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Abstract

As the energies associated with charge and mass particles are finite, they cannot originate
from point like entities. This leads us to present the following conjecture: “The smallest unit of
charge or mass should possess a physical boundary and cannot originate from point like en-
tities. At this boundary, the scalar-potential (φ) becomes the limiting value, set by the Planck
scale”.

Using this new conjecture, we can derive a general proof for both energy-mass and energy-
charge equivalences (E = mc2 and E = qVplanck respectively) and derive their relativistic
energy-momentum, relativistic-energy and relativistic-momentum relations. The results are
in accordance with special relativity.

We then discuss the non-covariance nature of the present classical electrodynamics and
show how our work makes it a fully covariant theorem with the rest of the classical electrody-
namics.

1 Introduction
Einstein proposed mass-energy equivalence in 1905 [4], in his paper entitled: “Does the inertia of a body
depends upon its energy content?”. He concluded that the mass of a body is a measure of its energy content.
That is, if the energy changes by L, the mass changes in the same sense by L/c2. This equivalence can be
summarized in the famous equation:

E = mc2 (1)

However, we emphasize that the energy-mass equivalence stated above in equation (1) is strictly ap-
plicable to indivisible mass particles only. if one were to find the total relativistic mass M for a collection
of mass particles, one should take into account the energy-momentum relation as shown below, where the
velocities ui of each particle mi are obtained with relative to the center-of-momentum of the mass body M .

(Mc2)2 =

i=n∑
i=1

(γimiuic)
2 +

i=n∑
i=1

(mic
2)2 (2)
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On the other hand, in classical electrostatics, energy of a charge q is given by:

E = (kd)
1

4πε0

q2

r
(3)

where, (kd) is a scalar factor, which depends on the distribution (configuration) of the charge. When the
charge is assumed to be distributed with a constant density, the factor becomes ( 35 ) whereas if the charge
is on the surface, the factor becomes ( 12 ). Further, these relation are derived by bringing in infinitesimal
amounts of charge from infinity and constructing their corresponding charge configurations.

We observe that the energy content of a charge q in equation (3) is dependent on the structure of the
charge, i.e. configuration and the radius of its charge distribution. Further, it suggests that, when the radius
of the charge configuration goes to zero, its energy content becomes infinite. In contrast, the energy content
of a mass particle in equation (1) is independent of both configuration and radius. Further, it represents the
energy of an indivisible mass particle.

From these observations, it is implied that there must also exist an indivisible charge, a charge particle
whose energy content must not be a function of how its charge content is distributed or configured.

We then argue that, similar to what Einstein concluded for a mass particle, the total charge of a charge
particle must represent a measure of its energy content, which is bounded. This leads us to introduce a
new conjecture which states that: “A charge (or a mass) particle should possess a physical boundary and
cannot originate from point like entities. At this boundary, the scalar-potential φE becomes the limiting
value, set by the Planck scale”. This conjecture leads us to derive both energy-massE = (mc2) and energy-
charge E = (qVplanck) equivalences. We then derive the energy-momentum relation for both charge and
mass bodies in motion and show that both energy-mass and energy-charge equivalences are covariant.
Further, we show that the momenta of both charge and mass bodies in motion are covariant. This makes
the classical electrodynamics a fully covariant theorem.

2 Energy equivalence, relativistic-energy and relativistic-
momentum of charge and mass bodies in motion

From classical interpretation, we can derive the following generalized relation for (dEdp ), from force (F ),
energy (E), momentum (p) and velocity (u).

dE = F.dx = (
dp

dt
)dx = (u)dp (4)

dE

dp
= u (5)

The electromagnetic vector potential A is defined as given below, where (J) current density, (q) charge,
(r) distance from the charge, (u) velocity of the charge, (ρ) charge density, (φE) electrical scalar-potential
and µ0ε0 = 1

c2 .

