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Abstract 

This compilation of formula of quaternionic algebra and quaternionic differentials is for a 

significant part derived from Bo Thidé’s book “Electromagnetic Field Theory”; 

http://www.plasma.uu.se/CED/Book. I have merely converted the vector formula into quaternionic 

format. 

Two types of quaternionic differentiation exist.  

 Flat differentiation uses the quaternionic nabla and ignores the curvature of the 

parameter space. 

 Full differentiation uses the distance function      that defines the curvature of the 

parameter space. 

The text focuses at applications in quantum mechanics, in electrodynamics and in fluid 

dynamics. 
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1 Introduction 

Let x be the position vector (radius vector, coordinate vector) from the origin of the 

Euclidean space    coordinate system to the coordinate point              in the same 
system and let | | denote the magnitude (‘length’) of  . Let further                   be 
arbitrary scalar fields,                   arbitrary vector fields, and 

                 arbitrary rank two tensor fields in this space.  
 

Let   be the position relative to the origin of the space ℍ that is spanned by the 
quaternions and that is given by the coordinate point                   and let | | denote 

the norm of  .  
 

Let * denote complex or quaternionic conjugate and † denote Hermitian conjugate 
(transposition and, where applicable, complex or quaternionic conjugation). 

1.1 Differentiation in flat space 

The differential vector operator   is in Cartesian coordinates given by 
 

  ∑  

 

   

 

   
 

 
The flat quaternionic differential operator   is in Cartesian coordinates given by 
 

  ∑  
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1.2 Differentiation in curved space 

The full quaternionic difference operator    is given by 
 

   ∑   

 

   

    ∑
  

   
   

 

   

 ∑  ∑
   

   
   

 

   

 

   

 

 
Here the coefficients    are quaternionic coefficients, which are determined by the 
quaternionic distance function     .  
     has a flat parameter space that is spanned by the quaternions.      defines a curved 
target space. This curved space can act as parameter space to other quaternionic distributions. 
 

(1) 

(2) 

(3) 

(1) 
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The quaternionic infinitesimal interval    defines the quaternionic metric of the curved space 
that is defined by     . 
 
In this way, the quaternionic function g(ζ), which has a curved parameter space defined by 
ζ       corresponds to a new function h(x)= g( (x)), which has a flat parameter space. The 

flattened nabla  ̆ is defined as: 
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2 Cylindrical circular coordinates 

2.1 Base vectors 

2.1.1 Cartesian to cylindrical circular 

 

                         
 

                         

 

     

2.1.2 Cylindrical circular to Cartesian 

 

                        
 

                       

 

     

2.1.3 Directed line element 

 

        
 

| |
                    

2.1.4 Solid angle element 
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2.1.5 Directed area element 

 

       
                                   

2.1.6 Volume element 

 

                

2.1.7 Spatial differential operators 
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The Laplacian 
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2.2 Quaternionic algebra 

2.2.1 Symmetries 

The quaternionic number system exists in sixteen discrete symmetry sets (sign flavors). When the real 

part is ignored, then eight different symmetry sets result. The values of a continuous distribution all 

belong to the same symmetry set. The parameter space of the distribution may belong to a different 

symmetry set. 

 

 

 

 

 

 

 

 

 

 

 

 

The red block indicates sign up or down with respect to the base sign flavor. For quaternionic 

distributions the (quaternionic) parameter space acts as base sign flavor. 

The 3D Kronecker delta tensor 

    {
          
         

 

The fully antisymmetric Levi-Civita tensor 

     {

                                            
                                      

                                             
 

  

(1) 

(2) 

 

Figure 1: Sign flavors 
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2.2.2 Quaternions 
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〈   〉  ∑   
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The colored   indicates the handedness of the vector cross product. 
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3 Quaternionic distributions 

3.1.1 Basic properties 

A continuous quaternionic distribution contains a scalar field in its real part and a vector field in its 

imaginary part. 

                 

                        〈      〉         

                        〈      〉         

The distributions follow the rules for the quaternion algebra.  

