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Abstract

In number theory, and especially the study of the diophantine approximation, the 
Lonely Runner Conjecture is a conjecture with important and widespread applications 
in mathematics.

A previous paper by this author proved the lonely runner conjecture for any n, for the 

special case of  integers with particularly correlated prime factors. In this paper we 

attempt to extend this work to the general case of n arbitrary integers. The paper 

demonstrates that any set integers with correctly correlated prime factors, such that 

they satisfy the conjecture, can approximate any set of arbitrary integers with infinite 

precision.

Background
In a previous paper it was shown that the lonely runner conjecture is true in the case 

of speeds with specially correlated prime factors. The nature of the correlation was 

such that each of the n runners speeds was constructed from a distinct set of (n-1) 

different factors from a set of n arbitrary prime factors. 

The conclusions from that paper were as follows:
(1) When the speeds of any (n-1) runners share a common prime factor p, they will 

coincide at the origin O, at a time T= 1/p, where T < 1.

(2) When the speeds of any (n-1) runners share a common factor p, the excluded 

runner (whose speed does not share this prime factor) can be shown to become 

lonely at some time t = M x T, where M is an integer and T = 1/p.

(3) When the prime factors of the speeds of n runners are correlated such that each 

possesses a different set of (n-1) prime factors, selected from a set of n, [described 

above], then each runner becomes lonely at some time.



(4) If the speeds of any n runners are such that, relative to each other, their speeds are 

related by the inverse proportions of different arbitrary prime numbers, then every 

runner will become lonely at some time.  

 

The original paper noted the following:
“the special correlation which satisfies the lonely runner conjecture for any n, may 

include the powers of those primes. That is to say,  as long as the factors are 

correlated correctly, it does not appear to matter whether any or all are raised to any 

arbitrary positive integer powers”

A cursory review of the proof shows that this statement is correct. However, we 

would advise that the paper be reviewed in its entirety to assure oneself of this fact. 

The paper in question is added here as Appendix (1) and it should be read before 

continuing.

Consequently, the lonely runner conjecture would be correct for any n integer speeds 

constructed from any arbitrary set of prime factors (where p1 to pn are a set of prime 

factors). For example the following set of values are correctly correlated and would 

therefore, satisfy the lonely runner conjecture for any n:

The  table below indicates the requirements for the correct correlation of prime 

factors and for which the lonely runner conjecture holds true. That is, in this case, 
zero’s powers along the leading diagonal and integer positive powers elsewhere. 



p1 p2 p3 p4 p5 p(n-1) pn

S1

S2

S3

S4

S5

S(n-1)

Sn

0 2 4 3 3 3 2

3 0 3 2 1 4 5

1 2 0 3 4 4 3

1 1 1 0 3 1 1

2 3 1 3 0 2 1

2 3 1 3 3 0 6

6 4 1 2 2 7 0

Prime factors along the top, speeds on the left, powers of factors in the body of the table.

(Table 1)

The nature of the correlation can be easily explained - each runners speed excludes a 
different factor from the set {p1 to pn}. For example, the 1st runners’ speed excludes 

p1 as a factor.  Under these circumstances,  the lonely runner conjecture is true.

Extending the Special Case to the General Case by Approximation
We now attempt to make the argument that any set of arbitrary integer values 

(speeds) can be can be constructed in this manner with unlimited precision. That is to 

say, given a set of arbitrary integer values  - I1, I2, I3, I4, .... In, a set of values can be 

satisfactorily constructed using correlated prime factors such that: 

 S1 = C (I1 ± ∆1)

 S2 = C ( I2 ± ∆2)

 S3 = C ( I3 ± ∆3)

 S4 = C ( I4 ± ∆4)

 S5 = C ( I5 ± ∆5)

...... 

