
Polynomial Exact-3-SAT-Solving Algorithm

Matthias Michael Mueller
louis@louis-coder.com

Sat, 2017-11-04
Version DM-1.0

Abstract

This article describes a relatively simple algorithm which is capable of solving any
instance of a 3-SAT CNF in maximal O(n18), whereby n is the literal index range
within the formula to solve. Under the supposition the algorithm is correct, the
P-NP-Problem would be solved with the result that the complexity classes NP and
P are equal.

1 Introduction

Problems denoted as ”NP-complete” are those algorithms which need an amount of com-
puting time or space which grows exponentially with the problem size n. If it should
be accomplished to solve in general at least one of those problems in polynomial time
and space, all NP-complete problems out of the complexity class NP would from then
on be solvable much more efficiently. Finding the answer to the open question if such a
faster computation is possible at all is called the P versus NP problem.[10] The present
article describes and analyzes an algorithm which is supposed by its author to solve the
NP-complete problem ”Exact-3-SAT” in polynomial time and space. In case all crucial
statements made in this document are correct, the P versus NP problem would be solved
with the conclusion that NP-complete problems can be solved in polynomial time and
space. In this case, NP-complete problems would all lie in the complexity class P and
thus P = NP was proven.

2 Definitions

The following definitions will be used to describe and analyze the polynomial algorithm.
Their purpose will become accessible in the course of the document.

2.1 3-SAT CNF

Given is a formula in conjunctive normal form:

CNF =

γ∧
i=1

(εi1xi1 ∨ εi2xi2 ∨ εi3xi3)

1

This 3-SAT CNF, synonymously called SAT CNF or just CNF, consists of γ many and-ed
clauses. Within each clause, xi1, xi2, xi3 | i1, i2, i3 ∈ {1, ..., n} are or-ed Boolean variables
called literals. There are always exactly three literals in each clause. Each literal has
assigned a second variable epsilon: εi1, εi2, εi3 ∈ {0, 1}. If this εia has the value 1, then
the value of xia is negated when evaluating the CNF. If εia has the value 0, no negation
is done. The literal indices are chosen out of a set of natural numbers {1, ..., n}. The
literal indices are pair-wise distinct: i2 6= i1, i3 6= i1, i3 6= i2. n will be used as description
of the problem size in the upcoming analysis of the solver’s complexity.

The task of the presented polynomial solver is to find out if there is an assignment of
either true or false to each literal so that a given 3-SAT CNF as a whole evaluates to
true. Then we say this assignment, synonymously called solution, satisfies the CNF. If the
CNF evaluates to true, we say the 3-SAT CNF is solvable. If it is not possible to satisfy
the CNF, we say the 3-SAT CNF is unsatisfiable. The solvability must be determined
by the solver in polynomial time and space. The solver only says if there is a solution or
not, it does not output an assignment. This is still sufficient to solve the P versus NP
problem.[10]

2.2 Possible Clauses

The set PC of Possible Clauses:

PC = {(εi1xi1 ∨ εi2xi2 ∨ εi3xi3)}

with εi1, εi2, εi3 ∈ {0, 1}, i1, i2, i3 ∈ {1, ..., n}, i2 6= i1, i3 6= i1, i3 6= i2.

|PC| = (23 ×
(
n
3

)
), because there are 23 epsilon combinations and

(
n
3

)
possibilities to

choose 3 distinct literal indices out of {1, ..., n}. If a clause C ∈ PC appears in the
3-SAT CNF to solve we say C is an initially false clause and write C = 0. If a clause
C ∈ PC does not appear in the 3-SAT CNF to solve we say C is an initially true clause
and write C = 1. A clause C = (εc1xc1 ∨ εc2xc2 ∨ εc3xc3) ∈ PC appears in the 3-
SAT CNF if there’s a clause S = (εs1xs1 ∨ εs2xs2 ∨ εs3xs3) in the 3-SAT CNF so that
∀x ∈ {1, 2, 3} : (cx = sx ∧ εcx = εsx).

2.3 Underlying Solutions

The set of underlying solutions is the set of all 2n many producible 0, 1 progressions:

US = {U ∈ {0, 1}n}

USx is the x-th underlying solution in the set. Ux is the x-th element in the single
underlying solution U .

2.4 In Conflict

Two clauses J,K ∈ PC are said to be ”in conflict” if they have at least one literal index
in common and the ε’s concerned are not equal:

(J 6≡ K)⇔ ∃(i ∈ {1, 2, 3} | ((εji = 0 ∧ εki = 1) ∨ (εji = 1 ∧ εki = 0)) ∧ (ji = ki))

2

Similar is defined for a clause J ∈ PC and an underlying solution U ∈ US:

(J 6≡ U)⇔ ∃(i ∈ {1, 2, 3} | ((εji = 0 ∧ Uji = 1) ∨ (εji = 1 ∧ Uji = 0)))

We define ”not in conflict” as (J ≡ K)⇔ ¬(J 6≡ K) resp. (J ≡ U)⇔ ¬(J 6≡ U).

