex. More precisely, there exists k0

such that for all k > k0, g′(k) ≤ 0 and g(2)(k) ≥ 0

Definition 3. (Semi-Linear Simple Finite Sums) A simple finite sum f(n) =
∑n

k=a g(k)
is called semi-linear if g(k) is nearly-convergent.

Informally speaking, a function g(k) is nearly convergent if it is both asymptotically
monotonic, well shaped, and its rate of change is asymptotically vanishing. In other words,
g(k) becomes almost constant in the bounded region k ∈ (k0 −W, k0 + W ) for any fixed
W ∈ R as k0 → ∞. Semi-linear simple finite sums are quite common, e.g.

∑n
k=a k

m

for m < 1 and
∑n

k=a logs k for a > 0, and Summability Calculus is quite simple in such
important cases. Intuitively speaking, because g(k) is almost constant asymptotically in
any bounded region, we expect f ′G(n) to be close to g(n) as n → ∞. This is indeed the
case as will be shown later. An illustrative example of a nearly-convergent function is
depicted in Figure 2.2.

As stated earlier, Summability Calculus in the case of semi-linear sums is quite sim-
ple. Because the function g(k) is nearly-convergent, g(k) becomes by definition almost
constant over arbitrary-length intervals. Thus, the simple finite sum f(n) =

∑n
k=a g(k)

becomes almost a linear function asymptotically over arbitrary-length intervals as well,
where the rate of change f ′G(n) approaches g(n); hence the name. Looking into the
differentiation rule of simple finite sums, i.e. Rule 1, the non-arbitrary constant c that is
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Figure 2.2: Example of a nearly-convergent function

independent of n and arises out of the differentiation rule should, thus, be given by the
limit limn→∞

{
g(n)−

∑n
k=a g

′(k)
}

. The following series of lemmas and theorems establish
this intuitive reasoning more rigorously.

Lemma 2.3.1. If g(k) is nearly convergent, then the limit lim
n→∞

{
g(n)−

n∑
k=a

g′(k)
}

exists.

Proof. We will prove the lemma here for the case where g(k) is asymptotically non-
decreasing and concave. Similar steps can be used in the second case where g(k) is
asymptotically non-increasing and convex. First, let En and Dn be given by Eq 2.3.1,
where k0 is defined as in Definition 2.

En =
n∑

k=k0

g′(k)− g(n), Dn = En − g′(n) (2.3.1)

We will now show that the limit limn→∞En exists. Clearly, since k0 < ∞, Lemma
2.3.1 follows immediately afterwords. By definition of En and Dn, we have:

En+1 − En = g′(n+ 1)−
(
g(n+ 1)− g(n)

)
(2.3.2)

Dn+1 −Dn = g′(n)−
(
g(n+ 1)− g(n)

)
(2.3.3)

Because g′(n) ≥ 0 by assumption, Dn ≤ En. Thus, Dn is a lower bound on En.
However, concavity of g(n) implies that g′(n + 1) ≤ g(n + 1) − g(n) and g′(n) ≥ g(n +
1)− g(n). Placing these inequalities into Eq 2.3.2 and Eq 2.3.3 implies that En is a non-
increasing sequence while Dn is a non-decreasing sequence. Since Dn is a lower bound on
En, En converges, which completes proof of the lemma.
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Lemma 2.3.1 immediately proves not only existence of Euler’s constant but also Stieltje’s
constants and Euler’s generalized constants as well (for definition of these families of
constants, the reader can refer to [64, 22]). Notice that, so far, we have not made use of
the fact that limn→∞ g

′(n) = 0, but this last property will be important for our next main
theorem.

Theorem 2.3.1. Let g(k) be analytic in an open disc around each point in the domain
[a, n+ 1]. Also, let a simple finite sum be given by f(n) =

∑n
k=a g(k), where g(m)(k) that

denotes the mth derivative of g(k) is a nearly-convergent function for all m ≥ 0, and let
fG(n) be given formally by the following series expansion around n = a− 1:

fG(n) =

∞∑
m=1

cm
m!

(n− a+ 1)m, where cm = lim
n→∞

{
g(m−1)(n)−

n∑
k=a

g(m)(k)
}

(2.3.4)

Then, fG(n) satisfies formally the recurrence identity and initial conditions given in Eq
2.1.1. Thus, fG(n) is a valid generalization of f(n) to the complex plane C.

Proof. As will be described in details in Chapter 4, there exists summability methods for
Taylor series expansions such as Lindelöf and Mittag-Leffler’s summability methods. More
specifically, define:

~fx0,x =
(
f (0)(x0)

0! (x− x0)0, f
(1)(x0)

1! (x− x0)1, f
(2)(x0)

2! (x− x0)2, · · ·
)

That is, ~fx0,x ∈ C∞ enumerates the terms of the Taylor series expansion of f around the
point x0. Then, there exists an operator T : C∞ → C on infinite dimensional vectors

~a = (a0, a1, a2, . . . ), given by T(~a) = lim
δ→0

{ ∞∑
j=0

ξδ(j) aj

}
, for some constants ξδ(j), which

satisfies the following properties:

1. If f(x) is analytic in the domain [x0, x], then we have T(~fx0,x) = f(x).

2. T(~a + α~b) = T(~a) + αT(~b) (i.e. the operator is linear)

3. limδ→0

{∑∞
j=0 ξδ(j) aj

}
= limδ→0

{∑∞
j=0 ξδ(j + κ) aj

}
for any fixed κ ≥ 0 if ak =

f (k)

k! (x − x0)k for some function f(x) (i.e. the operator is stable for Taylor series
expansions).

The exact value of ξδ(j) is irrelevant here. We only need to assume that they exist.
In addition, third property is not fundamental because it actually follows from the first
two properties. Two well-known examples of T summability methods are the methods of
Lindelöf and Mittag-Leffler [21]. For instance, the Lindelöf summability method is given
by ξδ(j) = j−δj . Now, let cn0

m be given by:

cn0
m = g(m−1)(n0)−

n0∑
k=a

g(m)(k) (2.3.5)
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By definition, we have limn0→∞ c
n0
m = cm. So, the argument is that the function fn0(n)

given formally by Eq 2.3.6 satisfies the required recurrence identity and initial conditions
given in Eq 2.2.1 at the limit n0 →∞.

fn0(n) =

∞∑
m=1

cn0
m

m!
(n− a+ 1)m (2.3.6)

To prove this last argument, we first note from Eq 2.3.6 and the summability method T
that the following holds:

fn0(n)− fn0(n− 1) = lim
δ→0

{ ∞∑
m=1

ξδ(m)
cn0
m

m!
(n− a+ 1)m −

∞∑
m=1

ξδ(m)
cn0
m

m!
(n− a)m

}
= lim

δ→0

{ ∞∑
m=0

ξδ(m)
Kn0
m

m!
(n− a)m

}
, where Kn0

m =
∑∞

j=1 ξδ(j +m)
c
n0
j+m

j!

}
Looking into the previous equation and because limδ→0 ξδ(x) = 1 for all x ≥ 0, we

immediately deduce that the Taylor coefficients of fn0(n)− fn0(n− 1) must be given by :

dm

dnm
(
fn0(n)− fn0(n− 1)

)∣∣∣
n=a

= lim
δ→0

Kn0
m = lim

δ→0

∞∑
j=1

ξδ(j +m)
cn0
j+m

j!
(2.3.7)

From now on, and with some abuse of notation, we will simply denote Kn0
m = limδ→0K

n0
m .

So, in order for the recurrence identity to hold, we must have limn0→∞
(
fn0(n)− fn0(n−

1)
)

= g(n). Since Taylor series expansions of analytic functions are unique, we must have:

lim
n0→∞

Kn0
m = g(m)(a), for all m ≥ 0 (2.3.8)

Luckily, because of property 3 of the summability method T, the conditions in Eq 2.3.8
for m ≥ 0 are all equivalent by definition of cn0

m so we only have to prove that it holds
for m = 0. In other words, the expression Eq 2.3.8 is a functional identity. If it holds for
m = 0, then it also holds for all m. To prove that it holds for m = 0, we note that:

lim
n0→∞

Kn0
0 = lim

n0→∞
lim
δ→0

{ ∞∑
j=1

ξδ(j)
cn0
j

j!

}
= lim

n0→∞
lim
δ→0

{ ∞∑
j=1

ξδ(j)
1

j!

(
g(j−1)(n0)−

n0∑
k=a

g(j)(k)
)}

= lim
n0→∞

lim
δ→0

{ ∞∑
j=1

ξδ(j)
1

j!
g(j−1)(n0)

}
− lim
n0→∞

lim
δ→0

{ ∞∑
j=1

ξδ(j)
1

j!

n0∑
k=a

g(j)(k)
}
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In the last step, we split the sum because the summability method T is linear. Now,
because g(k) is analytic by assumption in the domain [a, n + 1], its anti-derivative exists
and it is also analytic over the same domain. Therefore, we have:

lim
δ→0

{ ∞∑
j=1

ξδ(j)
1

j!
g(j−1)(n0)

}
=

∫ n0+1

n0

g(t) dt (2.3.9)

In addition, we have:

lim
δ→0

{ ∞∑
j=1

ξδ(j)
1

j!
g(j)(s)

}
= g(s+ 1)− g(s) (2.3.10)

In both equations, we used the earlier claim that the summability method T correctly
sums Taylor series expansions under stated conditions. From Eq 2.3.10, we realize that:

lim
δ→0

{ ∞∑
j=1

ξδ(j)
1

j!

n0∑
k=a

g(j)(k)
}

= g(n0 + 1)− g(a) (2.3.11)

This is because the left-hand sum is a telescoping sum. Plugging both Eq 2.3.9 and Eq
2.3.11 into the last expression for limn0→∞K

n0
0 yields:

lim
n0→∞

Kn0
0 = g(a)− lim

n0→∞

{
g(n0 + 1)−

∫ n0+1

n0

g(t) dt
}

(2.3.12)

Now, we need to show that the second term on the right-hand side evaluates to zero.
This is easily shown upon noting that the function g(k) is nearly-convergent. As stated
earlier, since g(k) is nearly convergent, then g(m)(n0) vanish asymptotically for all m ≥ 1.
Since g(k) is also asymptotically monotone by Definition 2, then for any ε > 0, there exists
a constant N large enough such that:

max
x∈[n0,n0+τ ]

g(x)− min
x∈[n0,n0+τ ]

g(x) < ε, for all n0 > N and 0 ≤ τ <∞ (2.3.13)

Consequently, we can find a constant N large enough such that:∣∣∣g(n0 + 1)−
∫ n0+1

n0

g(t) dt
∣∣∣ < ε, for all n0 > N (2.3.14)

Because ε can be made arbitrary close to zero for which N has to be sufficiently large, we
must have:

lim
n0→∞

{
g(n0 + 1)−

∫ n0+1

n0

g(t) dt
}

= 0 (2.3.15)

Therefore, we indeed have limn0→∞K
n0
0 = g(a). As argued earlier, this implies that Eq

2.3.8 indeed holds.

With this in mind, we have established formally that limn0→∞
(
fn0(n)− fn0(n−1)

)
=

g(n). Therefore, fG(n) given by Eq 2.3.4 satisfies formally the recurrence identity in
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Eq 2.2.1. Finally, proving that the initial condition also holds follows immediately. By
plugging n = a − 1 into the formal expression for fG(n) given by Eq 2.3.4, we note that
fG(a − 1) = 0 so fG(a) = g(a) by the recurrence identity, which completes proof of the
theorem.

Lemma 2.3.2. The unique natural generalization given by Theorem 2.3.1 satisfies the two
defining properties of simple finite sums.

Proof. The proof will be deferred until Section 2.5.

Theorem 2.3.1 provides us with a very convenient method of performing infinitesimal
calculus such as differentiation, integration, and computing series expansion. As will be
illustrated in Section 2.4, it can even be used to deduce asymptotic expressions such as
Stirling’s approximation. However, one important concern that should be raised at this
point is whether the generalization to non-integer arguments given by Theorem 2.3.1
is a natural generalization and, if so, whether it is equivalent to the unique natural
generalization given earlier using the successive polynomial approximation method of
Theorem 2.1.1. This is, in fact, the case. We will now see why Theorem 2.3.1 is a
very natural generalization by establishing its direct correspondence with linear fitting,
and prove that its equivalent to the successive polynomial approximation method given in
Theorem 2.1.1 later in Section 2.5.

Claim 2.3.1. If a simple finite sum is given by f(n) =
∑n

k=a g(k), where g(m)(k) is a
nearly-convergent function for all m ≥ 0, then its generalization fG(n) given by Theorem
2.3.1 is the unique most natural generalization of f(n).

Proof. As stated earlier, arguments of unique natural generalization are clearly intricate.
Several ad hoc definitions or criteria could be proposed for what natural generalization
actually entails. We have already presented one such definition in Theorem 2.1.1. There,
we showed that out of all possible functions that can correctly satisfy initial condition and
recurrence identity, there exists a function that can be singled out as the unique natural
generalization to the simple finite sum. We will show later in Section 2.5 that such unique
function is equivalent to the one given by Theorem 2.3.1.

Aside from this, however, there is, in fact, a special case in which it is universally
agreeable what natural generalization should look like, and that is the case of linear
fitting. More specifically, if a collection of points in the plane can be perfectly interpolated
using a straight line 2, and given lack of additional special requirements, then it is indeed
the unique most natural generalization.

In the previous proof of Theorem 2.3.1, we showed that if g(k) is nearly convergent,
and given any ε > 0, then we can always find a constant N large enough such that Eq
2.3.13 holds. Eq 2.3.13 implies that the finite sum f(n) =

∑n
k=a g(k) grows almost linearly

around n for sufficiently large n and its derivative can be made arbitrary close to g(n) as

2or a hyperplane in Rn in case of n-dimensional points
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n→∞. We, therefore, expect its natural generalization to exhibit the same behavior and
to have its derivative f ′G(n) to be arbitrary close to g(n) for sufficiently large n.

Now, we know by Rule 1 of Table 2.1 that the following holds for some non-arbitrary
constant c:

f ′G(n) =
n∑
k=a

g′(k) + c

Comparing such equation with the fact that f ′G(n) → g(n) as n → ∞ implies that the
constant c of the unique natural generalization must be given by:

c = lim
n→∞

{
f ′G(n)−

n∑
k=a

g′(k)
}

= lim
n→∞

{
g(n)−

n∑
k=a

g′(k)
}

However, this is exactly what Theorem 2.3.1 states, and, by Lemma 2.3.1, the limit exists
so the function fG(n) given by Theorem 2.3.1 is indeed the unique function that satisfies
such property of natural generalization.

Now, we conclude with one last corollary. Here, we will show that if
∑∞

k=a g(k) exists,
then an additional statement of uniqueness of natural generalization can be made, which
was touched upon earlier in Chapter 1.

Corollary 2.3.1. Let f(n) =
∑n

k=a g(k) be semi-linear and suppose that
∑∞

k=a g(k)
exists. Also, let fG(n) be its unique natural generalization as given by Theorem 2.3.1,
then we have for all n ∈ C:

fG(n) =
∞∑
k=a

g(k)−
∞∑

k=n+1

g(k) (2.3.16)

Proof. The expression in Eq 2.3.16 is what we would expect from a unique natural
generalization to simple finite sums if

∑∞
k=a g(k) exists. This was discussed earlier in

the Chapter 1. To prove that Eq 2.3.16 holds, define:

f∗(n) =
∞∑
k=a

g(k)−
∞∑

k=n+1

g(k) (2.3.17)

If we employ the two defining properties of finite sums, we can easily deduce that:

∞∑
k=n+1

g(k) = g(n+ 1) + g(n+ 2) + g(n+ 3) · · · (2.3.18)

Taking derivatives with respect to n of f∗(n) in Eq 2.3.17 reveals that all higher derivatives
of f∗(n) agree with the ones given by Theorem 2.3.1. In particular, we have:

dr

dnr
f∗(n) =

n∑
k=a

g(r)(k)−
∞∑
k=a

g(r)(k) =
dr

dnr
fG(n) (2.3.19)
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Since both functions share the same higher order derivatives dr

dnr f(n) for r ≥ 0, they
have the same Taylor series expansion. By uniqueness of Taylor series expansion, the two
functions must be identical.

2.4 Examples to Semi-Linear Simple Finite Sums

In this section we present many examples that illustrate efficacy of Summability Calculus
in handling semi-linear simple finite sums.

2.4.1 Example I: Telescoping Sums

We will first start with the elementary simple finite product given by:

f(n) =

n∏
k=2

(1− 1/k) = exp
{ n∑
k=2

log (1− 1/k)
}

(2.4.1)

Now, we will use Summability Calculus to find an exact expression of the simple finite
product. First, if we use Rule 4 for the derivative of simple finite products, we deduce
that the derivative of the unique natural generalization fG(n) is given by Eq 2.4.2. To
find the exact value of c, we rewrite f(n) as given in Eq 2.4.1, i.e. we express f(n) as a
composition of the exponential function with a semi-linear simple finite sum. So, we can
now employ Theorem 2.3.1 and the chain rule to find the exact value of c as illustrated in
Eq 2.4.3. Thus, we conclude that c = −1.

f ′G(n) = fG(n)
( n∑
k=2

1

k(k − 1)
+ c
)

(2.4.2)

c = lim
n→∞

{
log (1− 1/n)−

n∑
k=2

1

k(k − 1)

}
= −

∞∑
k=2

1

k(k − 1)
= −1 (2.4.3)

Plugging c = −1 into Eq 2.4.2 yields the desired expression for f ′G(n). Therefore, we have:

f ′G(n)

fG(n)
= −1 +

n∑
k=2

1

k(k − 1)
= −

∞∑
k=n+1

1

k(k − 1)
= − 1

n
(2.4.4)

Eq 2.4.4 is a first-order linear differential equation whose solution is fG(n) = 1/n. Indeed,
such generalization of the simple finite product f(n) is quite natural because the product
in Eq 2.4.1 is nothing but a telescoping product that evaluates to 1/n.

Is it always the case that the unique natural generalization of telescoping sums of the
form f(n) =

∑n
k=a g(k) − g(k + 1) is simply given by fG(n) = g(a) − g(n + 1)? In other

words, while we know that
∑n

k=a g(k)− g(k+ 1) = g(a)− g(n+ 1) holds if n−a ∈ N, how
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do we know that, for example,
∑1/2

k=1 g(k)− g(k + 1) is indeed equal to g(1)− g(3
2)? This

can be heuristically argued using the two defining properties of finite sums as follows:

n∑
k=a

g(k)− g(k + 1) =
n∑
k=a

g(k)−
n∑
k=a

g(k + 1)

= g(a) +
n∑

k=a+1

g(k)−
n+1∑
k=a+1

g(k) (by properties 1 and 2)

= g(a)−
n+1∑

k=n+1

g(k) (by properties 2)

= g(a)− g(n+ 1) (by property 1)

However, we note here that the above argument does not follow from the two defin-
ing properties of simple finite sums because we have assumed that

∑n
k=a g(k + s) =∑n+s

k=a+s g(k). This last property, which will be called the shifting property, will be
indeed established for the unique most natural generalization of simple finite sums later in
Section 2.5. So, indeed the unique natural generalization of telescoping sums of the form∑n

k=a g(k) − g(k + 1) is always given by g(a) − g(n + 1) even if n − a 6∈ N. Fortunately,
this is what we would expect if we were indeed dealing with the unique most natural
generalization to simple finite sums.

2.4.2 Example II: The Factorial Function

For a more contrived example, let us consider the log-factorial function given by $(n) =∑n
k=1 log k. We can use Summability Calculus to derive a series expansion of $(n) quite

easily as follows. First, by direct application of Theorem 2.3.1, we find that the derivative
at n = 0 is given by limn→∞{log n−Hn} = λ, where Hn is the nth harmonic number and
λ is Euler’s constant. Thus, we have by Rule 1:

$′(n) = ψ(n+ 1) = −λ+
n∑
k=1

1

k
(2.4.5)

Because 1/k is also nearly convergent by Definition 2 and because it converges to zero, we
have by Theorem 2.3.1:

$(2)(n) = ζ2 −
n∑
k=1

1

k2
(2.4.6)

Here, ζ is the Riemann zeta function. Continuing in this manner yields the following series
expansion:

$(n) = −λn+

∞∑
k=2

(−1)k
ζk
k
nk (2.4.7)
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In particular, since log 1 = 0, we have the following well-known identity that was first
proved by Euler [40]:

λ =

∞∑
k=2

(−1)k
ζk
k

(2.4.8)

In this example, it is important to keep a few points in mind. First, the series expansion
in Eq 2.4.7 is the series expansion of the unique most natural generalization of the log-
factorial function, which turned out to be the series expansion of the log-Gamma function
log Γ(n+ 1). However, our apriori assumption of the generalized definition fG(n) may or
may not be equivalent to what Theorem 2.3.1 implies. In other words, it was possible,
at least in principle, that Theorem 2.3.1 would yield a generalized definition of the log-
factorial function that is different from the log-Gamma function so we need to exercise
caution before equating the two functions. In this particular example, nevertheless, they
both turned out to be the same. Second, using the discussion in Claim 2.3.1, we deduce
from this example that the log-gamma function log Γ(n+ 1) is the unique smooth function
that satisfies recurrence and initial conditions of the log-factorial function and its higher
derivatives do not alternate in sign infinitely many times. Lemma 2.4.1 presents a more
precise statement of the latter conclusion.

Lemma 2.4.1. Let fG(n) : C→ C be a function that satisfies the following three properties:

1. fG(n) = logn+ fG(n− 1), for all n

2. fG(1) = 1

3. For every higher derivative f
(r)
G (n) where r ≥ 0, there exists a constant nr such that

f
(r)
G (n) is monotonic for all n > nr. In other words, f

(r)
G (n) does not alternate in

sign infinitely many times.

Then, fG(n) = Γ(n+ 1), where Γ is the Gamma function.

Proof. Similar to the proof of Claim 2.3.1, let fG(n) be a function that satisfies the
recursive property and initial condition stated in the lemma. Because log n is nearly
convergent and because fG(n) is monotonic for n > n0, then its derivative f ′G(n) converges
to log n as n → ∞ (see proof of Claim 2.3.1). However, this implies that its derivative
f ′G(0), given by the constant c in Rule 1, is uniquely determined by Theorem 2.3.1 and it
is equal to −λ. Similarly, since f ′G(n) = −λ+Hn as stated in Rule 1 of Table 2.1, where
the summation is now the Harmonic number and it is nearly convergent, and because

f ′G(n) is monotonic for all n > n1, f
(2)
G (0) is also uniquely determined and is given by ζ2,

and so on. Thus, all higher derivatives at n = 0 are uniquely determined and are given
by Theorem 2.3.1. Therefore, the only possible series expansion of fG(n) is the one given
by Eq 2.4.7, which is the series expansion of Γ(n+ 1).
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Lemma 2.4.1 presents an alternative statement, different from the Bohr-Miller The-
orem, as to why the Gamma function is the unique most natural generalization of the
factorial function. According to the lemma, the log-Gamma function is the only pos-
sible generalization of the log-factorial function if we require that higher derivatives be
monotonic asymptotically. However, by requiring such smooth asymptotic behavior of
the function, its behavior for all n is given by log Γ(n+ 1). Historically, there have
been many attempts to extend the factorial function into an entire function to avoid
Gamma’s singularities at negative integers. One well-known example is Hadamard’s
factorial function, which correctly interpolates the discrete factorial function. However,
Hadamard’s function does not satisfy the required recurrence identity for all complex
values of n [14]. In fact, it is straightforward to observe that a function that satisfies the
recurrence identity fG(n) = n fG(n − 1) for all n has to have singularities at negative
integers, since we must have 1! = 1× 0! and 0! = 0× (−1)! by recurrence identity, and so
on.

2.4.3 Example III: Euler’s Constant

Suppose that f(n) is given by Eq 2.4.9 below, where Π(n) is again Gauss’s PI function,
which is equal to Γ(n+ 1). In Eq 2.4.9, let x be independent of n. Then, the derivative
f ′G(0) is given in Eq 2.4.10, where ψ is again the digamma function.

f(n) = Π(n+ x)/Π(x) =
n∏
k=1

(k + x) (2.4.9)

f ′G(0) = Π′(x)/Π(x) = ψ(x+ 1) (2.4.10)

Upon using both Eq 2.4.10 and the differentiation rule of simple finite products, i.e. Rule
4, we arrive at Eq 2.4.11, which can be rearranged as given in Eq 2.4.12

f ′G(n) = fG(n)
( n∑
k=1

1

k + x
+ ψ(x+ 1)

)
(2.4.11)

d

dn
log fG(n) =

n∑
k=1

1

k + x
+ ψ(x+ 1) (2.4.12)

Now, we employ Theorem 2.3.1 to deduce Taylor series expansion of d
dn log fG(n), which

yields: 3

d

dn
log fG(n) = ψ(x+ 1) +

∞∑
k=2

(−1)k
(
ζk −Hk,x

)
nk−1 (2.4.13)

3As defined in the Chapter 1, Hm,n =
∑n
j=1 j

−m
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Now, we integrate both sides with respect to n, which yields:

log fG(n) = ψ(x+ 1)n+
∞∑
k=2

(−1)k

k

(
ζk −Hk,x

)
nk (2.4.14)

Since we derived earlier in Eq 2.4.5 the identity ψ(x + 1) = −λ + Hx, we plug it into
previous equation and set n = 1 to deduce that:

log (1 + x) = −
(
λ−Hx

)
+
ζ2 −H2,x

2
− ζ3 −H3,x

3
· · · (2.4.15)

Thus, by taking the limit as x→∞, we recover Euler’s famous result again:

lim
x→∞

{
log (1 + x)− λ−Hx

}
= 0 (2.4.16)

Of course, we could alternatively arrive at the same result by direct application of Lemma
2.3.1. In addition, if we set x = 0 in Eq 2.4.15 and use the empty sum rule, i.e. Rule 3,
we arrive at Eq 2.4.7 again. However, Eq 2.4.15 is obviously a more general statement.
For instance, by setting x = 1, we arrive at the identity in Eq 2.4.17. Additionally, by
plugging Eq 2.4.7 into Eq 2.4.15, we arrive at Eq 2.4.18. Again, the empty sum rule yields
consistent results as expected.

log 2 = 1− λ+

∞∑
k=2

(−1)k
ζk − 1

k
(2.4.17)

log (1 + x) =

∞∑
k=1

(−1)k+1Hk,x

k
(2.4.18)

Moreover, we rewrite Eq 2.4.15 to have:

log (1 + x) = −λ+Hx +
1

2

∞∑
k=x+1

1/k2 − 1

3

∞∑
k=x+1

1/k3 + · · · (2.4.19)

Using the series expansion of log (1 + x) for |x| < 1, we note that Eq 2.4.19 can be
rearranged as follows:

log (1 + x) = −λ+Hx +

∞∑
k=x+1

(1

k
− log (1 +

1

k
)
)

(2.4.20)

Of course, setting x = 0 yields Euler’s famous identity [58, 40]:

λ =

∞∑
k=1

(1

k
− log (1 +

1

k
)
)

(2.4.21)
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Finally, starting from the Taylor series expansion in Eq 2.4.14 and setting x = 0, we
have the following identity:

− log Π(1/2) + log Π(−1/2) = λ+

∞∑
k=1

ζ2k+1

4k(2k + 1)
= log 2 (2.4.22)

In this example, we have reproduced some of the most important results related to
Euler’s constant. The fact that all of these results were proven in only a few pages is an
example of how convenient Summability Calculus really is.

2.4.4 Example IV: More into the Zeta Function

In this example, we continue our quest to reproduce some of the basic identities related
to the Riemann zeta function. For a starting point, we compute the series expansion of
the digamma function $′(n), but this time we take the series expansion around n = 1.
To do this, we note from Eq 2.4.5 that $′(1) = 1− λ. Using Rule 1 and upon successive
differentiation of the digamma function using Theorem 2.3.1 we have:

$′(n) = (1− λ) +
∞∑
k=1

(−1)k+1
(
ζk+1 − 1

)
(n− 1)k (2.4.23)

Now, if we set n = 2 in the previous equation, we obtain:

∞∑
k=2

(−1)k
(
ζk − 1

)
=

1

2
(2.4.24)

Additionally, if we set n = 0 in Eq 2.4.23, we obtain:

∞∑
k=2

(
ζk − 1

)
= 1 (2.4.25)

Of course, we could combine the previous three equations in various ways to deduce
additional identities such as:

∞∑
k=1

(
ζ2k − 1

)
= 1− λ

2
(2.4.26)

∞∑
k=1

(
ζ2k+1 − 1

)
=
λ

2
(2.4.27)

On the other hand, if we integrate both sides of Eq 2.4.23 with respect to n and use
the fact that log 1 = 0, we have:

$(n) = log n! = (1− λ)(n− 1) +
∞∑
k=2

(−1)k
ζk − 1

k
(n− 1)k (2.4.28)
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Setting n = 0 yields:
∞∑
k=2

ζk − 1

k
= 1− λ (2.4.29)

On the other hand, if set n = 2 in Eq 2.4.28, we arrive at Eq 2.4.17 again. Finally, similar
techniques can be used to show numerous other results including:

log 2 =
∞∑
k=1

ζ2k − 1

k
(2.4.30)

1− λ− log 2

2
=
∞∑
k=1

ζ2k+1 − 1

2k + 1
(2.4.31)

It is worth noting that while the method presented herein provides a simple venue for
deducing such rich set of identities, some of these identities were proven in the past at
different periods of time by different mathematicians using different approaches (see for
instance the surveys in [19, 40]).

2.4.5 Example V: One More Function

In this example, we use Theorem 2.3.1 to derive the Taylor series expansion of the function
f(n) =

∑n
k=1

log k
k . First, we note that the derivative is given by 4:

f ′G(n) = −ζ2 − ζ ′2 +
n∑
k=1

1− log k

k2
(2.4.32)

Thus, we know that f ′G(1) = 1− ζ2 − ζ ′2. Similarly, we have by Theorem 2.3.1:

f
(2)
G (n) = 3ζ3 + 2ζ ′3 −

n∑
k=1

3− 2 log k

k2
(2.4.33)

Thus, we have f
(2)
G (1) = 3(ζ3 − 1) + 2ζ ′3. Continuing in this manner, it is straightforward

to prove by induction that f
(r)
G (1) = (−1)rr!

(
Hr(ζr+1− 1) + ζ ′r+1

)
. Therefore, the desired

Taylor series expansion is given by:
n∑
k=1

log k

k
=

∞∑
r=1

(−1)r
(
Hr(ζr+1 − 1) + ζ ′r+1

)(
n− 1

)r
(2.4.34)

Setting n = 0 and n = 2 yields the two aesthetic identities Eq 2.4.35 and Eq 2.4.36
respectively.

∞∑
r=1

(
Hr(ζr+1 − 1) + ζ ′r+1

)
= 0 (2.4.35)

∞∑
r=1

(−1)r
(
Hr(ζr+1 − 1) + ζ ′r+1

)
=

log 2

2
(2.4.36)

4Here, ζ′s = −
∑∞
k=1

log k
ks

.
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2.4.6 Example VI: Asymptotic Expressions

Finally, we conclude this section with two simple proofs to the asymptotic behaviors of the
factorial and the hyperfactorial functions, known as Stirling and Glaisher approximations
respectively that were mentioned earlier in Eq 1.1.7 and Eq 1.1.8. Our starting point will
be Eq 2.4.15. Replacing x with n and integrating both sides using Rule 2 yields Eq 2.4.37.
Note that in this particular step, we have employed Summability Calculus in integrating
with respect to the bounds of finite sums.