A =
µ0

4π

∫
vol

(
J

r
)dv =

1

(c24πε0)

∫
vol

(ρu)

r
dv =

u

c2

∫
vol

ρ

4πε0r
dv =

u

c2
φE (6)

A =
u

c2
φE (7)

φE =
q

4πε0r
(8)
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The electromagnetic momentum pq of a charge q with velocity u is defined as (qA).

pq = qA = q(
u

c2
φE) (9)

dE

dp
= u =

pqc
2

qφE
(10)

The energy of a single point-charge particle interacting with its own field tends to go to infinity as the
radius of the particle goes to zero, r → 0. The self-energy of a charge particle q0 can be worked out as:

Eq = q0φE = q0

(
q0

4πε0r

)
(11)

The scalar-potential φE becomes infinite as r → 0 and in that process the corresponding self-energy of a
charge particle becomes infinite as well. However, we argue that the self-energy of a charge particle cannot
be infinite. The scalar-potential φE which tends to go to infinity as r → 0 must be finite, so that the total
energy of a charge particle becomes finite. We then postulate that “As the physical size of a charge particle
(or a mass particle) goes to zero (r → 0), the scalar-potential will reach a maximum limit set by the Planck
scale”. This leads us to present the following conjecture: “A charge (or a mass) particle should possess a
physical boundary and cannot originate from point like entities. At this boundary, the scalar-potential
φE becomes the limiting value, set by the Planck scale”. The conjecture presented above leads us to find
the maximum scalar-potential of a self-interacting charge particle and thereby to derive its charge-energy
equivalence.

(φE)max =

(
q0

4πε0r

)
max

= (voltage)planck = Vplanck (12)

(φE)planck = Vplanck (13)

E0 = q0(φE)planck = q0Vplanck (14)

Equation (14) gives us the total self-energy or the charge-energy equivalence of a charge particle. We
then use the same conjecture presented above to derive the self-energy of a mass particle (mass-energy
equivalence).

φG =
Gnm0

r
(15)

E0 = m0φG = m0(
Gnm0

r
) (16)

The Self-energy of a mass particle becomes infinite (∞) as r → 0. As for the conjecture presented earlier,
the gravitational scalar-potential (φG) must also be finite and bound by the Planck scale.

(φG)max = (
Gnm0

r
)max = (velocity)2planck = c2 (17)

(φG)planck = c2 (18)

E0 = m0(φG)max = m0c
2 (19)

Equation (19) is the mass-energy equivalence relation (E = mc2) which was affirmed by Einstein in
about eighteen different presentations. However, he was not able to provide a conclusive general proof of
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this seminal hypothesis from first principles [9][8]. The same mass-energy equivalence is proved above,
from first principles, using our conjecture. Using the same conjecture and a similar set of procedures led us
to obtain a general proof for the charge-energy equivalence relation given in equation (14).

Now let us derive the momentum-energy relations for both charge and mass particles, where φE =
Vplanck and φG = c2 are their self-interacting scalar-potentials, respectively.

mass charge

pm = mu pq = qA

pm = (muc2 )φG pq = ( quc2 )φE

pm = (mφG)
u
c2 pq = (qφE)

u
c2

dEm

dpm
= u = pmc

2

mφG

dEq

dpq
= u =

pqc
2

qφE

(mφG)dEm = (pmc
2)dpm (qφE)dEq = (pqc

2)dpq

(mc2)dEm = (pmc
2)dpm (qVplanck)dEq = (pqc

2)dpq

EmdEm = (pmc
2)dpm EqdEq = (pqc

2)dpq
E2

m

2 = (pmc)
2

2 + km
E2

q

2 =
(pqc)

2

2 + kq

By introducing boundary conditions, where the energies become rest frame energies, when the velocity
becomes zero (u = 0), we can obtain the following results.

E2
m = (pmc)

2 + E2
m(0)⇐⇒ E2

q = (pqc)
2 + E2

q (0) (20)

E2 = (pmc)
2 + (m0c

2)2 ⇐⇒ E2 = (pqc)
2 + (q0Vplanck)

2 (21)

(mc2)2 = (muc)2 + (m0c
2)2 ⇐⇒ (qVplanck)

2 = (qu)2(
Vplanck
c

)2 + (q0Vplanck)
2 (22)

Equation (22) represents relativistic energy-momentum equations for both charge and mass particles
in motion. In Einstein’s Special Relativity, only the relativistic momentum-energy relation for mass bod-
ies in motion is derived. On the other hand, by observing the finiteness of energies associated with a
given amount of charge (or mass), and by introducing our new conjecture led us to derive the relativistic
momentum-energy relation for both mass and charge particles in motion.