Furthermore it is defined for a clause C ∈ PC and an underlying solution U ∈ US:
C ∈ U ⇒ C ≡ U .

2.5 Clause Table

The Clause Table, abbreviated CT, is a formula in disjunctive normal form:

CT =

2n∨
l=1

(

(n3)∧
c=1

(Cc | Cc ≡ USl))

with line l and column c. Each CT line contains and-ed all possible clauses not in conflict
with the l-th underlying solution out of the set US.

For better understanding, here the beginning of the clause table for n = 4. The underlying
solution corresponding to each CT line is given as a remark:

((0x1 ∨ 0x2 ∨ 0x3) ∧ (0x1 ∨ 0x2 ∨ 0x4) ∧ (0x1 ∨ 0x3 ∨ 0x4) ∧ (0x2 ∨ 0x3 ∨ 0x4)) ∨ [US1 = {0, 0, 0, 0}]
((0x1 ∨ 0x2 ∨ 0x3) ∧ (0x1 ∨ 0x2 ∨ 1x4) ∧ (0x1 ∨ 0x3 ∨ 1x4) ∧ (0x2 ∨ 0x3 ∨ 1x4)) ∨ [US2 = {0, 0, 0, 1}]
((0x1 ∨ 0x2 ∨ 1x3) ∧ (0x1 ∨ 0x2 ∨ 0x4) ∧ (0x1 ∨ 1x3 ∨ 0x4) ∧ (0x2 ∨ 1x3 ∨ 0x4)) ∨ [US3 = {0, 0, 1, 0}]
((0x1 ∨ 0x2 ∨ 1x3) ∧ (0x1 ∨ 0x2 ∨ 1x4) ∧ (0x1 ∨ 1x3 ∨ 1x4) ∧ (0x2 ∨ 1x3 ∨ 1x4)) ∨ [US4 = {0, 0, 1, 1}]
...

Claim: if and only if there is a CT line with clauses which are all absent from the 3-SAT
CNF, then this 3-SAT CNF is solvable:

∃(l | ∀c = {1, ...,
(
n

3

)
} : (Cc ≡ USl ∧ Cc = 1))⇔ SAT CNF is solvable.

Proof: We define for S, S′ ∈ US: S′ = neg(S) := (∀x ∈ {1, ..., n} : S′x = ¬Sx 1).
Furthermore we define that a clause C = (εc1xc1 ∨ εc2xc2 ∨ εc3xc3) is satisfied by an
underlying solution U = {0, 1}n if ∃x ∈ {1, 2, 3} : εcx = Ucx. Notice that here merely one
x is enough.

In case the SAT CNF is solvable: We know there is at least one solution S ∈ US which
satisfies the SAT CNF. The SAT CNF does not contain any clause from the CT line l
with USl = neg(S) because such a clause would not be satisfied by S and thus S would
not satisfy all clauses of the SAT CNF. So at least all clauses from the CT line l do not
appear in the SAT CNF.

In case the SAT CNF is unsatisfiable: For each S ∈ US there must be at least one
clause C in the SAT CNF for which applies: ∀x ∈ {1, 2, 3} : εcx = ¬(Scx). Otherwise
S would be a solution, as mentioned in the previous paragraph, and the SAT CNF
would be solvable, what is not the case by the basic assumption of this proof. This
means: ∀(neg(S) ∈ US)∃(C ≡ neg(S)∧C = 0). Because for absolutely every underlying
solution USx | x ∈ {1, ..., 2n} there’s at least one clause C = 0 not in conflict with
USx, it is for sure we can conclude: ∀(S ∈ US)∃(C ≡ S ∧ C = 0). This implies:
∀(USl | l ∈ {1, ..., 2n})∃(C ≡ USl ∧ C = 0). This does not fulfill ∃(l | ∀c = {1, ...,

(
n
3

)
} :

(Cc ≡ USl ∧ Cc = 1)). This is the result we need, because it was claimed the latter
condition is only fulfilled if there is a CT line with only initially true clauses.

1¬0 = 1 and ¬1 = 0

3

2.6 Being Contained

We regard the clauses I = (εi1xi1 ∨ εi2xi2 ∨ εi3xi3), H = (εh1xh1 ∨ εh2xh2 ∨ εh3xh3),
J = (εj1xj1 ∨ εj2xj2 ∨ εj3xj3) and K = (εk1xk1 ∨ εk2xk2 ∨ εk3xk3).