(1 + n) log (1 + n) = c1 + c2n+ log n! +
Hn

2
− H2,n

6
+
H3,n

12
· · · (2.4.37)

Setting n = 0 and n = 1 yields c1 = 0 and c2 = 1 respectively. Thus, we have:

(1 + n) log (1 + n)− n− log n! =
Hn

2
− H2,n

6
+
H3,n

12
· · · (2.4.38)

Now, knowing that Hn ∼ log n+λ, we have the asymptotic expression for the log-factorial
function given in Eq 2.4.39, where the error term goes to zero asymptotically.

log n! ∼ (1 + n) log (1 + n)− n− log n

2
− λ

2
+
ζ2

6
− ζ3

12
+ · · · (2.4.39)

However, upon using the well-known identity in Eq 2.4.40, we arrive at the asymptotic
formula for the factorial function given in Eq 2.4.41. Clearly, it is straightforward to arrive
at Stirling approximation from Eq 2.4.41 but the asymptotic expression in Eq 2.4.41 is
more accurate.

−λ
2

+
ζ2

6
− ζ3

12
+ · · · = log 2π

2
− 1 (2.4.40)

n! ∼ 1

e

√
2π(n+ 1)

(n+ 1

e

)n
(2.4.41)

On the other hand, if we start with the log-hyperfactorial function f(n) = logH(n) =∑n
k=1 k log k, and differentiate using Rule 1, we obtain:

H ′(n)

H(n)
= n+ log n! + c (2.4.42)

Unfortunately, logH(n) is not semi-linear so we cannot use Theorem 2.3.1 to find the exact
value of c. These general cases will be addressed in the following section. Nevertheless,
since we have the series expansion of the log-factorial function, we can substitute it in the
previous equation and integrate with respect to n to arrive at:

logH(n) =
1

4
+

(1 + n)2
(
2 log (1 + n)− 1

)
2

− n+ log n!

2
−Hn

6
+
H2,n

24
−H3,n

60
· · · (2.4.43)
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Here, we used the facts that logH(1) = 0 and logH(0) = 0 by definition of the hyper-
factorial function and empty product rule respectively. Thus, an asymptotic expression
for the hyperfactorial function is given by:

H(n) ∼ (1 + n)(1+n)2/2 eK

en+n2/4 n1/6
√
n!

, K = −λ
6

+
ζ2

24
− ζ3

60
+

ζ4

120
− · · · (2.4.44)

Again, it is straightforward to proceed from the asymptotic expression in Eq 2.4.44 to ar-
rive at Glaisher’s approximation formula Eq 1.1.8 through simple algebraic manipulations
but Eq 2.4.44 is much more accurate.

2.5 Simple Finite Sums: The General Case

In Section 2.3, we established Summability Calculus for semi-linear simple finite sums.
Needless to mention, many important finite sums and products that arise frequently are
not semi-linear including, for example, the log-hyperfactorial function discussed earlier.
As illustrated in Section 2.4.6, it is possible to perform calculus on simple finite sums
that are not semi-linear by reducing analysis to the case of semi-linear simple finite sums
using a few tricks. For example, the log-hyperfactorial function is not semi-linear but
its derivative is so we could compute the series expansion of its derivative and integrate
subsequently using the rules of Summability Calculus. In principle, therefore, as long as
some higher derivative of a simple finite sum is semi-linear, we could perform infinitesimal
calculus, albeit using quite an involved approach. Obviously, this is tedious and far from
being insightful.

In this section we extend the results of Section 2.3 to the general case of simple
finite sums and products, which brings to light the celebrated Euler-Maclurin summation
formula. We will show how Summability Calculus yields unique natural generalizations
and present a simple proof of the Euler-Maclurin summation formula by construction.

Our starting point will be Theorem 2.1.1. Here, the successive polynomial approxima-
tion method suggests that there exists a sequence of constants ar such that Eq 2.5.1 holds
formally for all functions g(k). We will assume that this holds for some constants ar and
our first goal is to determine what those constants must be.

d

dn

n∑
k=a

g(k) =
∞∑
r=0

arg
(r)(n) (2.5.1)

Looking into Table 2.1, then Eq 2.5.1 and Rule 1 both imply that:

dm

dnm

n∑
k=a

g(k) =
∞∑
r=0

arg
(r+m−1)(n) (2.5.2)

However, we know that the following holds for some constants cm.

dm

dnm

n∑
k=a

g(k) =
n∑
k=a

g(m)(k) + cm (2.5.3)
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Therefore, we can determine value of the constants cm using:

cm =
∞∑
r=0

arg
(r+m−1)(n)−

n∑
k=a

g(m)(k) (2.5.4)

Of course, Eq 2.5.4 is only a formal expression; the infinite sum
∑∞

r=0 arg
(r+m−1)(n)

may or may not converge. However, the issue of convergence is not important at this
stage because there exists a unique sequence ar that makes the expression in Eq 2.5.4 hold
formally if recurrence identity is to be maintained. In addition, Theorem 2.1.1 already
presents a statement on how to interpret the infinite sum if it diverges, which will be
discussed later.

Theorem 2.5.1. Let a simple finite sum be given by f(n) =
∑n

k=a g(k), where g(k) is
analytic in an open disc around each point in the domain [a,∞), and let fG(n) be given
formally by the following series expansion around n = a − 1, where Bk are Bernoulli
numbers:

fG(n) =

∞∑
k=m

cm
m!

(n− a+ 1)m, cm =

∞∑
r=0

Br
r!
g(r+m−1)(n)−

n∑
k=a

g(m)(k) (2.5.5)

Here, cm are constants that are independent of n. Then, fG(n) satisfies formally the
recurrence identity and initial conditions given by Eq 2.1.1. Thus, fG(n) is a valid
generalization of f(n). In fact, fG(n) is the unique most natural generalization to the
simple finite sum.

Proof. Again, our first point of departure is to question what natural generalization means
in the context of extending domains of discrete functions. In the previous case where we
had nearly convergent functions, such question was answered by reducing analysis to the
case of linear fitting since all semi-linear finite sums are asymptotically linear over arbitrary
interval lengths as shown in Eq 2.3.13. However, this is no longer valid in the general case
of simple finite sums and products. So, how do we define it?

We will establish in Section 6.2 that the Euler-Maclaurin summation formula is the
unique natural generalization by showing that it arises out of polynomial fitting. Similar
to the argument of linear fitting for semi-linear simple finite sums, polynomial fitting is
arguably the unique most natural generalization if it can correctly interpolate data points
and given lack of additional special requirements because polynomials are the simplest of
all possible functions. In addition, we will show that the Euler-Maclaurin summation for-
mula is indeed the unique natural generalization as dictated by the successive polynomial
approximation method of Theorem 2.1.1.

Similar to the proof of Theorem 2.3.1, let us express fG(n) − fG(n − 1) as a Taylor
series expansion. However, this time we will take the series expansion around n = a − 1
starting from Eq 2.5.5. Because this is identical to the proof steps of Theorem 2.3.1, we
will omit some details and jump to the important result that Eq 2.5.6 must hold for all
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m ≥ 0 in order to satisfy required recurrence identity.

Km = g(m)(a− 1), where Km = lim
δ→0

{ ∞∑
j=1

ξδ(j)(−1)(j+1) cj+m
j!

}
(2.5.6)

Similar to the proof of Theorem 2.3.1, Eq 2.5.6 is a functional identity; if it holds for
m = 0, then it holds for all m ≥ 0. So, we will only prove that it holds for m = 0. As
stated in Eq 2.5.4, we have for some constants ar:

cx =

∞∑
r=0

arg
(r+x−1)(n)−

n∑
k=a

g(x)(k) (2.5.7)

Now, we will prove that ar = Br
r! by construction. Plugging Eq 2.5.7 into Eq 2.5.6 for

m = 0 yields:

g(a− 1) = lim
δ→0

{ ∞∑
j=1

ξδ(j)
(−1)(j+1)

j!

( ∞∑
r=0

arg
(r+j−1)(n)−

n∑
k=a

g(j)(k)
)}

(2.5.8)

By linearity of the summability method T, we have:

g(a− 1) = lim
δ→0

{ξδ(1)

1!

∞∑
k=0

akg
(k)(n)− ξδ(2)

2!

∞∑
k=0

akg
(k+1)(n) + · · ·

}
− lim
δ→0

{ξδ(1)

1!

n∑
k=a

g′(k)− ξδ(2)

2!

n∑
k=a

g(2)(k) +
ξδ(3)

3!

n∑
k=a

g(3)(k)− · · ·
}

Because the summability method correctly evaluates Taylor series expansions under stated
conditions (see Theorem 2.3.1), we have:

lim
δ→0

{ξδ(1)

1!
g′(s)− ξδ(2)

2!
g(2)(s) +

ξδ(3)

3!
g(3)(s)− · · ·

}
= g(s− 1)− g(s) (2.5.9)

Therefore,

lim
δ→0

{ξδ(1)

1!

n∑
k=a

g′(k)− ξδ(2)

2!

n∑
k=a

g(2)(k)+
ξδ(3)

3!

n∑
k=a

g(3)(k)−· · ·
}

= g(a−1)−g(n) (2.5.10)

Consequently, we have:

g(n) = lim
δ→0

{ξδ(1)

1!

∞∑
k=0

akg
(k)(n)− ξδ(2)

2!

∞∑
k=0

akg
(k+1)(n) + · · ·

}
(2.5.11)

Because T correctly sums Taylor series expansions under stated conditions, we must have
limδ→0 ξδ(j) = 1 for any fixed j < ∞. For example, the Lindelöf summation method has
ξδ(j) = j−δj so the statement is satisfied. Therefore, we arrive at the following expression:

g(n) =
a0

1!
g(n) +

(a1

1!
− a0

2!

)
g′(n) +

(a2

1!
− a1

2!
+
a0

3!

)
g(2)(n) + · · · (2.5.12)
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Consequently, the constants ar satisfy the following conditions if and only if the recurrence
identity holds:

a0=1 and an
1! −

an−1

2! + an−3

3! − · · ·+ (−1)(n+1) a0
(n+1)! = 0

The above conditions yield ar = Br
r! . Thus, the generalized function fG(n) given

by Theorem 2.5.1 does indeed satisfy recurrence and initial conditions. The argument
that it arises out of polynomial fitting has to await development of Chapter 6. In
addition, the argument that it is identical to the unique natural generalization given
by the successive polynomial approximation method of Theorem 2.1.1 is easy to establish.
First, we note in Eq 2.1.14 that the constants br = {1,−1/2, 1/12, . . .} in the successive
polynomial approximation method must satisfy

∑n
r=0

bn−r
r! = 0 and b0 = 1 in order to

fulfill boundary conditions. However, these conditions have the unique solution given
by br = (−1)r Brr! . Therefore, the unique natural generalization given by the successive
polynomial approximation method of Theorem 2.1.1 satisfies:

f ′G(n) =
∞∑
r=0

(−1)r
Br
r!
g(r)(n+ 1) (2.5.13)

Now, we will show that this is identical to the statement of Theorem 2.5.1. Using the Euler-
Maclaurin summation formula (see Eq 2.5.2), it can be easily shown that the following
holds formally:

∞∑
r=0

(−1)r
Br
r!
g(r)(n+ 1) =

∞∑
r=0

Br
r!
g(r)(n) (2.5.14)

Therefore, the unique natural generalization given by Theorem 2.5.1 and the unique
natural generalization of Theorem 2.1.1 are both identical, which completes proof of
this theorem. Because earlier results for the case of semi-linear simple finite sums are
just special cases of the more general statement in Theorem 2.5.1, the unique natural
generalization of Theorem 2.3.1 is also identical to both Theorem 2.1.1 and Theorem
2.5.1.

Finally, the proof assumes that g(k) is analytic in the domain [a−1,∞). This is merely
a technical detail in the above proof. Alternative proofs can be made using properties of
Bernoulli polynomials, which require that g(k) be analytic in the domain [a,∞) only (see
for instance an elegant proof to the Euler-Maclaurin summation formula in [5]).

Corollary 2.5.1. Let f(n) be a simple finite sum given by f(n) =
∑n

k=a g(k), where g(k)
is analytic at an open disc around the point k = n, and let fG(n) be its unique natural

generalization, then higher derivatives f
(m)
G (n) for m > 0 are given formally by:

f
(m)
G (n) =

∞∑
r=0

Br
r!
g(r+m−1)(n) (2.5.15)

Proof. By Theorem 2.5.1 and the differentiation rule of simple finite sums, i.e. Rule 1 in
Table 2.1.
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Corollary 2.5.2. (The Euler-Maclaurin Summation Formula) Let f(n) be a sim-
ple finite sum given by f(n) =

∑n
k=a g(k), where g(k) is analytic in the domain [a, n], and

let fG(n) be its unique natural generalization, then fG(n) is given formally by:

fG(n) =

∫ n

a
g(t) dt+

g(n) + g(a)

2
+
∞∑
r=2

Br
r!

(
g(r−1)(n)− g(r−1)(a)

)
(2.5.16)

Proof. By integrating both sides of Eq 2.5.15, we have:

fG(n)− fG(a) =

∫ n

a

∞∑
r=0

Br
r!
g(r)(n) (2.5.17)

=

∫ n

a
g(t) dt+

g(n)− g(a)

2
+
∞∑
r=2

Br
r!

(
g(r−1)(n)− g(r−1)(a)

)
(2.5.18)

Substituting fG(a) = g(a) yields the desired result.

Corollary 2.5.3. (The Shifting Property) If g(k) is analytic in an open disc around
each point in the domain [a,∞), then for any constant µ, we have:

n∑
k=a

g(k + µ) =

n+µ∑
k+µ

g(k) (2.5.19)

Proof. By direct application of the Euler-Maclaurin summation formula.

Corollary 2.5.4. The unique natural generalization of simple finite sums
∑n

k=a g(k)
satisfies the two defining properties of simple finite sums.

Proof. By direct application of the Euler-Maclaurin summation formula.

Corollary 2.5.5. (Evaluating the Euler-Maclaurin Summation Formula) Let
f(n) be a simple finite sum given by f(n) =

∑n
k=a g(k), where g(k) is analytic in an

open disc around each point in the domain [a,∞), and let fG(n) be its unique natural
generalization, then fG(n) can be evaluated using:

fG(n) = g(a) + lim
z→∞

z∑
k=1

(n− a)k

k!

z−k∑
r=0

(−1)rBr
g(k+r−1)(a+ 1)

r!
(2.5.20)

In particular, if g(k) is analytic at an open disc around n, then f ′G(n) can be evaluated
using:

f ′G(n) = lim
z→∞

z∑
k=1

(n− a)(k−1)

(k − 1)!

z−k∑
r=0

(−1)rBr
g(k+r−1)(a+ 1)

r!
(2.5.21)
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Proof. In the proof of Theorem 2.1.1, we showed that if f(n) =
∑n

k=0 g(k), then:

fG(n) = g(0) + lim
z→∞

z∑
k=0

nk

k!

z−k∑
r=0

(−1)rBr
g(k+r−1)(1)

r!
(2.5.22)

This last expression was the unique natural generalization given by Theorem 2.1.1. How-
ever, by the shifting property (Corollary 2.5.3), we have:

n∑
k=a

g(k) =
n−a∑
k=0

g(k + a) (2.5.23)

Applying Eq 2.5.22 to the last equation yields the desired result. Note that, unlike
the classical Euler-Maclaurin summation formula which diverges almost all the time, the
method presented in Eq 2.5.22 is computable if |n− a| < 1.

It is straightforward to observe that Theorem 2.5.1 generalizes Theorem 2.3.1 that
was proved earlier for semi-linear finite sums. Its proof resembles the approach used in
proving Theorem 2.3.1 and Theorem 2.3.1 is clearly a special case of Theorem 2.5.1. So,
what does Theorem 2.5.1 imply?

If we look into the differentiation rule of simple finite sums, i.e. Rule 1 in Table 2.1,
we realize that the constant c that is independent of n can be determined once we know,
at least, one value of the derivative of the generalized definition fG(n). This is because we
always have c = f ′G(n)−

∑n
k=a g

′(k) for all n. In the case of semi-linear simple finite sums,
in which g′(k) vanishes asymptotically, the rate of change of the simple finite sum becomes
almost linear asymptotically, so we know that the derivative had to get arbitrarily close to
g(n) as n→∞. This was, in fact, the value we were looking for so we used it to determine
what c was. Theorem 2.3.1 establishes that such approach is correct, meaning that the
resulting function exists and satisfies required conditions.

In Theorem 2.5.1, on the other hand, we ask about the general case of simple finite
sums in which g(k) is not necessarily semi-linear. In such case, we are still interested in
finding at least one value of each higher order derivative g(m) so that the constants cm in
Eq 2.5.3 can be determined. Corollary 2.5.1 provides us with a formal answer. However,
because the Euler-Maclaurin summation formula typically diverges, we still need a way of
interpreting such divergent series. In Chapters 4 and 6, we will present a new summability
method Ξ, which works reasonably well in estimating the Euler-Maclaurin summation
formula even if it diverges. Alternatively, the evaluation method of Corollary 2.5.5 can
be used as well, especially if |n − a| < 1. For example, if we wish to find the derivative
of the log-factorial function $(n) = log n! at n = 0, results of the evaluation method in
Corollary 2.5.5 for different values of z are depicted in Figure 2.3. Clearly, it approaches
−λ as expected.

In the meantime, we note that the Euler-Maclaurin formula is an asymptotic ex-
pression; we can clip the infinite sum if g(k) is asymptotically of a finite differentiation
order. For example, suppose we have f(n) =

∑n
k=a g(k) and that some higher derivative

g(m+1)(n) vanishes asymptotically as n → ∞, i.e. not necessarily 1st derivative as in the
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Figure 2.3: Numerical result of computing d
dn log n!

∣∣
n=0

using Corollary 2.5.5.

case of semi-linear finite sums. With this in mind, can we deduce an asymptotic expression
for the derivative of such simple finite sum f ′G(n)? The answer is given by Corollary 2.5.1,
which states that the derivative approaches

∑m
r=0

Br
r! g

(r)(n). Note that because g(m+1)(n)
vanishes asymptotically, we do not have to evaluate the entire Euler-Maclaurin summation
formula. The last finite sum is the expression we needed in order to compute the value of
c, in a manner that is similar to what was done earlier for semi-linear simple finite sums5.
Thus, we have:

f
(l)
G (a− 1) = lim

n→∞

{ m∑
r=0

Br
r!
g(r+l−1)(n)−

n∑
k=a

g(l)(k)
}

(2.5.24)

Of course, one notable difference between Theorem 2.5.1 and Theorem 2.3.1, however, is
that we could find the constants cm in Theorem 2.5.1 by choosing any appropriate value of
n whereas we had to take the limit as n → ∞ in Theorem 2.3.1 and 2.5.1. Nevertheless,
Eq 2.5.24 is usually more useful in practice. We will illustrate both approaches in Section
2.6.

Finally, we conclude this section with a sanity check. Earlier in the foundational rules,
we stated that if f(n) =

∑n
k=a g(k), then we have by Rule 1: f ′G(n) =

∑n
k=a g

′(k)+f ′G(a−
1). To verify that results so far are consistent with such claim, we note that Corollary
2.5.1 implies that Eq 2.5.25 holds if g(r)(a− 1) is defined for all r ≥ 0.

n∑
k=a

g′(k) =
∞∑
r=0

Br
r!

(
g(r)(n)− g(r)(a− 1)

)
(2.5.25)

5This will be established in Chapter 6.
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Rearranging the terms in Eq 2.5.25, we have:

∞∑
r=0

Br
r!
g(r)(n) =

n∑
k=a

g′(k) +

∞∑
r=0

Br
r!
g(r)(a− 1) (2.5.26)

However, applying Corollary 2.5.1 to Eq 2.5.26 indeed recovers the statement that
f ′G(n) =

∑n
k=a g

′(k) + f ′G(a− 1).

2.6 Examples to the General Case of Simple Finite Sums

In this section, we present a few examples for performing infinitesimal calculus on simple
finite sums and products using Theorem 2.5.1 and its corollaries.

2.6.1 Example I: Extending the Bernoulli-Faulhaber formula

In this example, we return to the power sum function given by Eq 1.1.1. If m is a positive
integer, we can use Theorem 2.5.1 to deduce immediately the Bernoulli-Faulhaber formula
for power sums, which is the original proof that Euler provided. However, the Bernoulli-
Faulhaber formula does not provide us with a series expansion if m is an arbitrary positive
real number. Using Theorem 2.5.1, on the other hand, we can quite easily derive a series
expansion of the power sum function f(n) =

∑n
k=1 k

m around n = 0 that generalizes the
above formula.

First, we note that f(0) = 0 by the empty sum rule, and g(r)(n) = m!
(m−r)!n

m−r. Since

limn→∞ g
(r)(n) = 0 for r > m, we can choose n→∞ in Theorem 2.5.1 to find the value of

derivatives cm = f
(m)
G (0). In this example, we will derive the series expansion if m = 1/2.

First, we note:

c1 = lim
n→∞

{√
n−

n∑
k=1

1

2
√
k

}
≈ 0.7302 (2.6.1)

Later in Chapter 5, it will be clear that the constant c1 is in fact given by − ζ1/2
2 , using

Riemann’s analytic continuation of the zeta function. Using the differentiation rule:

f ′G(n) = −
ζ1/2

2
+

n∑
k=1

1

2
√
k

(2.6.2)

In addition:

c2 =

∞∑
k=1

1

4k3/2
=
ζ3/2

4
(2.6.3)

Continuing in this manner, we note:

cm = (−1)m
(2m− 3)!

4m−1(m− 2)!
ζm−1/2, m ≥ 0 (2.6.4)
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Thus, the series expansion is given by:

fG(n) =
n∑
k=1

√
k = −

ζ1/2

2
n+

∞∑
m=2

(−1)m
(2m− 3)!

4m−1m! (m− 2)!
ζm−1/2n

m (2.6.5)

Unfortunately, the radius of converges of the series in Eq 2.6.5 is |n| < 1, which can be
deduced using Stirling’s approximation. However, we can still perform a sanity check on
Eq 2.6.5 by plotting it for−1 ≤ n ≤ 1, which is shown in Figure 2.4. As shown in the figure,
f(0) = 0 and f(1) = 1 as expected. In addition, since we could take the lower bound a to
be zero, we know that f(−1) = 0 as well by Rule 3, which is indeed the case as shown in the
figure. Thus, the series expansion in Eq 2.6.5 is indeed reasonable. In fact, we will show
later in Chapter 4 that Eq 2.6.5 is correct when we introduce the summability method Ξ,
which will show, for instance, that fG(n) given by Eq 2.6.5 satisfies fG(2) =

√
1 +
√

2 and
fG(3) =

√
1 +
√

2 +
√

3 thus confirming our earlier analysis. Moreover, using f(−1) = 0,
we have the identity shown in Eq 2.6.6, which can be verified numerically quite readily.

−1

2
ζ1/2 =

∞∑
m=2

(2m− 3)!

4m−1m! (m− 2)!
ζm−1/2 (2.6.6)
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Figure 2.4: The function
∑n

k=1

√
k plotted in the interval −1 ≤ n ≤ 1

Earlier, we stated that Theorem 2.5.1 provides a more convenient approach for per-
forming infinitesimal calculus on simple finite sums than the classical Euler-Maclaurin
summation formula. To see this in the previous example, it is worthwhile to note that
the Euler-Maclaurin summation formula does not readily extend the domain of

∑n
k=1

√
k

to negative values of n nor can it be used in deducing Taylor series expansion due to
the presence of square roots and divergence, whereas Theorem 2.5.1 easily does. Finally,
similar techniques can be used to obtain series expansion for different values of m.
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2.6.2 Example II: The Hyperfactorial Function

In this example, we return to the log-hyperfactorial function given by f(n) = logH(n) =∑n
k=1 k log k. By Theorem 2.5.1, we have:

f ′G(n) = n+ log n! + c, c = lim
n→∞

{
n log n+

1 + log n

2
− n− log n!

}
(2.6.7)

Using Stirling’s approximation, we have c = 1−log 2π
2 , which is the missing value of the

constant c in Eq 2.4.42. Using this value, we have by Theorem 2.5.1 the following series
expansion:

logH(n) =
(1− log 2π

2

)
n+

1− λ
2

n2 +

∞∑
k=2

(−1)k
ζk

k(k + 1)
nk+1 (2.6.8)

2.6.3 Example III: The Superfactorial Function

In this example, we look into the simple finite sum function f(n) given by f(n) =∑n
k=0$

′(k), where $(n) is the log-factorial function and $′(n) = ψ(n + 1). The finite
sum f(n) is semi-linear so we can use Theorem 2.3.1 directly. Using Rule 1, we have:

f ′G(n) = c+

n∑
k=0

$(2)(k) (2.6.9)

Using Theorem 2.3.1, the value of c is given by:

c = lim
n→∞

{
− λ+Hn −

n∑
k=0

(ζ2 −H2,k) = −(1 + λ) (2.6.10)

Continuing in this manner yields the following series expansion for fG(n):

fG(n) = −(1 + λ)(n+ 1) +

∞∑
k=2

(−1)kζk(n+ 1)k (2.6.11)

By comparing the series expansion in Eq 2.6.11 with the series expansion of $′(n), we
deduce that:

n∑
k=0

$′(k) = (n+ 1)
(
$′(n+ 1)− 1

)
⇒

n∑
k=0

Hk = (n+ 1)
(
Hn+1 − 1

)
(2.6.12)

Moreover, if we take the lower bound of the iteration variable to be a = 1 in the
definition of f(n) and after computing the series expansion around n = 0 using Theorem
2.3.1, we have the following expression:

n∑
k=0

$′(k) =
(
ζ2 − 1− λ

)
n+

∞∑
k=2

(−1)k
(
ζk − ζk+1

)
nk (2.6.13)
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For instance, setting n = 1 yields:

2− ζ2 =

∞∑
k=2

(−1)k
(
ζk − ζk+1

)
(2.6.14)

Using Eq 2.6.12, Eq 2.6.13 and Theorem 2.5.1, we are now ready to find the series
expansion of the log-superfactorial function logS(n) given by

∑n
k=1 log k! . By integrating

both sides of Eq 2.6.13 using Rule 2, we have:

logS(n) = c0 + c1n+
ζ2 − 1− λ

2
n2 +

∞∑
k=2

(−1)k
ζk − ζk+1

k + 1
nk+1 (2.6.15)

Using n = 0 and Rule 3 yields c0 = 0. Using n = 1, on the other hand, yields:

c1 = −ζ2 − 1− λ
2

+

∞∑
k=2

(−1)k
ζk − ζk+1

k + 1
(2.6.16)

To find a simple expression of c1, we employ Theorem 2.5.1 this time, which states
that:

c1 = lim
n→∞

{
log n! +

$′(n)

2
−

n∑
k=1

$′(k)
}

= lim
n→∞

{ log 2πn

2
+ n(log n− 1) +

Hn − λ
2

−
n∑
k=1

$′(k)
}

Here, we have used Stirling’s approximation. Upon using Eq 2.6.12, we have:

c1 =
log 2π

2
− λ+ lim

n→∞

{
(n+ 1)

(
log n+ λ−Hn

)}
(2.6.17)

We know, however, using the Euler-Maclaurin summation formula that the following
asymptotic relation holds:

log n+ λ−Hn ∼ −
1

2n
(2.6.18)

Plugging Eq 2.6.18 into Eq 2.6.17 yields the desired value:

c1 =
log 2π − 1

2
− λ (2.6.19)

Equating Eq 2.6.18 with Eq 2.6.16, we arrive at the following identity:

log 2π − 1

2
− λ = −ζ2 − 1− λ

2
+
∞∑
k=2

(−1)k
ζk − ζk+1

k + 1
(2.6.20)

Finally, by plugging Eq 2.6.18 into Eq 2.6.15, we arrive at the desired series expansion
of the log-superfactorial function:

logS(n) =
( log 2π − 1

2
− λ
)
n+

ζ2 − 1− λ
2

n2 +

∞∑
k=2

(−1)k
ζk − ζk+1

k + 1
nk+1 (2.6.21)
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2.6.4 Example IV: Alternating Sums

In this example, we address the case of alternating simple finite sums, and illustrate the
general principles using the example f(n) =

∑n
k=1(−1)k =

∑n
k=1 e

jπk. We will first rely
solely on the foundational rules given earlier in Table 2.1. Using Rule 1, we have:

f ′G(n) = jπfG(n) + f ′G(0) (2.6.22)

Upon successive differentiation of Eq 2.6.22, we have:

f
(r)
G (n) = (jπ)rfG(n) + (jπ)r−1f ′G(0) (2.6.23)

Since fG(0) = 0 by Rule 3, we have:

f
(r)
G (0) = (jπ)r−1f ′G(0) (2.6.24)

Putting this into a series expansion around n = 0 yields:

fG(n) = f ′G(0)
∞∑
k=0

(jπ)k−1

k!
nk =

f ′G(0)

jπ
(ejπn − 1) (2.6.25)

Using initial condition fG(1) = −1 yields:

fG(n) =
ejπn − 1

2
, and f ′G(0) =

jπ

2
(2.6.26)

Of course, it is straightforward to show that the closed-form expression in Eq 2.6.26
is indeed correct in the sense that it satisfies recurrence identity and initial condition of
f(n). However, we could have also used Theorem 2.5.1 to deduce the same expression.
First, we note using Theorem 2.5.1 that:

f ′G(0) = ejπn
∞∑
r=0

Br
r!

(jπ)r − jπ
n∑
k=1

ejπk, for any value n (2.6.27)

We choose n = 1 and use the formal substitution t
1−e−t =

∑∞
r=0

Br
r! t

r to obtain:

f ′G(0) =
jπ

2
(2.6.28)

Plugging Eq 2.6.28 into Eq 2.6.25 yields the same closed-form expression. Of course,
such approach for alternating sums is not very insightful. For instance, it is difficult to use
the Euler-Maclaurin summation formula to deduce asymptotic expressions for alternating
sums, due to the presence of complex values, despite the fact that alternating finite sums
are purely real-valued for all integer arguments. We will resolve such difficulty later
when we derive the analog of the Euler-Maclaurin summation formula for alternating
finite sums, in Chapter 5, which will allow us to perform many deeds with ease. For
instance, we can easily obtain simple asymptotic expressions for alternating sums and
accelerate convergence of alternating series quite arbitrarily. Moreover, we will generalize
Summability Calculus to arbitrary oscillating finite sums including, obviously, the special
case of alternating finite sums.
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2.7 Summary of Results

In this chapter, a few foundational rules for performing infinitesimal calculus on simple
finite sums are deduced using elementary calculus and the two defining properties of simple
finite sums, which are given in Table 2.1. Such simple rules illustrate how special functions
that are defined using simple finite sums are, in fact, as effortless to analyze as elementary
functions. Moreover, finite products can be transformed, with aid of exponentiation and
the logarithmic function, into a composition of functions that involve simple finite sums;
hence the same rules can be employed accordingly. Nevertheless, the foundational rules
are insufficient by themselves to perform infinitesimal calculus since they involve non-
arbitrary constants. To evaluate such constants, Theorem 2.3.1 can be used if the finite
sum is semi-linear; otherwise the general approach is to employ Theorem 2.5.1. Of course,
both Theorem 2.3.1 and Theorem 2.5.1 are equivalent for semi-linear finite sums.

One particular limitation of the approach presented so far, however, is that it does
not address the general case of convoluted sums and products. Furthermore, the resulting
series expansions that can be deduced using Summability Calculus may have limited radii
of convergence, which limits their applicability in evaluating finite sums and products for
non-integer arguments as illustrated in Example 2.6.1 earlier. Moreover, the approach
presented so far does not yield a convenient method of handling oscillating sums, nor
can it provide us with a simple direct method for evaluating finite sums for all complex
arguments without having to derive Taylor series expansion. These drawbacks will be
resolved in the remaining chapters.



Chapter 3

Convoluted Finite Sums

A complex system that works is
invariably found to have evolved
from a simple system that
worked.