                            

                            

                                 〈         〉            

(        )                       

3.1.2 Symmetries 

Continuous quaternionic distributions keep the same discrete symmetries (sign flavor) throughout their 

domain. The sign flavor of the parameter space acts as reference sign flavor. 

3.1.3 Differentials 

The quaternionic nabla acts similarly as a normal quaternion 
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4 Fourier transform 

The Fourier transformation is a linear operator. This transform transfers functions to another parameter 

space. As a consequence the Fourier transform has no eigenvalues, but the Fourier transform knows 

functions that are invariant under Fourier transformation. 

The Fourier transform cannot cope with functions that have curved parameter spaces. However, it is 

possible to reduce the parameter space to a domain in which the Fourier transform keeps acceptable 

accuracy. Another possibility is that the target function is flattened, such that its parameter space 

becomes flat. 

The Fourier transform transfer a orthonormal set of base functions into a new a orthonormal set such 

that each member of the new set can be written as a linear combination of members of the old set such 

that none of the coefficients is zero. In fact all coefficients have the same norm. 

The Fourier transform converts the nabla operator into an operator that does not differentiate but 

multiplies the converted function with a factor. That operator will be called a momentum operator. 

The Fourier transform has an inverse. It turns the momentum operator into the nabla operator. 

The Fourier transform converts convolution of two functions into the multiplication of the two functions 

and vice versa.  

In order to simplify the discussion we restrict it to the case that the parameter spaces of the functions 

are not curved.  

4.1 Fourier transform properties 

4.1.1 Linearity 

The Fourier transform is a linear operator 

 (    )    ̃    

 

                     ̃       ̃    

 

1.1.1 Differentiation 

Fourier transformation converts differentiation into multiplication with the canonical conjugated 

coordinate. 

 

           

(1) 

(2) 

(1) 
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 ̃      ̃         ̃    〈   ̃   〉     ̃       ̃     (    ̃   ) 

 

For the imaginary parts holds: 

 

                      (       ) 

 

 ̃        ̃       ̃     (    ̃   ) 

 

By using  

 

           

 

and 

 

〈        〉 = 0 

 

It can be seen that for the static part (        ) holds: 

 

             (       ) 
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 ̃       ̃     (    ̃   ) 

1.1.2 Parseval’s theorem 

Parseval’s theorem runs: 

 

∫                ∫ ̃      ̃        

 

This leads to 

 

∫|    |       ∫| ̃   |
 
     

1.1.3 Convolution 

Through Fourier transformation a convolution changes into a simple product and vice versa. 

 

               ̃     ̃    

4.2 Helmholtz decomposition 
The Helmholtz decomposition splits the static vector field   in a (transversal) divergence free part    and 

a (one dimensional longitudinal) rotation free part   .  

 

                

 

Here    is a scalar field and   is a vector field. In quaternionic terms    and   are the real and the 

imaginary part of a quaternionic field  .   is an imaginary quaternionic distribution. 

 

The significance of the terms “longitudinal” and “transversal” can be understood by computing the local 

three-dimensional Fourier transform of the vector field  , which we call  ̃. Next decompose this field, at 

each point  , into two components, one of which points longitudinally, i.e. parallel to  , the other of 

which points in the transverse direction, i.e. perpendicular to  .  

 

(10) 

(1) 

(2) 

(1) 

(1) 
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 ̃     ̃      ̃      

 

〈   ̃    〉    

 

   ̃       

 

The Fourier transform converts gradient into multiplication and vice versa. Due to these properties the 

inverse Fourier transform gives: 

 

         

 

〈    〉    

 

        

 

So, this split indeed conforms to the Helmholtz decomposition. 

 

This interpretation relies on idealized circumstance in which the decomposition runs along straight lines. 

This idealized condition is not provided in a curved parameter space. In curved parameter space  the 

decomposition and the interpretation via Fourier transformation only work locally and with reduced 

accuracy. 