Sn = C ( In ± ∆n)



Such that ∆i → 0. Through the use of a simple algorithm it is possible to find a ∆i 
which is below any predefined limit, such that ∆i can be as small as we choose. C is a 

scaling factor, such that the condition for loneliness is now that the separation from 

the nearest runner is C/n instead of 1/n.

We now attempt to demonstrate a method of approximating any arbitrary 

integer values  A, B, C, D, E to any required level of precision using correctly 
correlated prime factors.

Procedure

Select the first n primes (in this case 5) - 2, 3, 5, 7, 11 and correlate as follows:

2 3 5 7 11

S1

S2

S3

S4

S5

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

   (Table 2)

Our base speeds are then:
S1 = 3 x 5 x 7 x 11

S2 = 5 x 7 x 11 x 2

S3 = 7 x 11 x 2 x 3

S4 = 11 x 2 x 3 x 5

S5 = 2 x 3 x 5 x 7



For now these values (specifically the ratio of the speeds) do not match our required 

ratios. However, we can adjust the powers of the factors appropriately to match the 

actual integers (subject to scaling) to any required accuracy.

Our aim is to raise each of these prime factors to an appropriate integer power such 

that the ratios are approximately (to any required precision) A:B, B:C, C:D, D:E.

We describe below an appropriate algorithm:
Our base position is:

2 3 5 7 11 Actual 
Ratio

Required 
Ratio

S1

S2

S3

S4

S5

0 1 1 1 1

1 0 1 1 1 3/2 A/B

1 1 0 1 1 5/3 B/C

1 1 1 0 1 7/5 C/D

1 1 1 1 0 11/7 D/E

(Table 3)

Method:

We want to adjust the ratios from one to the next, from the current ratios to the 

required ratios. We start with the first pair. We use only the factors which differ 

between each base speed. In this case 2 and 3. The other factors between S1 and S2 

are the same.

The existing ratio of S1/S2 is 3/2, we want A/B. Therefore need to find values for Q 

and P such that 3^Q/2^P = A/B (where Q and P will replace the existing powers).

Thus:

2^P = (B/A)(3^Q)



P Log2 = [Log(B/A) +Q Log3]
Yielding:-

P = [Log(B/A)+Q Log3]/[Log2]       Equation 1

∆ p = [Log(B/A)+Q Log3]/[Log2] (Mod 1) < ∆ ; Or > (1- ∆);  Equation 2

In more general terms:

Pi = [Log(I(i+1)/Ii)+P(i+1) Log p(i+1)]/[Log pi]    Equation 3

∆ pi = [Log(I(i+1)/Ii)+P(i+1) Log p(i+1)]/[Log pi] (Mod 1) < ∆ ; Or > (1- ∆);

           Equation 4
Where:

Pi  The power of the ith prime
pi  The ith Prime

Ii  The ith Integer
∆ pi  The ith delta term

Equation 2 forms the basis of our algorithm.

We use Equation 2 to find an appropriate value for Q and then Equation 1 to find a 

corresponding value for P. 

What we want to find is an integer value for Q, where ∆ is our predetermined 

tolerance, such that:

∆ p = [Log(B/A)+Q Log3]/[Log2] (Mod 1) < ∆ ; Or > (1- ∆);

Note - this is a modular arithmetic operation on the integer multiples of irrational numbers. We we will 
never get a value for ∆ p = 0. However we will get a ∆ p→0 and it can be as small as we like, provided that 
we look for long enough.

This process is repeated for Q = 1 to m,  until ∆ p < ∆ 

We do this and establish an appropriate integer Q = m .