John Gall in Systemantics

In this chapter, we extend previous results of Chapter 2 to the case of convoluted finite
sums.

3.1 Infinitesimal Calculus on Convoluted Sums

As discussed earlier, convoluted sums and products is a generalization to simple finite sums
and products in which the iterated function g is itself a function of the bound n. Thus,
instead of dealing with finite sums of the form f(n) =

∑n
k=a g(k), we now have to deal

with finite sums of the form f(n) =
∑n

k=a g(k, n). Such convoluted sums are markedly
different. For instance, the recurrence identity is now given by Eq 3.1.1, which is clearly
more difficult to handle than the recurrence identities in simple finite sums and products.
In fact, such complex recurrence property does not offer much insight as to how to define
a natural generalization of convoluted sums and products into non-integer arguments in
the first place, needless to mention that the two defining properties of simple finite sums
no longer hold. However, it is perhaps one remarkable result of Summability Calculus
that convoluted sums and products are, in fact, as straightforward to analyze as simple
finite sums and products. This includes, for instance, performing infinitesimal calculus,
deducing asymptotic behavior, as well as direct evaluation for fractional values of n.

f(n) = f(n− 1) + g(n, n) +
n−1∑
k=a

(
g(k, n)− g(k, n− 1)

)
(3.1.1)

The simplicity in analyzing convoluted finite sums comes with the aid of the generic
differentiation rule, which is commonly referred to as the Chain Rule in the literature [23].

51
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However, we will call it here the generic differentiation rule because it readily provides
derivatives of any generic binary mathematical operator. Examples related to complex
binary operators such as those that involve fractional functional iteration are presented
in [3]. In addition, classical differentiation rules, such as the basic sum and product rules,
are easily derived from the generic differentiation rule.

Lemma 3.1.1. (The Generic Differentiation Rule) Given an arbitrary binary mathe-
matical operator �, then:

d

dx

(
h1(x) � h2(x)

)
=

d

dx

(
h1(x) � h2

)
+

d

dx

(
h1 � h2(x)

)
(3.1.2)

Here, h1(x) and h2(x) are treated as functions of the variable x during differentiation
while h1 and h2 are treated as constants during differentiation.

Proof. One direct proof using the definition of differentiation is given in [3]. Alternatively,
it follows by the well-known chain rule.

As stated in [3], the generic differentiation rule is a very insightful tool. It implies that
the derivative of a function f(x), in which the independent variable x appears more than
once, can be computed by partitioning all appearances of the independent variable into
two groups such that one group is assumed constant during differentiation in one time and
the other group is assumed constant during differentiation in a second time. The overall
derivative f ′(x) is, then, the sum of the two results.

In the context of convoluted sums, the generic differentiation rule, with aid of Summa-
bility Calculus on simple finite sums, makes the task of computing derivatives at an
arbitrary point n = n0 an elementary task. Here, given that f(n) =

∑n
k=a g(k, n), we

have two appearances of the independent variable n: (1) as an upper bound to the finite
sum, and (2) as an argument to the function g. Using the generic differentiation rule, we
can compute the derivative at an arbitrary point n = n0 as follows. First, we treat the
upper bound n as a constant n0 and differentiate accordingly, which yields

∑n
k=a

∂
∂ng(k, n).

Second, we treat the second argument of g as constant and differentiate accordingly using
Rule 1, which can be done using the earlier results of Chapter 2 because the sum is now
essentially reduced to a simple finite sum.

Let us illustrate how above procedure works on the convoluted finite sum f(n) =∑n
k=1

1
k+n . In this example, we will also show how the aforementioned method is indeed

consistent with the results of Summability Calculus for simple finite sums. Now, given
the definition of f(n), suppose we would like to find its derivative at n = 1. To do this,
we first fix the upper bound at n = 1, which gives us:

d

dn

1∑
k=1

1

k + n
=

d

dn

1

1 + n
= − 1

(1 + n)2

∣∣∣
n=1

= −1

4

Second, we fix the second appearance of n at n = 1, which yields the simple finite sum
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∑n
k=1

1
1+k . Clearly, the derivative in the latter case is given by:

d

dn

n∑
k=1

1

1 + k
=

∞∑
k=n+1

1

(k + 1)2

∣∣∣
n=1

= ζ2 −
5

4

Here, we used the rules of Summability Calculus for simple finite sums. So, by the generic
differentiation rule, we sum the two last results to deduce that:

d

dn

n∑
k=1

1

n+ k

∣∣∣
n=1

= ζ2 −
3

2

How do we know that this is indeed correct? Or to put it more accurately, why do
we know that this corresponds to the derivative of the unique most natural generalization
to the convoluted finite sum? To answer this question, we note in this example that we
have f(n) = H2n−Hn. Therefore, if we were indeed dealing with the unique most natural
generalization to such convoluted sum, then such generalization should be consistent with
the unique most natural generalization of the Harmonic numbers. To test this hypothesis,
we differentiate the expression f(n) = H2n −Hn at n = 1, which yields by the results of
Section 2.3:

d

dn
H2n −Hn

∣∣∣
n=1

= 2
(
ζ2 −

2n∑
k=1

1

k2

)
−
(
ζ2 −

n∑
k=1

1

k2

)∣∣∣
n=1

= ζ2 −
3

2

Thus, the two results agree as desired. We will now prove the general statements
related to convoluted finite sums.

Lemma 3.1.2. (The Differentiation Rule of Convoluted Sums) Let f(n) be a con-
voluted sum given by f(n) =

∑n
k=a g(k, n), and let its unique natural generalization to

non-integer arguments be denoted fG(n), then:

f ′G(n) =
n∑
k=a

∂

∂n
g(k, n) +

∞∑
r=0

Br
r!

∂r

∂mr
g(m,n)

∣∣∣
m=n

(3.1.3)

Proof. By direct application of the generic differentiation rule in Lemma 3.1.1 and Corol-
lary 2.5.1.

While it is true that Lemma 3.1.2 follows directly from the generic differentiation rule
and Corollary 2.5.1, how do we know that it corresponds to the derivative of the unique
most natural generalization of f(n)? The answer to this question rests on the earlier claims
for simple finite sums. In particular, the generic differentiation rule implies that f ′G(n) is
a sum of two terms: (1) the sum of the partial derivatives with respect to n, and (2) the
derivative rule for simple finite sums. Because the second term used the differentiation
rule for simple finite sums given in Theorem 2.5.1 that was shown earlier to correspond
to the unique most natural generalization, it follows, therefore, that Lemma 3.1.2 yields
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the derivative of the most natural generalization for convoluted sums as well. In other
words, we reduced the definition of natural generalization for convoluted sums into the
definition of natural generalization for simple finite sums using the generic differentiation
rule. Unfortunately, however, Lemma 3.1.2 does not permit us to deduce asymptotic
behavior of the convoluted sums . This can be deduced as shown in our next lemma.

Lemma 3.1.3. (The Euler-Maclaurin Summation Formula for Convoluted Sums)
Let f(n) be a convoluted finite sum given by f(n) =

∑n
k=a g(k, n), then the following

function fG(n) correctly interpolates the discrete values of f(n).

fG(n) =

∫ n

a
g(t, n) dt+

g(n, n) + g(a, n)

2

+

∞∑
r=1

Br+1

(r + 1)!

( ∂r

∂mr
g(m,n)

∣∣∣
m=n

− ∂r

∂mr
g(m,n)

∣∣∣
m=a

)
Proof. Suppose that f(n) was instead given by

∑n
k=a g(k, n0) for a fixed n0, then f(n)

is a simple finite sum and its generalization is given by the Euler-Maclaurin summation
formula, which holds for any value n0 including n0 = n. Plugging n0 = n into the Euler-
Maclaurin summation formula yields the desired result.

Of course, Lemma 3.1.3 can be used to deduce asymptotic behavior of convoluted
finite sums. However, this does not imply that Lemma 3.1.3 gives the anti-derivative
of the function f ′G(n) as dictated by Lemma 3.1.2. In other words, while Lemma 3.1.2
gives the derivative of the unique most natural generalization and Lemma 3.1.3 yields a
potential definition for such generalization, are we indeed dealing with the same function
in both cases? The answer is indeed in the affirmative as our next main theorem shows.

Theorem 3.1.1. Let f(n) be a convoluted sum given by f(n) =
∑n

k=a g(k, n), and let its
generalization to non-integer arguments be denoted fG(n), whose value is given by Lemma
3.1.3, then fG(n) is the unique most natural generalization to non-integer arguments of
f(n). More precisely, f ′G(n) is the one given by Lemma 3.1.2.

Proof. As discussed earlier, we have shown in the previous section that Summability
Calculus yields unique natural generalizations in the case of simple finite sums. Using
the generic differentiation rule and the earlier results of Summability Calculus on simple
finite sums, the derivative of the natural generalization of convoluted sums is unique and
it is given by Lemma 3.1.2. Here, we have used the term “natural generalization” for
convoluted sums because the generic differentiation rule allows us to reduce analysis of
convoluted sums to the case of simple finite sums, in which Summability Calculus yields
unique natural generalization.

Knowing that the derivative f ′G(n) is uniquely determined for the natural generaliza-
tion of convoluted sums and that fG(a) = g(a, a) by definition, we have that Lemma 3.1.2
implies a unique natural generalization for convoluted sums as well. Now, we need to show
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that such unique generalization is indeed the one given by Lemma 3.1.3. In other words,
we need to establish that the differentiation rule given by Lemma 3.1.2 implies necessarily
that the generalized definition of fG(n) is the one given by Lemma 3.1.3.

To show this, we first start from Lemma 3.1.2 and integrate both sides with respect
to n as follows:

fG(n) = g(a, a) +
∞∑
r=0

Br
r!

∫ n

a

∂

∂m
g(m, t)

∣∣∣
m=t

dt+

∫ n

a

t∑
k=a

∂

∂t
g(k, t) dt (3.1.4)

However,
∑t

k=a
∂
∂tg(k, t) can also be expressed using Eq 3.1.4 as follows:

t∑
k=a

∂

∂t
g(k, t) =

∂

∂η
g(a, η)

∣∣∣
η=a

+

∞∑
r=0

Br
r!

∫ t

a

∂2

∂m∂t2
g(m, t2)

∣∣∣
m=t2

dt2+

∫ t

a

t2∑
k=a

∂2

∂t22
g(k, t2) dt2 (3.1.5)

We now plug Eq 3.1.5 into Eq 3.1.4. Repeating the same process indefinitely and by
using Cauchy’s formula for repeated integration [63], we have:

fG(n) =

∞∑
r=0

(n− a)r

r!

∂r

∂ηr
g(a, η)

∣∣∣
η=a

+

∞∑
r=0

Br
r!

∂r

∂mr

∫ n

a

∞∑
b=0

(n− t)b

b!

∂b

∂tb
g(m, t)

∣∣∣
m=t

dt (3.1.6)

Now, we use Taylor’s theorem, which formally states that:

∞∑
r=0

(n− a)r

r!

∂r

∂ηr
g(a, η)

∣∣∣
η=a

= g(a, n) (3.1.7)

Here, the last identity holds because the summation is a formal series expansion around
η = a. Similarly, we have:

∞∑
b=0

(n− t)b

b!

∂b

∂tb
g(m, t) = g(m,n) (3.1.8)

Plugging both expressions in Eq 3.1.7 and Eq 3.1.8 into Eq 3.1.6 yields the Euler-
Maclaurin summation formula for convoluted sum in Lemma 3.1.3, which is the desired
result. Therefore, the differentiation rule in Lemma 3.1.2 implies necessarily that the
natural generalization fG(n) is the one given by Lemma 3.1.3, which completes the proof.

Theorem 3.1.1 along with the two lemmas provide us with a complete set of rules
for performing infinitesimal calculus on convoluted finite sums that operates implicitly
on the unique most natural generalization of those sums. Most importantly, we know
by Theorem 3.1.1 that whenever a convoluted finite sum can be expressed algebraicly
using simple finite sums, then we will still arrive at identical results by working with
either expression. This was illustrated earlier on the convoluted finite sum

∑n
k=a

1
k+n .

Here because the finite sum is convoluted, we can use results of this section to perform
infinitesimal calculus and deduce asymptotic behavior. However, since the convoluted
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finite sum can alternatively be expressed as H2n − Hn, where the latter expression only
involves simple finite sums, we could also use results of the previous section to perform
the same operations. Importantly, both approaches are always consistent with each other
yielding identical results. More examples are presented in the following section.

3.2 Examples to Convoluted Finite Sums

3.2.1 Example I: The Factorial Function Revisited

Let f(n) be a convoluted finite sum given by f(n) =
∑n

k=1 log (1− k−1
n ). Using Lemma

3.1.2, its derivative is given by:

f ′G(n) =
1

n

n∑
k=1

k − 1

n− k + 1
− log n−

∞∑
r=1

Br
r

(3.2.1)

Of course, the infinite sum
∑∞

r=1
Br
r diverges but it is formally defined by Euler’s constant

λ as discussed earlier in Figure 2.3. Thus, we have:

f ′G(n) =
1

n

n∑
k=1

k − 1

n− k + 1
− log n− λ = Hn − log n− (1 + λ) (3.2.2)

Eq 3.2.2 gives a closed-form expression of the derivative of the convoluted sum. We
now note, by definition, that f(n) = log n! − n log n. By differentiating both sides of the
latter expression we arrive at the same result, which illustrates how the differentiation rule
in Lemma 3.1.2 indeed yields the derivative of the unique most natural generalization to
convoluted sums, and that it is always consistent with results of Summability Calculus on
simple finite sums.

Now, we use Theorem 3.1.1 to deduce that

fG(n) = −n+ 1 +
log n

2
−
∞∑
r=2

Br
r(r − 1)

(
1− 1

nr−1

)
(3.2.3)

Taking the derivative of both sides in Eq 3.2.3 with respect to n and equating it with Eq
3.2.2 yields:

Hn − log n− λ =
1

2n
−
∞∑
r=2

Br
r

1

nr
(3.2.4)

Of course, last expression could be derived alternatively by direct application of the original
Euler-Maclaurin summation formula.

3.2.2 Example II: Convoluted Zeta Function

In this section, we present another example on how to use the rules of Summability
Calculus for simple finite sums in performing infinitesimal calculus for convoluted sums.
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Our example is the function
∑n

k=1
1
kn and our objective is to find an analytic expression

of its derivative for all n > 0. Using the generic differentiation rule, we first assume
that the upper bound n is fixed at n = n0 and differentiate accordingly. This yields
d
dn

∑n0
k=1

1
kn = −

∑n0
k=1

log k
kn . Second, we assume that the second appearance of n is fixed

at n = n0 and differentiate. However, for n0 > 0, this is the derivative of a semi-linear finite
sum given by Theorem 2.3.1, and it is given by d

dn

∑n
k=1

1
kn0 = n0

(
ζn0+1 −

∑n
k=1

1
kn0+1

)
.

Therefore, by the generic differentiation rule, the overall derivative f ′G(n) is given by:

d

dn

n∑
k=1

1

kn
= −

n∑
k=1

log k

kn
+ n

(
ζn+1 −

n∑
k=1

1

kn+1

)
(3.2.5)

3.2.3 Example III: Numerical Integration

The classical approach for approximating definite integrals uses Riemann sums. In this
example, we show how Theorem 3.1.1 yields higher-order approximations, which, in turn,
is used to deduce one of the well-known recursive definitions of Bernoulli numbers. First,
we start with the following equation that follows by direct application of Lemma 3.1.3:

m

n

n∑
k=0

f(x0 +
m

n
k) =

∫ x0+m

x0

f(t) dt+
m

n

(f(x0) + f(x0 +m)

2

)
+

∞∑
r=2

Br
r!

(
m

n
)r
(
f (r−1)(x0 +m)− f (r−1)(x0)

)
Now, we let n = x−x0

∆x and let m = x − x0, and after plugging these two expressions
into last equation and rearranging the terms, we arrive at:∫ x

x0

f(t) dt =

x−x0
∆x∑
k=0

f(x0+k∆x)− f(x0) + f(x)

2
∆x−

∞∑
r=2

Br
r!

(
f (r−1)(x)−f (r−1)(x0)

)
(∆x)r (3.2.6)

Clearly, the first term in the right-hand side is the classical approximation of definite
integrals but adding additional terms yields higher-order approximations. In particular,
if we let ∆x = x− x0, we, then, have:∫ x

x0

f(t) dt =
f(x0) + f(x)

2
(x−x0)−

∞∑
r=2

Br
r!

(
f (r−1)(x)− f (r−1)(x0)

)
(x−x0)r (3.2.7)

Using last equation, we can equate coefficients of the Taylor series expansion in both
sides, which yields a property of Bernoulli numbers given by:

1

s+ 1
=

1

2
−

s∑
r=2

(
s

r

)
Br

s− r + 1
(3.2.8)

Eq 3.2.8 can, in turn, be rearranged to yield the following well-known recursive definition
of Bernoulli numbers:

Bm = 1−
m−1∑
r=0

(
m

r

)
Br

m− r + 1
(3.2.9)
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3.2.4 Exmaple IV: Alternating Euler-Maclaurin Sum

In Corollary 2.5.1, we stated that if f(n) =
∑n

k=a g(k), then one way of computing f ′G(a−1)
is given by:

f ′G(a− 1) =
∞∑
r=0

Br
r!
g(r)(a− 1) (3.2.10)

However, it is often the case that g(a − 1) is not defined, for which Eq 3.2.10 becomes
meaningless, and this can happen even if f ′G(a − 1) is itself well-defined. Of course, we
showed earlier that it is easier to compute f ′G(a−1) using Theorem 2.5.1 but an alternative
method is also possible, which was previously stated in Eq 2.5.14. In this example, we
provide a simple proof to Eq 2.5.14 using Summability Calculus on convoluted sums. First,
we note that

∑n
k=a g(k) =

∑n
k=a g(n− k + a) by the shifting property of Corollary 2.5.3.

That is, we can always convert a simple finite sum into a convoluted finite sum. Then, we
can use the differentiation rule of convoluted sums given in Lemma 3.1.2, which yields:

f ′G(n) =

n∑
k=a

g′(n−k+a)+

∞∑
r=0

(−1)r
Br
r!
g(r)(a) =

n∑
k=a

g′(k)+

∞∑
r=0

(−1)r
Br
r!
g(r)(a) (3.2.11)

However, upon using Rule 1 of the foundational rules in Table 2.1, Eq 3.2.11 implies that:

f ′G(a− 1) =
∞∑
r=0

(−1)r
Br
r!
g(r)(a) (3.2.12)

Thus, even for cases in which g(a− 1) is not defined, we can use an alternating Euler-
Maclaurin sum to compute the derivative f ′G(a − 1), which is the exact statement of Eq
2.5.14. To be more precise, we say that if g(r)(a − 1) is defined for all r ≥ 0, then both
sides of Eq 2.5.14 are formally equivalent.

3.2.5 Exmaple V: An identity of Ramanujan

In one of his earliest works, Ramanujan was interested in simple finite sums of the form
φ(x, n) =

∑n
k=1

1
(xk)3−xk . There, Ramanujan showed that many convoluted sums can

be converted to simple finite sums using φ(x, n) [7]. For example, he showed that the
convoluted finite sum

∑n
k=1

1
k+n that was discussed earlier can also be expressed as:

n∑
k=1

1

k + n
=

n

2n+ 1
+

n∑
k−1

1

8k3 − 2k
(3.2.13)

With aid of Summability Calculus on convoluted finite sums, we can use Eq 3.2.13 as
a starting point to derive many interesting identities. For instance, if we differentiate both
sides with respect to n, we obtain:

n∑
k=1

1

k2
− 2

2n∑
k=1

1

k2
+ ζ2 −

n+ 1

(2n+ 1)2
=

∞∑
n+1

24k2 − 2

(8k3 − 2k)2
(3.2.14)
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Selecting n = 0, then we have, by the empty sum rule, the following fast-converging series
for ζ2:

ζ2 = 1 +
∞∑
1

24k2 − 2

(8k3 − 2k)2
(3.2.15)

On the other hand, if we integrate both sides of Eq 3.2.13 and rearrange the terms, we
arrive at:

n∑
k=1

log (1− 1

4k2
) = 2 log (2n)!− 4 log n! + log (2n+ 1)− n log 8 (3.2.16)

Taking the limit as n→∞ yields by Stirling’s approximation:

∞∑
k=1

log (1− 1

4k2
) = − log

π

2
(3.2.17)

Thus, we arrive at a restatement of Wallis formula [50]:

∞∏
k=1

(1− 1

4k2
) =

2

π
(3.2.18)

3.2.6 Exmaple VI: Limiting Behavior

In this example, we look into using the Euler-Maclaurin summation formula for convoluted
sums to deduce limiting behavior. Our example will be the function f(n) =

∑n
k=0( kn)n.

As shown in [51], we have:

lim
n→∞

f(n) =
e

e− 1
(3.2.19)

To prove this, we note by Lemma 3.1.3 that:

f(n) =
nn+1

n+ 1
+ nn

n∑
r=0

Br+1

(r + 1)!
χn(r), where χn(r) =

r∏
k=1

(
1− k − 1

n

)
(3.2.20)

Importantly, we know that the above expression is exact. Because
∑n

r=0
Br
r! = e

e−1 , and

χn(r) = 1 + O( 1
n), we deduce that Eq 3.2.19 indeed holds. In the following chapter, the

function χn(r) will come up again, in which we show that it defines a simple, yet powerful,
summability method for Taylor series expansions.

3.3 Summary of Results

In this chapter, the earlier results of Summability Calculus on simple finite sums have
been extended to address the general case of convoluted sums. Such generalization became
possible with aid of the generic differentiation that yields unique derivatives of convoluted
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sums and products. Because the resulting differentiation rule for convoluted sums uses
Summability Calculus on simple finite sums, which was argued earlier to operate on
unique most natural generalizations, we deduce uniqueness of natural generalization for
convoluted sums and products as well.

Aside from dealing with derivatives, one potential closed-form expression of the nat-
ural generalization itself can be deduced immediately using Euler-Maclaurin summation
formula. However, as it turns out, such closed-form solution is indeed more than a mere
potential solution. It is shown that the differentiation rule for convoluted sums, which
yields the derivative of the unique most natural generalization, is, in fact, the derivative of
the Euler-Maclaurin summation formula for convoluted sums, thus bridging the two main
results and proving that the Euler-Maclaurin summation formula for convoluted sums is
indeed the unique most natural generalization of convoluted sums.



Chapter 4

Analytic Summability Theory

Errors like straws, upon the
surface flow.
He who would search for pearls,
must dive below. . .

John Dryden (1631 – 1700)

Infinitesimal calculus is built on the assumption that infinitesimally small errors are
simply zero. Euler, for example, is often quoted saying: “To those who ask what the
infinitely small quantity in mathematics is, we answer that it is actually zero.” Such view
appears everywhere in Calculus including in fundamental definitions such as derivatives
and integrals. For example, the Cauchy definition of a function derivative is given by
f ′(x) = limh→ 0

(
f(x + h) − f(x)

)
/h, which implicitly assumes that the error term O(h)

is zero because it is infinitesimal at the limit h→ 0.

Clearly, equating infinitesimal quantities with zero is valid if the number of such errors
remains finite. However, it turns out that many important results in Calculus are actually
derived by repeated application of a specific process infinitely many times. For example,
the Taylor series expansion and the Euler-Maclaurin summation formula are typically
derived by repeated application of integration by parts (see for instance [43, 5, 53]). In
such cases, if integration by parts induces an infinitesimally small error, then a repeated
application of such process infinitely many times can lead to incorrect results. We are all
very well familiar with such phenomenon. In fact, it is one reason why algebraic derivation
of Taylor series expansion using real analysis fails to warn against series divergence!

Where exactly would infinitesimal calculus fail? To see why calculus sometimes fails
because it hides infinitesimal errors, suppose hypothetically that we have an identity,
which looks like the following:

lim
n→∞

n∑
k=0

g(k∆x) ∆x = Fg + lim
n→∞

n∑
k=1

h(k∆x) g(k∆x) ∆x (4.0.1)

Here, if ∆x = x
n , then both sums are the classical Riemann sums that approximate

integrals. Now, suppose that Fg is some functional of g, and h is independent of g.

61
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Then, knowing that Riemann sums converge to integrals at the limit n → ∞, one can
immediately write:∫ x

0
g(t) dt = Fg +

∫ x

0
h(t) g(t) dt (4.0.2)

Starting with the last equation, we can apply it repeatedly infinitely many times, which
would yield:∫ x

0
g(t) dt = Fg + Fg·h + Fg·h2 + Fg·h3 + · · · =

∞∑
k=0

Fg·hk (4.0.3)

We arrive at a pitfall! The right-hand side might diverge even though the left-hand
side is well defined. However, if we look deeper into Eq 4.0.1, we note that moving from Eq
4.0.1 to Eq 4.0.2 induces an infinitesimal error because the summation in the right-hand
side of Eq 4.0.1 actually starts with k = 1, not k = 0. In other words, the lower bound of
the summation is always incremented each time the process is applied. Thus, if, on the
other hand, one were to repeatedly apply Eq 4.0.1, the process will always terminate even
for arbitrary large n. In infinitesimal calculus, the error is infinitesimal, hence treated
as if it were exactly zero, and the process is repeated indefinitely leading eventually to
incorrect results! We will show that divergence of Taylor series expansion as well as the
Euler-Maclaurin summation formula both follow from a very similar process. In fact, the
statement of Corollary 2.5.5 already reveals such phenomenon for the Euler-Maclaurin
summation formula.

If infinitesimal errors can cause incorrect results, is there a way to correct them?
Luckily, the answer is yes and this can often be done using any of the analytic summability
methods such as Abel summation method, Euler summation method, Cesaro means, the
Mittag-Leffler summability method, and Lindelöf summation method. In fact, we will also
introduce a new summability method, denoted Ξ, that is particularly suited for oscillating
sums. Most importantly, we will assume a formal general method of summation, denoted
T, that generalizes the definition of infinite sums and is not tied to any particular method
of computation, and show how many popular summability methods fall within T.

As will be shown repeatedly in the sequel, the formal method of summation T is
not merely an artificial construct. Using this generalized definition of infinite sums, we
will derive the analog of the Euler-Maclaurin summation formula for oscillating sums
in Chapter 5, as promised earlier, which will allow us to perform many remarkable deeds
with ease. In the final section, where we extend Summability Calculus to arbitrary discrete
functions, this generalized definition of sums will be used to prove a stronger statement
than the Shannon-Nyquist Sampling Theorem, and answers an important question in the
calculus of finite differences. Indeed, it will be shown how summability of divergent series
is a fundamental concept in Summability Calculus.

4.1 The T Definition of Infinite Sums

In this section, we present the generalized definition of infinite sums T. We will establish
conditions for which popular summability methods can be used to compute the T value of
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divergent series, but it is important to keep in mind that the definition T is not restricted
to any particular method of computation.

Definition 4. (The T Definition of Sums) Given an infinite sum
∑∞

k=0 ak, define:

h(z) =

∞∑
k=0

ak z
k (4.1.1)

If h(z) is analytic in the domain z ∈ [0, 1], then the T value of the sum
∑∞

k=0 ak is defined
by h(1).

Note that the formal method of summation T not only requires that the function
h(z) be analytic at z = 0 and z = 1, but it also requires that the function be analytic
throughout the line segment [0, 1]. In other words, we require that the function h(z) be
regular at the origin and that the point z = 1 falls within the Mittag-Leffler star of the
function h(z)1. Therefore, the T value of infinite sums can be immediately computed using
rigidity of analytic functions. That is, it can be computed by evaluating higher derivatives
f (r)(zj) at a finite sequence of values {z0, z1, . . . , zn−1, zn} such that zj falls within the
radius of convergence of the Taylor series expansion at zj−1, and z0 = 0 and zn = 1. In
addition, we have the following alternative method of computing the T value of infinite
sums.

Lemma 4.1.1. If an infinite sum
∑∞

k=0 ak has a value in T given by V ∈ C, then V can be
computed using either the Mittag-Leffler summability method or the Lindelöf summation
method.

Proof. Because the two methods correctly sum any Taylor series expansion in the Mittag-
Leffler star [21].

Note that Lemma 4.1.1 implies that T is consistent with but weaker than both the
Mittag-Leffler summability method and the Lindelöf summation method. However, it
is important to decouple the generalized definition of infinite sums T from the method
of computation because we are not really concerned about any peculiar properties of
summability methods. Now, we have the following immediate results.

Lemma 4.1.2. The T definition of infinite sums is regular, linear, and stable. Moreover, if
two infinite sums

∑∞
k=0 ak and

∑∞
k=0 bk are both defined in T by values V1, V2 ∈ C, then

the T value of their Cauchy product is given by the V1 × V2.

Proof. Follows immediately by Definition 4.

1The Mittag-Leffler star of a function f(x) is the set of all points z ∈ C such that the line segment [0,
z] does not pass through a singularity point of f(x) [21]
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The motivation behind the use of T as a generalized definition of infinite sums is
threefold. First, it is inline with Euler’s original reasoning that a mathematical expression
should assume the value of the algebraic process that led to it, which is the point of view
discussed earlier in Chapter 1. In principle, we opt to select a natural assignment of
divergent series by using T as a definition.

Second, we know by uniqueness of Taylor series expansion of analytic functions that T
is well-defined. In fact, if there exists two different functions f1(x) and f2(x) such that the
Taylor series expansion of both functions produces the exact same series at two different

points x1 and x2 respectively, i.e. ak =
f
(k)
1 (0)
k! xk1 =

f
(k)
2 (0)
k! xk2, then we can always make the

transformation h!(z) = f1(x1 z) and h2(z) = f2(x2 z). Doing this yields h1(1) = f1(x1)
and h2(1) = f2(x2). However, the Taylor series expansion of both h1(z) and h2(z) are
identical so the two functions must, in turn, be identical. In particular, we must have
h1(1) = h2(1) and consequently f1(x1) = f2(x2). Therefore, the T definition is indeed
consistent.

However, in order to guarantee consistency, the conditions of T must be valid. For

example, the Taylor series expansion of the function e−
1
x2 is the zero function, which might

suggest that the sum (0 + 0 + 0 + . . .) can be assigned the value e−1! However, because
the function is not analytic at the origin, this assignment is invalid. Similarly, ambiguity
can arise if a discontinuity exists in the line segment [0, 1]. For example, the infinite sum

1 + 22

2 + 23

3 + . . . arises out of the series expansion of log(1 +x) at x = −2. However, both
iπ and −iπ are equally valid substitutes for log (−1) and there is no reason to prefer one
over the other. Here, we know that the conditions of T are not satisfied so the infinite sum
is simply undefined in T. These phenomena never occur if the conditions of Definition 4
are satisfied.

Third, because the T definition of infinite sums is regular, linear, and stable, then
arithmetic operations remain consistent even if such operations ultimately lead to con-
vergent sums. It might seem implausible at first, but it is even occasionally easier to
compute convergent sums by expressing them using divergent sums, where the latter
are defined under T! For example, we will derive an exact value of the convergent sum∑∞

k=1(−1)k(Hk+λ−log k) in Chapter 5, by deriving analytic values of each of the divergent
sums

∑∞
k=1(−1)kHk,

∑∞
k=1(−1)kλ, and

∑∞
k=1(−1)k log k.

The generalized definition of sums yields an immediate generalized definition of limits
that is interpreted for the space of sequences S = (s0, s1, s2, . . .). Here, whereas T is
a generalized definition that assigns values to series, we can reformulate it such that it
is interpreted as a method of assigning limits to infinite sequences. Clearly, both are
essentially equivalent since assigning a value to an infinite sum

∑∞
k=0 ak can be thought

of as assigning a limit to the infinite sequence (
∑0

k=0 ak,
∑1

k=0 ak,
∑2

k=0 ak, . . .).