We define the set D of tuples:

D = {{(ja, εja)} ∪ {(kb, εkb)} | a, b ∈ {1, 2, 3}}

We say I is contained within (J,K) if:

(I ≡ J ∧ I ≡ K ∧ J ≡ K)∧

(∀x ∈ {1, 2, 3} : (ix, εix) ∈ D)

This means that each literal of I appears with same literal index and ε value in J or K
or both. Also the three clauses are not in conflict pair-wise.

We say I and H are contained within (J,K) if:

(I ≡ J ∧ I ≡ K ∧H ≡ J ∧H ≡ K ∧ J ≡ K)∧

(∀(a, b, c, d, e, f ∈ {1, 2, 3}, a 6= b, a 6= c, b 6= c, d 6= e, d 6= f, e 6= f, p ∈ {1, ..., n}) : (

((ia, εia) ∈ D) ∧ ((ib, εib) ∈ D) ∧ ((ic, εic) 6∈ D) ∧ (ic = p) ∧ (εic = 0)∧
((hd, εhd) ∈ D) ∧ ((he, εhe) ∈ D) ∧ ((hf , εhf) 6∈ D) ∧ (hf = p) ∧ (εhf = 1)))

This means that two literals of each I and H appear each with the same index and ε
value in J or K or both. One literal index of I does not appear in J or K but is equal
to some value p. The corresponding εic is always 0. Similarly, one literal index of H
does not appear in J or K but is equal to the value p, the same p as in the I case. The
corresponding εhf is always 1.

In contrast, the statement that a clause table (CT) line contains one or more clauses
just means the clauses appear in the clause table line. This has nothing to do with the
property of being contained as defined here in 2.6.

2.7 Enabled/Disabled Clause Tuple

We will make use of the terms ”enabled clause tuple(s)” and ”disabled clause tuple(s)”.
An enabled tuple of two possible clauses J and K is noted as (J,K) = 1. A disabled
tuple of two possible clauses J and K is noted as (J,K) = 0.

We say a tuple (J,K) is or gets disabled when the solver sets (J,K) := 0. It is not
important if the tuple was enabled before, the crucial point is that it does (from then on)
apply (J,K) = 0.

2.8 Possible Clause Locations in CT

Claim: if I ∈ PC is contained within (J,K) | J,K ∈ PC, then I appears in any CT line
l containing (J,K).

Proof: The requirement of three clauses A,B,C ∈ PC to appear in the same CT line
with U ∈ US is that it must apply A ≡ U ∧ B ≡ U ∧ C ≡ U . This can be derived from
definition 2.5. This means that then it must also apply A ≡ B∧A ≡ C ∧B ≡ C, because
all three clauses’ ε’s are uniformly determined by U . If I is contained within (J,K), it
does apply A ≡ B ∧A ≡ C ∧B ≡ C with A = I,B = J,C = K.

4

Thereby we see the requirements of I being contained within (J,K) does also fulfill the
requirement of I, J,K ≡ U .

Claim: if I ∈ PC and H ∈ PC is contained within (J,K) | J,K ∈ PC, then either I or
H, but not both, appears in a CT line l containing (J,K).

Proof: The situation is similar as in the previous proof, with the difference that I and H
are in conflict at a literal index p, see definition 2.6. Because Up can either be 0 or 1, not
both I and H can be within the same CT line.

3 The Polynomial Exact-3-SAT Solving Algorithm

The polynomial solver decides in polynomial time and space if any given 3-SAT CNF
is solvable or not. The polynomial solving algorithm consists of an initialization phase,
followed by the iterated application of two rules.

INITIALIZATION We regard the entire set of tuples {(J,K)} | J,K ∈ PC. All those tuples are initially
enabled which do not appear in the SAT CNF and whose clauses J and K are not
in conflict:

(J = 1) ∧ (K = 1) ∧ (J ≡ K)⇒ (J,K) := 1

(J = 0) ∨ (K = 0) ∨ (J 6≡ K)⇒ (J,K) := 0

RULE 1 ∃(((I, J) = 0 ∨ (I,K) = 0) | I is contained within (J,K)) ⇒ (J,K) := 0.

RULE 2 ∃((((I, J) = 0 ∨ (I,K) = 0) ∧ ((H,J) = 0 ∨ (H,K) = 0)) | I and H are contained
within (J,K)) ⇒ (J,K) := 0.

RULE 1 and RULE 2 are applied repeatedly until all I,H, J,K ∈ PC combinations have
been regarded once in RULE 1 and RULE 2 and no tuple (J,K) has been disabled any
more. As last step the result of the polynomial solving process is determined:

∃(J,K ∈ PC | (J,K) = 1)⇒ SAT CNF is solvable.

¬∃(J,K ∈ PC | (J,K) = 1)⇒ SAT CNF is unsatisfiable.

In words, if at least one enabled tuple rests, the SAT CNF is solvable. If all tuples were
disabled, the SAT CNF is unsatisfiable.