4.2.1 Quaternionic Fourier transform split 

The longitudinal Fourier transform represents only part of the full quaternionic Fourier transform. It 

depends on the selection of a radial line      in p space that under ideal conditions runs along a straight 

line. 

 

  (    )                
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Or 

 

  (    )    (     )  

 

It relates to the full quaternionic Fourier transform Ƒ 

 

 (    )    ̃    

 

The inverse Fourier transform runs: 

 

     ̃           

 

The split in longitudinal and transverse Fourier transforms corresponds to a corresponding split in the 

multi-dimensional Dirac delta function. 

 

4.3 Fourier integral 
For the bra-ket inner product holds: 

 

  | ̌            |          
            

 

   ∫   |     |  

 

 

 

The static imaginary part is 
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 ∫     |    ̃     

 

 ∫     |    ̃     

 

 

 

The left part is the longitudinal inverse Fourier transform of field  ̃   . 

The right part is the transverse inverse Fourier transform of field  ̃   . 

For the Fourier transform of      holds the split: 

 

 ̃     ∫      |         

 

 ∫     |         

 

 

 

  ∫      |        

 

 

 

The longitudinal direction is a one dimensional (radial) space. The corresponding transverse direction is 

tangent to a sphere in 3D. Its direction depends on the field      or alternatively on the combination of 

field   and the selected (ideal) coordinate system  ̌. 

For a weakly curved coordinate system  ̌ the formulas hold with a restricted accuracy and within a 

restricted region. 

(3) 
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4.3.1 Alternative formulation 

The reference S. Thangavelu1 provides an alternative specification of the multidimensional Fourier 

transform . 

4.4 Functions invariant under Fourier transform 
In this section we confine to a complex part of the Hilbert space. 

See http://en.wikipedia.org/wiki/Hermite_polynomials.  

There exist two types of Hermite polynomials: 

 

1. The probalist’s Hermite polynomials: 
 

  
                      

  

             . 

  
 

2. The physicist’s Hermite polynomials 
 

  
                    

  

    
                   (  

 

  
)            

 

These two definitions are not exactly equivalent; either is a rescaling of the other: 

 

  
               

    
( √ ) 

 

In the following we focus on the physicist’s Hermite polynomials. 

 

The Gaussian function φ(z) defined by  

 

                  

 

is an eigenfunction of F. It means that its Fourier transform has the same form. 

                                                           
1
 http://www.math.iitb.ac.in/atm/faha1/veluma.pdf 

  
       

        
    

( √ ) 

(1, 2) 

(3) 

(4) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
http://en.wikipedia.org/wiki/Hermite_polynomials
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As        any λ in its spectrum        satisfies λ4
 = 1: Hence,  

 

                    .  

We take the Fourier transform of the expansion: 

                          ∑                   
    

 

   

 

First we take the Fourier transform of the left hand side: 

 

 

√  
 ∫                                     

 

    

    

           
                   

   ∑          
                    

 

   

 

The Fourier transform of the right hand side is given by 

 

√  
 ∑  ∫                                

    
 

    

 

   

    

Equating like powers of c in the transformed versions of the left- and right-hand sides 

gives 

 

√  
 ∫                                

    
 

    
     

                 
          

  

  
 

Let us define the Hermite functions       

 

           |                          
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|        |          

 

with suitably chosen cn so as to make 

 

‖  ‖
       

 

   
 

√    √ 
 

 

The importance of the Hermite functions lie in the following theorem. 

 

“The Hermite functions ψn; n  N form an orthonormal basis for L2(R)” 

 

Consider the operator  

 

      
  

           

 

Apply this to ψn(z): 

 

                        

 

Thus, ψn is an eigenfunction of H. 

 

Let           be any of the Hermite functions. Then we have 
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 ∑             (              )

 

    

 

 

         ∑                        

 

    

 

 

 

The vectors |ψn> are eigenvectors of the Fourier transform operator with eigenvalues (-k)n. The 

eigenfunctions ψn(x) represent eigenvectors |ψn> that span the complex Hilbert space Ңk. 