Then using this value of Q we find P
P = [Log(B/A)+Q Log3]/[Log2]

Doing this will yield a value of P as sufficiently close as we like (depending on ∆) to 

an integer such that P →P (an Integer) and  3^Q/2^P →A/B

We now amend our base position as follows and note from the table below that as 

well as adjusting the values of S1 and S2 we have also adjusted the values of the 

remaining speeds by increasing the powers of 2 by P. This has the advantage of 

leaving the remaining original ratios i.e. 5/3, 7/5, 11/7,  unchanged for now. However 

the ratio of S1/S2 is  now adjusted to the required value, within the limits of our 

chosen ∆, such that 3^Q/2^P → A/B

2 3 5 7 11 Actual Ratio Required 
Ratio

S1

S2

S3

S4

S5

0 Q 1 1 1

P 0 1 1 1 [3^Q/2^P] → A/B A/B

P 1 0 1 1 5/3 B/C

P 1 1 0 1 7/5 C/D

P 1 1 1 0 11/7 D/E

(Table 4)

In the same manner we repeat this process to find values for R and S using:

∆ r = [Log(C/B)+S Log5]/[Log3] (Mod 1) < ∆ ; Or > (1- ∆); To find S



And R = [Log(C/B)+S Log5]/[Log3], To find R.

After our second iteration of the process we have the following. We note that again 

not only do we adjust the second and third terms we must also adjust the others 

appropriately to maintain the existing ratios. We note that the ratio of S1/S2 is still 

3^Q/2^P as we now adjust backwards and forwards to maintain existing ratios 

following our adjustments to S2 and S3.

2 3 5 7 11 Actual Ratio Required 
Ratio

S1

S2

S3

S4

S5

0 Q S 1 1

P 0 S 1 1 [3^Q/2^P] → A/B A/B

P R 0 1 1 [5^S/3^R] → B/C B/C

P R 1 0 1 7/5 C/D

P R 1 1 0 11/7 D/E

(Table 5)

We can repeat this process again to find a value for T and U

2 3 5 7 11 Actual Ratio Required 
Ratio

S1

S2

S3

S4

S5

0 Q S U 1

P 0 S U 1 [3^Q/2^P] → A/B A/B

P R 0 U 1 [5^S/3^R] → B/C B/C

P R T 0 1 [7^U/5^T] → C/D C/D

P R T 1 0 11/7 D/E

(Table 6)



And finally we can find V and W.

2 3 5 7 11 Actual Ratio Required 
Ratio

S1

S2

S3

S4

S5

0 Q S U W

P 0 S U W [3^Q/2^P] → A/B A/B

P R 0 U W [5^S/3^R] → B/C B/C

P R T 0 W [7^U/5^T] → C/D C/D

P R T V 0 [11^W/7^V] → D/E D/E

(Table 7)

Results

We have thus succeeded in the task of finding the appropriate powers of our 

correlated factors such that they are arbitrarily close to the ratios of the actual  

integers required . This is done by way of a straightforward algorithm which has been 

explained. In this manner we have created a set of correlated factors that can be 

approximated as closely as we choose to any set of integer values and for which the 

lonely runner conjecture is true. There will, in this scenario, be an issue of scaling, 

but this is of no importance so long as the relative values are the same, from one to 

the other, as the original integers.

A Specific Example: 

To complete this work we will show how the integers 2, 3, 4, 5, 6 can be 

approximated sufficiently closely using the powers of properly correlated factors.

We use the factors 2, 3, 5, 7, 11.

The base correlations are:
3, 5, 7, 11

2, 5, 7, 11
2, 3, 7, 11

2, 3, 5, 7



We now find the powers using our algorithm selecting an appropriate ∆ < 1/5,000  

and find the following values for P, Q, R, S, T, U, V (in this particular case we use the 
algorithm to target the actual integer values from below the actual integer value):

P=1,053; Q=664; R =11,994; S =8,187; T =8,067; U =6,672; V =3,639; W=2,953

These results are set out in the table below:

2 3 5 7 11 Actual Ratio Required 
Ratio

S1

S2

S3

S4

S5

0 664 8187 6672 2953

1053 0 8187 6672 2953 2.0000.../2.9998... 2/3

1053 11994 0 6672 2953 2.9998.../3.9995... 3/4

1053 11994 8067 0 2953 3.9995.../4.9992... 4/5

1053 11994 8067 3639 0 4.9992.../5.9989... 5/6

What does this mean in practice
In this particular case, it means that we can be sure that runners with speeds 2.0000..., 

2.9998..., 3.9995..., 4.9992..., 5.9989..., satisfy the lonely runner conjecture. These 

values are very close to the actual integer values and in fact we could find many other 

sets of values which can be as close as we choose to the actual integers. Furthermore 

these sets of values are well defined.