Definition 5. (The T Sequence Limit) Given an infinite sequence S = (s0, s1, s2, . . .),
then the T sequence limit is defined by the T-value of the infinite sum s0 +

∑∞
k=0 ∆sk.

The T definition of sequence limits appears at first to be trivial but it does indeed have
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interesting consequences. To be more specific, if a finite sum
∑n

k=a g(k) can be expressed
in closed-form fG(n), then the T value of the infinite sum

∑∞
k=a g(k) can be deduced

systematically by taking the T limit of fG(n) as n→∞. The most important special case
of T sequence limits is stated in the following lemma.

Lemma 4.1.3. If the value of an infinite sum
∑∞

k=0 ak exists in T, then the T sequence
limit of {an} must be zero.

Proof. By stability of the T definition of sums, we have:

∞∑
k=0

ak = a0 +
∞∑
k=1

ak (4.1.2)

Because the generalized definition T is linear, we have:

a0 +
∞∑
k=1

ak −
∞∑
k=0

ak = 0 ⇒ a0 +
∞∑
k=0

∆ak = 0 (4.1.3)

However, last equation is exactly the T definition of sequence limits so the statement of
the lemma follows.

Lemma 4.1.3 presents an interesting generalization to the case of the ordinary con-
vergent sums. It will be shown repeatedly throughout the sequel that results are always
consistent with such generalized definition of limits. For example, if we look into the
Grandi series

∑∞
k=0(−1)k, we note that

∑n
k=0(−1)k = 1

2 + (−1)n 1
2 . However, because

the T-value of
∑∞

k=0(−1)k is 1
2 , since it arises out of the Taylor series expansion of the

function f(x) = (1 + x)−1 at x = 1, then the Ξ sequence limit of (−1)n must be zero by
Lemma 4.1.3. Thus:

lim
n→∞

n∑
k=0

(−1)k =
1

2
+

1

2
lim
n→∞

(−1)n =
1

2
(4.1.4)

Of course, having a generalized definition of infinite sums and limits is crucial, but
coming up with a method of computing such generalized values is also equally important.
Luckily, there exists many methods of computing the generalized T value of infinite sums,
two of which were already listed in Lemma 4.1.1. In addition, the T value of infinite sums
can often be deduced by algebraic construction. For example, if we return to the Grandi
series discussed earlier, we know by stability and linearity that:

∞∑
k=0

(−1)k = 1−
∞∑
k=0

(−1)k ⇒
∞∑
k=0

(−1)k =
1

2
(4.1.5)

Also, performing the Cauchy product of the Grandi series, we have the well-known result:

∞∑
k=0

(−1)k ×
∞∑
k=0

(−1)k =
∞∑
k=1

(−1)k+1k =
1

2
× 1

2
=

1

4
(4.1.6)
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Eq 4.1.6 could equivalently be deduced using the series expansion of (1 +x)−2 and setting
x = 1 in its Taylor series because the function (1 + x)−2 is analytic over the line segment
[0, 1]. Even more, we could have performed the algebraic manipulations in Eq 4.1.7 to
deduce the same value. It is important to note that all of these different approaches yield
consistent results as expected.

∞∑
k=0

(−1)k −
∞∑
k=1

(−1)k+1k =
∞∑
k=1

(−1)k+1k (4.1.7)

However, caution should always be exercised when using algebraic derivation. For
instance, one can easily show by stability and linearity that

∑∞
r=0 r

k = 1
1−r . However,

this latter expression is invalid if r ∈ [1,∞), because the ray [1,∞) is not in the Mittag-
Leffler star of the function 1

1−r .

In the following lemma, we show that if an infinite sum is summable to some value
V ∈ C using Abel summability method or any of the Nörlund means, including Cesaro
summation methods, then the T value of the infinite sum is indeed V .

Lemma 4.1.4. The T definition of infinite sums is consistent with, but more powerful than,
Abel summation and all Nörlund means including Cesaro summation methods2.

Proof. Suppose we have an infinite sum
∑∞

k=0 ak, define h(z) =
∑∞

k=0 akz
k. If limz→1− h(z)

exists, then h(z) is analytic in the domain [0, 1). By Abel’s theorem on power series, we
have limz→1− h(z) = h(1), if h(z) is analytic at z = 1. However, assigning a value to the
infinite sum

∑∞
k=0 ak using such limiting expression is the definition of Abel summability

method. If such limit exists, i.e. if a series is Abel summable, then its value coincides with
the T definition of the infinite sum

∑∞
k=0 ak.

Finally, because Abel summation is consistent with and more powerful than all Nörlund
means [21], the statement of the lemma follows for all Nörlund means as well including
Cesaro summability method.

Lemma 4.1.4 shows that many methods can be used to compute the T value of infinite
sums. For example, one of the simplest of all Nörlund means is to look into the average
of q consecutive partial sums and see if such q-average converges. For example, if q = 1,
then we have ordinary summation. If, on the other hand, q = 2, we look into the average
of each consecutive two partial sums, a summability method that was proposed by Hutton
in 1812 [21]. Applying this to the Grandi series yields the answer

∑∞
k=0(−1)k = 1

2 , as
expected. Moreover, the case of q = ∞, when properly interpreted, leads to Cesaro
summation method. Most importantly, Lemma 4.1.4 states that if any of those methods
yields a value V ∈ C, then V is the T value of the infinite sum.

2The Nörlund means is a method of assigning limits to infinite sequences. Here, suppose pj is a sequence
of positive terms that satisfies pn∑n

k=0
pk
→ 0. Then, the Nörlund mean of a sequence (s0, s1, . . .) is given

by limn→∞
pns0+pn−1s1+···+p0sn∑n

k=0
pk

. The limit of an infinite sequence (s0, s1, . . .) is defined by its Nörlund

mean. Therefore, the Nörlund mean interprets the limit limn→∞ sn using an averaging method.
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In addition to evaluating sums, we can often conclude that a series is not defined under
T as the following lemma shows.

Lemma 4.1.5. If a divergent sum
∑∞

k=0 ak, where ak ∈ R, is defined in T by a value
V ∈ C, then the sum must be oscillating. In other words, the T definition of infinite sums
is totally regular3.

Proof. By Lemma 4.1.1, if
∑∞

k=0 ak is defined under T to some value V ∈ C, then it must
be summable using Lindelöf summability method to the same value V. However, Lindelöf
summability method assigns to an infinite sum the value limδ→0

∑∞
k=0 k

−δkak. Because
limδ→0 k

−δk = 1 and 0 < k−δk ≤ 1, Lindelöf summability method cannot sum a divergent
series that solely consists of non-negative terms so the statement of the lemma follows.

Lemma 4.1.5 does not necessarily limit applicability of the generalized definition T.
For example, whereas ζ(s) is not directly defined under T for s < 1, it can be defined using
Eq 4.1.8, which is known to hold in the half-plane R(s) < −1. Therefore, the definition
in Eq 4.1.8 is valid by analytic continuation.

∞∑
k=1

ks =
1

1− 21+s

∞∑
k=1

(−1)k+1ks (by definition) (4.1.8)

Now, the right-hand side is well-defined under T. In fact, we can immediately derive
a closed-form expression for it. First, define Ns(x) as:

Ns(x) =
∞∑
k=1

(−1)k ks xk (4.1.9)

Then, Ns(x) satisfies the following recurrence relationship:

Ns(x) = xN ′s−1(x) (4.1.10)

Differentiating both sides of Eq 4.1.10 with respect to x yields:

N ′s(x) = N ′s−1(x) + xN
(2)
s−1(x) (4.1.11)

Therefore, upon repeated application of Eq 4.1.10 and Eq 4.1.11, we have:

Ns(x) =

s∑
k=0

S(s, k)xkN
(k)
0 (x) (4.1.12)

Here, S(s, k) are Stirling Numbers of the Second Kind. A simple proof for Eq 4.1.12
follows by induction upon using the characteristic property of Stirling Numbers of the
Second Kind given by S(n+ 1, k) = k S(n, k) + S(n, k− 1). Now, knowing that the series

3Consult the classic book ”Divergent Series” by Hardy [21] for a definition of this term.
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expansion of N0(x) is given by Eq 4.1.13, and upon using Definition 4, we arrive at Eq
4.1.14.

N0(x) = − x

1 + x
= −1

2
− x− 1

4
+

(x− 1)2

8
− (x− 1)3

16
+ · · · (4.1.13)

Ns(1) =

∞∑
k=1

(−1)kks =

s∑
k=0

(−1)k S(s, k)
k!

2k+1
(4.1.14)

Note here that we have appealed to the original statement of T to define such divergent
sums. Therefore, we have:

∞∑
k=1

ks = − 1

1− 21+s

s∑
k=0

(−1)k+1 S(s, k)
k!

2k+1
(4.1.15)

Using the identity B1+s = −(1 + s)ζ(−s), where Bk is the kth Bernoulli number, we have
the following closed-form expression for Bernoulli numbers:

Bs =
s

1− 2s

s−1∑
k=0

1

2k+1

k∑
j=0

(−1)j
(
k

j

)
js−1 (4.1.16)

Now, we show that Euler summation method almost always agrees with the T definition
of infinite sums.

Lemma 4.1.6. (The Euler Sum) Given an infinite sum
∑∞

k=a(−1)k g(k), define the Euler

sum by (−1)a
∑∞

k=a
(−1)k

2k+1 ∆kg(k).
Then, the Euler sum is equivalent to the T definition of infinite sums if the following three
conditions hold:

1. The sum exists in T.

2. The infinite sum is Euler summable

3. The T value of the infinite sum
∑∞

k=a(−1)k∆mg(k) is o(2m)

Proof. If the infinite sum
∑∞

k=a g(k) exists in T, then it must satisfy the linearity and
stability properties. Thus, we always have:

∞∑
k=a

(−1)k g(k) =
∞∑
k=a

(−1)k g(k + 1)−
∞∑
k=a

(−1)k∆g(k) (4.1.17)

Because the T definition is stable, we have:

∞∑
k=a

(−1)k g(k) = (−1)ag(a)−
∞∑
k=a

(−1)k g(k)−
∞∑
k=a

(−1)k∆g(k) (4.1.18)
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Rearranging the terms yields:

∞∑
k=a

(−1)k g(k) =
(−1)ag(a)

2
− 1

2

∞∑
k=a

(−1)k∆g(k) (4.1.19)

Here, both divergent sums are interpreted using the definition T. By repeated application
of Eq 4.1.19, we have:

∞∑
k=a

(−1)k g(k) = (−1)a
m∑
p=0

(−1)p

2p+1
∆pg +

(−1)m+1

2m+1

∞∑
k=a

(−1)k∆m+1g(k) (4.1.20)

Last equation gives the error term of using Euler summability method, which is given

by (−1)m+1

2m+1

∑∞
k=a(−1)k∆m+1g(k). Therefore, if the error term goes to zero, i.e. the 3rd

condition in the lemma is satisfied, and the sum (−1)a
∑∞

p=0
(−1)p

2p+1 ∆pg is convergent, i.e.

the 2nd condition is satisfied, then the statement of the lemma follows.

Lemma 4.1.6 states that Euler summation method can indeed be often used to compute
divergent sums instead of applying the definition T directly. For instance, if we return to
the Riemann zeta function, then the conditions of Lemma 4.1.6 hold so we always have:

∞∑
k=1

(−1)k+1 ks =

∞∑
k=0

1

2k+1

k∑
j=0

(−1)j
(
k

j

)
(j + 1)s (4.1.21)

Using Eq 4.1.21, we deduce a globally valid expression for the Riemann zeta function
given in Eq 4.1.22. The expression in Eq 4.1.22 was proved by Helmut Hasse in 1930 and
rediscovered by Sondow in [49, 47]. We will provide an alternative globally convergent
expression for the Riemann zeta function later in Chapter 7.

ζ(s) =
1

1− 21−s

∞∑
k=0

1

2k+1

k∑
j=0

(−1)j
(
k

j

)
1

(j + 1)s
(4.1.22)

Consequently, we indeed have a rich collection of methods to compute the T value of
infinite sums. Unfortunately, most of these methods have serious limitations. For instance,
all Nörlund means are weak, i.e. are limited in their ability to sum divergent series,
and Abel summability method alone outperforms them all. However, Abel summability
method itself is usually insufficient. For instance, it cannot sum any oscillating series that
grows exponentially large such as the Taylor series expansion of the logarithmic function
and the sum of Bernoulli numbers. On the other hand, the Mittag-Leffler summability
method and Lindelöf summation method are both powerful but they are computationally
demanding. They are often extremely slow in convergence and require high-precision
arithmetic.

To circumvent such limitations, we will introduce a new summability methods Ξ that
is especially suited to oscillating sums in the following section. The method Ξ is easy to
implement in practice and can converge reasonably fast. In addition, it is also powerful
and can sum a large number of divergent series. In fact, all of the examples presented in
the sequel are Ξ summable.
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4.2 The Summability Method Ξ

In this section, we present a new summability method Ξ for Taylor series expansions that
is consistent with the T definition of infinite sums. The method Ξ is simple to implement
in practice. The error term in the approximation method given by Ξ is O( 1

n); thus it is
unfortunately slowly converging. Nevertheless, we will present in Chapter 5 a method of
accelerating convergence to an arbitrary speed. We start with an argument by construction
as to why Ξ is a natural method of summing divergent series.

4.2.1 A Statement of Summability

Claim 4.2.1. Given a point x0 and a function f(x) that is n-times differentiable throughout
the interval [x0, x), then the function f̂n(x) defined by Eq 4.2.1 is a valid approximation
to the function f(x). In addition, the approximation error typically improves as n→∞.

f̂n(x) =

n∑
j=0

χn(j)
f (j)(x0)

j!
(x−x0)j , where χn(j) =

n!

nj(n− j)!
=

j∏
k=1

(
1−k − 1

n

)
(4.2.1)

Proof. Before we present an argument for Claim 4.2.1, three points are worth mentioning.
First, Claim 4.2.1 states that the error term in the summability method will typically
vanish for most functions as n→∞, which is clearly an improvement over classical Taylor
series approximation. However, this implies that the approximation in Eq 4.2.1 may or
may not converge to the function f(x) but it does typically converge as will be shown in
the proof. Later in Claim 4.2.2, we will look into the topic of convergence. We will also
deduce a simple asymptotic expression for the error term later in Theorem 4.2.1

Second, if the Taylor series converges, then n can be taken to be literally infinite, in
which case we arrive at the famous Taylor series expansion for analytic functions. This
follows in the latter case because convergence becomes essentially independent of n, as
long as n is sufficiently large.

Third, because χn(j) → 1 as n → ∞ for fixed j, the first terms of the polynomial
expansion given in Eq 4.2.1 approach terms of the classical Taylor series expansion as n
increases. Such phenomenon is desirable because it implies regularity4 of the summability
method but it raises two important observations. First, the partial sum of the polynomial
expansion given in Claim 4.2.1 may increase beyond numerical accuracy if x lies outside
the radius of convergence of the Taylor series before the sum converges back again as will
be depicted later. Hence, while validity of the new approximation method is established
from a mathematical point of view, i.e. in an ideal Platonic sense, the method itself
may not be immediately useful in implementing numerical computation in some cases due
solely to numerical precision limitations. Also, if the original function f(x) was itself a
polynomial with degree n, it is true that the nth degree polynomial expansion given in
Claim 4.2.1 of f(x) is not equal to f(x), a fact that seems at first sight to be paradoxical,
but because as χn(j) → 1 as n → ∞, the polynomial expansion does indeed converge to
f(x) as n increases, which is the original assertion of Claim 4.2.1.

4As stated earlier, a summability method Ξ is called regular if it is consistent with ordinary convergent
sums.
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The argument for Claim 4.2.1 rests on its derivation by construction. As a starting
point, suppose we have a function f(x) that is n-time differentiable at a particular point x0

and let ∆x be a chosen step size such that we wish to approximate the value of the function
f(x0 +n∆x) for an arbitrary value of n using solely local information about the behavior

of the function f(x) at x0. Using the notation fj = f(x0+j∆x) and f
(k)
j = f (k)(x0+j∆x),

we know immediately from the very basic definition of differentiation that the following
recurrence holds:

f
(k)
j ≈ f (k)

j−1 + f
(k+1)
j−1 ∆x (4.2.2)

Furthermore, we know that the approximation error strictly improves as we decrease the
step size ∆x. Thus, we obtain the following approximations that can be held with arbitrary
accuracy for sufficiently small step size ∆x:

f1 = f0 + f
(1)
0 ∆x (4.2.3)

f3 = f1 + f
(1)
1 ∆x = f0 + 2f

(1)
0 ∆x+ f

(2)
0 ∆x2 (4.2.4)

In Eq 4.2.4, we have substituted Eq 4.2.3 and approximated the derivative f
(1)
1 using the

recurrence in Eq 4.2.2. In general, we can show by induction that the following general
formula holds:

fj =

j∑
k=0

(
j

k

)
f

(k)
0 ∆xk (4.2.5)

To prove that Eq 4.2.5 holds, we first note that a base case is established for j = 1 in
Eq 4.2.3. Suppose that it holds for j < m, we will show that such inductive hypothesis
implies that Eq 4.2.5 also holds for j = m. First, we note that if Eq 4.2.5 holds for j < m,
then we have:

fm = fm−1 + f
(1)
m−1∆x =

m−1∑
k=0

(
m− 1

k

)
f

(k)
0 ∆xk +

m−1∑
k=0

(
m− 1

k

)
f

(k+1)
0 ∆xk+1 (4.2.6)

In Eq 4.2.6, the second substitution for f
(1)
m−1 follows from the same inductive hypoth-

esis because f
(1)
m−1 is simply another function that can be approximated using the same

inductive hypothesis. Eq 4.2.6 can, in turn, be rewritten as:

fm =
m−1∑
k=0

[(m− 1

k

)
+

(
m− 1

k − 1

)]
f

(k)
0 ∆xk + f

(m)
0 ∆xm (4.2.7)

Upon using the well-known recurrence relation for binomial coefficients, i.e. Pascal’s
rule, we obtain Eq 4.2.5, which is exactly what is needed in order to complete the proof
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by induction of that equation. In addition, Eq 4.2.5 can be rewritten as given in Eq 4.2.8
below using the substitution x = x0 + n∆x.

f(x) ≈ f̂n(x) =

n∑
j=0

(
n

j

)
f (j)(x0)

(x− x0)j

nj
(4.2.8)

However, the binomial coefficient can be expanded, which yields Eq 4.2.1.

Since x = x0 + n∆x, it follows that increasing n while holding x fixed is equivalent
to choosing a smaller step size ∆x. Because the entire proof is based solely on the linear
approximation recurrence given in Eq 4.2.2, the basic definition of differentiation implies
that the expected approximation error in Eq 4.2.2 will typically vanish as n → ∞. This
follows because the summability method essentially simulates walking over the function
in the domain [x0, x], which is similar to Euler’s approximation method. Furthermore,
it follows by construction of the proof, that f̂n(x) is indeed a valid approximation to the
function f(x) as stated in the claim.

In simple terms, Claim 4.2.1 states that the nth-order approximation of a function
f(x) is given by:

f(x) ≈f(x0) +
f ′(x0)

1!
(x− x0) +

(
1− 1

n

)f (2)(x0)

2!
(x− x0)2

+
(
1− 1

n

)(
1− 2

n

)f (3)(x0)

3!
(x− x0)3 · · ·

Here, the nth-order approximation typically converges to the function f(x) as n tends to
infinity if f(x) is analytic in the domain [x0, x]. Comparing the above expression with
the classical Taylor series expansion illustrates how infinitesimal errors arise and how they
accumulate as the process is repeated infinitely many times. In particular, the use of Taylor
series expansion corresponds to the erroneous assertion that limn→∞

∑n
j=0 χn(j)aj =∑∞

j=0 limn→∞ χn(j)aj .

Curiously, the summability method can be stated succinctly using the Calculus of
Finite Differences. Here, if we let Dx be the differential operator, then Claim 4.2.1 states
that:

f(x+ h) = lim
n→∞

(
1 + h

Dx

n

)n
(4.2.9)

On other other hand, Taylor series expansion states that f(x + h) = ehDx . Of course,
both expressions are equivalent for ordinary numbers but they differ for general symbolic
operators as illustrated here.

Looking into the proof of Claim 4.2.1, it is clear that the Ξ summability method is
inline with the T definition of infinite sums because it is a method that is built to sum
Taylor series expansions in the first place. To show that Ξ is linear and regular, we start
with the following lemma.



CHAPTER 4. ANALYTIC SUMMABILITY THEORY 73

Lemma 4.2.1. For all n ≥ 0, the following equality holds:

n∑
j=0

j χn(j) = n (4.2.10)

Proof. By definition:

n∑
j=0

j χn(j) = n!
n∑
j=0

j

(n− j)!nj
=
n!

nn

n∑
j=0

n− j
j!

nj

= n!
( n
nn

n∑
j=0

nj

j!
− n

nn

n∑
j=0

nj

j!
+

1

(n− 1)!

)
=

n!

(n− 1)!
= n

Lemma 4.2.2. (The Ξ Sequence Limit) Define S to be the sequence of partial sums
given by S = (

∑0
k=0 ak,

∑1
k=0 ak,

∑2
k=0 ak, . . .). Then the Ξ sequence limit of S given by

Eq 4.2.11 agrees with the Ξ sum of
∑∞

k=0 ak.

lim
n→∞

pn(0)s0 + pn(1)s1 + · · ·+ pn(n)sn∑n
k=0 pn(k)

, where pn(j) = j χn(j) (4.2.11)

Proof. We will prove the theorem by induction. First, let us denote cn(k) to be the
sequence of terms that satisfies:

pn(0)s0 + pn(1)s1 + · · ·+ pn(n)sn∑n
k=0 pk

=
n∑
k=0

cn(k)ak (4.2.12)

Here, sj =
∑j

k=0 ak. Our objective is to prove that cn(k) = χn(k). To prove this by
induction, we first note that

∑n
k=0 pn(k) = n as proved in Lemma 4.2.1, and a base case

is already established since cn(0) = 1 = χn(0). Now, we note that:

cn(k) =
pn(k) + pn(k + 1) + · · ·+ pn(n)

n
(4.2.13)

For the inductive hypothesis, we assume that cn(k) = χn(k) for k < m. To prove that
such inductive hypothesis implies that cn(m) = χn(m), we note by Eq 4.2.13 that the
following holds:

cn(m) = cn(m− 1)− pn(m− 1)

n
= (1− m− 1

n
)χn(m− 1) = χn(m) (4.2.14)

Here, we have used the inductive hypothesis and the original definition of χn(m) given in
Claim 4.2.1. Therefore, we indeed have:

pn(0)s0 + pn(1)s1 + · · ·+ pn(n)sn∑n
k=0 pn(k)

=

n∑
k=0

χn(k)ak (4.2.15)

The statement of the theorem follows immediately.
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Lemma 4.2.2 shows that the summability method Ξ is indeed an averaging method but
it is important to note that it is different from the Nörland means because the sequence
pn(k) are not independent of the number of terms n. The reformulation of the summability
method Ξ given by Lemma 4.2.2 allows us to prove the following important statement.

Corollary 4.2.1. The summability method Ξ given by Claim 4.2.1 is linear and regular.

Proof. To show that the summability method is linear, we note that:

n∑
j=0

χn
(
αaj + β bj

)
= α

n∑
j=0

χn(j) aj + β
n∑
j=0

χn(j) bj (4.2.16)

Because linearity holds for all n, it holds at the limit n → ∞. To show regularity, we
use the Toeplitz-Schur Theorem. The Toeplitz-Schur Theorem states that any matrix
summability method tn =

∑∞
k=0An,ksk (n = 0, 1, 2, . . .) in which limn→∞ sn is defined by

limn→∞ tn is regular if and only if the following three conditions hold [21]:

1.
∑∞

k=0 |An,k| < H, for all n and some constant H that is independent of n.

2. limn→∞An,k = 0 for each k.

3. limn→∞
∑∞

k=0An,k = 1.

Using Theorem 4.2.2, we see that the summability method Ξ in Claim 4.2.1 is a
matrix summability method characterized by An,k = k

n χn(k). Because An,k ≥ 0 and∑∞
k=0An,k =

∑n
k=0An,k = 1, both conditions 1 and 3 are immediately satisfied. In

addition, for each fixed k, limn→∞An,k = 0, thus condition 2 is also satisfied. Therefore,
the summability method Ξ is regular. In fact, because An,k ≥ 0, Ξ is totally regular.

4.2.2 Convergence

In this section, we show that the summability method Ξ correctly sums Taylor series
expansions if the function f(x) is analytic in the domain [x0, x) and if the Taylor series
expansion is not “too rapidly” diverging.

Claim 4.2.2. Let ak = f (k)(x0)
k! (x − x0)k. If a function f(x) is analytic in an open disc

around each point in the domain [x0, x] and an = o(κn), where κ ≈ 3.5911 is the solution
to the equation log κ − 1

κ = 1, then we almost always have limn→∞{f(x) − f̂n(x)} = 0,

where f̂n(x) is as defined by Claim 4.2.1.

Proof. First, it is easy to come up with examples where violating any of the two conditions
makes Ξ fail in correctly summing Taylor series expansions. For instance, the Taylor series
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of e−
1
x2 is not regular at the origin so the first condition is violated. Here, because the

Taylor series expansion is exactly the zero function, applying Ξ will not yield correct
results. Also, applying Ξ to the alternating geometric series 1 − x + x2 − x3 + . . . shows
that Ξ converges if 0 ≤ x ≤ κ and diverges if x > κ.

Second, let us define the error terms Ekj using Eq 4.2.17. That is, Ekj is the error in
our approximation of the kth derivative of f(x) at the point xj = x0 + j∆x.

Ekj = fkj − f̂kj (4.2.17)

We also note in the argument of Claim 4.2.1 that Ekn is alternatively given by:

Ekn = fkn − f̂kn−1 − f̂k+1
n−1∆x = fkn − fkn−1 − fk+1

n−1∆x+ Ekn−1 + Ek+1
n−1∆x (4.2.18)

Applying Eq 4.2.18 repeatedly m times yields:

fn − f̂n = E0
n = fn −

m∑
k=0

(
m

k

)
fkn−m∆xk +

m∑
k=0

(
m

k

)
Ekn−m∆xk (4.2.19)

Eq 4.2.19 is intuitive. Here, if we denote z = x0 + (n−m)∆x, then Eq 4.2.19 basically
states that computing f(x) using the Taylor series expansion around x0 is equivalent to
computing f(x) using the Taylor series expansion around an intermediate point z ∈ [x0, x],
except for the fact that our estimates of f (r)(z) are themselves approximated. For example,
if z = x0, then Ek0 = 0 and m = n, and we recover the original definition E0

n = fn − f̂n.

Now, if we fix our choice of the intermediate point z, chosen such that x is inside
the analytic disc of f around the point z, then m → ∞ as n → ∞. Most importantly,
fn−

∑m
k=0

(
m
k

)
fkn−m∆xk goes to zero as n→∞, because the summation converges to the

classical Taylor series expansion around z, and because x is within the analytic disc of f
around z by assumption. Consequently, we have the following expression:

fn − f̂n ∼
m∑
k=0

(
m

k

)
Ekn−m∆xk (4.2.20)

As stated earlier, Eq 4.2.20 has a simple intuitive interpretation. If f(x) is computed
using the summability method in Claim 4.2.1 where series expansion is taken around
z instead of x0, and if x is within the analytic disc of f around z, then overall error
asymptotically comes solely from errors in our approximation of higher order derivatives
f (k)(z). Now, if z itself was within the analytic disc of f around x0, then its higher
order derivatives f (k)(z) can be approximated with arbitrary precision using higher order
derivatives f (k)(x0). The process for doing this is exactly what the construction of the
summability method in Claim 4.2.1 performs. Therefore, the error in the approximation
of f(x) using the summability method in Claim 4.2.1 similarly goes to zero in such case.
Loosely speaking, we will say that local behavior of f at x0 is used to compute local
behavior of f at z. In turn, local behavior of f at z is used to compute local behavior of f
at x. The summability method Ξ becomes, therefore, a method of propagating information
about f from x0 to x through the intermediary point z.
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Such reasoning holds true even if z is not within the analytic disc of f around x0.
More specifically, if there exists a sequence of collinear points (x0, z1, z2, . . . , x), such that
each point zk is within the analytic disc of f around zk−1, then the summability method
propagates information about the local behavior of f around x0 to the neighborhood of x
by passing it through the analytic region (x0, z1, z2, . . . , x), and the overall error term in
our approximation of f(x) goes to zero.

Therefore, we expect Ξ to correctly sum Taylor series expansions that are not too
rapidly diverging. To assess the impact of rapid divergence, we look into the alternating
geometric series

∑∞
k=0(−z)k. The motivation behind the use of the geometric series as a

reference is the Borel-Okada principle, which essentially states that the geometric series is
sufficient in quantifying conditions of convergences of analytic summability methods [28].
In particular, if a summability method can correctly sum the geometric series in its star,
then it can sum any Taylor series in its star as well [21].

However, for the geometric series, we have the following identity:

n∑
k=0

χn(k) zk = −1

z

∫ n

0

(
1− t

n

)n
e
t
z dt+ χn(n) zn e

n
z (4.2.21)

If R(z) < 0, the first term in the right hand side converges to (1−z)−1. So, in order for
the summability method Ξ to correctly sum the alternating geometric series

∑∞
k=0(−z)k

when n→∞, we must have χn(n) zn e
n
z → 0. However, this happens only if |z| < κ, where

κ is as defined in the claim. Therefore, we indeed have that some too rapidly diverging
Taylor series expansions are not Ξ summable, but most divergent series of interest in this
manuscript are Ξ summable as will be shown throughout the sequel.

Before we analyze the asymptotic behavior of the error term of the summability
method Ξ, we will illustrate how the approximation method works. Our first example
is the logarithmic function f(x) = log x expanded around x0 = 1 whose Taylor radius
of convergence is |x| < 1. In Figure 4.1, the behavior of the approximation f̂n(x) is
depicted for n = 100 and x = 3, which falls outside the radius of convergence of the
Taylor expansion of the logarithmic function. The horizontal axis in the plot corresponds
to the index 0 ≤ k ≤ n while the vertical axis corresponds to the the absolute value of the

associated partial sum of the summability method, given by |
∑k

j=1(−1)j+1χn(j) (x−x0)j

j |.
As shown in the figure, the partial sum initially grows very rapidly because the Taylor series
diverges; in fact, it grows up to an order of 106. Nevertheless, it converges eventually to
the value of the original function, where the relative approximation error in this particular
example is less than 0.2%, which is accurate to a remarkable degree given the fact that
we used a polynomial of degree 100 for a point x = 3 that lies outside the radius of
convergence of the corresponding Taylor’s series.

Because a complex-valued function f(x) satisfies the Cauchy-Riemann equations, which
essentially state that higher derivatives f (m)(x) are the same regardless of the direction
of the step size ∆x over the complex plane C, Claim 4.2.1 and Claim 4.2.2 also hold
for complex-valued functions. For example, if f(x) = (1 − x)−1, and if we use its well-
known series expansion around x0 = 1, then the approximation f̂n(x) converges to f(x)
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Figure 4.1: |
∑k

j=1(−1)j+1χn(j) (x−x0)j

j | plotted against k for n = 100 and x− x0 = 2

as n → ∞ in a larger disc than the radius of convergence of the classical Taylor series.
For example, if x = −1 + i, where i =

√
−1, we have f̂30(x) = 0.3941 + i 0.2010 and

f̂50(x) = 0.3965 + i 0.2006. By contrast, we know that the exact value is given by
f(x) = 0.4+i 0.2. Clearly, f̂n(x) indeed approaches f(x) as n→∞ even though x = −1+j
falls outside the radius of convergence of the classical Taylor series.