Now using charge-momentum pq = qA = q(uφE

c2 ) and the self-interacting scalar-potential φE = Vplanck,
we can show that the energy of a charge particle is covariant (similar to that of mass particles).

mass charge

(mc2)2 = (pmc)
2 + (m0c

2)2 (qVplanck)
2 = (qu)2(

Vplanck

c )2 + (q0VPlanck)
2

(mc2)2 = (muc)2 + (m0c
2)2 (qVplanck)

2 = (qu)2(
Vplanck

c )2 + (q0Vplanck)
2

(mc2)2(1− u2

c2 ) = (m0c
2)2 q2V 2

planck(1− u2

c2 ) = q20V
2
planck

mc2 = γm0c
2 ⇐⇒ qVplanck = γq0Vplanck (23)

γ =
1√

1− u2

c2

(24)

This shows that the mass-energy equivalence (E = mc2) and the charge-energy equivalence (E =
qVplanck) are both relativistically covariant. In like manner, we can show that mass-momentum (mu) and
charge-momentum (qA) are covariant as well (for p 6= 0, i.e. u 6= 0).
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mass charge

m2c4 = m2u2c2 +m2
0c

4 q2V 2
planck = q2u2(

Vplanck

c )2 + q20V
2
planck

c4(m2u2 −m2 u4

c2 ) = (c4)m2
0u

2 (V 2
planck)(q

2u2 − q2 u
4

c2 ) = (V 2
planck)(q

2
0u

2)

(mu)2(1− u2

c2 ) = m2
0u

2 (qu)2(1− u2

c2 ) = q20u
2

mu = m0u√
1−u2

c2

qu(
Vplanck

c2 ) = q0u√
1−u2

c2

(
Vplanck

c2 )

mu = γm0u⇐⇒ qu(
Vplanck
c2

) = γq0u(
Vplanck
c2

) (25)

Note that, all the above derivations were based on the assumption that there exist an indivisible quanta
of charge (and mass). One can then define the notion of a body with charge Q (or with mass M ) as a
collection of many such particles. Thus:

(Mc2)2 =

i=n∑
i=1

(γimiuic)
2 +

i=n∑
i=1

(mic
2)2 (26)

(QVplanck)
2 =

i=n∑
i=1

(γiqiui
Vplanck
c

)2 +

i=n∑
i=1

(qiVplanck)
2 (27)

We would like to emphasize some facts regarding the rest-mass and the relativistic-mass concepts. The
relativistic-mass is derived from the relativistic energy or relativistic momentum of the system and thus it
is argued that relativistic-mass (γm0) is not a good concept. Einstein wrote “It is not good to introduce the
concept of the mass M = m√

1−u2

c2

of a moving body for which no clear definition can be given. It is better to

introduce no other mass concept than the rest-mass m. Instead of introducing M it is better to mention the
expression for the momentum and energy of a body in motion” [15]. The same set of arguments holds true
for the proposed relativistic charge-energy (γq0Vplanck) and relativistic charge-momentum γq0u(

Vplanck

c2 )
concepts as well.