The main thrust of this argument however, is that there is a simple algorithm 

(described above) which allows us to find values arbitrarily close to the required 

integer values (approaching those values from either above or below) and for which 

the lonely runner conjecture is true. 



The conclusions can be summarized as follows:
The lonely runner conjecture is true for any n runners with speeds (I1 ± ∆1), (I2 ± ∆2), 

(I3 ± ∆3), ... (In ± ∆n), where Ii is any discrete set of arbitrary integers and ∆i is 

infinitesimally small.



APPENDIX (1)

A Special Case of the Lonely Runner Conjecture for any n

Patrick A Devlin	
 	
 	
 22nd October 2012

Abstract

In number theory, and especially the study of the diophantine approximation, the 

Lonely Runner Conjecture is a conjecture with important and widespread applications 

in mathematics.

This paper attempts to prove the conjecture for any n runners in the special case of 

speeds with specially correlated prime factors.

Statement of the Conjecture

Consider n runners on a circular track of unit length. At time t = 0, all runners are at 

the same position O and start to run; the runners' speeds are pair-wise distinct. A 

runner is said to be lonely if at a distance of at least 1/n from each other runner. The 

Lonely Runner Conjecture states that every runner gets lonely at some time.

Proof

The track is of unit length, with all runners running at integer speeds. The runners 

coincide at the starting point O, at all integer units of time. Consequently, the 

condition that every runner becomes lonely, must  occur first for times t < 1.

Now we consider if it is possible for any (n-1) runners to coincide at the starting point 

O,  at any time t < 1.  After careful consideration, it is evident that if each of these 

runners share a common prime factor p, then they will coincide at the origin at a time 

T = 1/p. 



This is best explained by example:

Consider that the speeds of the (n-1) runners from 1st to (n-1)th are Ap, Bp, Cp , 

Dp ...., Ʊp, where p is the common factor and A < B < C< ... < Ʊ.

After a time t = 1/p all (n-1) runners will have coincided at the origin O, with the 1st 

runner having completed A cycles, the 2nd B cycles and the (n-1)th., Ʊ cycles.

We now enquire as to the location of the nth runner at this time T=1/p. We imagine 

for the moment that he is not at O and examine the consequences. 

If  the nth runner is not at O at time T = 1/p then he is distance DELTA from O.  

DELTA, is either greater than or less than 1/n. If DELTA is greater than  1/n then that 
runner is lonely. If DELTA is less than 1/n then after a time 2 x T, the other runners 

will have coincided at O once again, whereas the nth runner will have increased his 
separation from O to a distance 2 x DELTA. (This follows from the simple application 

of modular arithmetic) .

This process can be repeated M times until after a time t = M x T, M x DELTA > 1/n 
and that runner becomes lonely.

Now we consider what conditions are necessary for the nth runner not to be at O at 

time T = 1/p. Clearly, if  the condition for coincidence of the (n-1) runners at a time    
t < 1 is that they share a common factor p, then the condition for the non-

coincidence of the nth runner is that his speed does not share this prime factor.

Statement



(1) When the speeds of any (n-1) runners share a common prime factor p, they 
will coincide at the origin O, at a time T= 1/p, where T < 1.

(2) When the speeds of any (n-1) runners share a common factor p, the excluded 
runner (whose speed does not share this prime factor) can be shown to become 

lonely at some time t = M x T, where M is an integer and T = 1/p.