4 Proof of Correctness

4.1 Why Solvable Detection is Reliable

Given: At least one CT line l containing only initially true clauses. This CT line l is to
be called the active CT line.

∃(l | ∀c = {1, ...,
(
n

3

)
} : (Cc ≡ USl ∧ Cc = 1))

From 2.5 we know in this case the SAT CNF is solvable.

5

It will now be shown: None of the 3 solver rules will disable a tuple (J,K) with J,K ∈ PC
which appears in the active CT line:

INITIALIZATION There is no (J,K) with (J = 0)∨ (K = 0)∨ (J 6≡ K) for any J , K out of the active
CT line l. So ∀J,K ∈ USl : ((J,K) = 1).

RULE 1 When I is contained within (J,K) then I appears in any CT line l containing (J,K).
This has been shown in 2.8. As it is assumed in this proof that C = 1 if C ∈ USl, it
must apply: I contained within (J,K) with J,K ∈ USl ⇒ I ∈ USl ⇒ I = 1. This
means ∀I, J,K ∈ USl : ((I, J) = 1∧ (I,K) = 1). Because ¬∃(((I, J) = 0∨ (I,K) =
0) | I is contained within (J,K)), (J,K) will stay enabled.

RULE 2 When I and H are contained within (J,K) then either I or H, but not both, appears
in a CT line l containing (J,K). This has been shown in 2.8. This means it applies:
I = 1 ∨ H = 1 and therewith ((I, J) = 1 ∧ (I,K) = 1) ∨ ((H,J) = 1 ∧ (H,K) =
1). But this does not fulfill RULE 2 to disable (J,K), because RULE 2 demands
((I, J) = 0 ∨ (I,K) = 0) ∧ ((H,J) = 0 ∨ (H,K) = 0). So (J,K) will stay enabled.

Because (∀(J,K) | J ≡ USl ∧K ≡ USl) : (J,K) = 1, the solver determines ”solvable”.

4.2 Why Unsatisfiable Detection is Reliable

The solver needs to decide if:

Formula F1 =

(∀(U ∈ {0, 1}n)∃F = (εf 1xf 1 ∨ εf 2xf 2 ∨ εf 3xf 3) = 0) :

(f1 ∈ {1, ..., n} ∧ f2 ∈ {1, ..., n} ∧ f3 ∈ {1, ..., n}∧

εf 1 = Uf 1 ∧ εf 2 = Uf 2 ∧ εf 3 = Uf 3∧

f2 6= f1 ∧ f3 6= f1 ∧ f3 6= f2)

This means the solver needs to decide if there is for each underlying solution USx | x ∈
{1, ..., 2n} at least one initially false clause F whose epsilon values ef 1, ef 2, ef 3 are not
in conflict with USx. In this case the CNF is unsatisfiable, see 2.5. The literal indices
f1, f2, f3 can be chosen arbitrarily and do not decide in which CT line F is. The CT line
index in which F appears is only determined by F ’s epsilon values.

The idea of this proof is to show that the polynomial solver will disable any tuple (J,K)
with J,K ∈ PC if there’s at least one initially false clause in each CT line containing J
and K.

Mathematically, the solver needs to decide if:

Formula F2 =

(∀(U ∈ {0, 1}n | (U ≡ J ∧ U ≡ K))∃F = (εf 1xf 1 ∨ εf 2xf 2 ∨ εf 3xf 3) = 0) :

(f1 ∈ {1, ..., n} ∧ f2 ∈ {1, ..., n} ∧ f3 ∈ {1, ..., n}∧

εf 1 = Uf 1 ∧ εf 2 = Uf 2 ∧ εf 3 = Uf 3∧

f2 6= f1 ∧ f3 6= f1 ∧ f3 6= f2)

This is almost the same decision as decided by formula F1, except only those underlying
solutions (and therewith CT lines) containing J and K are taken into account.

6

The proof starts with a restricted literal index- and epsilon-set, which will be extended
in every proof passage. This means the sets f1, f2, f3 and εf 1, εf 2, εf 3 can be chosen from
grow. At the end of the proof it will be clear the solver regards the complete literal index-
and epsilon-set as stated in formula F2.

The solver needs to check if there’s at least one initially false clause F in each CT line
which contains J and K. This means the solver might need to look for multiple F s if it
should not apply for all initially false clauses F : ∀x ∈ {1, 2, 3} : (fx = jx ∨ fx = kx). In
this case the solver needs, when extending the restricted literal index- and epsilon-set by
one further index, to look for two epsilons, once 0 and once 1. This check for two epsilons
is implemented by RULE 2, which requires two clauses I and H to be contained within
(J,K). I has an epsilon = 0 at position p and H has an epsilon = 1 at position p. Please
recall 2.6. It will be pointed out in the following proof that RULE 2 can in practice work
recursively. This is the reason why the solver can check for more comprehensive epsilon
combinations than just one 0 and one 1.