Moreover, we can immediately deduce using Theorem 2.3.1 that the following series
expansion holds for the derivative of the log-factorial function $′(n):

$′(n) = ψ(n+ 1) = −λ+
∞∑
k=2

(−1)kζkn
k−1 (4.2.22)

Plugging n = 1 into both sides of the last equation yields:

∞∑
k=2

(−1)kζk = 1 (4.2.23)

However, the left-hand sum diverges. Using Ξ, on the other hand, the left-hand sum is
summable and its sum indeed converges to 1. Moreover, if we take the Grandi series in
Eq 4.2.24, which arises in the series expansion of (1 + x)−1 using x = 1, the summability
method Ξ assigns a value of 1

2 , which is what we would expect by plugging x = 1 into the
original function.

∞∑
k=0

(−1)k =
1

2
(4.2.24)

Becauase the summability method Ξ is consistent under linear combinations, we can
combine both results in Eq 4.2.23 and Eq 4.2.24 to deduce that Eq 4.2.25 holds; a result
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that was proved earlier in Eq 2.4.24.

∞∑
k=2

(−1)k(ζk − 1) =
1

2
(4.2.25)

Interestingly, the summability method Ξ is not restricted to Taylor series expansions.
For example, let us consider the divergent sum

∑∞
k=1 sin (kθ). As Hardy showed, the

divergent sum should be naturally assigned the value given in Eq 4.2.26. Simple numerical
checks using the summability method of Claim 4.2.1 confirm that this is indeed correct.

∞∑
k=1

sin (kθ) =
1

2
cot

θ

2
(4.2.26)

Moreover, one illustrative example of regularity of the summability method is the
series

∑∞
k=0 1/k!, which is equal to the natural logarithmic base e. Here, applying the

summability method yields:

∞∑
k=0

1

k!
= lim

n→∞

{ n∑
k=0

χn(k)
1

k!

}
= lim

n→∞

n∑
k=0

(
n

k

)
n−k (4.2.27)

Using the Binomial Theorem, we recover the original definition of e:

e = lim
n→∞

(1 +
1

n
)n (4.2.28)

Of course, the summability method itself cannot be immediately used to deduce closed-
form expressions of divergent sums. For example, the sum

∑∞
k=0(−1)k log k! is summable

to -0.1129 through direct numerical computation but the summability method itself cannot
be used to determine an analytic expression of the latter constant. Later, we will provide
an answer to this question by introducing the analog of the Euler-Maclaurin summation
formula for alternating sums, which shows that

∑∞
k=0(−1)k log k! is summable to 1

4 log 2
π .

Finally, we conclude this section with two examples: one in summing Taylor series
expansion of simple finite sums, and one in summing the Euler-Maclaurin summation
formula. Many other examples will be presented throughout rest of the paper. To mitigate
the impact of numerical precision errors, calculations in the following examples were
carried out using the Multi-Precision Math package (mpmath). mpmath is a Python
library for arbitrary-precision floating-point arithmetic and includes built-in support for
many special functions such as the Factorial and the Riemann zeta function [24].

For our first example, let us return to the sum of square roots function f(x) =
∑x

k=1

√
k

whose series expansion was derived earlier in Eq 2.6.5, also rewritten here in Eq 4.2.29
below, and employ the summability method of Claim 4.2.1 to compute its values outside
the radius of convergence. Here, we note that we can alternatively compute the function
for 0 ≤ x < 1 using its original Taylor series and employ the recursive property f(x) =√
x+ f(x−1) to compute the function for different values of x that fall outside the radius

of convergence. However, our intention here is to verify validity/correctness of the series
expansion in Eq 4.2.29. Figure 4.2 displays results for x = 2 and x = 3. Here, by definition,
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we expect the series expansion to converge to 1 +
√

2 if x = 2 and to 1 +
√

2 +
√

3 if x = 3.
As shown in the figure, this is indeed the case.

fG(x) =

x∑
k=1

√
k = −

ζ1/2

2
x+

∞∑
m=2

(−1)m
(2m− 3)!

4m−1m! (m− 2)!
ζm−1/2 x

m (4.2.29)
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Figure 4.2: Ξ applied to sum of square roots function. Values of Ξ are highlighted in red.

For our last example, we look into using the summability method Ξ in evaluating the
Euler-Maclaurin summation formula when it diverges. Here, if we apply Corollary 2.5.1
to the Harmonic sum, we obtain ζ2 =

∑∞
k=0Bk, where Bk are again Bernoulli numbers.

Clearly, the sum diverges but using Ξ with small values of n shows that the sum of all
Bernoulli numbers can be rightfully assigned the value ζ2.

To see that the sum of all Bernoulli numbers should be naturally assigned the value ζ2,
it is instructive to alternatively consider the function f(x) whose series expansion around
x = 0 is given in Eq 4.2.30. Using the asymptotic expression for Bernoulli numbers
given by Euler [4, 36], it is straightforward to see that the series expansion in Eq 4.2.30
converges for x = 0 only and diverges elsewhere. Thus, without aid of summability theory,
we cannot examine behavior of this function. Using the summability method Ξ, however,
the function can be approximated despite the fact that it has been defined using a series
expansion that diverges everywhere except at x = 0.

f(x) =

∞∑
k=0

Bk x
k (4.2.30)

To show the behavior of the function in Eq 4.2.30, we use Ξ for different values of n,
which is shown in Table 4.1. Clearly, the function is well defined even though we only
know its series expansion that is almost everywhere divergent! Using the Euler-Maclaurin
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Summation Formula, it can be shown that the series expansion in Eq 4.2.30 corresponds
to the function f(x) = 1

x$
(2)( 1

x)+x , where $ is the log-factorial function 5. Thus, we can
contrast the estimated values in Table 4.1 with the actual values of the original function,
which is given in the last row of the table. Clearly, they both agree as expected 6. Note
that we could use this last result to define the divergent sum of all Bernoulli numbers by∑∞

k=0Bk = ζ2, a result that was first stated by Euler [33]. The interpretation of this last
equation follows from the results in the previous section. In particular, we could say that
whenever we perform algebraic operations such as additions and multiplications on the
infinite sum of all Bernoulli numbers and arrive eventually at a convergent series, then we
could compute the exact value of that convergent series by substituting for the sum of all
Bernoulli numbers its value ζ2.

x= -1 -0.7 -0.5 -0.2 0 0.2 0.5 0.7 1

n=20 0.6407 0.7227 0.7882 0.9063 1.000 1.1063 1.2882 1.4227 1.6407

n=25 0.6415 0.7233 0.7885 0.9064 1.000 1.1064 1.2885 1.4233 1.6415

n=30 0.6425 0.7236 0.7888 0.9064 1.000 1.1064 1.2888 1.4236 1.6425

Exact 0.6449 0.7255 0.7899 0.9066 1.000 1.1066 1.2899 1.4255 1.6449

Table 4.1: Computed values of
∑∞

k=0Bk x
k using Ξ summability method for different

choices of n. Clearly, the function is well defined even though its series expansion is
everywhere divergent except at x = 0.

4.2.3 Analysis of the Error Term

In this section, we analyze the asymptotic behavior of the error term in the summability
method given in Claim 4.2.1 for analytic functions. We will show why the error term in
the summability method is O( 1

n) and provide a simple expression for its asymptotic value.
Next, we provide an interpretation of the asymptotic expression of the error term and
present a few numerical examples that illustrate its accuracy. To do this, we start with
the following lemma.

Lemma 4.2.3. If [x0, x] falls in the interior of the region of convergence of Ξ for f(x), then:

lim
n→∞

{ n∑
k=1

χn(k)
[
f(x)−

k−1∑
j=0

f (j)(x0)

j!
(x− x0)j

]}
= (x− x0) f ′(x) (4.2.31)

5In MATLAB, the function is given by the command: 1/x*psi(1,1/x+1)+x
6Note that because the series expansion is divergent for all x > 0, the condition of being analytic in

[x0, x) is no longer valid so the summability method is not expected to work. However, it works reasonably
well in this particular example. As a result, even for cases in which the limit n→∞ of Ξ does not exist,
we can still find approximate values of divergent sums using small values of n.
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Proof. It is straightforward to see that if the limit in Eq 4.2.31 exists, then Eq 4.2.31 must
hold. To see this, define g to be a functional of f(x) such that:

gf = lim
n→∞

{ n∑
k=1

χn(k)
[
f(x)−

k−1∑
j=0

f (j)(x0)

j!
(x− x0)j

]}
(4.2.32)

Now, we differentiate both sides with respect to x, which yields:

d

dx
gf = lim

n→∞

{ n∑
k=1

χn(k)
[f (k)(x0)

(k − 1)!
(x− x0)(k−1) + f ′(x)−

k−1∑
j=0

f (j+1)(x0)

j!
(x− x0)j

]}
= gf ′ + lim

n→∞

n∑
k=1

χn(k)
f (k)(x0)

(k − 1)!
(x− x0)(k−1)

= gf ′ + f ′(x)

Therefore, we have:

d

dx
gf = f ′(x) + gf ′ (4.2.33)

Since gf (x0) = 0, the solution is given by:

gf (x) = (x− x0) f ′(x) (4.2.34)

The above derivation assumes that the limit exists. To prove that Eq 4.2.31 holds under

stated conditions, we note that f(x)−
∑k−1

j=0
f (j)(x0)

j! (x−x0)j is the error term of the Taylor
series expansion, which is exactly given by:

f(x)−
k−1∑
j=0

f (j)(x0)

j!
(x− x0)j =

∫ x

x0

f (k)(t)

(k − 1)!
(x− t)k−1 dt (4.2.35)

Upon using last expression, we have that:

gf = lim
n→∞

n∑
k=1

χn(k)

∫ x

x0

f (k)(t)

(k − 1)!
(x−t)k−1 dt =

∫ x

x0

lim
n→∞

n∑
k=1

χn(k)
f (k)(t)

(k − 1)!
(x−t)k−1 dt (4.2.36)

Here, the justification for exchanging sums with integrals is because t ∈ [x0, x] and the
line segment [x0, x] is in the interior of the star-like region of convergence of Ξ for the
function f(x), so we have uniform convergence for t ∈ [x0, x]. Since we have:

lim
n→∞

n∑
k=1

χn(k)
f (k)(t)

(k − 1)!
(x− t)k−1 = f ′(x), for all t ∈ [x0, x] (4.2.37)

Plugging Eq 4.2.37 into Eq 4.2.36 yields the desired result.
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Theorem 4.2.1. If a function f(x) is analytic in an open disc around each point in the
domain [x0, x] and [x0, x] falls in the interior of the region of convergence of Ξ for f(x),
then the error term of the summability method is asymptotically given by:

f(x)− f̂n(x) ∼ f (2)(x)(x− x0)2

2n
(4.2.38)

Proof. Because the function f(x) is analytic around each point in the domain [x0, x], define
ε > 0 to be the distance between the line segment [x0, x] to the nearest singularity point of
f(x). In the argument of Claim 4.2.1, we have used the following linear approximations,

where f
(k)
j = f (k)(x0 + j∆x):

f
(k)
j ≈ f (k)

j−1 + f
(k+1)
j−1 ∆x (4.2.39)

Because the distance from x0 + j∆x to the nearest singularity point of f(x) is at least
ε, then selecting ∆x < ε or equivalently n > x−x0

ε implies that the error term of the
linear approximation is exactly given by Eq 4.2.40. This follows from the classical result
in complex analysis that a analytic function is equal to its Taylor series representation
within its radius of convergence, where the radius of convergence is, at least, equal to the
distance to the nearest singularity.

Ekj = f
(k)
j − f (k)

j−1 − f
(k+1)
j−1 ∆x =

∞∑
m=2

f
(k+m)
j−1

m!
∆xm (4.2.40)

Because higher derivatives at x0 are computed exactly, we have Ek0 = 0 . Now the linear
approximation method was applied recursively in the argument of Claim 4.2.1. Visually
speaking, such repeated process mimics the expansion of a binary pyramid, depicted in
Figure 4.3, whose nodes (j, k) correspond to the linear approximations given by Eq 4.2.39
and the two children of each node (j, k) are given by (j − 1, k) and (j − 1, k+ 1) as stated
in the equation. It follows, therefore, that the number of times a linear approximation
is used is equal to the number of paths from root to the respective node in the binary
pyramid, where root is (n, 0). It is a well-known result that the number of such paths is
given by

(
n−j
k

)
. Consequently, the error term of the approximation method given in Claim

	   (j, k) 

(j-1, k) (j-1, k+1) 

(j-2, k) (j-2, k+1) (j-2, k+2) 

Figure 4.3: A depiction of the recursive proof of the summability method in Claim 4.2.1
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4.2.1 is exactly given by:

f(x)− f̂n(x) =

n∑
j=1

(
n− j

0

)
E0
j +

n−1∑
j=1

(
n− j

1

)
E1
j∆x+

n−2∑
j=1

(
n− j

2

)
E2
j∆x2 · · · (4.2.41)

Define ek as a weighted average of the errors Ekj that is given by:

ek =

∑n−k
j=1

(
n−j
k

)
Ekj∑n−k

j=1

(
n−j
k

) (4.2.42)

Then, we have:

f(x)− f̂n(x) = e0

n∑
j=1

(
n− j

0

)
+ e1

n−1∑
j=1

(
n− j

1

)
∆x+ e2

n−2∑
j=1

(
n− j

2

)
∆x2 · · · (4.2.43)

Now, we make use of the identity
∑n−k

j=1

(
n−j
k

)
=
(
n
k+1

)
, and substitute ∆x = x−x0

n , which
yields:

f(x)− f̂n(x) =
n

x− x0

n∑
k=1

χn(k)
ek−1

k!
(x− x0)k (4.2.44)

Interestingly, the right-hand side is of a similar form to the summability method itself in
which the function χn(k) appears again. Now, define e∗k by:

e∗k =
ek

∆x2
=

n−k∑
j=1

(
n−j
k

)(
n
k+1

) ∞∑
m=0

f
(k+m+2)
j−1

(m+ 2)!
∆xm (4.2.45)

This yields:

f(x)− f̂n(x) =
x− x0

n

n∑
k=1

χn(k)
e∗k−1

k!
(x− x0)k (4.2.46)

In the last equation, we begin to see what the error term is O( 1
n). This is because e∗k

asymptotically lies between minz∈[x0,x] f
(k+2)(z) and maxz∈[x0,x] f

(k+2)(z) when n → ∞
as shown in Eq 4.2.45. So, we expect the infinite sum

∑∞
k=1

e∗k−1

k! (x−x0)k to be summable
to a value V ∈ C using the summability method Ξ.

Now, we examine the weighted average error terms e∗k at the limit n → ∞. First,
we note that the expression for e∗k given by Eq 4.2.45 is exact and that the infinite
summation converges because n is chosen large enough such that ∆x is within the radius
of convergence of the series by assumption. Therefore, it follows that e∗k is asymptotically

given by Eq 4.2.47. Thus, e∗k is asymptotically a convex combination of
f
(k+2)
j

2 , iterated

over j. The discrete probability distribution pn(k) =
(
n−j
k

)
/
(
n
k+1

)
approaches a probability

density function at the limit n → ∞ when j
n is fixed at a constant z. Using Stirling’s
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approximation, such probability density is given by Eq 4.2.48. For example, if k = 0, the
probability density function is uniform as expected.

e∗k ∼
1

2

n−k∑
j=1

(
n−j
k

)(
n
k+1

)f (k+2)
j−1 +O(n−2) (4.2.47)

ρ(z) = (1 + k)(1− z)k, where z =
j

n
, and 0 ≤ z ≤ 1 (4.2.48)

Using the probability density function in Eq 4.2.48, e∗k is asymptotically given by:

e∗k ∼
1 + k

2

∫ 1

0
(1− t)kf (k+2)

(
x0 + t(x− x0)

)
dt (4.2.49)

Doing integration by parts yields the following recurrence identity:

e∗k ∼ −
1 + k

2(x− x0)
f (k+1)(x0) +

1 + k

x− x0
e∗k−1 (4.2.50)

Also, we have by direct evaluation of the integral in Eq 4.2.48 when k = 0:

e∗0 ∼
f ′(x)− f ′(x0)

2(x− x0)
(4.2.51)

Using Eq 4.2.50 and Eq 4.2.51, we have:

e∗k ∼
1

2

(1 + k)!

(x− x0)k+1
f ′(x)− 1

2

(1 + k)!

(x− x0)k+1

k∑
m=0

f (m+1)(x0)

m!
(x− x0)m + o(1) (4.2.52)

The summation in the right-hand side of the last equation is itself the kth degree Taylor
polynomial for f ′(x) expanded around x0. Plugging Eq 4.2.52 into Eq 4.2.46 yields:

f(x)− f̂n(x) ∼ x− x0

2n

n∑
k=1

χn(k)
(
f ′(x)−

k−1∑
m=0

f (m+1)(x0)

m!
(x−x0)m

)
+ o(1/n) (4.2.53)

Using Lemma 4.2.3, we arrive at the desired result:

f(x)− f̂n(x) ∼ f (2)(x) (x− x0)2

2n
+ o(1/n) (4.2.54)

To test the asymptotic expression given by Theorem 4.2.1, suppose f(x) = (1 + x)−1

and suppose that we want to evaluate the function at x = 2 using the summability
method Ξ applied to the Taylor expansion around x0 = 0. The exact error term by direct
application of the summability method when n = 40 is 0.0037. The expression in Theorem
4.2.1 predicts a value of 0.0037, which is indeed the exact error term up to 4 decimal places.
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For a second example, if f(x) = log (1 + x), x = 3, and n = 30, then the exact error term
is -0.0091 whereas Theorem 4.2.1 estimates the error term to be -0.0094.

The asymptotic expression for the error term given in Theorem 4.2.1 presents inter-
esting insights as well as important precautions. First, we can immediately know if the
summability method approaches the function from above or below depending on whether
the function f(x) is concave or convex at x. Such conclusion becomes intuitive if we
keep in mind that the summability method essentially mimics the process of walking
over the function using successive linear approximations. Thus, once we get close to x,
first order linear approximation overestimates the value of the function if it is concave
and underestimates it if convex, which is intuitive given the definition of convexity.
Importantly, this implies that for sufficiently large n, we will obtain either successive
upper bounds or successive lower bounds to the infinite sum as n increases.

Second, in order for the asymptotic expression given by Theorem 4.2.1 to be accurate,
it is crucial to keep indices correct inside the summation. For example, suppose f(x) =
(1 + x)−2, whose Taylor series expansion is given by f(x) =

∑∞
k=1(−1)k+1k xk−1. If we

wish to evaluate f(x), then we know that the following holds for any fixed value of m ≥ 0:

f(x) = lim
n→∞

{ n∑
k=1

(−1)k+1χn(k +m) k xk−1
}

(4.2.55)

However, while the definition in Eq 4.2.55 is correct for any fixed value of m ≥ 0, the
error term given by Theorem 4.2.1 is only accurate when m = 0. For example, if n = 100,
x = 1 and m = 0, the exact error term of the summability method is 0.0019, and the
error estimate given by Theorem 4.2.1 is also 0.0019. However, if we choose m = 5, the
error term is also small but it is 0.0142 now, which is clearly different. This is because
choosing m = 5 is essentially equivalent to applying the summability method Ξ for the
different function f(x) = x5(1 + x)−2 at x = 1. Clearly, both assign the same value to
the infinite sum, which is f(1) = 1

4 in both cases but the value of the second derivative
is now different. Applying Theorem 4.2.1 to the function f(x) = x5(1 + x)−2 for n = 100
and x = 1 yields an error estimate of 0.0145, which agrees well with the exact error when
m = 5.

In general, we have the following corollary.

Corollary 4.2.2. Define f̂n,m(x) by
∑n

k=0 χn(k +m)f
(k)(x0)
k! (x− x0)k. For any function

f(x) that is analytic in an open disc around each point in the domain [x0, x] and [x0, x]
falls in the interior of the region of convergence of Ξ for f(x), we have:

f(x) = lim
n→∞

{ n∑
k=0

χn(k +m)
f (k)(x0)

k!
(x− x0)k

}
(4.2.56)

In addition, the error term is asymptotically given by:

f(x)− f̂n(x) ∼ m(m− 1)f(x) + 2m(x− x0)f ′(x) + (x− x0)2f (2)(x)

2n
(4.2.57)
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Proof. Define h(z) = f(z(x−x0) +x0), whose series expansion around z = 0 is given by:

h(z) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)kzk (4.2.58)

Applying the summability method to the Taylor series expansion of f(x) is equivalent to
applying it for the series expansion of g(z) at z = 1. In addition, shifting χn by m as
given in Eq 4.2.56 is equivalent to applying the summability method for the new function
zmh(z). Therefore, both Eq 4.2.56 and 4.2.57 follow by Theorem 4.2.1.

Interestingly, Eq 4.2.57 shows that the optimal choice of m that yields fastest conver-
gence may not be m = 0. If we differentiate the right-hand side of Eq 4.2.57 with respect
to m, we see that the optimal choice m∗ that yields fastest convergence is given by:

m∗ =
1

2
− f ′(x)

f(x)
(x− x0) (4.2.59)

For example, if we return to the function f(x) = (1 + x)−2 where x = 1, Eq 4.2.59
suggests that choosing m = 1 yields faster convergence than m = 0. This can be confirmed
numerically quite readily. For example, for n = 100 and m = 0, the error term is 0.0019.
On the other hand, for n = 100 and m = 1, the error term is only -6.2339e-04. The error
term predicted by Corollary 4.2.2 if m = 1 is -6.0e-04, which is very close to the actual
value as expected.

4.3 Summary of Results

In this chapter, a generalized definition of infinite sums T is presented, which is regular,
linear, stable, and respects the Cauchy product. To compute the T value of infinite
sums, various methods can be employed such as Abel and Lindelöf summation methods.
In addition, a new summability method Ξ is proposed in this chapter that is simple to
implement in practice and is powerful enough to sum most divergent series of interest.

The key advantage of using the T definition of infinite sums is the fact that it admits
a consistent algebra that includes performing linear combinations and even multiplication
of divergent series. So, in principle, results on divergent series can be used to deduce new
results on convergent series. In the following Chapter, we will use the T definition of infinite
sums to deduce the analog of the Euler-Maclaurin summation formula for oscillating sums,
which will simplify the study of oscillating sums considerably and shed important insight
into the subject of divergent series.



Chapter 5

Oscillating Finite Sums

One cannot escape the feeling
that these mathematical
formulas have an independent
existence and an intelligence of
their own, that they are wiser
than we are, wiser even than
their discoverers.

Heinrich Hertz (1857 – 1894)

In this section, we use the T definition of infinite sums, presented in the previous
section, to deduce a family of series that can be thought of as the analog of the Euler-
Maclaurin summation formula for oscillating sums. Such results can be used to perform
many remarkable deeds with ease. For instance, they can be used to derive analytic ex-
pressions for summable divergent sums, obtain asymptotic expressions of oscillating sums,
and even accelerate convergence of oscillating series by arbitrary orders of magnitude.
They also shed interesting insight into the subject of divergent series. For instance, we
will show the notable fact that, as far as the foundational rules of Summability Calculus
are concerned, summable divergent series behave exactly as if they were convergent. We
will first discuss the important special case of alternating sums, in which we present an
analog of the Euler-Maclaurin summation formula that is similar to, but slightly different
from, Boole’s summation formula. After that, we will generalize results to a broader class
of oscillating sums using the notion of preiodic sign sequences.

5.1 Alternating Sums

We will begin our treatment of alternating sums with the following lemma.

Lemma 5.1.1. Given an alternating infinite sum of the form
∑∞

k=a(−1)kg(k), where g(k)
is analytic in the domain [a− 1,∞), and suppose that the infinite sum is defined in T by

87
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a value V ∈ C. Then V is alternatively given by:

V = (−1)a
∞∑
r=0

Nr

r!
g(r)(a− 1), where Nr =

∞∑
k=1

(−1)k+1 kr (5.1.1)

Here, both infinite sums are also interpreted using the generalized definition T.

Proof. First, we note that V is given by:

V = lim
δ→0

{ ∞∑
k=a

(−1)k ξδ(k − a) g(k)
}

(5.1.2)

Again, ξδ(j) is either given by Lindelöf or Mittag-Leffler summability methods. However,
since g(k) is analytic in the domain [a− 1,∞), then we can also rewrite V using:

V = lim
δ1→0

{ ∞∑
k=a

(−1)k ξδ1(k − a) lim
δ2→0
{
∞∑
j=0

g(j)(a− 1)

j!
ξδ2(j) (k − a+ 1)j}

}
(5.1.3)

Therefore, we have:

V = (−1)a lim
δ2→0

{ ∞∑
r=0

ξδ2(r)
g(r)(a− 1)

r!
lim
δ1→0
{
∞∑
j=1

ξδ1(j) (−1)j+1 jr}
}

(5.1.4)

By definition of Nr, we have:

V = (−1)a lim
δ→0

{ ∞∑
r=0

ξδ(r)
Nr

r!
g(r)(a− 1)

}
(5.1.5)

Thus, statement of the lemma holds.

Of course, Lemma 5.1.1 is not directly useful. It simply provides us with an alternative
method of computing the T value of divergent sums that are already directly summable
using any analytic summability method such as Lindelöf method, the Mittag-Leffler meth-
ods, or the summability method Ξ of Claim 4.2.1. However, Lemma 5.1.1 can be used
to deduce the analog of the Euler-Maclaurin summation formula for alternating sums, as
shown next.

Theorem 5.1.1. Given a simple finite sum of the form f(n) =
∑n

k=a(−1)kg(k), where∑∞
k=a(−1)kg(k) is defined in T by a value V ∈ C, then its unique natural generalization

fG(n) is formally given by:

fG(n) = (−1)ag(a) +

∞∑
r=0

Nr

r!

[
(−1)ng(r)(n)− (−1)ag(r)(a)

]
(5.1.6)

In addition, we have for all n ∈ C:

fG(n) =

∞∑
k=a

(−1)kg(k)−
∞∑

k=n+1

(−1)kg(k) (5.1.7)
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Proof. By Lemma 5.1.1, we have Eq 5.1.8, where both sums are interpreted using the
generalized definition T.

∞∑
k=n+1

(−1)kg(k) = (−1)n+1
∞∑
r=0

Nr

r!
g(r)(n) (5.1.8)

Because the definition T is stable, we have:

∞∑
k=a

(−1)kg(k) = (−1)a g(a) +

∞∑
k=a+1

(−1)kg(k) = (−1)a g(a)− (−1)a
∞∑
r=0

Nr
r!
g(r)(a) (5.1.9)

Now, we will show that Eq 5.1.7 implies Eq 5.1.6 and that it indeed corresponds to the
unique most natural generalization to the simple alternating finite sum. First, starting
from Eq 5.1.7, and upon using both Eq 5.1.8 and Eq 5.1.9, we deduce that Eq 5.1.6 holds
as expected by subtraction.

Second, we can show that the generalized function fG(n) given by Eq 5.1.6 is equivalent
to the Euler-Maclaurin summation formula, which was argued earlier to be the unique
natural generalization of finite sums. To see this, we note that by Eq 5.1.6:

n∑
k=a

g(k) = g(a) +
∞∑
r=0

Nr

r!

[
(−1)n

dr

dnr
(
eiπn g(n)

)
− (−1)a

dr

dar
(
eiπa g(a)

)]
(5.1.10)

Here, i =
√
−1. However, we have using the Calculus of Finite Differences:

dr

dxr
(
eiπx g(x)

)
= eiπx

(
iπ +Dx

)r
(5.1.11)

Here, Dx is the differential operator of the function g(x), i.e. Dr
x = g(r)(x), and the

expression (iπ +Dx)r is to be interpreted by formally applying the binomial theorem on
Dx. For example, (iπ + Dx)2 = (iπ)2D0

x + 2iπD1
x + D2

x. Therefore, Eq 5.1.10 can be
rewritten as:

n∑
k=a

g(k) = g(a) +
∞∑
r=0

Nr

r!
(iπ +Dn)r −

∞∑
r=0

Nr

r!
(iπ +Da)

r (5.1.12)

Later in Eq 5.1.16, we will show that ex

1+ex =
∑∞

r=0
Nr
r! x

r. Using the Calculus of Finite
Differences, we, thus, have:

n∑
k=a

g(k) = g(a) +
eiπ+Dn

1 + eiπ+Dn
− eiπ+Da

1 + eiπ+Da
= g(a)− eDn

1− eDn
+

eDa

1− eDa
(5.1.13)

Using the series expansion of the function ex

1+ex , we deduce that Eq 5.1.14 holds, where
Br are Bernoulli numbers.

n∑
k=a

g(k) = g(a) +
∞∑
r=0

Br
r!

(Dr−1
n −Dr−1

a ) (5.1.14)
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However, this last equation is precisely the Euler-Maclaurin summation formula. Thus,
the generalized function fG(n) to alternating simple finite sums given by Eq 5.1.6 and Eq
5.1.7 is indeed the unique most natural generalization of alternating sums, which completes
proof of the theorem 12.

As shown earlier, the constants Nr are given by the closed-form expression in Eq
4.1.14, or alternatively by Nr = Br+1

r+1 (1 − 21+r). For example, the first ten terms are

Nr = {1
2 ,

1
4 , 0,−

1
8 , 0,

1
4 , 0,−

17
16 , 0,

31
4 , . . .}. A generating function for the constants Nr can

be deduced from Lemma 5.1.1 if we let g(k) = ekx, which yields:

∞∑
k=1

(−1)kekx =
1

1 + ex
− 1 = −

∞∑
r=0

Nr

r!
xr (5.1.15)

Therefore, the generating function of Nr is given by:

ex

1 + ex
=
∞∑
r=0

Nr

r!
xr (5.1.16)

The constants Nr can be thought of as the alternating analog of Bernoulli numbers.
However, it was argued earlier that the defining property of Bernoulli numbers is the fact
that they are the unique solutions to the functional equation:

f ′(n) =

∞∑
r=0

Br
r!

[f (r)(n)− f (r)(n− 1)] (5.1.17)

From Theorem 5.1.1, we can immediately deduce a similar defining property of the
constants Nr. In particular, if we let a = n − 1, we have that Nr are the solutions
to the following functional equation:

f(n) =

∞∑
r=0

Nr

r!
[f (r)(n) + f (r)(n− 1)] (5.1.18)

By formally applying the Taylor series expansion of both sides of Eq 5.1.18, we arrive at
the following recursive method for computing Nr:

Nr =
1

4
− 1

2

r−1∑
k=1

(
r

k

)
Nk if r > 0, and N0 =

1

2
(5.1.19)

1The summation formula of Theorem 5.1.1 is similar to, but different from, Boole’s summation
formula. Here, Boole’s summation formula states that

∑n
k=a(−1)k g(k) = 1

2

∑∞
k=0

Ek(0)
k!

(
(−1)nf (k)(n +

1) + (−1)af (k)(a)
)
, where Ek(x) are the Euler polynomials [10, 9, 25].