The Case of Specially Correlated Factors
We now give further consideration to the implications of  runners speeds sharing 

common prime factors:

Imagine that there is a set of any n prime numbers. From that set of n primes, the 

speeds of n runners is constructed by selecting a set of (n-1) of those prime factors. 

Each runner has a speed which is the product of a different set of (n-1) of those 

primes. That is, the speeds of the runners from s1 to sn are as follows:

s1 = p2 x p3 x p3 x p4 .... x pn

s2 = p1 x  p3 x p4 x p5  .... x pn
....

s(n-1) = p1 x p2 x p3 x p4 ... x pn 
sn = p1 x p2 x p3 x p4 ..... x p(n-1)

 
There is something special about this arrangement of speeds with highly correlated 

prime factors:
Every combination of (n-1) runners is such that they share a common factor with 

each other, whilst not sharing that common factor with the excluded runner. For 

example, it is evident from the list above, that the 1st to the (n-1)th runners share the 

common factor pn. That is to say, in this arrangement, the speed of the Qth runner 
does not contain the Qth prime factor, whereas the speeds of all other runners do. 

It was demonstrated earlier and summarized in Statement 2 that:



When the speeds of any (n-1) runners share a common factor p, the excluded 
runner can be shown to become lonely at some time t = M x T, where M is an 

integer and T = 1/p.

It is clear that we have created a situation in which every runner can be considered 
to be an excluded runner by virtue of some prime factor being absent in its speed, yet 

present in the other (n-1) runners speed. In this situation it is clear that all n runners 
become lonely at some point and the Lonely Runner Conjecture is true.

Statement

(3) When the prime factors of the speeds of n runners is correlated such that 
each possesses a different set of (n-1) prime factors, selected from a set of n, 

[described above] then each runner becomes lonely at some time.

It is possible to simplify this idea further:
Imagine now that we have correlated the prime factors of the runners speeds in the 

method described above. For this purpose, we have used a set of n arbitrary prime 

factors. We have clearly shown that, in this special case, each runner becomes lonely 

for any n runners. 

Let us call the product of all prime factors in our set of n prime factors P = p1 x p2 x 

p3 ....x pn

Hence, it follows from our original argument, that the speeds of the n runners are:

1st  P/p1;

2nd  P/p2;

3rd  P/p3;

......

nth   P/pn;

From this observation the following statement then becomes evident.



Statement
(4) If the speeds of any n runners is such that, relative to each other, their speeds 

are related by the inverse proportions of different arbitrary prime numbers, 
then every runner will become lonely at some time.  

Suggestions for further work

Something not discussed until this point, is that the special correlation which satisfies 

the lonely runner conjecture for any n, may include the powers of those primes. That 

is to say,  as long as the factors are correlated correctly, it does not appear to matter 

whether any or all are raised to any arbitrary positive integer powers. This fact is not 

important for these investigations, but may be helpful for any further enquiries. It 

might be the case that any n runners with arbitrary, pair-wise distinct, integer speeds, 

can be sufficiently modeled by reference to specially correlated prime factors as 

discussed in this paper.

Conclusions

In the specific case of any n runners, having speeds with highly correlated prime 

factors as described above, it has been shown that the Lonely Runner Conjecture is 

true. Following our investigations the following statements are evident:

(1) When the speeds of any (n-1) runners share a common prime factor p, they will 
coincide at the origin O, at a time T= 1/p, where T < 1.

(2) When the speeds of any (n-1) runners share a common factor p, the excluded 
runner (whose speed does not share this prime factor) can be shown to become 

lonely at some time t = M x T, where M is an integer and T = 1/p.
(3) When the prime factors of the speeds of n runners is correlated such that each 

possesses a different set of (n-1) prime factors, selected from a set of n, 

[described above] then each runner becomes lonely at some time.



(4) If the speeds of any n runners is such that, relative to each other, their speeds are 

related by the inverse proportions of different arbitrary prime numbers, then every 

runner will become lonely at some time.  