It follows the proof. Please keep in mind it will be shown each solver rule extends the set
the literal indices and epsilons of the initially false clauses can be chosen from. At the
end of the proof the required maximal extend of that set will be reached.

INITIALIZATION Trivially, the polynomial solver’s initialization rule disables any (J,K) if J or K are
initially false clauses. See 3. This is expressed mathematically as:

(J, K) := 0 if

(∃J = 0 with (j1, j2, j3 ∈ {j1, j2, j3}), (εj1, εj2, εj3 ∈ {εj1, εj2, εj3}))∨
(∃K = 0 with (k1, k2, k3 ∈ {k1, k2, k3}), (εk1, εk2, εk3 ∈ {εk1, εk2, εk3}))

RULE 1 We suppose there is no J = 0 and no K = 0. Then some I = 0 being contained
within (J,K) can disable (J,K). Being contained means in this case each of I’s
literal index- and ε-tuples is equal to one from J or/and K. See definition 2.6. So
after applying the INITIALIZATION rule and RULE 1 it applies:

(J, K) := 0 if ∃I = 0 with i1, i2, i3 ∈ {j1, j2, j3, k1, k2, k3}

∀x ∈ {1, 2, 3} : εix =

{
εjx if ix = jx
εkx if ix = kx

Each of the literals i1, i2, i3 can be chosen out of the stated set to disable (J,K).
i1, i2, i3 must be distinct pair-wise, because i1, i2, i3 are the literals out of a 3-SAT
clause. The need for distinction applies to all literal triples regarded in this proof. To
avoid excessive and therefore confusing notation work, this is not always explicitly
mentioned.

RULE 2 λ = 0

Solver RULE 2 is left. RULE 2 disables (J,K) if there are two initially false clauses
I and H.

(J, K) := 0 if

(∃I = 0 with i1, i2, i3 ∈ {j1, j2, j3, k1, k2, k3, p0})∧
(∃H = 0 with h1, h2, h3 ∈ {j1, j2, j3, k1, k2, k3, p0})

∀x ∈ {1, 2, 3} : εix =

{
εjx if ix = jx
εkx if ix = kx
0 if ix = p0

, εhx =

{
εjx if hx = jx
εkx if hx = kx
1 if hx = p0

This is because

I with i1, i2, i3 ∈ {j1, j2, j3, k1, k2, k3, p0} and
H with h1, h2, h3 ∈ {j1, j2, j3, k1, k2, k3, p0} are contained within

J with j1, j2, j3 ∈ {j1, j2, j3} and
K with k1, k2, k3 ∈ {k1, k2, k3}.

7

Because I = 0 and H = 0 are contained in (J,K) as defined in 2.6, RULE 2 will set
(J,K) := 0.

λ = 1

We suppose there’s no J = 0, no K = 0 and no I = 0 or/and no H = 0. Even
in this case (J,K) := 0 is possible, even though we exhausted all possibilities of
the three rules of the polynomial algorithm. The reason is that one or more of the
tuples (I, J), (I,K), (H,J), (H,K) might get disabled in the same way as (J,K).
So we must take into consideration a recursive usage of RULE 2. The recursion is
not purposely implemented but happens in practice because clause tuples depend
from each other in what concerns their enabled state.

We know that (J,K) := 0 if ((I, J) = 0 ∨ (I,K) = 0) ∧ ((H,J) = 0 ∨ (H,K) = 0).
The four tuples of this formula can get disabled in the same way as (J,K):

Observation:

(I, J) := 0 if ((I1, I) = 0 ∨ (I1, J) = 0) ∧ ((H1, I) = 0 ∨ (H1, J) = 0)
(I, K) := 0 if ((I1, I) = 0 ∨ (I1, K) = 0) ∧ ((H1, I) = 0 ∨ (H1, K) = 0)
(H, J) := 0 if ((I2, H) = 0 ∨ (I2, J) = 0) ∧ ((H2, H) = 0 ∨ (H2, J) = 0)
(H, K) := 0 if ((I2, H) = 0 ∨ (I2, K) = 0) ∧ ((H2, H) = 0 ∨ (H2, K) = 0)

We define the recursion depth as λ. This λ grows by one each time one clause tuple
out of ((tuple)∨ (tuple))∧ ((tuple)∨ (tuple)) is turned into the tuple to be disabled
in the next deeper recursion layer.