2Incidently, the summation formula for alternating sums given in this theorem can be alternatively
deduced from the Euler-Maclaurin summation formula directly upon using the identity

∑n
k=a(−1)k g(k) =∑n

k=a g(k) − 2
∑n

2
k=a g(2k). However, using analytic summability theory yields a more general approach

that can be easily extended to oscillating sums as will be shown later.
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One immediate implication of Theorem 5.1.1 is that it gives a closed-form formula for
alternating power sums. For example, we have:

n∑
k=1

(−1)k = −1 +
1 + (−1)n

2
=

(−1)n − 1

2
(5.1.20)

n∑
k=1

(−1)kk = −1

4
+ (−1)n

2n+ 1

4
(5.1.21)

Note that in both examples, the T sequence limit of {(−1)n}n and {(−1)n n}n as n→∞
is zero by Lemma 4.1.3 so the value of the divergent sums is consistent with the T sequence
limit in these equations. In general, we have for all integers s ≥ 0 the following analog of
Bernoulli-Faulhaber formula:

n∑
k=1

(−1)kks = −Ns + (−1)n
s∑
r=0

(
s

r

)
Nr n

s−r (5.1.22)

Corollary 5.1.1. Suppose g(n) is asymptotically of a finite differentiation order m, i.e.
g(m+1)(n)→ 0 as n→∞, and suppose that the value of

∑∞
k=a(−1)k g(k) exists in T and

is given by V ∈ C, then V can be alternatively evaluated using the following limiting
expression:

V = lim
n→∞

{ n∑
k=a

(−1)kg(k)− (−1)n
m∑
r=0

Nr

r!
g(r)(n)

}
(5.1.23)

Taking higher order terms of the expression
∑m

r=0
Nr
r! g

(r)(n) improves speed of conver-
gence. Alternatively, and under stated conditions, the simple finite sum

∑n
k=a(−1)kg(k)

is asymptotically given by the following expression, where error term vanishes as n goes
to infinity.

n∑
k=a

(−1)kg(k) ∼ V + (−1)n
m∑
r=0

Nr

r!
g(r)(n) (5.1.24)

Proof. Follows immediately from Lemma 5.1.1 and Theorem 5.1.1.

Corollary 5.1.1 provides us with a simple method of obtaining asymptotic expressions
to alternating sums, assigning natural values to divergent alternating sums, and accel-
erating convergence of alternating sums as well. It can even allow us to derive analytic
expressions of divergent sums in many cases. For example, suppose we would like to apply
the generalized definition T to the alternating sum

∑∞
k=1(−1)k+1 log k. Numerically, if we

use the summability method Ξ where we choose n = 100 or n = 1000, we get -0.2264 and
-0.2259 respectively. Using higher order approximations show that the divergent sum is
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summable to around -0.2258 (up to 4 decimal places). Using Corollary 5.1.1, we can derive
the exact value of such divergent sum as follows. First, we note that log n is asymptotically
of a finite differentiation order zero, thus we have:

∞∑
k=1

(−1)k+1 log k = lim
n→∞

{ 2n∑
k=1

(−1)k+1 log k +
log (2n)

2

}
= lim

n→∞

{ 2n∑
k=1

log k − 2
n∑
k=1

log (2k) +
log (2n)

2

}
= lim

n→∞

{
log (2n)!− 2n log 2− 2 log n! +

log (2n)

2

}
=

1

2
log

2

π

Here, we used Stirling approximation in the last step. Indeed, we have 1
2 log 2

π = −0.2258.
Similarly, if we apply Corollary 5.1.1 to the divergent sum

∑n
k=1(−1)k+1 log k!, whose

asymptotic differentiation order is m = 1, we obtain Eq 5.1.25, which can be confirmed
numerically quite readily using the summability method Ξ.

∞∑
k=1

(−1)k+1 log k! =
1

4
log

2

π
(5.1.25)

As stated earlier, we can employ Corollary 5.1.1 to accelerate “convergence” of alter-
nating sums, including alternating divergent sums for which the generalized definition T
is implied. For example, suppose we would like to compute

∑∞
k=1(−1)k log k using the

summability method Ξ of Claim 4.2.1. If we use n = 100, we obtain a figure that is
accurate to 3 decimal places only, which is expected given the fact that the summability
method converges only linearly. If, on the other hand, we compute the divergent sum
using Corollary 5.1.1, where m = 1 and n = 100, we obtain a figure that is accurate
to 7 decimal places! Here, we chose m = 1 instead of m = 0 to accelerate convergence.

Moreover, applying Corollary 5.1.1 to the convergent sum
∑∞

k=1
(−1)k+1

k2
using n = 100

and m = 1 yields a value of 0.8224670334, which is accurate to 10 decimal places! This is
quite remarkable given the fact that we have only used 100 terms in such slowly converging
sum. Of course, choosing higher values of m accelerates convergence even more 3.

One example where Corollary 5.1.1 can be employed to obtain asymptotic expressions
is the second factorials function given by f(n) =

∑n
k=1 k

k2 . Similar to earlier approaches,
we will first find an asymptotic expression of log f(n). However, this is easily done
using the Euler-Maclaurin summation formula but its leading constant is unfortunately
unknown in closed-form. To find an exact expression of that constant, we use the fact that∑∞

k=1(−1)kk2 log k = 7ζ3/(4π
2), which can be deduced immediately from the well-known

analytic continuation of the Riemann zeta function. Here, we know by Eq 4.1.8 that the

3It is worth mentioning that many algorithms exist for accelerating convergence of alternating series,
some of which can sometimes yield several digits of accuracy per iteration. Internestingly, some of these
algorithms such as the one proposed in [12] were also found to be capable of “correctly” summing some
divergent alternating series.
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aforementioned assignment indeed holds when interpreted using the generalized definition
T. Now, we employ Corollary 5.1.1, which yields the asymptotic expression of the second
factorials function given in Eq 5.1.26. Here, the ratio of the two sides of Eq 5.1.26 goes to
unity as n→∞. The asymptotic expression in Eq 5.1.26 is mentioned in [11].

n∑
k=1

kk
2 ∼ e

ζ3
4π2 n

2n3+3n2+n
6 e

n
12
−n

3

9 (5.1.26)

The formal expressions for the T value of divergent sums can be used to deduce the
Euler summation formula.

Lemma 5.1.2. (The Euler Sum Revisited) Let V1 =
∑∞

k=a(−1)kg(k), when interpreted

by T. Also, let V2 =
∑∞

k=a(−1)k
∑k

j=a g(k). If both V1 and V2 exist, then V1 = 2V2.

Proof. We have by Theorem 5.1.1 that V1 is given by:

V1 =
n∑
k=a

(−1)k g(k)− (−1)n
∞∑
r=0

Nr

r!
g(r)(n) (5.1.27)

Similarly, we have:

V2 =
n∑
k=a

(−1)kG(k)− (−1)n
∞∑
r=0

Nr

r!
G(r)(n), G(k) =

k∑
j=a

g(j) (5.1.28)

However, by know by the basic rules of Summability Calculus that the following holds for
all r ≥ 0:

G(r)(n) =

n∑
k=a

g(r)(k) +G(r)(a− 1) (5.1.29)

Plugging Eq 5.1.29 into Eq 5.1.28 yields:

V2 =

n∑
k=a

(−1)kG(k)− (−1)n
∞∑
r=0

Nr

r!
G(r)(a− 1)− (−1)n

∞∑
r=0

Nr

r!

n∑
j=a

g(r)(j) (5.1.30)

We know by Lemma 5.1.1 that:

(−1)a
∞∑
r=0

Nr

r!
G(r)(a− 1) = V2 (5.1.31)

Therefore, Eq 5.1.30 can be rewritten as:

V2 =

n∑
k=a

(−1)kG(k)− (−1)n+aV2 − (−1)n
∞∑
r=0

Nr

r!

n∑
j=a

g(r)(j) (5.1.32)
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The expression holds for all n. We set n = a to obtain:

2V2 = (−1)a g(a)− (−1)a
∞∑
r=0

Nr

r!
g(r)(a) = V1 (5.1.33)

Therefore, we have the desired result.

Of course, the Euler summation formula easily follows from Lemma 5.1.2. One example
of Lemma 5.1.2 was already demonstrated for the

∑∞
k=1(−1)k+1 log k!, where we showed

in Eq 5.1.25 that the T value of such divergent sum is log (2/π)
4 . However, comparing this

with the T value of the divergent sum
∑∞

k=1(−1)k+1 log k given earlier, we see that the
Lemma holds as expected. In fact, we immediately deduce that

∑∞
k=1(−1)k+1 logS(k) =

log (2/π)
8 ≈ −0.0564, where S(k) = k!S(k − 1) is the superfactorial function. Again,

this can be confirmed numerically using Ξ. For instance, using Ξ with n = 50 yields∑∞
k=1(−1)k+1 logS(k) ≈ −0.0571 whereas choosing n = 100 yields

∑∞
k=1(−1)k+1 logS(k) ≈

−0.0568. Both are very close to the correct value −0.0564.

In addition, since
∑∞

k=1(−1)k+1 1
k = log 2, we deduce from Lemma 5.1.2 that:

∞∑
k=1

(−1)k+1Hk =
log 2

2
(5.1.34)

Therefore, we have by linearity of T:

∞∑
k=1

(−1)k+1(Hk − log k − λ) =
log π − λ

2
(5.1.35)

Here, we have used the values of divergent sums to compute a convergent sum!

Now, Theorem 5.1.1 can be readily generalized to convoluted alternating sums as the
following theorem shows.

Theorem 5.1.2. Given a convoluted finite sum of the form f(n) =
∑n

k=a(−1)k g(k, n),
then its unique natural generalization fG(n) is formally given by:

fG(n) = (−1)a g(a, n) +

∞∑
r=0

Nr

r!

[
(−1)n

∂r

∂tr
g(t, n)

∣∣∣
t=n
− (−1)a

∂r

∂tr
g(t, n)

∣∣∣
t=a

]
(5.1.36)

Proof. Similar to the proof of Lemma 3.1.3 and Theorem 3.1.1.

Theorem 5.1.2 gives a simple method for deducing closed-form expressions and/or
asymptotic expressions of alternating convoluted sums. For example, suppose f(n) is
given by the convoluted alternating sum f(n) =

∑n
k=0(−1)k log (1 + k

n), and suppose that
we wish to find its asymptotic value as n tends to infinity. Using Theorem 5.1.2, we have:

n∑
k=0

(−1)k log (1 +
k

n
) ∼ (−1)n

log 2

2
(5.1.37)
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For a second example, we have by Theorem 5.1.2:

n∑
k=0

(−1)k (k + n) =
n

2
+ (−1)n n+

(−1)n − 1

4
(5.1.38)

Note that the same expression in the last equation can be alternatively derived by splitting
the sum into two alternating sums

∑n
k=0(−1)k (k + n) =

∑n
k=0(−1)k k + n

∑n
k=0(−1)k ,

and by using the results in Eq 5.1.20 and Eq 5.1.21.

Obviously, the approach employed so far for alternating sums can be readily extended
to finite sums of the form

∑n
k=a e

iθk g(k) , which is stated in the following theorem.

Theorem 5.1.3. Given a simple finite sum of the form f(n) =
∑n

k=a e
iθk g(k), where

0 < θ < 2π, then its unique natural generalization fG(n) is formally given by:

fG(n) = eiθa g(a)−
∞∑
r=0

Θr

r!

[
eiθng(r)(n)− eiθag(r)(a)

]
, where Θr =

∞∑
k=1

eiθkkr (5.1.39)

Here, infinite sums are interpreted using the generalized definition T. In addition, we also
have:

fG(n) =

∞∑
k=a

eiθk g(k)−
∞∑

k=n+1

eiθk g(k) (5.1.40)

Also,
∑∞

k=a e
iθk g(k) is formally given by:

∞∑
k=a

eiθk g(k) = eiθ(a−1)
∞∑
r=0

Θr

r!
g(r)(a− 1) =

n∑
k=a

eiθkg(k) +

∞∑
r=0

Θr

r!
eiθng(r)(n) (5.1.41)

For instance, if g(n) is asymptotically of a finite differentiation order m, then Eq 5.1.41
is interpreted as a limiting expression as n → ∞, which is similar to Corollary 5.1.1. In
general, infinite sums are interpreted using the generalized definition T.

Proof. Similar to the proofs of Theorem 5.1.1 and Corollary 5.1.1.

If θ = π, we have Θr = −Nr. To find a generating function for Θr in general, we set
g(k) = ekx, which yields the generating function:

∞∑
k=1

eiθkekx =
ex+iθ

1− ex+iθ
=

∞∑
r=0

Θr

r!
xr (5.1.42)

Of course, Theorem 5.1.3 can be extended to convoluted sums as well. In addition, by
setting a = n− 1 in Eq 5.1.39, we deduce that the constants Θr are the unique solutions
to the functional equation:

f(n) = −
∞∑
r=0

Θr

r!

(
f (r)(n)− e−iθf (r)(n− 1)

)
(5.1.43)
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5.2 Oscillating Sums: The General Case

More than two centuries ago, Daniel Bernoulli suggested that periodic oscillating sums
should be interpreted probabilistically. For instance, he stated that the Grandi series∑∞

k=0(−1)k should be assigned the value of 1
2 because the partial sums are equal to one

if n is even and equal to zero otherwise; therefore the expected value of the infinite sum
is 1

2 . Using the same reasoning, Bernoulli argued that the divergent sum 1 + 0− 1 + 1 +
0 − 1 . . . should be assigned the value of 2

3 [21, 37]. Remarkably, such values are indeed
consistent with many natural summability methods such as Abel summability method and
the summability method Ξ given in Claim 4.2.1. Almost a century later, Cesaro captured
and expanded the same principle by proposing his well-known summability method in
1890 that is given by Eq 5.2.1 [21]. The intuition behind Cesaro summability method,
however, is not Bernoulli’s probabilistic interpretation, but the notion of what is currently
referred to as the Cesaro mean. Simply stated, if an infinite sum

∑∞
k=0 ak converges to

some value V , then the partial sums
∑j

k=0 ak approach V for sufficiently large j. Thus,∑n
j=0

∑j
k=0 ak will approach nV as n→∞, which makes Eq 5.2.1 a very natural definition

for divergent sums as well if the limit exists.

∞∑
k=0

ak = lim
n→∞

{ 1

n

n∑
j=1

j∑
k=0

ak
}

(5.2.1)

In this section, we will generalize results of the previous section, which will allow us
to prove that the intuitive reasoning of D. Bernoulli is indeed correct when infinite sums
are interpreted using the generalized definition T. Of course, we have already established
that T is consistent with Cesaro summability method by proving that it is consistent with
Abel summation. Nonetheless, results of this section will allow us to deduce an alternative
direct proof to Bernoulli’s probabilistic interpretation.

However, we will restrict our attention in this section to oscillating sums of the form∑n
k=a sk g(k), where g(k) is analytic in the domain [a,∞) and sk is an arbitrary periodic

sequence of numbers that will be referred to as the sign sequence. Common examples
of sign sequences include (1, 1, 1, . . . ) in ordinary sums, (1,−1, 1,−1, . . .) in the case of
alternating sums, and (ei2π/n, ei4π/n, ei6π/n, . . .) in harmonic analysis, and so on. It is
important to keep in mind that the sign sequence is assumed to be periodic, but it does
not have to be analytic.

Looking into the proofs of Lemma 5.1.1 and Theorem 5.1.1, we note that if a similar
approach is to be employed for oscillating sums of the form

∑n
k=a sk g(k) then the sum∑∞

k=a sk (k− a+ 1)r has to exit in T for all r ≥ 0. Thus, our first point of departure is to
ask for which periodic sign sequences sk do the sums

∑∞
k=a sk (k − a + 1)r exist in T for

all integers r ≥ 0. Lemma 5.2.1 provides us with the complete answer.

Lemma 5.2.1. Given a periodic sign sequence sk with period p, i.e. sk+p = sk, then
the sums

∑∞
k=a sk (k − a + 1)r are well-defined in T for all integers r ≥ 0 if and only if∑a+p−1

k=a sk = 0. That is, the sum of values of the sign sequence sk for any cycle of length
p is equal to zero.
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Proof. Without loss of generality, we will set a = 1 to simplify notations. To prove that
the condition

∑p
k=1 sk = 0 is necessary, we set r = 0, which yields by stability:

∞∑
k=1

sk =

p∑
k=1

sk +
∞∑

k=p+1

sk =

p∑
k=1

sk +
∞∑
k=1

sk (5.2.2)

Therefore, if
∑∞

k=1 sk is summable to some value V ∈ C, then
∑p

k=1 sk must be equal to
zero. To show that the condition is sufficient, we first note by Taylor’s theorem that:

x− 1

xp − 1
= 1− x+ xp − xp+1 + x2p − x2p−1 · · · (5.2.3)

Therefore, if we define a function f(x) by:

f(x) =
x− 1

xp − 1

(
s1 + (s1 + s2)x+ · · ·+ (s1 + s2 + . . .+ sp−1)xp−2

)
(5.2.4)

Then, the Taylor series expansion of f(x) is given by:

f(x) =
∞∑
k=0

sk+1 x
k (5.2.5)

It is straightforward to see that the condition
∑a+p−1

k=a sk is also satisfied in the gen-
erating function f(x). Because f(x) is analytic in an open disc around each point in the
domain [0, 1], then applying the summability method to

∑∞
k=1 sk yields f(1) by definition

of T. In general, for all integers r ≥ 0, applying the summability method to
∑∞

k=1 sk k
r

yields some linear combination of higher derivatives f (m)(1), therefore, they are also well-
defined in T.

Corollary 5.2.1. Given a periodic sequence sk with period p, where
∑a+p−1

k=a sk = 0.
Then the sum

∑∞
k=a sk is well-defined in T. Moreover, its T value agrees with Bernoulli’s

probabilistic interpretation.

Proof. We have established in Lemma 5.2.1 that the sum is well-defined in T. We have
also shown that applying the generalized definition T to the sum

∑∞
k=a sk yields the value

f(1), where f(x) is defined by Eq 5.2.4. Using l’Höspital’s rule, the assigned value is
indeed given by:

∞∑
k=a

sk =
s1 + (s1 + s2) + · · ·+ (s1 + s2 + . . .+ sp)

p
(5.2.6)

Here, we have used the fact that
∑p

k=1 sk = 0, which follows by assumption. Therefore,
the assigned value is indeed the average or expected value of the partial sums as Bernoulli
suggested.
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One important advantage of Eq 5.2.6 is that it allows us to obtain exact values
of divergent sums

∑∞
k=a sk that satisfy the conditions of Lemma 5.2.1, as opposed to

approximating them by methods of computation such as Abel summability method or Ξ.
Clearly, we desire a similar simple approach to obtain exact expressions of all divergent
sums of the form

∑∞
k=a sk (k−a+ 1)r that satisfy the conditions of Lemma 5.2.1. Lemma

5.2.2 provides us with the answer.

Lemma 5.2.2. Given a periodic sign sequence sk with period p, where
∑a+p−1

k=a sk = 0, let
Sr be given by Sr =

∑∞
k=a sk (k − a + 1)r, where the divergent sum is interpreted using

T. Then, Sr can be exactly computed using the recursive equation:

Sr = − pr

r + 1

r−1∑
m=0

(
r + 1

m

)
p−m Sm −

1

p(r + 1)

a+p−1∑
k=a

sk (k − a+ 1)r+1 (5.2.7)

Here, the base case S0 is given by Corollary 5.2.1.

Proof. Again, the proof rests on the fact that the sums
∑∞

k=a sk (k − a + 1)r are stable,
which yields:

∞∑
k=a

sk (k − a+ 1)r =

a+p−1∑
k=a

sk (k − a+ 1)r +

∞∑
k=a

sk (k − a+ 1 + p)r (5.2.8)

Expanding the factors (k − a+ 1 + p)r using the Binomial Theorem and rearranging the
terms yields the desired result.

Now, knowing that any periodic sequence sk with period p that satisfy the condition
of Lemma 5.2.1 imply that

∑∞
k=a sk (k−a+ 1)r exist in T for all integers r ≥ 0, and given

that we can compute the exact values of
∑∞

k=a sk (k−a+ 1)r for all r ≥ 0 using Corollary
5.2.1 and Lemma 5.2.2, we are ready to generalize main results of the previous section.

First, given an arbitrary periodic sign sequence sk, we compute the average τ =∑a+p−1
k=a sk, and split the sum

∑n
k=a sk g(k) into τ

∑n
k=a g(k) +

∑n
k=a(sk − τ) g(k). The

first term is a direct simple finite sum that can be analyzed using the earlier results of
Summability Calculus in Chapter 2. The second term, on the other hand, satisfies the
condition

∑a+p−1
k=a (sk − τ) = 0 so Lemma 5.2.1, Corollary 5.2.1 and Lemma 5.2.2 all hold.

Theorem 5.2.1. Given a simple finite sum of the form f(n) =
∑n

k=a sk g(k), where
sk = (s0, s1, . . .) is a periodic sign sequence with period p that satisfies the condition∑a+p−1

k=a sk = 0. Then, for all a ∈ N and n ≥ a ∈ N, f(n) is alternatively given by:

f(n) = sa g(a)−
∞∑
r=0

1

r!

[
Sr(1 + n mod p) g(r)(n)− Sr(1 + a mod p) g(r)(a)

]
(5.2.9)
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Here, Sr(x) =
∑∞

k=0 sk+x k
r can be exactly computed using Corollary 5.2.1 and Lemma

5.2.2. In addition, if g(n) is asymptotically of a finite differentiation order m, then:

∞∑
k=a

sk g(k) = lim
x→∞

{ px∑
k=a

sk g(k) +

m∑
r=0

Sr(1)

r!
g(r)(px)

}
(5.2.10)

Proof. Similar to the proofs of Theorem 5.1.1 and Corollary 5.1.1. Note that we cannot
consider f(n) given by Eq 5.2.9 to be the natural generalization fG(n) since it is so far
only defined for n ∈ N due to the use of congruence. This limitation will be resolved
shortly using the Discrete Fourier Transform (DFT).

Again, Theorem 5.2.1 allows us to obtain asymptotic expressions of oscillating sums
and accelerate convergence. For instance, suppose sk = (0, 1, 0,−1, 0, 1, 0,−1, 0, . . .), i.e.
p = 4 and s0 = 0. Then, S0(1) can be computed using Corollary 5.2.1, which yields:

S0(1) = 1 + 0− 1 + 0 + 1 + 0− 1 + 0 + · · · = 1 + 1 + 0 + 0

4
=

1

2
(5.2.11)

Similarly, S1(1) can be computed using Lemma 5.2.1, which yields:

S1(1) =

∞∑
k=1

sk k = −2S0(1)− 1× 1 + 0× 4− 1× 9 + 0× 16

8
= 0 (5.2.12)

Therefore, if we wish to obtain a method of evaluating the convergent sum
∑∞

k=1
sk
k =

1
1 −

1
3 + 1

5 − . . . = π
4 with a cubic-convergence speed, we choose m = 1 in Eq 5.2.10. For

instance, choosing n = 100 yields:

∞∑
k=1

sk
k
≈

100∑
k=1

sk
k

+
S0(1)

100
− S1(1)

1002
= 0.785398 (5.2.13)

Here, we obtain a figure that is accurate up to 6 decimal places. This is indeed quite
remarkable given that we have only used 100 terms. Otherwise, if we compute the sum
directly, we would need to evaluate approximately 500,000 terms to achieve the same level
of accuracy!

Finally, to obtain the unique natural generalization fG(n) for simple finite sums of the
form f(n) =

∑n
k=a sk g(k) in which sk is a periodic sign sequence, we use the Discrete

Fourier Transform (DFT) as the following lemma shows.

Lemma 5.2.3. Given a periodic sign sequence sk = (s0, s1, . . .) with period p, then sk can
be generalized to all complex values of k using the Discrete Fourier Transform (DFT).
More precisely, we have:

sk =

p−1∑
m=0

νm e
imk
p , where νm =

1

p

p−1∑
k=0

sk e
−imk

p (5.2.14)
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Proof. By direct application of the Discrete Fourier Transform (DFT). Intuitively, νm

is the projection of the sequence sk on the sequence {ei
mk
p }k when both are interpreted

as infinite-dimensional vectors and {ei
mk
p }k are orthogonal for different values of m. In

addition, since sk is periodic, the basis are complete. Note that ν0 is the average value of
the of sign sequence sk, i.e. the DC component in engineering terminology.

Corollary 5.2.2. Given a simple finite sum of the form f(n) =
∑n

k=a sk g(k), where
sk = (s0, s1, . . .) is a periodic sign sequence with period p, then we have:

f(n) = ν0

n∑
k=a

g(k) + ν1

n∑
k=a

e
i k
p g(k) + · · ·+ νp−1

n∑
k=a

e
i
(p−1)k
p g(k) (5.2.15)

Here, νm are defined in Lemma 5.2.3. In addition, the unique natural generalization
fG(n) for all n ∈ C is given by the sum of unique natural generalizations to all terms in
the previous equation (see Section 2.5 and Theorem 5.1.3).

Proof. By Lemma 5.2.3.

5.3 Infinitesimal Calculus on Oscillating Sums

The general rules for performing infinitesimal calculus on simple finite sums of the form∑n
k=a z(k) were presented earlier in Chapter 2 that used the Euler-Maclaurin summation

formula, which are also formally applicable to oscillating sums (see for instance the
Example 2.6.4). In this section, nevertheless, we will show that if an oscillating infinite sum∑n

k=a z(k) is well-defined in T, then the function f(n) behaves with respect to infinitesimal
calculus exactly as if it were a convergent function as n → ∞, regardless of whether or
not limn→∞ f(n) exists in the classical sense of the word. In other words, f(n) behaves
as if it were a convergent function if the generalized T limit of f(n) as n→∞ exists.

In his notebooks, Ramanujan captured the basic idea that ties summability theory to
infinitesimal calculus. In his words, every series has a constant c, which acts “like the
center of gravity of the body.” However, his definition of the constant c was imprecise and
frequently led to incorrect conclusions [6]. Assuming that such constant exists, Ramanujan
deduced that the fractional sum can be defined by:

n∑
k=a

z(k) =
∞∑
k=a

z(k)−
∞∑

k=n+1

z(k) = cz(a)− cz(n+ 1) (5.3.1)
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Here, cz(x) is the constant of the series
∑∞

k=x z(k). Now, Ramanujan reasoned that:

d

dn

n∑
k=a

z(k) =
d

dn

( ∞∑
k=a

z(k)−
∞∑

k=n+1

z(k)
)

= − d

dn
cz(n+ 1) = −

∞∑
k=n+1

z′(k)

=
n∑
k=a

z′(k)−
∞∑
k=a

z′(k) =
n∑
k=a

z′(k)− cz′(a)

Therefore, we recover Rule 1 of Summability Calculus. Such reasoning would have been
correct if a precise and consistent definition of the constant c existed. However, a consistent
definition of c for all series cannot be attained. For instance, suppose we have the function
f(n) =

∑n
k=1(z(k) + α) for some constant α, then the above reasoning implies that f ′(n)

is independent of α, which is clearly incorrect because f ′(n) = α+ d
dn

∑n
k=1 z(k).

In this section, we will show that Ramanujan’s idea is correct but only if the infinite
sum

∑∞
k=a z(k) is summable to a value V ∈ C using a summability method that is both

regular, stable, and linear. Here, we will restrict analysis to the case of infinite sums that
are well-defined in T. Now, introducing a constant α as in f(n) =

∑n
k=1(z(k)+α) violates

the summability condition so the method is well-defined. Therefore, we will indeed have
that

∑n
k=a z(k) =

∑∞
k=a z(k) −

∑∞
k=n+1 z(k). Moreover, we also have d

dn

∑n
k=a z(k) =∑n

k=a z
′(k) −

∑∞
k=a z

′(k), where all infinite sums are interpreted using the generalized
definition T.

We will begin our discussion with simple finite sums of the form
∑n

k=a e
iθkg(k) and

state the general results afterwards.

Lemma 5.3.1. Given a simple finite sum of the form f(n) =
∑n

k=a e
iθkg(k), where the

infinite sum
∑∞

k=a e
iθkg(k) is defined by a value V ∈ C in T, then we have:

n∑
k=a

eiθkg(k) =

∞∑
k=a

eiθkg(k)−
∞∑

k=n+1

eiθkg(k) (5.3.2)

d

dn

n∑
k=a

eiθkg(k) =

n∑
k=a

d

dk

(
eiθkg(k)

)
−
∞∑
k=a

d

dk

(
eiθkg(k)

)
(5.3.3)

Proof. Eq 5.3.2 was already established in Theorem 5.1.3. To prove Eq 5.3.3, we first note
by Theorem 5.1.3 that:

fG(n) = eiθa g(a)−
∞∑
r=0

Θr

r!

[
eiθng(r)(n)− eiθag(r)(a)

]
(5.3.4)

In Theorem 5.1.3, we have also shown that
∑∞

k=a e
iθk g(k), interpreted using T, is formally

given by:
∞∑
k=a

eiθk g(k) =
n∑
k=a

eiθkg(k) +
∞∑
r=0

Θr

r!
eiθng(r)(n) (5.3.5)
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Now, using the differentiation rule of simple finite sums, i.e. Rule 1 in Table 2.1, we have:

d

dn

n∑
k=a

eiθkg(k) =
n∑
k=a

d

dk

(
eiθkg(k)

)
+ c (5.3.6)

On the other hand, differentiating both sides of Eq 5.3.4 formally yields:

f ′G(n) = −
∞∑
r=0

Θr

r!

d

dn

(
eiθng(r)(n)

)
(5.3.7)

Equating Eq 5.3.6 and Eq 5.3.7 yields:

c = −
∞∑
r=0

Θr

r!

d

dn

(
eiθng(r)(n)

)
−

n∑
k=a

d

dk

(
eiθkg(k)

)
(5.3.8)

Comparing last equation with Eq 5.3.5 implies that:

c = −
∞∑
k=a

d

dk

(
eiθkg(k)

)
(5.3.9)

Plugging Eq 5.3.9 into Eq 5.3.6 yields the desired result.

Lemma 5.3.2. Given a simple finite sum of the form f(n) =
∑n

k=a e
iθkg(k), where the

infinite sum
∑∞

k=a e
iθkg(k) is well-defined in T, then the unique natural generalization

fG(n) is formally given by the series expansion:

fG(n) =
∞∑
r=1

cr
r!

(n− a+ 1)r, where cr = −
∞∑
k=a

dr

dkr
(
eiθkg(k)

)
(5.3.10)

Here, the infinite sums cr are interpreted using the generalized definition T.

Proof. Follows immediately from Lemma 5.3.1.

Note that in Lemma 5.3.2, the function f(n) behaves as if it were a convergent function
with respect to the rules of infinitesimal calculus as discussed earlier. Such result can be
generalized to oscillating sums of the form

∑n
k=a sk g(k), in which sk is a periodic sign

sequence that satisfies the condition
∑a+p−1

k=a sk = 0, where sk is decomposed into functions
of the form eiθk using the Discrete Fourier Transform (DFT) as shown earlier in Lemma
5.2.3. In fact, it can be generalized even further as the following theorem shows.

Theorem 5.3.1. Given a simple finite sum
∑n

k=a g(k), where
∑∞

k=a g(k) exists in T, then
we have:

f
(r)
G (n) =

n∑
k=a

g(r)(k)−
∞∑
k=a

g(r)(k) (5.3.11)
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Similarly the indefinite integral is given by:∫ n

fG(t) dt =
n∑
k=a

∫ k

g(t) dt+ n
∞∑
k=a

g(k) + c (5.3.12)

Here, c is an arbitrary constant of integration, and all infinite sums are interpreted using
the generalized definition T.

Proof. We can rewrite f(n) as f(n) =
∑n

k=a e
iθk(e−iθkg(k)). Note that this is always

valid because both initial condition and recursive identity still hold for all n. Using
results of Lemma 5.3.2, Eq 5.3.11 also holds in the general case. The integral rule follows
immediately, which is also analogous to the case of the convergent sums.

One example of Theorem 5.3.1 was already discussed in Section 2.2 in which we showed
that the function f(n) =

∑n
k=0 sin k is given by Eq 5.3.13, where β1 and β2 can be

determined using any two values of f(n).

fG(n) =
n∑
k=0

sin k = β1 sinn− β2(1− cosn) (5.3.13)

For example, setting n = 1 and n = 2 yields β1 = 1
2 . However, we also showed in

Section 2.2 that f ′G(0) = β1. Using Theorem 5.3.1, we can also deduce the same value of
β1 as follows:

f ′G(n) =
n∑
k=0

cos k −
∞∑
k=0

cos k ⇒ f ′G(0) = 1−
∞∑
k=0

cos k (5.3.14)

However,
∑∞

k=0 cos k is equal to 1
2 in T. Therefore, f ′G(0) = β1 = 1

2 , which is consistent
with the earlier claim.