For higher n the central parts of       and |     |
  become a sinusoidal form. 

 

 

 

A coherent state2 is a specific kind of state3 of the quantum harmonic oscillator whose dynamics most 

closely resemble the oscillating behavior of a classical harmonic oscillator system. The ground state is a 

squeezed coherent state4. 

                                                           
2
 http://en.wikipedia.org/wiki/Coherent_state  

3
 States 

4
 Canonical conjugate: Heisenberg’s uncertainty 

(16) 

http://en.wikipedia.org/wiki/Coherent_state
http://en.wikipedia.org/wiki/Coherent_state
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4.5 Special Fourier transform pairs 
Functions that keep the same form through Fourier transformation are: 

 

           | |   

 

      
 

| |
 

 

              

 

The comb function consists of a set of equidistant Dirac delta functions. 

 

Other examples of functions that are invariant under Fourier transformation are the linear and spherical 

harmonic oscillators and the solutions of the Laplace equation. 

4.6 Complex Fourier transform invariance properties 

Each even function         ̃    induces a Fourier invariant: 

 

     √          ̃   . 

 

 ̃     √         

 

Each odd function         ̃    induces a Fourier invariant: 

 

     √          ̃   . 

 

A function      is invariant under Fourier transformation if and only if the function   satisfies the 

differential equation  

 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 
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                 , for some scalar    . 

 

The Fourier transform invariant functions are fixed apart from a scale factor. That scale factor can be 1, 

k, -1 or –k. k is an imaginary base number in the longitudinal direction. 

 

Fourier-invariant functions show iso-resolution, that is,       in the Heisenberg’s uncertainty relation. 

 

For proves see: http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf.  

5 Quaternionic probability amplitude distributions 

Continuous quaternionic distributions contain a scalar field in their real part and an associated vector 

field in their imaginary part. In a quaternionic probability amplitude distribution (QPAD), the scalar field 

can be interpreted as a distribution of the density of property carriers. The associated vector field can be 

interpreted as a distribution of the current density of these carriers. 

5.1 Differential equation 
For QPAD’s the equation for the differential can be interpreted as a differential continuity equation. 

Another name for continuity equation is balance equation. The differential continuity equation is paired 

by an integral continuity equation. The differential equation runs: 

 

                      

 

         〈      〉 

 

                (       ) 

5.2 Continuity equation 
Let us approach the balance equation from the integral variety of the balance equation. 

When       is interpreted as a charge density distribution, then the conservation of the corresponding 

charge5 is given by the continuity equation: 

                                                           
5
 Also see Noether’s laws: http://en.wikipedia.org/wiki/Noether%27s_theorem 

(4) 

http://www2.ee.ufpe.br/codec/isoresolution_vf.pdf
http://en.wikipedia.org/wiki/Noether%27s_theorem
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Total change within V = flow into V + production inside V 

In formula this means: 

 

  
∫       

 

 ∮  ̂  

 

 
   

 

 ∫     

 

 

 

∫       

 

 ∫〈   〉   

 

 ∫     

 

 

 

The conversion from formula (2) to formula (3) uses the Gauss theorem6. Here  ̂ is the normal vector 

pointing outward the surrounding surface S,        is the velocity at which the charge density         

enters volume V and    is the source density inside V. In the above formula   stands for 

          

 

It is the flux (flow per unit area and unit time) of    . 

 

The combination of         and        is a quaternionic skew field        and can be seen as a 

probability amplitude distribution (QPAD). 

 

       

 

              can be seen as an overall probability density distribution of the presence of the carrier of 

the charge.         is a charge density distribution.        is the current density distribution. 

This results in the law of charge conservation:  

 

                  〈  (                      )〉 

 

                                                           
6
 http://en.wikipedia.org/wiki/Divergence_theorem  

(1) 

 (2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Divergence_theorem
http://en.wikipedia.org/wiki/Divergence_theorem
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           〈               〉 

 

           〈               〉  〈        〉         

 

 〈        〉 

 

The blue colored ± indicates quaternionic sign selection through conjugation of the field       . The 

field        is an arbitrary differentiable vector function. 