3 Classical electron theory and its lack of relativistic co-
variance

Max Abraham [1] and H.A Lorentz [13], based on Maxwell’s theory of electricity and magnetism developed
the first set of theories for the classical electron. As for the classical electrostatics, the rest energy U0 of a
spherical charge body with radius r, associated with total charge e, uniformly distributed over its surface
is given by:

U0 =

(
1

2

)
e2

4πε0r
(28)

One can then obtain the relativistic electromagnetic energyU of the moving charge e as for the definition
given below [23] [11] [18] [19]:

U =
1

2

∫
all−space

(
ε0E

2 +
1

µ0
H2

)
dv (29)

U = γ
e2

8πε0r

(
1 +

1

3
β2

)
(30)

and its relativistic electromagnetic momentum P as:

P = ε0

∫
all−space

(E ×B) dv (31)
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P =
4

3
γu

e2

8πε0rc2
(32)

where u is the velocity of the charge e, and

γ =
1√

1− u2

c2

(33)

β =
u

c
(34)

However, according to energy-mass equivalence and the theory or relativity, we can find the equivalent
electromagnetic invariant mass me of an electron as:

me =
U0

c2
=

e2

8πε0rc2
(35)

Thus, the equations (30) and (32) can be written in terms of the electromagnetic invariant mass me as
given below.

U = γmec
2(1 +

1

3
β2) (36)

P =
4

3
γmeu (37)

From equations (36) and (37), it is immediately obvious that the terms U and P do not transform prop-
erly as an energy-momentum four-vector. Also the relativistic energy-momentum relation U2 = (Pc)2 +
(U0)

2 is violated, which implies that the termsU and P are neither relativistically covariant nor transformed
as an energy-momentum four-vector.

On the other hand, if they are to be covariant, they should be of the form:

U = γmec
2 (38)

P = γmeu (39)

which satisfies the energy-momentum relation:

U2 = (Pc)2 + (U0)
2 (40)

and gives rise to a relativistically covariant energy-momentum four-vector.

In our derivations of the relativistic electromagnetic energy and momentum in equations (23) and (25):

U = γeVplanck (41)

P = γeu
Vplanck
c2

(42)

We can write the above two equations (41) and (42) in terms of the electromagnetic invariant mass me:

me =
U0

c2
= e

Vplanck
c2

(43)

U = γmec
2 (44)

P = γmeu (45)
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From equations (44) and (45), one can observe immediately that the terms U and P are relativisti-
cally covariant and they form a relativistically covariant energy-momentum four-vector. Also, the energy-
momentum relation is not violated.

(γeVplanck)
2 = (γeu

Vplanck
c

)2 + (eVplanck)
2 (46)

U2 = (Pc)2 + (U0)
2 (47)

Below are a list of notable works, which are supportive of our work presented in this paper.

1. J.W Butler, in his paper titled “On the Trouton-Noble Experiment” published in 1968 [2], showed that
the Trouton-Noble experiment’s [5] Null result can be explained, if the energy density of an Electromagnetic
field is expressed as 1

8π (
1

(1−β2) )(E
2 − H2), where β = v

c , in Gaussian units in vacuum. However, the
conventional Electromagnetic energy density equation 1

8π (E
2 +H2) cannot explain the Null result. Similar

work has been done by Fermi [6], Wilson [22], Kwal [12] and Rohrlich [20].

2. J.W Butler, in his paper titled “A proposed Electromagnetic Momentum-Energy 4-Vector for charge
bodies”, published in 1969 [3], argues that “the conventional electromagnetic momentum and energy den-
sity expressions are known not to lead to a momentum-energy 4-vector for the fields of charged bodies. Yet
the rest of classical electrodynamics is a co-variant theory. This is a most remarkable anomaly.” In his paper,
he derives a 4-vector to represent the 4-momentum, contained within a volume element (dv) of the electro-
magnetic field of a charged body with a 4-velocity u = (γu, γc). This leads to a resolution of the famous ( 43 )
problem, and accounts for the energy of a moving charge as U = γU0, where (U0) is the rest frame energy
of the charge and (U) is the energy transformed to the laboratory frame with a Lorentz transform.

In this paper, he further argues that the anomalous values for the energy and the momentum of an
electron presented in equations (36) and (37) are usually “explained” by the assumptions of ad-hoc forces
(Poincare stresses). But these ad-hoc forces are assumed to be also non-covariant, but in a different way from
electromagnetic forces. That is, these ad-hoc forces are “assumed to compensate” for the non-covariance of
the electromagnetic force, so that the entire electron system becomes covariant.