5.4 Summary of Results

In this chapter, we used the generalized definition of infinite sums T given earlier in Chap-
ter 4 to deduce the analog of the Euler-Maclaurin summation formula for oscillating sums,
which can be used to deduce asymptotic expressions of oscillating sums, accelerate series
convergence, and even deduce exact analytic expressions of summable divergent sums as
well. In addition, results of this chapter can also be used to deduce asymptotic expressions
of non-oscillating finite sums as illustrated for the second factorials function. We have also
shown the remarkable fact that, as far as the foundational rules of Summability Calculus
are concerned, summable divergent series indeed behave as if they were convergent.



Chapter 6

Direct Evaluation of Finite Sums

The future influences the
present, just as much as the
past.

F. Nietzsche (1844 – 1900)

So far, we have looked at performing infinitesimal calculus on finite sums and products,
which led to the Euler-Maclaurin summation formula as well as a family of Euler-like
summation formulas for oscillating sums. Formally speaking, a simple finite sum is given
by the Euler-like summation formulas but using those infinite sums is often difficult
since they typically diverge even for simple functions. However, as shown in Chapter
2, Summability Calculus can be used to deduce series expansion of finite sums which, in
turn, can be used to evaluate such functions for all n ∈ C using an appropriate analytic
summability method if needed.

Consequently, we so far have two methods of evaluating convoluted finite sums of the
form

∑n
k=a sk g(k, n), where sk is an arbitrary periodic sign sequence. First, we can use

the generalized Euler-like family of summation formulas if they converge. Second, we
can compute the series expansion using Summability Calculus and use an appropriate
summability method afterwards. Unfortunately, both methods are often impractical.

In this section, on the other hand, we provide a simple direct method of computing∑n
k=a sk g(k, n) for all n ∈ C. In the case of simple finite sums f(n) =

∑n
k=a g(k) in

which g(n) is asymptotically of a finite differentiation order m, the fairly recent work of
Müeller and Schleicher [32] has captured the general principle. Here, and as discussed
earlier in the Chapter 1, the basic idea is to evaluate the finite sum asymptotically using
approximating polynomials and propagate results backwards using the recurrence identity
f(n) = g(n) + f(n− 1).

To be more specific, the Müeller-Schleicher method can be described as follows. Sup-
pose that the iterated function g(k) is asymptotically given by a polynomial Ps(k) with
degree s, where the approximation error vanishes asymptotically, i.e. limk→∞{g(k) −
Ps(k)} = 0. Then, for any N ∈ N and any n ∈ N, we have

∑n+N
k=N g(k) ∼

∑n+N
k=N Ps(k),

where the latter can be evaluated using the Bernoulli-Faulhaber formula, which is itself

104
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a polynomial with degree (s + 1). Because the latter formula holds for any n ∈ N, it is
natural to define the sum for all n ∈ C by the same polynomial. Of course, this is merely
an approximation as N → ∞. However, we can use the approach to approximate the
finite sum

∑n
k=1 g(k) for all n ∈ C upon using:

n+N∑
k=N

g(k) =
n∑
k=1

g(k) +
n+N∑
k=n+1

g(k)−
N−1∑
k=1

g(k) (6.0.1)

Consequently, we have:

n∑
k=1

g(k) =
n+N∑
k=N

g(k)−
n+N∑
k=n+1

g(k) +
N−1∑
k=1

g(k) (6.0.2)

Now, choosing N ∈ N allows us to evaluate the sums
∑n+N

k=n+1 g(k) and
∑N−1

1 g(k)
directly by definition. Similarly, taking N → ∞ allows us to evaluate the fractional sum∑n+N

k=N g(k) with arbitrary accuracy as discussed earlier. Consequently, we can evaluate
the original fractional sum

∑n
k=a g(k) with an arbitrary degree of accuracy by using the

shifting property
∑n

k=a g(k) =
∑n−a

k=1 g(k + a) and by applying equation above at the
limit N → ∞. Obviously, such approach is not restricted to analytic functions. For
instance, if we define f(n) =

∑n
k=1

1
dke , where dxe is the ceiling function, then the natural

generalization implied by the above method is given by the discrete harmonic function
f(n) = Hdne. This is the essence of the Müeller-Schleicher method.

However, if g(n) is analytic, then we can Taylor’s theorem to deduce that if g(m+1)(n)→
0 as n → ∞, then g(n) is asymptotically given by its first (m + 1) terms of the Taylor
series expansion. That is, g(n) in the latter case is indeed asymptotically approximated
by a polynomial. This can be easily established, for example, by using the Lagrange
reminder form. In this section, we show that the aforementioned approach is merely a
special case of a more general formal method. Here, we present the general statement
that is applicable to simple finite sums, even those in which g(n) is not asymptotically
of a finite differentiation order, convoluted finite sums of the form f(n) =

∑n
k=a g(k, n)

and even oscillating convoluted finite sums of the form
∑n

k=a sk g(k, n) for some arbitrary
periodic sign sequence sk. In other words, we extend the approach to the general case in
which g(k) may or may not be approximated by polynomials asymptotically. In addition,
the statement readily provides a method of accelearing convergence speed.

Finally, we will establish the earlier claim that the Euler-Maclaurin summation formula
is the unique natural generalization to simple finite sums by showing that it is the unique
generalization that arises out of polynomial fitting. Similar to the approach of Chapter 2,
we will begin our treatment with the case of semi-linear simple finite sums and generalize
results afterwards.

6.1 Evaluating Semi-Linear Simple Finite Sums

The case of semi-linear simple finite sums is summarized in the following theorem.
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Theorem 6.1.1. Given a semi-linear simple finite sum of the form f(n) =
∑n

k=a g(k), i.e.
where g(n) is nearly-convergent, then its unique natural generalization fG(n) for all n ∈ C
can be evaluated using the following expression:

fG(n) = lim
s→∞

{
(n− a+ 1) g(s) +

s∑
k=0

g(k + a)− g(k + n+ 1)
}

(6.1.1)

Proof. The proof consists of three parts. First, we need to show that the initial condition
holds. Second, we need to show that the required recurrence identity also holds. Third, we
need to show that fG(n) given by Eq 6.1.1 is equivalent to the unique natural generalization
implied by Summability Calculus.

The proof that the initial condition holds is straightforward. Plugging n = a− 1 into
Eq 6.1.1 yields f(a− 1) = 0. To show that the recurrence identity holds, we note that:

fG(n)− fG(n− 1) = lim
s→∞

{
g(n) + g(s)− g(s+ n+ 1)

}
(6.1.2)

However, because g(n) is nearly-convergent by assumption, then we have:

lim
s→∞

{
g(s)− g(s+ n+ 1)

}
= 0, for all n ∈ C (6.1.3)

Thus, the function fG(n) given by Eq 6.1.1 indeed satisfies the recurrence identity:

fG(n)− fG(n− 1) = g(n) (6.1.4)

Finally, to show that fG(n) is identical to the unique natural generalization implied by
Summability Calculus, we differentiate both sides of Eq 6.1.1, which yields:

f ′G(n) = lim
s→∞

{
g(s)−

s∑
k=0

g′(k+ n+ a)
}

=
n∑
k=a

g′(k) + lim
s→∞

{
g(s)−

s∑
k=a

g′(k)
}

(6.1.5)

However, last equation is identical to Theorem 2.3.1. Thus, fG(n) given by Eq 6.1.1 is
indeed the unique natural generalization to the simple finite sum.

Corollary 6.1.1. If g(n) → 0 as n → ∞, then the unique natural generalization to the
simple finite sum f(n) =

∑n
k=a g(k) for all n ∈ C is given by:

fG(n) =

∞∑
k=0

(
g(k + a)− g(k + n+ 1)

)
(6.1.6)

Proof. Follows immediately by Theorem 6.1.1.

As discussed earlier, because a simple finite sum is asymptotically linear in any bounded
region W , we can push W to infinity such that the simple finite sum becomes exactly
linear. In such case, we know that

∑s+W
k=s g(k)→ (W + 1) g(s) for any fixed 0 ≤W <∞.

This provides a convenient method of evaluating fractional sums. To evaluate simple
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finite sums of the form
∑n

k=a g(k), for n ∈ C, we use the backward recurrence relation
f(n−1) = f(n)−g(n). Theorem 6.1.1 shows that such approach yields the unique natural
generalization to simple finite sums as defined by Summability Calculus. Of course, since
Summability Calculus on simple finite sums was built to exploit such semi-linear property
of simple finite sums, we expect both approaches to be equivalent, which is indeed the
case. We will illustrate the statement of Theorem 6.1.1 using three examples.

First, we will start with the log-factorial function $(n) =
∑n

k=1 log k . Because log n
is nearly-convergent, we use Theorem 6.1.1, which yields:

log n! = lim
s→∞

{
n log s+

s∑
k=0

log
( k + 1

k + n+ 1

)
= lim

s→∞

{
n

s∑
k=1

log
(
1 +

1

k

)
+

s∑
k=0

log
( k + 1

k + n+ 1

)
= − log (1 + n) +

∞∑
k=1

log
((

1 +
1

k

)n k + 1

k + n+ 1

)
Here, we used the fact that lims→∞ log (1 + 1

s ) = 0. Therefore, we have:

n! =

∞∏
k=1

(
1 +

1

k

)n k

k + n
(6.1.7)

Eq 6.1.7 is the famous Euler infinite product formula for the factorial function. In
addition, we know by Theorem 6.1.1 that Eq 6.1.7 is an alternative definition of Γ(n+ 1),
where Γ is the Gamma function because the log-Gamma function is the unique natural
generalization of the log-factorial function as proved earlier in Lemma 2.4.1.

Our second example is the harmonic sum
∑n

k=1
1
k . Using Corollary 6.1.1, we immedi-

ately have the well-known expression in Eq 6.1.8. Of course, the expression in Eq 6.1.8 is
simple to prove for all n ∈ N but we reiterate here that Theorem 6.1.1 shows it actually
holds for all n ∈ C.

n∑
k=1

1

k
=

∞∑
1

(1

k
− 1

k + n

)
=

∞∑
k=1

n

k(k + n)
(6.1.8)

Our third and last example is the sum of square roots function
∑n

k=1

√
k. Previously,

we derived its series expansion in Eq 2.6.5 whose radius of convergence was |n| ≤ 1. In
Section 4.2.2, we used the summability method Ξ to evaluate the Taylor series expansion
in a larger region over the complex plane C. Now, we use Theorem 6.1.1 to evaluate the
function for all n ∈ C. The sum of square roots function is plotted in Figure 6.1. The
values highlighted in green are evaluated by definition. Clearly, the function that results
from applying Theorem 6.1.1 to the sum of square roots function

∑n
k=1

√
k correctly

interpolates the discrete points as expected 1.

1Here, however, it appears that the function
∑n
k=1

√
k becomes complex-valued for n < −1
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Figure 6.1: The function
∑n

k=1

√
k evaluated using Theorem 6.1.1. Values highlighted in

green are exact and are evaluated directly by definition.

6.2 Evaluating Arbitrary Simple Finite Sums

To evaluate arbitrary simple finite sums, we extend results of the previous chapter as the
following theorem shows.

Theorem 6.2.1. Given a simple finite sum of the form f(n) =
∑n

k=a g(k), then f(n) for
all n ∈ C is formally given by:

f(n) =

∞∑
r=0

br(n)− br(a− 1)

r!
g(r)(s) +

s∑
k=0

g(k + a)− g(k + n+ 1) (6.2.1)

Here, Eq 6.2.1 holds formally for any value s, where br(n) =
∑n+1

k=1 k
r, i.e. a polynomial

given by the Bernoulli-Faulhaber formulaa. In the special case where g(s) is asymptotically
of finite differentiation order m, i.e. g(m+1)(s) → 0 as s → ∞, then f(n) can also be
computed using the following limiting expression:

f(n) = lim
s→∞

{ m∑
r=0

br(n)− br(a− 1)

r!
g(r)(s) +

s∑
k=0

g(k + a)− g(k + n+ 1)
}

(6.2.2)

Proof. Again, the proof consists of three parts.

To show that the initial condition holds is straightforward. Plugging n = a−1 into Eq
6.2.1 yields f(a − 1) = 0. To show that the recurrence identity holds, we note, as stated
in the theorem, that the expression is formal so we will ignore the issue of convergence.
Thus, starting from Eq 6.2.1, we have:

f(n)− f(n− 1) =
( ∞∑
r=0

g(r)(s)

r!
(n+ 1)r

)
+ g(n)− g(n+ s+ 1) (6.2.3)
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The first term is a Taylor series expansion and it is formally equal to g(n + s + 1).
Consequently, we indeed have:

f(n)− f(n− 1) = g(n) (6.2.4)

So, the recurrence identity holds formally. Finally, to show that f(n) given by Eq 6.2.1
is identical to the unique natural generalization implied by Summability Calculus, we
differentiate both sides of Eq 6.2.1, which yields:

f ′(n) =
∞∑
r=0

b′r(n)

r!
g(r)(s)−

s∑
k=0

g′(k + n+ a) (6.2.5)

Upon rearranging the terms, we have:

f ′(n) =
n∑
k=a

g′(k) +
[ ∞∑
r=0

b′r(n)

r!
g(r)(s)−

s+n+1∑
k=a

g′(k)
]

(6.2.6)

Comparing last equation with Rule 1 of Table 2.1 reveals that the term in square brackets
must be independent of n. Therefore, we select n = −1, which yields:

f ′(n) =
n∑
k=a

g′(k) +
[ ∞∑
r=0

Br
r!
g(r)(s)−

s∑
k=a

g′(k)
]

(6.2.7)

Here, Br are Bernoulli numbers. However, Eq 6.2.7 is identical to Theorem 2.5.1. There-
fore, f(n) given by Eq 6.2.1 is indeed the unique natural generalization implied by Summa-
bility Calculus.

One example of Theorem 6.2.1 is the hyperfactorial function H(n) =
∏n
k=1 k

k. Apply-
ing Theorem 6.2.1 to logH(n) yields the Euler-like infinite product formula:

n∏
k=1

kk = 4 en(n−1)/2−1
∞∏
k=2

(k − 1)n (1− 1
k )−k(n−2)−n(n−1)/2 (k + 1)k+1

k(k − 1)(k + n− 1)k+n−1
(6.2.8)

For example, setting n = 0 in the the last equation yields:

∞∏
k=2

(1 +
1

k
)(1− 1

k2
)k =

e

4
(6.2.9)

Similarly, applying Theorem 6.2.1 to the superfactorial function S(n) =
∏n
k=1 k! yields

Eq 6.2.10. Note that the same expression can be alternatively derived using Euler’s infinite
product formula for the factorial function.

n∏
k=1

k! =

∞∏
k=1

(
1 +

1

k

)n(n+1)/2
kn

k!

Γ(k + n+ 1)
(6.2.10)
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One immediate consequence of Eq 6.2.10 is given by:

S′(0)

S(0)
=
∞∑
k=1

( log k + log (k + 1)

2
+ λ−Hk

)
(6.2.11)

Using the series expansion for the log-superfactorial function that was derived earlier
in Eq 2.6.21, we have:

∞∑
k=1

( log k + log (k + 1)

2
+ λ−Hk

)
=

log (2π) − 1

2
− λ (6.2.12)

Eq 6.2.12 shows that the harmonic number Hn converges to the average (log k +
log (k + 1))/2 much faster than its convergence to log n. This is clearly shown in the fact
that the sum of all approximation errors given by the earlier equation converges whereas
the sum

∑∞
k=1(log k + λ−Hk) diverges. Note that, by contrast, we have Eq 5.1.35.

If g(n) is asymptotically of a finite differentiation order m, we can use Eq 6.2.2.

However, adding more terms to the sum
∑m

r=0
br(n)−br(a−1)

r! g(r)(s) improves convergence
speed. For example, if we return to the factorial function and choose m = 1, we obtain:

log n! = lim
s→∞

{
n log s+

n2 + 3n

2s
+

s+1∑
k=1

log
k

k + n

}
(6.2.13)

By contrast, Euler’s infinite product formula omits the term n2+3n
2s . So, if we wish to

compute a value such as Γ(π + 1), and choose s = 104, we obtain numerically the two
estimates Γ(π + 1) ≈ 1.9715 and Γ(π + 1) ≈ 1.9724, which correspond to choosing m = 0
and m = 1 respectively. Here, the approximation error is 9× 10−4 if m = 0 but it is less
than 1.6×10−7 if we use m = 1. So, indeed, the formal expression in Theorem 6.2.1 yields
a method of improving convergence speed.

Before we conclude this section, it is worth pointing out that Theorem 6.2.1 indicates
that the Euler-Maclaurin summation formula is indeed closely related to Taylor’s theorem.
In fact, the expression in Eq 6.2.1 resembles Taylor series expansions, and we do obtain
a Taylor series by simply subtracting f(n − 1) from f(n). It should not be surprising,
therefore, to note that analytic summability methods that are consistent with the T defi-
nition of infinite sums can work reasonably well even with the Euler-Maclaurin summation
formula. We have already illustrated this in Table 4.1, in which we showed that the sum∑∞

r=0Br is nearly summable using Ξ. In particular, using Ξ with small n yields reasonably
accurate figures, and accuracy improves as we increase n until we reach about n = 35,
after which the error begins to increase. This is also true for the sum

∑∞
r=1

Br
r , which is

formally equivalent to Euler’s constant λ as discussed earlier.

Such close correspondence between the Euler-Maclaurin summation formula and Tay-
lor series expansion also shows that the Euler-Maclaurin formula is an asymptotic expan-
sion. Here, if g(n) is asymptotically of a finite differentiation order m, then by Taylor’s
theorem:

lim
n→∞

{
g(n+ h)− g(n)−

m∑
r=1

g(r)(n)

r!
hr} = 0 (6.2.14)
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Eq 6.2.14 is easily established upon using, for example, the Lagrange remainder form.
Now, looking into Eq 6.2.2, we see that the expression indeed satisfies initial condition
and recurrence identity by referring to the earlier equation 6.2.14. Consequently, if g(n)
is asymptotically of a finite differentiation order m, we have by differentiating both sides
of Eq 6.2.2 the following result:

lim
n→∞

{ d

dn

n∑
k=a

g(k)−
m∑
r=0

Br
r!
g(r)(n)

}
= 0 (6.2.15)

Last equation was the basis of many identities derived in Section 2.5. This is a simple
informal justification as to why the Euler-Maclaurin summation formula is more correctly
interpreted as an asymptotic series expansion.

Finally, in Section 2.3, we proved that Summability Calculus yields unique most natural
generalization for semi-linear simple finite sums by reducing argument for unique natural
generalization to the case of linear fitting since all semi-linear simple finite sums are
asymptotically linear in bounded regions. Here, we can see that for the general case
of simple finite sums, Summability Calculus yields unique natural generalization as well
because it implicitly uses polynomial fitting. Because polynomial fitting is the simplest
generalization if it can correctly interpolate discrete points, and given lack of additional
special requirements, it is indeed the unique most natural generalization. So, where does
polynomial fitting show up in Summability Calculus?

To answer the question, we return to Theorem 6.2.1. In the proof of Eq 6.2.1, we note
that the crucial property of the functions br(x) that make fG(n) satisfy initial conditions
and recurrence identity is the condition br(x) − br(x − 1) = (x + 1)r. However, it is
obvious that an infinite number of functions br(x) exist that can satisfy such condition.
Nevertheless, because the only condition required happens to be satisfied by the Bernoulli-
Faulhaber formula, which is the unique polynomial solution to the required condition,
defining br(x) =

∑x+1
k=0 k

r for fractional x by the Bernoulli-Faulhaber formula is equivalent
to polynomial fitting. Such choice of generalization coincides with the Euler-Maclaurin
summation formula as proved in Theorem 6.2.1. Consequently, the argument for unique
natural generalization in Summability Calculus, in the general case, is reduced to the
argument of polynomial fitting.

6.3 Evaluating Oscillating Simple Finite Sums

In Chapter 2, we showed that a simple finite sum is formally given by the Euler-Maclaurin
summation formula. In addition, we showed that simple finite sums of the form

∑n
k=a g(k)

in which g(n) is asymptotically of a finite differentiation order are easier to work with.
For instance, instead of evaluating the entire Euler-Maclaurin summation formula, we can
exploit the fact that g(n) is asymptotically of a finite differentiation order and use Eq
2.5.24 instead if we wish to compute the derivative. Similarly, such advantage shows up
again in Section 6.2 as stated in Eq 6.2.2.

On the other hand, if g(k) is oscillating, i.e. of the form g(k) = sk z(k), where sk is an
arbitrary non-constant periodic sign sequence, then g(k) is not asymptotically of a finite
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differentiation order. Nevertheless, if z(k) is, then we can use the Euler-like summation
formula for alternating sums to exploit such advantage as well. In fact, this was the
main motivation behind introducing such Euler-like family of summations, which allowed
us to easily perform infinitesimal calculus and deduce asymptotic behavior as was done
repeatedly throughout Chapter 5.

The objective of this section is to present the analog of Theorem 6.2.1 for oscillating
simple finite sums. Similar to earlier results, this will provide us with a much simpler
method of handling such sums. Because each function

∑n
k=a sk z(k), where sk is periodic

with period p, can be decomposed into a sum of a finite number of functions of the form∑n
k=a e

iθkz(k) , as shown in Corollary 5.2.2, we will focus on the latter class of functions.

Again, the first component given by
(

1
p

∑a+p−1
k=a sk

)∑n
k=a g(k) is evaluated using Theorem

6.2.1 but all other components in which θ 6= 0 are evaluated using the following Theorem.

Theorem 6.3.1. Given a simple finite sum of the form f(n) =
∑n

k=a e
iθkg(k), then its

unique natural generalization fG(n) for all n ∈ C s formally given by Eq 6.3.1, which holds
for all s.

fG(n) = eiθs
∞∑
r=0

Ωr(n)− Ωr(a− 1)

r!
g(r)(s)+

s∑
k=0

eiθ(k+a) g(k+a)−eiθ(k+n+1) g(k+n+1) (6.3.1)

Here, Ωr(n) =
∑n+1

k=1 e
iθk kr, i.e. an “oscillating polynomial”. It is closed-form is given by

Eq 6.3.5 below.

Proof. The proof that initial condition and recurrence identity hold is straightforward
and is similar to the proof of Theorem 6.2.1. To show that it is indeed the unique natural
generalization implied by Summability Calculus, we differentiate both sides, which yields:

f ′(n) = eiθs
∞∑
r=0

Ω′r(n)

r!
g(r)(s)−

s∑
k=0

d

dn

(
eiθ(k+n+1) g(k + n+ 1)

)
(6.3.2)

Upon rearranging the terms:

f ′(n) =
n∑
k=a

d

dk

(
eiθk g(k)

)
+
[
eiθs

∞∑
r=0

Ω′r(n)

r!
g(r)(s)−

s+n+1∑
k=a

d

dk

(
eiθk g(k)

)]
(6.3.3)

Again, comparing last equation with the differentiation rule of simple finite sums, i.e. Rule
1, we see that the second term must be independent of n. Therefore, choosing n = −1
yields:

f ′(n) =

n∑
k=a

d

dk

(
eiθk g(k)

)
+
[
eiθs

∞∑
r=0

Ω′r(−1)

r!
g(r)(s)−

s∑
k=a

d

dk

(
eiθk g(k)

)]
(6.3.4)

Using Theorem 5.1.3, we note that:

Ωr(n) = Θr − eiθ(n+1)
r∑

m=0

(
r

m

)
Θm (n+ 1)r−m (6.3.5)



CHAPTER 6. DIRECT EVALUATION OF FINITE SUMS 113

Thus, Eq 6.3.4 can be rewritten as:

f ′(n) =

n∑
k=a

d

dk

(
eiθk g(k)

)
−
∞∑
r=0

Θr

r!

d

ds
(eiθs g(r)(s))−

s∑
k=a

d

dk

(
eiθk g(k)

)
(6.3.6)

Comparing this with Rule 1 reveals that:

f ′(n) = −
∞∑
r=0

Θr

r!

d

ds
(eiθs g(r)(s)) (6.3.7)

However, this is exactly what Theorem 5.1.3 states. Therefore, the function f(n) given by
Eq 6.3.1 is indeed the unique natural generalization fG(n) to the simple oscillating finite
sum.

As an example to Theorem 6.3.1, suppose we would like to evaluate the alternating sim-

ple finite sum
∑ 1

2
k=1(−1)k log k. Because g(n) is asymptotically of a finite differentiation

order zero, we have:
1
2∑

k=1

(−1)k log k = lim
s→∞

{
(−1)s(Ω0(

1

2
)−Ω0(0)) log s+

s∑
k=1

(−1)k log k−(−1)k+
1
2 log (k +

1

2
)
}

(6.3.8)

However, by know by definition that Ω0(x) =
∑x+1

k=1(−1)k = −1
2((−1)x + 1). Thus, we

have:
1
2∑

k=1

(−1)k log k = lim
s→∞

{
(−1)s

1− i
2

log s+
s∑

k=1

(−1)k log k−(−1)k+ 1
2 log (k +

1

2
)
}

(6.3.9)

Finally, this approach yields the value
∑ 1

2
k=1(−1)k log k ≈ 0.2258 + i 0.0450. This is

indeed correct as will be verified shortly. Here, the real part is given by (log π − log 2)/2.

Whereas Theorem 6.3.1 is occasionally useful, it is often easier in practice to work with
the analytic summability identity

∑n
k=a e

iθk g(k) =
∑∞

k=a e
iθk g(k) −

∑∞
k=n+1 e

iθk g(k),
where all infinite sums are interpreted using the T definition. For example, suppose we

would like to evaluate
∑ 1

2
k=0(−1)k k directly, then we have:

1
2∑

k=0

(−1)k k =

∞∑
k=0

(−1)k k−
∞∑
k= 3

2

eiπk k =

∞∑
k=1

(−1)k k− i
∞∑
k=1

(−1)k(k +
1

2
) = −1

4
+ i

1

2
(6.3.10)

A second example would be the finite sum
∑ 1

2
k=1(−1)k log k addressed above. We can

evaluate this expression directly using the analytic summability approach, which yields:
1
2∑

k=1

(−1)k log k =
∞∑
k=1

(−1)k log k − i
∞∑
k= 3

2

(−1)k−
1
2 log k

=
log π − log 2

2
+ i
(

log
3

2
− log

5

2
+ log

7

2
− · · ·

)
=

log π − log 2

2
+ i
(

log 3− log 5 + log 7− · · ·
)
− i log 2

2
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Now, we evaluate the sum (log 3 − log 5 + log 7 − · · ·
)

using an analytic summability
method such as Ξ, which yields a value of 0.3916. Plugging this into last equation yields
the desired result, which is also given by 0.2258 + i 0.0450. This is indeed identical to
the value derived earlier by direct application of Theorem 6.3.1. Of course, we can also
calculate the same value by direct application of the summability method Ξ to the two
infinite sums

∑∞
k=1(−1)k log k and

∑∞
k= 3

2
(−1)k−

1
2 log k, which yields the same final result.

6.4 Evaluating Convoluted Finite Sums

Former analysis can be generalized readily to the case of convoluted finite sums. We
present the final results herein and omit the proofs to avoid repetitiveness. In general, the
proofs are very similar to the proofs of earlier theorems.

Theorem 6.4.1. Given a convoluted finite sum of the form
∑n

k=a e
iθk g(k, n) for any θ ∈ R,

then its unique natural generalization is given formally by:

fG(n) = eiθs
∞∑
r=0

Ωr(n)− Ωr(a− 1)

r!

∂r

∂sr
g(s, n)+

s∑
k=0

eiθ(k+a)g(k+a, n)−eiθ(k+n)g(k+n+1, n)

(6.4.1)

If g(k, n) is asymptotically of a finite differentiation order m with respect to the
iteration variable k, then the infinite sum can be evaluated up to m only and the overall
expression is taken as a limiting expression where s tends to infinity. This is similar to
earlier statements. In addition, if θ = 2πn for some n ∈ N, then Ωr(x) = br(x), where the
functions br are defined in Theorem 6.2.1.

Proof. Similar to the proofs of earlier theorems. However, we note here that no recurrence
identity holds so the proof consists of two parts: (1) showing that the initial condition
holds, and (2) showing that the derivative of the expression in Eq 6.4.1 is identical to
the derivative of the unique most natural generalizations given in Chapter 3 and Chapter
5.

Theorem 6.4.1 generalizes earlier results of this chapter to the broader class of con-
voluted sums. For example, suppose we wish to evaluate the convoluted finite sum∑n

k=1 log (1 + k
n). Since g(k, n) is asymptotically of a finite differentiation order zero with

respect to k, we can evaluate fG(n) for all n ∈ C using the following expression:

fG(n) = lim
s→∞

{
n log (1 +

s

n
) +

s∑
k=0

[
log (1 +

k + 1

n
)− log (2 +

k + 1

2
)
]}

(6.4.2)

For example, if n = 2, Eq 6.4.2 evaluates to 1.0986, which we know is correct because
fG(2) = log 3. In general, we know in this particular example that fG(n) = log (2n)! −
log n! − n log n. Therefore, we can also test Eq 6.4.2 for fractional values of n. For
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instance, if n = 1
2 , then Eq 6.4.2 evaluates to 0.4674, which is also correct because fG(1

2) =
log 2−log

√
π

2 .

A second example would be the convoluted finite sum 1
n

∑n
k=1 k

1
n . Because limn→∞ n

1
n =

1, we expect fG(n) → 1 as n → ∞. In addition, g(k) = k
1
n is asymptotically of a finite

differentiation order zero if n > 1 so the convoluted sum can be evaluated using:

1

n

n∑
k=1

k
1
n = lim

s→∞
s

1
n +

1

n

s+1∑
k=1

k
1
n − (k + n)

1
n if n > 1 (6.4.3)

The function is plotted in Figure 6.2. In same figure, exact values of f(n) for n ∈ N are
indicated as well in green. Clearly, despite the apparent complexity of the convoluted
finite sum, it is indeed a simple function to compute for n ∈ C. In addition, we have
fG(n)→ 1 when n→∞ as expected.
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Figure 6.2: The generalized definition of the convoluted finite sum fG(n) = 1
n

∑n
k=1 k

1
n

plotted against n > 1 using Theorem 6.4.1.

6.5 Summary of Results

In this chapter, we presented a simple direct method for evaluating simple and convoluted
finite sums. Whereas earlier analysis shows that Summability Calculus yields an elemen-
tary framework for handling finite sums such as performing infinitesimal calculus, deducing
asymptotic expressions, as well as summing divergent series, all within a single coherent
framework, the results of this chapter reveal that even the task of evaluating convoluted
finite sums of the general form

∑n
k=a sk g(k, n) for n ∈ C, where sk is an arbitrary periodic
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sign sequence, is straightforward as well. It is also shown that such method yields the same
unique natural generalization that Summability Calculus implicitly operates on, and that
uniqueness of natural generalization in Summability Calculus arises out of polynomial
fitting. This is clearly a generalization to the earlier statement of linear fitting for semi-
linear simple finite sums in Section 2.3. In the following chapter, we expand results even
more using the Calculus of Finite Differences, in which equivalent alternative results can
be expressed using finite differences as opposed to infinitesimal derivatives.



Chapter 7

Summability Calculus and Finite
Differences

What nature demands from us is
not a quantum theory or a wave
theory; rather, nature demands
from us a synthesis of these two
views.