We regard the first line of the observation and see:

Either (I, J) := 0 or (I, K) := 0 if

(∃I1 = 0 with i11, i12, i13 ∈ {j1, j2, j3, k1, k2, k3, p0, p1})∧
(∃H1 = 0 with h11, h12, h13 ∈ {j1, j2, j3, k1, k2, k3, p0, p1})

∀x ∈ {1, 2, 3} : εi1x =


εjx if i1x = jx
εkx if i1x = kx
εp0 if i1x = p0
0 if i1x = p1

, εh1x =


εjx if h1x = jx
εkx if h1x = kx
εp0 if h1x = p0
1 if h1x = p1

This is because

I1 with i11, i12, i13 ∈ {j1, j2, j3, k1, k2, k3, p0, p1} and
H1 with h11, h12, h13 ∈ {j1, j2, j3, k1, k2, k3, p0, p1} are contained within

I with i1, i2, i3 ∈ {j1, j2, j3, k1, k2, k3, p0} and
J with j1, j2, j3 ∈ {j1, j2, j3}

or

I1 with i11, i12, i13 ∈ {j1, j2, j3, k1, k2, k3, p0, p1} and
H1 with h11, h12, h13 ∈ {j1, j2, j3, k1, k2, k3, p0, p1} are contained within

I with i1, i2, i3 ∈ {j1, j2, j3, k1, k2, k3, p0} and
K with k1, k2, k3 ∈ {k1, k2, k3}

Reason for being contained:

– First, it is important to recognize i11, i12, i13 and h11, h12, h13 will not all
be out of j1, j2, j3, k1, k2, k3, p0. If this was the case, RULE 2 would already
have set (J,K) := 0, as explained in the λ = 0 passage. So we know at least
one literal index of i11, i12, i13 and one literal index of h11, h12, h13 is not in
j1, j2, j3, k1, k2, k3, p0. The indices are either p1 or some higher-indexed p (p2,
p3 etc.) in a deeper recursion layer. So there are only two literal indices of I1
and two literal indices of H1 which must be equal to literal indices out of I
and (J or K).

8

– The polynomial solver will detect I1 and H1 being contained within I and (J
or K) if:

∗ two literal indices of I1 are equal to two literal indices of I.

∗ one literal index of H1 is equal to one literal index of I.

∗ one literal index of H1 is equal to one literal of either J or K.

This is an excerpt of the possible cases. The same situation with I and H
swapped would be accepted as being contained as well. However, it suffices to
take into consideration the described sub case.

I1 = 0 and H1 = 0 is required if there’s no initially false I, J and K. Additionally,
or solely, I2 = 0 and H2 = 0 is required if there’s no initially false H, J and K.
This case resembles the previous one:

Either (H, J) := 0 or (H, K) := 0 if

(∃I2 = 0 with i21, i22, i23 ∈ {j1, j2, j3, k1, k2, k3, p0, p1})∧
(∃H2 = 0 with h21, h22, h23 ∈ {j1, j2, j3, k1, k2, k3, p0, p1})

∀x ∈ {1, 2, 3} : εi2x =


εjx if i2x = jx
εkx if i2x = kx
εp0 if i2x = p0
0 if i2x = p1

, εh2x =


εjx if h2x = jx
εkx if h2x = kx
εp0 if h2x = p0
1 if h2x = p1

This is because

I2 with i21, i22, i23 ∈ {j1, j2, j3, k1, k2, k3, p0, p1} and
H2 with h21, h22, h23 ∈ {j1, j2, j3, k1, k2, k3, p0, p1} are contained within

H with h1, h2, h3 ∈ {j1, j2, j3, k1, k2, k3, p0} and
J with j1, j2, j3 ∈ {j1, j2, j3}

or

I2 with i21, i22, i23 ∈ {j1, j2, j3, k1, k2, k3, p0, p1} and
H2 with h21, h22, h23 ∈ {j1, j2, j3, k1, k2, k3, p0, p1} are contained within

H with h1, h2, h3 ∈ {j1, j2, j3, k1, k2, k3, p0} and
K with k1, k2, k3 ∈ {k1, k2, k3}

Proving this works analogous to the I1, H1 case.

Summarized, the polynomial solver will disable (J,K) if:

(J, K) := 0 if (
(∃I1 = 0 with i11, i12, i13 ∈ {j1, j2, j3, k1, k2, k3, p0, p1})∧
(∃H1 = 0 with h11, h12, h13 ∈ {j1, j2, j3, k1, k2, k3, p0, p1})
) ∧ (
(∃I2 = 0 with i21, i22, i23 ∈ {j1, j2, j3, k1, k2, k3, p0, p1})∧
(∃H2 = 0 with h21, h22, h23 ∈ {j1, j2, j3, k1, k2, k3, p0, p1})
)