Further, it was shown in this paper that the source of the non-covariance of energy and momentum
density expressions arise from the procedure used to derive the Poynting’s theorem, which is shown not to
be covariant in the presence of moving sources. In other words, Poynting’s theorem is covariant only in the
absence of charges in moving frames. A similar analysis on hidden momentum and electromagnetic mass
of a charge has been carried out by V. Hnizdo [10].

3. J.A Stratton [21] had pointed out that “the classical interpretation of Poynting’s theorem appears to
rest to a considerable degree on hypothesis”. In other words, the application of Poynting’s theorem to a
charge body in motion, which gives rise to the non-covariance nature of its energy and momentum relations
in classical electrodynamics, should be carefully studied.

4. In relation to energy and momentum of moving charge bodies, W. Pauli [16] had stated that “the
Maxwell-Lorentz electrodynamics is quite incompatible with the existence of charges, unless it is supple-
mented by extraneous theoretical concepts”.

5. Energy associated with an electron, as per QED and its renormalization techniques, can be separated
into two parts: the energy associated by its interactions with other charge particles and energy associated by
interactions with itself. In renormalization, the part that interacts with itself is removed or taken out from
the theory. Therefore, after the renormalization, the electron’s charge doesn’t fly-off or repel itself. Further,
the infinities which arise, when the radius of the spherical electron goes to zero, is removed with this
treatment. Later, one of the fore-fathers who developed the renormalization techniques in QED, Richard
Feynman said that the renormalization was more or less “sweeping the dirt under the rug” [7].
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On the other hand, in our derivation of the energy-charge equivalence, we identified a quanta or an
indivisible amount of charge associated with a particle which does not fly-off. This means that, in our
treatment for infinities arising from energies associated with a charge particle, a given amount of charge
contained in a single particle is treated as a whole, and thus, the repelling action arising from the classical
picture of a charge particle, where the total charge is sub-divided in to smaller charge quantities, which are
repulsive, is removed. Therefore, our treatment is only applicable for indivisible charge particles, to which
we could apply E = qφ, where φ is the scalar potential associated with its charge q and its radius r. Further,
in our treatment to eliminate the infinities arising when radius r reaches zero, we conjectured that the scalar
potential φ must have a cut-off value at Planck scale scalar potential.

6. Lorentz’s electromagnetic momentum of a spherical electron [14] shows that the momentum is given
by p = γm0u , where m0 = e2

6πε0Rc2
, leading to a total energy of E = m0c

2 = e2

6πε0R
. This relation has been

proven with great accuracy by experiments with beta-rays. However, our present conjecture states that the
potential scalars are finite and bound by the Planck scale. By using equation (3):

E = m0c
2 = (

2

3
)e(

e

4πε0R
) = (

2

3
)eφEM = (kd)eVplanck

m0 = (kd)e
Vplanck
c2

p = γm0u = γ

(
(kd)e(

Vplanck
c2

)

)
u = (kd)(γeu

Vplanck
c2

)

The above work shows that the derivation of electromagnetic momentum eu(
Vplanck

c2 ) being relativistic
in equation (25), is on par with that of the finding of Lorentz.

7. Max Planck, publishing his first memoir on relativity [17], produced an equation for the relativistic
momentum of a point-mass, where p = γmu, in 1906.

4 Conclusions
In this paper, we proposed a new conjecture to treat the electrical and gravitational potentials, so that they
become finite and bounded. This led us to derive a general proof for both mass-energy (E = mc2) and
charge-energy (E = qVplanck) equivalences, from first principles. We then derived the momentum-energy
equation for a charge particle in motion. The result of this work showed that charge-energy and charge-
momentum are relativistically covariant.

The paper then discussed the non-covariance nature of the present classical electrodynamics, intro-
duced by its definitions of electromagnetic field momentum and electromagnetic field energy of a charge
body. However, the conjecture presented in the paper and the results derived there of, show that these
components are covariant with the rest of the classical electrodynamics.

The present paper is a call for a revision of the classical electrodynamics to make it a fully covariant
system with the rest of the classical physics.
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