 

〈          〉    

 

                 is always divergence free. In the following we will neglect       . 

 

Equation (6) represents a balance equation for charge density. What this charge actually is, will be left in 

the middle. It can be one of the properties of the carrier or it can represent the full ensemble of the 

properties of the carrier. 

 

Up to this point the investigation only treats the real part of the full equation. The full continuity 

equation runs: 

 

                              

 

            〈        〉                     (         ) 

 

           〈               〉  〈        〉          

 

                              

(7) 

(8) 
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 (                                  ) 

 

                   〈             〉  〈        〉         

 

                           

 

 ( (                                )) 

 

The red sign selection indicates a change of handedness by changing the sign of one of the imaginary 

base vectors. Conjugation also causes a switch of handedness. It changes the sign of all three imaginary 

base vectors. 

In its simplest form the full continuity equation runs: 

 

               

 

Thus the full continuity equation specifies a quaternionic distribution   as a flat differential   . 

 

When we go back to the integral balance equation, then holds for the imaginary parts: 

 

 

  
∫    

 

  ∮ ̂     
 

 ∮ ̂      
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∫       
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 ∫      
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For the full integral equation holds: 

(9) 

(10) 

(4) 

(5) 
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∫      

 

 ∮ ̂    
 

 ∫    

 

 

 

∫      

 

 ∫    

 

 

 

Here  ̂ is the normal vector pointing outward the surrounding surface S,        is the velocity at which 

the charge density         enters volume V and    is the source density inside V. In the above formula   

stands for 

            
   

 
 

 

It is the flux (flow per unit of area and per unit of progression) of    .   stands for progression (not 

coordinate time). 

  

(6) 

(7) 

(8) 
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5.3 Fluid dynamics 
The quaternionic continuity equation is the foundation of quaternionic fluid dynamics. Depending on the 

nature of the streaming medium, this branch of physics exists in two forms. 

 In conventional fluid dynamics the streaming charge carriers are elements of a gas or a liquid. 

 In quantum fluid dynamics the streaming charge carriers are tiny patches of the parameter space 

of the QPAD. 

It means that in quantum fluid dynamics the coupling of QPAD’s can affect the local curvature. 

5.3.1 Coupling equation 

In its simplest form the continuity equation runs: 

 

     

 

The continuity equation couples the local distribution   to a source  . 

The coupling strength can be made explicit. This results in the coupling equation. 

 

       

 

Here   is the coupling factor and   is the adapted source. 

6 Conservation laws 

The following holds for all QPAD’s!!! 

Only the interpretation tells whether the QPAD concerns a quantum state function, a photon, a gluon or 

the field of a single charge, a field of a set of charges or a field corresponding to the density distribution 

of eventually moving charge carriers. 

6.1 Differential potential equations 
Let      define a quaternionic potential. The potential corresponds to a charge density distribution 

      and a current density distribution     .  

Note: This means that the following holds for any QPAD! 

 

                                (1) 
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The gradient and curl of ϕ(q) are related. In configuration space holds: 

 

                    〈      〉                 (       ) 

 

              

 

              

 

                       

 

               〈      〉 

 

                         

 

6.2 Flux vector 
The longitudinal direction k of field      and the direction i of field      fix two mutual perpendicular 

directions. This generates curiosity to the significance of the direction    . With other words what 

happens with          .   

 

The flux vector       is defined as: 

 

                 

 

6.3 Conservation of energy 
 

〈      〉  〈           〉  〈           〉 
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  〈           〉  〈         〉  〈           〉 

 

      〈         〉  〈         〉  〈         〉 

 

The field energy density is defined as: 

 

            〈         〉  〈         〉               

 

     can be interpreted as the field energy current density. 

The continuity equation for field energy density is given by: 

 

            〈      〉    〈         〉         〈         〉 

 

This means that 〈         〉 can be interpreted as a source term. 