It is important to notice that each time RULE 2 is examined recursively in this
proof, the count of required I (resp. I1, I2 and so on) and H (resp. H1, H2 and
so on) doubles. Although there’s this theoretical doubling and thus a supposed
exponential growth of complexity, this is in practice not the case for the presented
polynomial solver. The reason is that even in the most comprehensive RULE 2,
not more than quadruples of possible clauses are regarded. As the count of possi-
ble clauses grows polynomially with the problem size n, it is impossible to get an
exponential complexity. If the recursion of RULE 2 would be implemented using re-
cursive procedure calls, quadruples of possible clauses would be regarded by RULE
2 multiple times in the recursive sub calls. If a tuple has already been disabled,
it is surplus work to regard it multiple times in recursive sub calls. If a tuple can
not be disabled because other tuples it depends from have not yet been disabled, it

9

is again surplus work to regard this tuple multiple times in recursive sub calls. So
because the polynomial solver relinquishes recursive procedure calls and therewith
the surplus work, a polynomial complexity is achieved.

As already mentioned, the count of initially false clauses required to disable the
basis (J,K) grows when λ grows. There is a kind of branching, as visible in the just
presented formula, see ”Summarized, the polynomial solver will disable (J,K) if:”.
All tuples appearing in the sub branches are to be disabled according to the same
scheme. For this reason the proceeding in the upcoming proof passage ”λ ≥ 2” can
be used on any of the sub branches in the same way and will therefore be shown
once only.

λ ≥ 2

If (J,K) has still not been disabled, further recursive tuple disabling operations
are required. This means further recursion layers with higher λ values need to be
examined in this proof. All cases with λ ≥ 2 will now be taken in account by an
induction proof.

This following induction proof shows:

– If at some recursion depth λ, it applies that RULE 2 accepts:
Iλ with iλ1, iλ2, iλ3 ∈ SIλ and
Hλ with hλ1, hλ2, hλ3 ∈ SHλ, then

– At λ+ 1, it applies that RULE 2 accepts:
Iλ+1 with iλ+11, iλ+12, iλ+13 ∈ {SIλ ∪ {pλ+1}}
Hλ+1 with hλ+11, hλ+12, hλ+13 ∈ {SHλ ∪ {pλ+1}}.

– This means that for a large enough λ, it applies:
Iλ+x with iλ+x1, iλ+x2, iλ+x3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pm}
Hλ+x with hλ+x1, hλ+x2, hλ+x3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pm}.
Here m represents the count of literal indices ∈ {1, ..., n} which do neither
appear in the basis J nor in the basis K of the tuple to be disabled. This
means m describes how many distinct positions p, as defined in 2.6, exist for
the current basis (J,K).

– The conclusion is that the literal indices
iλ+x1, iλ+x2, iλ+x3 and
hλ+x1, hλ+x2, hλ+x3

can be chosen out of {1, ..., n} for a large enough x. This means the literal
indices of each initially false clause in each CT line can be chosen arbitrarily
to disable the basis (J,K).

Preliminary consideration

Claim:

Iλ with iλ1, iλ2, iλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ} and
Hλ with hλ1, hλ2, hλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ} are contained within

Jλ with jλ1, jλ2, jλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1} and
Kλ with kλ1, kλ2, kλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−2}

Proof: It must be heeded we cannot assign more than summarized three literals of
Iλ and Hλ to each Jλ and Kλ. This is because all clauses are exact-3-SAT clauses
and thus have exactly 3 literals. So it is important to regard the count of Iλ and Hλ

literals being assigned. Additionally it must be recognized Kλ cannot contain any
literal index equal to pλ−1. So a literal of Jλ must be used therefore. Kλ’s literal
index range goes up to pλ−2 only, as visible in the formula above.

10

Keeping this in mind it can be gathered that the polynomial solver will detect Iλ
and Hλ as being contained within Jλ,Kλ if:

– If one Iλ literal and one Hλ literal is pλ−1

∗ Those Iλ and Hλ literals (because non-distinct, maximal 1) are equal to
some literal in Jλ.

∗ The resting Iλ literals (maximal 2) are equal to some literals in Jλ and

∗ the resting Hλ literals (maximal 2) are equal to some literals in Kλ.

– If one Iλ literal and no Hλ literal is pλ−1

∗ This Iλ literal (maximal 1) is equal to to some literal in Jλ.

∗ The resting Iλ literals (maximal 2) are equal to some literals in Jλ and

∗ the resting Hλ literals (maximal 3) are equal to some literals in Kλ.

– If no Iλ literal and one Hλ literal is pλ−1

∗ This Hλ literal (maximal 1) is equal to some literal in Jλ.

∗ The resting Hλ literals (maximal 2) are equal to some literals in Jλ and

∗ the resting Iλ literals (maximal 3) are equal to some literals in Kλ.

– If no Iλ literal and no Hλ literal is pλ−1

∗ All Iλ literals (maximal 3) are equal to some literals in Jλ and

∗ all Hλ literals (maximal 3) are equal to some literals in Kλ.