Albert Einstein (1879 – 1955)

In Chapter 2 we stated that the unique natural generalization of finite sums must be
inferred using information that is known to be correct with certainty. For example, using
the differentiation rule of simple finite sums f(n) =

∑n
k=a g(k), we know with certainty

that f
(r)
G (n)−f (r)

G (n−1) = g(r)(n) holds for the unique most natural generalization fG(n)
so we used this fact to derive the Euler-Maclaurin summation formula, which was, in
turn, generalized to convoluted finite sums as well as oscillating convoluted finite sums in
Chapters 3 and 5 respectively.

Nevertheless, there is also additional information that is known to be correct with
certainty, which is the discrete values of finite sums

∑n
k=a g(k) for (n−a) ∈ N. Of course,

this information was also repeatedly used throughout earlier analysis but a valid question
that arises is whether relying on this information solely is sufficient to deduce unique
natural generalization. The answer to the latter question is in the negative as the simple
counter example

∑n
k=0 sin (πk) clearly illustrates. Here, f(n) = 0 for all n ∈ N but the

correct natural generalization is not the zero function since the zero function does not
satisfy the recurrence identity f(n)−f(n−1) = sin (πn) for all n ∈ C. Nevertheless, there
are, in fact, common finite sums whose discrete samples are sufficient to deduce unique
natural generalization such as the power sum function

∑n
k=1 k

s. So, why is it that discrete
samples of the latter function carry complete information about global behavior whereas
discrete samples of the former function do not? And if discrete samples are sufficient, can
we use them to perform infinitesimal calculus? Answering these questions brings us to the
well-known subjects of the Sampling Theorem and the Calculus of Finite Differences.

117
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In this chapter, we will use Summability Calculus to prove some of most foundational
results in the Calculus of Finite Differences, and show how to perform infinitesimal calculus
using discrete samples. Using such results, we will present the analog of all summation
formulas presented throughout previous chapters using the language of finite differences
as opposed to infinitesimal derivatives. For example, we will re-establish the well-known
result that the analog of the Euler-Maclaurin summation formula for discrete functions
is given by Gregory quadrature formula. In addition, we will show that Summability
Calculus presents a simple geometric proof to the well-known Shannon-Nyquist Sampling
Theorem, and even prove a stronger statement, which we will call the Half Sampling
Theorem. Moreover, we will use these results to deduce Newton’s interpolation formula
and show that it is intimately tied to the summability method Ξ of Claim 4.2.1. All
of these results will, in turn, be used to deduce many interesting identities related to
fundamental constants such as π, e, and Euler’s constant λ.

7.1 Summability Calculus and the Calculus of Finite Dif-
ferences

Our starting point into the Calculus of Finite Differences is to revisit the differentiation
rule of simple finite sums given by Corollary 2.5.1, a special case of which is written here
in Eq 7.1.1. Here, ∇ stands for the backward difference operator and B1 = 1/2. It
is straightforward to express Eq 7.1.1 using the forward difference operator ∆, which is
given by the exact same expression in Eq 7.1.2 except that we now have B1 = −1/2.

f ′(n) =

∞∑
r=0

Br
r!
∇f (r)(n) , B1 =

1

2
(7.1.1)

f ′(n) =

∞∑
r=0

Br
r!

∆f (r)(n) , B1 = −1

2
(7.1.2)

Now, we note that ∆(p)f (m)(n) can also be expressed using the exact same expression,
namely:

∆pf (m)(n) =

∞∑
r=0

Br
r!

∆p+1f (m+r−1)(n) , B1 = −1

2
(7.1.3)

We also note in Eq 7.1.3 that ∆f (r−1)(n) is used while evaluating ∆f (r)(n) . However,
∆f (r−2)(n) is, in turn, used in evaluating ∆f (r−1)(n) and so on. Therefore, it is possible to
express the derivative f ′(n) formally using solely higher order differences ∆pf(n). Tracing
this operation term-by-term, suggests the following expression for the derivative:

f ′(n) =
B0

0!
∆f(n) +

(B1

1!

B0

0!

)
∆2f(n) +

(B1

1!

B1

1!

B0

0!
+
B2

2!

B0

0!

B0

0!

)
∆3f(n) · · · (7.1.4)

=
∆f(n)

1
− ∆2f(n)

2
+

∆3f(n)

3
− · · · (7.1.5)
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Eq 7.1.5 is well-known in the Calculus of Finite Differences (see for instance [25]).
Upon making the substitution n = hx, for a small step size h, we arrive at a method of
obtaining higher order approximations to first derivative that is given by Eq 7.1.6. Here,
∆h = f(x+ h)− f(x), and ∆p

h = ∆h∆p−1
h . Note that in such notation, both the function

f and the independent variable x are semantically identical for all symbols, hence they
can be omitted.

f ′(x) =
1

h

(∆h

1
−

∆2
h

2
+

∆3
h

3
−

∆4
h

4
+ · · ·

)
(7.1.6)

Now, Eq 7.1.6 can be used to obtain a similar expression for the second derivative f (2)(x):

f (2)(x) =
1

h

(∆hf
′(x)

1
−

∆2
hf
′(x)

2
+

∆3
hf
′(x)

3
−

∆4
hf
′(x)

4
+ · · ·

)
(7.1.7)

Plugging the expression Eq 7.1.6 into Eq 7.1.7, we arrive at:

f (2)(x) =
1

h2

(
∆2
h −∆3

h +
11

12
∆4
h −

5

6
∆5
h + · · ·

)
(7.1.8)

Upon close inspection of the process used in the previous equation, we note that
the coefficients in the second derivative are simply given by the series expansion of the
function log2 x because composition behaves exactly as if it were algebraic multiplication.
In general, we have the formal expression given in Eq 7.1.9. Here, the notation logr(I+∆h)
means that the series expansion of the function logr(1 + x) is to be applied formally on
the forward difference operator ∆h. In addition, I stands for the unity symbol, which is
semantically given by I = D0 = I0 = f(x).

f (r)(x) = Dr =
logr (I + ∆h)

hr
(7.1.9)

So, using Eq 7.1.9, we have a simple method for obtaining higher-order approximations to
infinitesimal derivatives. It also readily yields the Cauchy definition of derivatives since
we have Dr = logr (I+∆h)

hr = limh→0{ logr (I+∆h)
hr } = limh→0

{
∆r
h/h

r
}

.

Now, because the unity symbol I is semantically the same with respect to both the
differentiation operator D and the forward difference operator ∆, taking the composition
of both sides of Eq 7.1.9 with respect to a function z is valid. In other words, we have that
for any function z, Eq 7.1.10 holds. As will be shown shortly, Eq 7.1.10 is a very incredible
equation that summarizes almost all foundational results in calculus. Here, however, it is
crucial to keep in mind that both sides of Eq 7.1.10 are to be interpreted formally using
Taylor series expansions.

z
(
hrDr

)
= z
(

logr (I + ∆h)
)

(7.1.10)

Choosing difference functions z yield new identities. For example, if z(x) = ex and
r = 1, then we have:

ehD = I + ∆h = f(x+ h) (7.1.11)
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Eq 7.1.11 is basically a restatement of Taylor’s theorem. However, we could have also
selected r = 2, which yields:

eh
2D2

= (I + ∆h)log (I+∆h) (7.1.12)

Now, in order to make sense out of the last equation, we apply Taylor series expansion
formally on both sides, which yields Eq 7.1.13. Eq 7.1.13 can be confirmed numerically
quite readily.

I +
h2D2

1!
+
h4D4

2!
+
h6D6

3!
+ · · · = I + ∆2

h −∆3
h +

17

4
∆4
h −

11

6
∆5
h + · · · (7.1.13)

So far, we have shown that Eq 7.1.10 generalizes the definition of higher-order deriva-
tives and provides Taylor’s theorem as well. Not surprisingly, there is much more to this
equation. For instance, if we wish to find the anti-derivative, we select r = −1 in Eq 7.1.9,
which yields:

D−1 =
h

log (I + ∆h)
= h

(
∆−1
h +

1

2
∆0
h −

1

12
∆1
h +

1

24
∆2
h + · · ·

)
(7.1.14)

Eq 7.1.14 generalizes the classical definition of anti-derivatives. We will return to it in
the following section when we discuss Gregory’s quadrature formula. Moreover, from Eq
7.1.11 we have:

(I + ∆h)α = eαhD = f(x+ αh) (7.1.15)

Eq 7.1.15 is a concise statement of Newton’s interpolation formula. To see this, we select
α = x−x0

h , which yields by the binomial theorem:

f(x) = f(x) +
∆h

1!

(x− x0

h

)
+

∆2
h

2!

(x− x0

h

)(x− x0

h
− 1
)

+ · · · (7.1.16)

Now, if we denote n = x−x0
h , where h is chosen such that n is an integer, then Newton’s

interpolation formula in Eq 7.1.16 can be rewritten as:

f(x) =
n∑
j=0

χn(j)
∆j
h

hj
(x− x0)j

j!
(7.1.17)

Interestingly, the function χn(j) shows up again. It is important to note that Eq 7.1.17
is an exact expression that holds for all n ∈ N, where again the sampling interval h is
selected such that n is an integer. Choosing h arbitrarily small yields Eq 7.1.18. Note
here that Newton’s interpolation formula given by Eq 7.1.18 is the discrete mirror of the
summability method Ξ of Claim 4.2.1, where infinitesimal derivatives f (j)(x0) are replaced
with their approximations ∆j

h/h
j , thus bridging the two results.

f(x) = lim
n→∞

{ n∑
j=0

χn(j)
∆j
h

hj
(x− x0)j

j!

}
(7.1.18)
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So far, we have derived a generalized definition of derivatives and anti-derivatives
as well as Newton’s interpolation formula, which respectively are the discrete analog
of differentiation, integration, and computing Taylor series expansion in infinitesimal
calculus. Before we start applying these results, we need to return to the expression given
by Eq 7.1.9, which was the building block of all subsequent analysis. In this equation, the
well-known pitfall with undersampling clearly arises. For example, if f(x) = sinπx, and
h = 1, then ∆j

h = 0 and the right-hand side of Eq 7.1.9 evaluates to the zero function
even though the correct derivative is not. This arises because the simplest function that
interpolates the samples f(k) = 0 is itself the zero function so the Calculus of Finite
Differences basically operates on the simplest of all possible generalizations. Thus, our
goal is to know for which sampling interval h does Eq 7.1.9 hold? The answer is given by
the following theorem.

Theorem 7.1.1. Given a bandlimited function f(x) with bandwidthB that is analytic over
the domain [x,∞), and if the sampling interval h satisfies the Nyquist criteria h < 1

2B , then

the T definition of the infinite sum 1
h

∑∞
j=0(−1)j

∆j
h
j is given by the function’s derivative

f ′(x). In general, Eq 7.1.9 holds, where the right-hand infinite sum is interpreted using
the generalized definition T. The strict inequality in the Nyquist criteria can be relaxed
to an inequality h ≤ 1

2B if the function f(x) has no bandwidth components at frequency
w = B.

Proof. Let the Fourier transform of the function f(x) be denoted F{f} = F(w). Also, let
cr,j be the coefficients of the series expansion of the function logr (1 + x). For example,

we have c1,j = (−1)j+1

j . As defined earlier, let ξδ(j) be a function chosen such that the

summability method limδ→0

{∑∞
j=0 ξδ(j)aj

}
correctly sums any analytic function in its

Mittag-Leffler star. For example, we have ξδ(j) = j−δj in Lindelöf summability method.
Then, we have:

F
{

lim
δ→0

{1

h

∞∑
j=0

ξδ(j) cr,j ∆j
h

}}
=

1

h
lim
δ→0

{ ∞∑
j=0

ξδ(j) cr,j F{∆j
h}
}

(7.1.19)

However, if F{f} = F(w), then we know that F{∆j
h} = F(w) (eiwh − 1)j . Plugging this

into the earlier equation Eq 7.1.19 yields:

F
{

lim
δ→0

{1

h

∞∑
j=0

ξδ(j) cr,j ∆j
h

}}
=

F(w)

h
lim
δ→0

{ ∞∑
j=0

ξδ(j) cr,j (eiwh − 1)j
}

(7.1.20)

Because the summability method correctly sums any function in its Mittag-Leffler star,
then we know that Eq 7.1.21 holds as long as the line segment [1, eiwh] over the complex
plane C does not pass through the origin.

lim
δ→0

{ ∞∑
j=0

ξδ(j) cr,j (eiwh − 1)j
}

= logr(eiwh) = (iwh)r (7.1.21)
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Because F(w) = 0 for all |w| > B, we need to guarantee that the line segment [1, eiwh] does
not pass through the origin for all |w| ≤ B. However, to guarantee that such condition
holds, the sampling interval h has to satisfy the Nyquist criteria h < 1

2B . Geometrically,
eiwh forms an arc when parameterized by w and this arc forms a half-circle that passes
through the origin at w = B if h = 1

2B . Selecting h < 1
2B ensures that the arc never

forms a half-circle for all |w| ≤ B, and that the line segment [1, eiwh] does not pass the
singularity point at the origin.

Therefore, if f(x) is bandlimited with bandwidth B and if h < 1
2B , then the Fourier

transform of the right-hand side of Eq 7.1.9 evaluates to (iw)rF(w), which is also the
Fourier transform of f ′(x). Since the Fourier transform is invertible, both sides of Eq
7.1.9 must be equivalent under stated conditions, when interpreted using the generalized
definition T.

In order to see why the generalized definition T is important, we start from Eq 7.1.10
and apply the function z(x) = 1

x to both sides, which yields:

1

I + ∆h
= e−hD (7.1.22)

If f(x) = ex and h = log 2, then for x = 0 the left-hand side evaluates to:

1

I + ∆h
= I −∆h + ∆2

h −∆3
h + · · · = 1− 1 + 1− 1 + 1− · · · (7.1.23)

Of course, this series is divergent but its T value is 1
2 as discussed earlier. On the other

hand, the right-hand side of Eq 7.1.22 evaluates to:

e−hD = I − hD +
h2D2

2!
− h3D3

3!
+ · · · = e− log 2 =

1

2
(7.1.24)

Therefore, both sides agree as expected when interpreted using the generalized definition
of infinite sums T. Theorem 7.1.1 allows us to deduce a stronger statement than the
classical Shannon-Nyquist Sampling Theorem.

Theorem 7.1.2. (The Half Sampling Theorem) Given a bandlimited function f(x)
with bandwidth B that is analytic over a domain (a,∞), then f(x) for a < x <∞ can be
perfectly reconstructed from its discrete samples if:

1. The discrete samples are taken in the interval (a,∞).

2. The sampling rate satisfies the Nyquist criteria.

Proof. By Theorem 7.1.1, if the sampling rate satisfies the conditions of this theorem,
then all higher derivatives f (r)(x0) for some x0 ∈ (a,∞) can be computed exactly. By
rigidity of analytic functions, this is sufficient to reconstruct the entire function in the
domain (a,∞).
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Historically, extensions of the Sampling Theorem have generally focused on two as-
pects:

1. Knowing how our apriori information about the function can reduce required sam-
pling rate. Examples include sampling non-bandlimited signals, which is commonly
referred to as multiresolution or wavelet sampling theorems (see for instance [54]).

2. Knowing how side information that are transmitted along with the discrete samples
can reduce the required sampling rate. For example, whereas the bandwidth of
sin3(2πx) is three-times larger than the bandwidth of sin(2πx), we can transmit
the function sin (2πx) along with some side information telling the receiver that the
function should be cubed. Examples of this type of generalization is discussed in
[65].

In Theorem 7.1.2, on the other hand, it is stated that statement of the Shannon-
Nyquist Sampling Theorem itself can be strengthened. In particular, if f(x) is analytic
over a domain (a,∞), then f(x) can be perfectly reconstructed from its discrete samples
if the sampling rate satisfies conditions of of the theorem. Note that unlike the classical
Shannon-Nyquist Sampling Theorem, which states that samples have to be taken from
−∞ to +∞, this theorem states that only “half” of those samples are sufficient, hence
the name. An illustrative example is depicted in Figure 7.1, where reconstruction is
performed using Newton’s interpolation formula. In the figure, the samples are taken
from the function sin(x) with sampling interval h = 1

2 and starting point x0 = 0. Clearly,
all 5th degree, 10th degree, and 20th degree approximations work extremely well for x ≥ x0

as expected, but even the function’s past can be reconstructed perfectly as higher degree
approximations are used.

While statement of Theorem 7.1.2 does provide the answer we were looking for, it is
unfortunate that the classical definition of Fourier transforms cannot adequately capture
the meaning of bandwidth. For instance, the function log x, which is analytic over the
domain (0,∞) is not Fourier transformable even though it is straightforward to prove that
its bandwidth must, in fact, be equal to zero. To see this, we note here the following two
well-known properties:

1. Adding a constant term to a function does not change its bandwidth. In other words,
if Bf stands for the bandwidth of the function f(x), then B(f + c) = B(f).

2. Rescaling units expands/shrinks bandwidth. In other words, Bf(c x) = cBf for all
c > 0.

Of course, these two properties can be derived immediately using the definition of
Fourier transformation. However, a simpler proof that does not rely on Fourier theory can
also be inferred intuitively upon using the direct correspondence between the notion of
bandwidth and the notion of minimum sampling rate. Here, adding a constant term to a
function is immediately carried over to the discrete samples so the minimum sampling rate
should not be altered by adding a constant term. Similarly, defining f(c x) is equivalent
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Figure 7.1: Newton’s interpolation formula applied to the discretized function f(x) = sinx,
where sampling interval is h = 1

2 .

to rescaling unit of the independent variable x so the minimum sampling rate should be
rescaled by the same proportion. Now, if we apply both properties to the logarithmic
function log x, we have:

B log x = B(log x+ c) = B log (ec x) = ecB log x (7.1.25)

However, because Eq 7.1.25 must hold for all c, we must have B log x = 0. We can verify
this by using Eq 7.1.9. Here, we note that regardless of the length of the sampling interval
h, Eq 7.1.9 seems to hold for the logarithmic function for all r. For instance, choosing
h = 1 and r = 1 yields the identity in Eq 7.1.26; a result that was also proved in [20]. In

[18], the identity is both proved and generalized to e
1
x for x ∈ N using probability theory.

We will present similar other identities at a later section.

e =
(2

1

) 1
1
( 22

1 · 3

) 1
2
(23 · 4

1 · 33

) 1
3
( 24 · 44

1 · 36 · 5

) 1
4 · · · (7.1.26)

7.2 Discrete Analog of the Euler-like Summation Formulas

In this section, we present the discrete analog of the many Euler-like summation formulas
deduced in earlier chapters. Our starting point is Eq 7.1.14, which extends the classical
Riemann sum and presents higher degree approximations to integrals. Choosing h =
1 yields Gregory’s quadrature formula given by Eq 7.2.1. Here, the constants Gr =
{1, 1

2 ,−
1
12 ,

1
24 ,−

19
720 ,

3
160 , · · · } are called Gregory coefficients (OEIS A002206 (numerators)
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and A002207 (denominators)[46, 45]).

n∑
k=a

g(k) =

∫ n

a
g(t) dt+

g(n) + g(a)

2
−
∞∑
r=2

Gr
[
∆r−1g(n)−∆r−1g(a)

]
(7.2.1)

Many methods exist for computing Gregory coefficients. One convenient recursive formula
is given by [46, 27]:

Gn =
(−1)n+1

n+ 1
−
n−1∑
k=1

(−1)k
Gn−k
k + 1

, G0 = 1 (7.2.2)

Clearly, Gregory’s formula is analogous to the Euler-Maclaurin summation formula
where finite differences replace infinitesimal derivatives. To deduce the analog of remaining
Euler-like summation formulas, we note again that the discrete analog of Taylor’s series
expansion is given by Newton’s interpolation formula:

f(x) = f(x0) +
∆

1!
(x− x0)1 +

∆2

2!
(x− x0)2 +

∆3

3!
(x− x0)3 + · · · (7.2.3)

Here, ∆ = f(x0 +1)−f(x0) and (z)n is the falling factorial defined by (z)n = z(z−1)(z−
2) · · · (z−n+ 1). One way of interpreting this equation is to note that it yields consistent
results when the forward difference operator ∆ is applied to both sides of the equation,
which, in turn, follows because ∆(z)n = n (z)n−1. Using analytic summability theory, and
in a manner that is analogous to the development of Chapter 5, we have:

∞∑
k=a

eiθkg(k) = eiθa
∞∑
r=0

Φr

r!
∆rg(a− 1), where Φr =

∞∑
k=1

eiθk(k)r (7.2.4)

Here, we note that Φr is the T value of an infinite sum that also involves the falling
factorial function (k)r. Because (k)r is a polynomial of degree r, the constants Φr can be
computed from the constants Θr =

∑∞
k=1 e

iθkkr. In particular, using Stirling numbers of
the first kind s(r, k), we have:

Φr =
r∑

k=0

s(r, k) Θk (7.2.5)

Eq 7.2.4, in turn, implies that:

n∑
k=a

eiθkg(k) = eiθg(a)−
∞∑
r=0

Φr

r!

(
eiθn ∆rg(n)− eiθa ∆rg(a)

)
(7.2.6)

In addition, we have that the T value of divergent sums is formally given by:

∞∑
k=a

eiθkg(k) =
n∑
k=a

eiθkg(k) +
∞∑
r=0

Φr

r!
eiθn ∆rg(n) (7.2.7)
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Equally important, last equation is also a method of deducing asymptotic expressions to
the oscillating sums

∑n
k=a e

iθkg(k). Finally, to evaluate simple finite sums directly, in
a manner that is analogous to the development of Chapter 6, we can use the following
equation, which holds formally for all s:

n∑
k=a

g(k) =
∞∑
r=0

dr(n)− dr(a− 1)

r!
∆rg(s) +

s∑
k=0

g(k + a)− g(k + n+ 1) (7.2.8)

Here, dr(n) =
∑n+1

k=1(k)r. The proof of Eq 7.2.8 is analogous to the proof of Theorem 6.2.1.
If ∆m+1g(s) → 0 as s → ∞, Eq 7.2.8 can be used as an asymptotic expression and the
infinite sum needs not be entirely evaluated. Similarly, we have the following evaluation
method for oscillating finite sums:

n∑
k=a

eiθkg(k) = eiθs
∞∑
r=0

Υr(n)−Υr(a− 1)

r!
∆rg(s)+

s∑
k=0

eiθ(k+a) g(k+a)−eiθ(k+n+1) g(k+n+1)

(7.2.9)

Here, Υr(x) =
∑x+1

k=1 e
iθk(k)r, which is available in analytic closed form. In particular, if

Ωr(x) is defined as in Theorem 6.3.1, then we have:

Υr(x) =
r∑

k=0

s(r, k) Ωr(x) (7.2.10)

Validity of the new formulas above is illustrated in the following section.

7.3 Applications to Summability Calculus

The rules derived in the previous section can be applied to arbitrary discrete functions.
In the context of Summability Calculus, these rules present alternative formal methods of
computing fractional sums using their unique most natural generalizations. For example,
we can safely replace the Euler-Maclaurin summation formula with Gregory’s formula to
find boundary values of higher order derivatives so that the non-arbitrary constant in the
differentiation rule of simple finite sums can be determined. In addition, we can use the
methods given in Eq 7.2.8 and Eq 7.2.9 to compute fractional sums directly instead of
using the theorems of Chapter 6.

However, we need to exercise caution when using any discretization of continuous
functions to avoid under-sampling! Once discrete samples carry complete information
of the original continuous functions, then the Calculus of Finite Differences can indeed
become a useful tool for analyzing simple finite sums and products. In this section, we
will present a few examples that illustrate the latter point.

7.3.1 Example I: Binomial Coefficients and Infinite Products

In Eq 7.1.26, we derived an infinite product formula for the natural logarithmic base e
by applying Eq 7.1.6 to the logarithmic function. Of course, the logarithmic function
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is merely one possibility. For example, if we apply Eq 7.1.6 to the simple finite sum∑n
k=1 log k, we obtain Eq 7.3.1. Eq 7.3.1 was first proved by Ser in 1926 and was later

rediscovered by Sondow in 2003 using hypergeometric series [48, 20].

eλ =
(2

1

) 1
2
( 22

1 · 3

) 1
3
(23 · 4

1 · 33

) 1
4
( 24 · 44

1 · 36 · 5

) 1
5 · · · (7.3.1)

Moreover, we can use the same approach to derive additional interesting identities. For
example, if we apply Eq 7.1.6 to the log-superfactorial function,

∑n
k=1 log k!, we obtain:

eλ+ 1
2

√
2π

=
(

2
) 1

2
(2

3

) 1
3
(2 · 4

32

) 1
4
(2 · 43

33 · 5

) 1
5 · · · (7.3.2)

Again, the internal exponents are given by the binomial coefficients alternating in sign.
Dividing Eq 7.3.1 by Eq 7.3.2 yields Eq 7.3.3. This equation was derived in [20] using
double integrals via analytic continuation of Lerch’s Transcendent.√

2π

e
=
(2

1

) 1
3
( 22

1 · 3

) 1
4
(23 · 4

1 · 33

) 1
5
( 24 · 44

1 · 36 · 5

) 1
6 · · · (7.3.3)

Finally, suppose we have f(n) =
∑n

k=1 log 4k−1
4k−3 , and we wish to find its derivative at

n = 0. Using Summability Calculus, we immediately have by Theorem 2.3.1 that the
following equation holds:

f ′(0) = 4
∞∑
k=1

( 1

4k − 3
− 1

4k − 1

)
= 4

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
= π (7.3.4)

Using Eq 7.1.6, on the other hand, yields the infinite product formula:

f ′(0) = log
[(3

1

) 1
1
(3 · 5

1 · 7
) 1

2
(3 · 52 · 11

1 · 72 · 9
) 1

3 · · ·
]

(7.3.5)

Equating both equations yields Eq 7.3.6. An alternative proof to such identity is given in
[20].

eπ =
(3

1

) 1
1
(3 · 5

1 · 7
) 1

2
(3 · 52 · 11

1 · 72 · 9
) 1

3 · · · (7.3.6)

7.3.2 Example II: The Zeta Function Revisited

Suppose we start with the harmonic numbers f(n) =
∑n

k=1
1
k and we wish to find its

derivative at n = 0. We know by Summability Calculus that the derivative is given by ζ2.

Since we have for the harmonic numbers ∆p = (−1)p+1

p , applying Eq 7.1.6 also yields the
original series representation for ζ2. However, such approach can also be applied to the
generalized harmonic numbers

∑n
k=1

1
ks , which would yield different series representations

for the Riemann zeta function ζs as given by Eq 7.3.7. Eq 7.3.7 follows immediately by
Summability Calculus and Eq 7.1.6. Interestingly, such identity is a globally convergent
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expression to the Riemann zeta function for all s ∈ C. It was discovered by Helmut Hasse
in 1930 [47].

ζs =
1

1− s

∞∑
k=1

1

k

k∑
j=1

(
k − 1

j − 1

)
(−1)j

js+1
(7.3.7)

Note that both Eq 7.3.7 and infinite product representation for eλ in Eq 7.3.1 can both
be used to establish the following well-known result:

lim
s→1

{
ζs −

1

s− 1

}
= λ (7.3.8)

7.3.3 Example III: Identities Involving Gregory’s Coefficients

Gregory’s formula presents a method of numerical computation of integrals that is similar
to the Euler-Maclaurin summation formula. In this example, we will use Gregory’s formula
to derive identites that relate Gregory coefficients with many fundamental constants. Our
starting point would be the case of semi-linear simple finite sums

∑n
k=a g(k) that have

well-known asymptotic expansions Sg(n) such that limn→∞{Sg(n)−
∑n

k=a g(k)} = 0. To
recall earlier discussion, if a simple finite sum is semi-linear, then g′(n) → 0 as n → ∞,
which implies that ∆g(n)→ 0 as n→∞. Now, by Gregory’s formula:

lim
n→∞

{ n∑
k=a

g(k)− g(n)

2
−
∫ n

a
g(t) dt

}
=
∞∑
r=1

Gr ∆r−1g(a) (7.3.9)

For example, if g(k) = 1
k , and a = 1, then ∆pg(a) = (−1)p

p+1 . Plugging this into the
above formula yields:

∞∑
r=1

|Gr|
r

= λ =
1

2
+

1

24
+

1

72
+

19

2880
+

3

800
+

863

362880
+ · · · (7.3.10)

Eq 7.3.10 is one of the earliest expressions discovered that express Euler’s constant λ
as a limit of rational terms. It was discovered by Kluyver in 1924 using the integral
representation of the digamma function ψ(n)[27]. Similarly, if we now let g(k) = Hk and
choose a = 0, then we have:

lim
n→∞

{ n∑
k=0

Hk −
Hn

2
−
∫ n

0
Ht dt

}
= lim

n→∞

{
(n+ 1)

(
Hn+1 − 1

)
− Hn

2
− λn− log n!

}
= lim

n→∞

{
n (Hn − log n− λ) +

Hn − log n− log 2π

2

}
=

1 + λ− log 2π

2

Because ∆pH0 = (−1)p+1

p , we have:

∞∑
r=2

|Gr|
r − 1

=
log 2π − 1− λ

2
=

1

12
+

1

48
+

19

2160
+ · · · (7.3.11)
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Of course, such approach can be applied to many other functions. In addition, we have
by Gregory’s formula:

a−1∑
k=a

g(k) =

∫ a−1

a
g(t) dt+

g(a) + g(a− 1)

2
+

∞∑
r=2

Gr∆
rg(a− 1) (7.3.12)

Here, we have used the fact that ∆r−1g(a)−∆r−1g(a− 1) = ∆rg(a− 1). However, by the
empty sum rule, Eq 7.3.12 implies that:∫ a

a−1
g(t) dt =

g(a) + g(a− 1)

2
+
∞∑
r=2

Gr ∆rg(a− 1) (7.3.13)

Last equation allows us to deduce a rich set of identities. For example, if g(k) = 1
k and

a = 2, we have the following identity (compare it with Eq 7.3.10 and Eq 7.3.11):

∞∑
r=1

|Gr|
r + 1

= 1− log 2 (7.3.14)

Similarly, using g(k) = sin π
3k or g(k) = cos π3k yield identities such as:

|G1|+ |G2| − |G4| − |G5|+ |G7|+ |G8| − |G10| − |G11|+ · · · =
√

3

π
(7.3.15)

|G2|+ |G3| − |G5| − |G6|+ |G8|+ |G9| − |G11| − |G12|+ · · · =
2
√

3

π
− 1 (7.3.16)

|G1| − |G3| − |G4|+ |G6|+ |G7| − |G9| − |G10|+ |G12|+ · · · = 1−
√

3

π
(7.3.17)

Many other identities can be easily deduced using the series expansion of log−1 (1 + x).

7.4 Summary of Results

Throughout previous chapters, the focus of Summability Calculus has been on expressing
unique natural generalization to simple and convoluted finite sums using infinitesimal
derivatives. This manifested markedly in the Euler-like summation formulas. Starting
from Chapter 4, however, the notion of summing or defining divergent series using a
regular, stable, and linear method was introduced via a formal definition T. Such definition
allowed us to expand the real of Summability Calculus quite naturally to oscillating finite
sums, which simplified their analysis considerably, and allowed us to fill many gaps.

While such approach is nearly complete, it is shown in this final chapter that Summa-
bility Calculus can still be expanded even further by expressing almost all its main results
alternatively using the language of finite differences. In this chapter, Summability Calculus



CHAPTER 7. SUMMABILITY CALCULUS AND FINITE DIFFERENCES 130

was used to derive foundational results in the Calculus of Finite Differences such as the dis-
crete definition of derivatives, Newton’s interpolation formula, and Gregory’s integration
formula. Such results were, in turn, used in conjunction with analytic summability theory
to prove a stronger version of the celebrated Shannon-Nyquist Sampling Theorem, and to
deduce the discrete analog of the many Euler-like summation formulas. In addition, it is
illustrated how the Calculus of Finite Differences is indeed a valuable tool in analyzing
finite sums; hence an integral part of Summability Calculus.
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