6.3.1 Interpretation in physics  

Despite the fact that the above equations hold for any QPAD, we give here the physical interpretations 

when   is the electric field and   is the magnetic field. 

          represents force per unit volume. 

     〈         〉            work per unit volume, or, in other words, the power density. It is known 

as the Lorentz power density and is equivalent to the time rate of change of the mechanical energy 

density of the charged particles that form the current     . 

 

            〈      〉                    

 

              〈         〉       〈         〉 

 

(2) 

(3) 

(4) 

(5) 



30 
 

  (                           )   〈      〉 

 

Total change within V = flow into V + production inside V 
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∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source s0 is zero. 

6.3.2 How to interprete Umechanical 

            is the energy of the private field (state function) of the involved particle(s). 

6.4 Conservation of linear momentum 
     can also be interpreted as the field linear momentum density. The time rate change of the field 

linear momentum density is: 

 

                                          

 

 (           )                    

 

               〈     〉  〈   〉    〈    〉  〈   〉 
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          〈    〉  〈    〉  

 

                        〈    〉  〈    〉  

 

               〈    〉  

 

                            

 

                     〈    〉  〈    〉  

 

                                 

 

                          

 

     is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V surrounded by surface S is: 

 

       ∫         

 

 ∫        

 

 ∫  〈    〉    ∮〈 ̂   〉  
 

 

 

 

                           

 

Physically,      is the Lorentz force density. It equals the time rate change of the mechanical linear 

momentum density            . 
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The force acted upon a single particle that is contained in a volume V is: 

 

  ∫    
 

 ∫              
 

 

 

Brought together this gives: 

 

  (                        )    〈      〉 

 

This is the continuity equation for linear momentum. 

The component     is the linear momentum in the i-th direction that passes a surface element in the j-th 

direction per unit time, per unit area. 

 

Total change within V = flow into V + production inside V 
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∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sg = 0. 
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6.5 Conservation of angular momentum 

6.5.1 Field angular momentum 

The angular momentum relates to the linear momentum. 

 

                  

 

                            

 

                                     

 

              (q) 

 

This enables the balance equation for angular momentum: 

 

  (                          )    〈       〉 

 

Total change within V = flow into V + production inside V 

 

                     ∫    

 

 

 

 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sh = 0. 
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For a localized charge density contained within a volume V holds for the mechanical torsion: 

 

      ∫               

 

 

 

 ∫        (                          )  

 

 

 

                             

 

                             

 

Using 

 

〈    〉    

   

   
   

 

〈    〉    

   

   
   

 

holds 

 

          ∫          

 

 ∫                   

 

 

 

 ∫    〈      〉  〈         〉    
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 ∫   〈      〉  
 

 

 

 ∫      

 

 ∫〈       〉  
 

 ∫      〈   〉  
 

 

6.5.2 Spin 

Define the non-local spin term, which does not depend on qʹ as: 

 

       ∫           

 

 

 

Notice 

 

                       (         ) 

 

And 

 

          ∫   〈      〉  
 

 ∫        
 

 

 

Using Gauss: 

 

∫〈   〉   
 

∮〈 ̂  〉  
 

 

And 
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Leads to: 

                           ∮〈 ̂      〉  
 

 

6.5.3 Spin discussion 

The spin term is defined by: 

 

       ∫           

 

 

 

In free space the charge density  0 vanishes and the scalar potential ϕ0 shows no variance. Only the 

vector potential ϕ may vary with q0. Thus: 

 

               

 

       ∫               

 

 

 

Depending on the selected field Σfield has two versions that differ in their sign. These versions can be 

combined in a single operator: 

 

        [
  

     

  
     

] 

 

If 
    

|    |
 can be interpreted as tantrix      ) and 

      

|      |
 can be interpreted as the principle normal 

     , then 
             

|             |
 can be interpreted as the binormal      .  

From these quantities the curvature and the torsion7 can be derived. 

 

                                                           
7
Path characteristics  
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