This is an excerpt of the situations in which the polynomial solver accepts Iλ and Hλ

being contained within Jλ,Kλ. However, the just stated situations are in practice
sufficient to make the polynomial solver work. This is forecasted by theory and
I could also not find any errors by computer-aided verification using self-written
computer programs.

It might be not all Jλ and Kλ literals have to be equal to some Iλ or Hλ literals.
This happens if Iλ and/or Hλ have one literal index equal to pλ. Then only 4
respectively 5 literals must be equal. The resting Jλ and Kλ literals can be chosen
arbitrarily. Furthermore it is stated ”(maximal x) [literals are equal ...]” because
one of the x many literals might be equal to pλ. In this case one of the x many
literals need not be equal to any Jλ and also not to any Kλ literal. The count x is
then x− 1.

INDUCTION PROOF.

Induction basis

We suppose it is given:

Jλ with jλ1, jλ2, jλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1}
Kλ with kλ1, kλ2, kλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−2}

As proven in the earlier preliminary consideration we see that:

Iλ with iλ1, iλ2, iλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ} and
Hλ with hλ1, hλ2, hλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ} are contained within

Jλ with jλ1, jλ2, jλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1} and
Kλ with kλ1, kλ2, kλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−2}

∀x ∈ {1, 2, 3} : εiλx =



εjx if iλx = jx
εkx if iλx = kx
εp0 if iλx = p0
εpλ−2 if iλx = pλ−2
εpλ−1 if iλx = pλ−1
0 if iλx = pλ

, εhλx =



εjx if hλx = jx
εkx if hλx = kx
εp0 if hλx = p0
εpλ−2 if hλx = pλ−2
εpλ−1 if hλx = pλ−1
1 if hλx = pλ

11

The polynomial solver’s RULE 2 allows:

(J, K) := 0 if ((I, J) = 0 ∨ (I, K) = 0) ∧ ((H, J) = 0 ∨ (H, K) = 0)

We insert the variables of this λ ≥ 2 proof:

(Jλ, Kλ) := 0 if ((Iλ, Jλ) = 0 ∨ (Iλ, Kλ) = 0) ∧ ((Hλ, Jλ) = 0 ∨ (Hλ, Kλ) = 0)

We can set (Jλ,Kλ) in this basis case equal to each of (I1, I), (H1, I), (I2, H),
(H2, H) from the λ = 1 examination. Like this, we have a dependency of tuple
enabled states from the maximal possible λ over λ = 1 down to λ = 0.

Induction step

Now we imagine it is required that (Iλ, Jλ) := 0 needs to occur before we can set
(J,K) := 0. This means the solver has to apply another recursive usage of RULE
2:

(Jλ+1 = Iλ, Kλ+1 = Jλ) =
((Iλ+1, Jλ+1) = 0 ∨ (Iλ+1, Kλ+1) = 0)∧
((Hλ+1, Jλ+1) = 0 ∨ (Hλ+1, Kλ+1) = 0)

For the next greater λ+ 1, it applies:
The ”new J”, Jλ+1, is the ”old I”, Iλ.
The ”new K”, Kλ+1, is the ”old J”, Jλ.
This is evident from the RULE 2 formula above.

Jλ+1 = Iλ with iλ1, iλ2, iλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ} and
Hλ with hλ1, hλ2, hλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ} are contained within

Kλ+1 = Jλ with jλ1, jλ2, jλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1} and
Kλ with kλ1, kλ2, kλ3 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−2}

With the analogous examination for (Hλ, Jλ) := 0 it can be concluded:

Iλ+1 with iλ+11, iλ+12, iλ+13 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ, pλ+1} and
Hλ+1 with hλ+11, hλ+12, hλ+13 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ, pλ+1} are contained within

Jλ+1 with jλ+11, jλ+12, jλ+13 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1, pλ} and
Kλ+1 with kλ+11, kλ+12, kλ+13 ∈ {j1, j2, j3, k1, k2, k3, p0, ..., pλ−1}

∀x ∈ {1, 2, 3} : εiλx =



εjx if iλx = jx
εkx if iλx = kx
εp0 if iλx = p0
εpλ−1 if iλx = pλ−1
εpλ if iλx = pλ
0 if iλx = pλ+1

, εhλx =



εjx if hλx = jx
εkx if hλx = kx
εp0 if hλx = p0
εpλ−1 if hλx = pλ−1
εpλ if hλx = pλ
1 if hλx = pλ+1

We see that through another recursive usage of RULE 2, the sets from which we
can choose the initially false clauses’ literal indices has grown. The sets have been
extended by pλ+1. This is guaranteed to happen with each recursive usage of RULE
2. This is for sure because RULE 2 generally accepts I and H clauses containing
a formerly unused literal index p (synonymously called pλ, pλ+1 etc.). With a
sufficiently large λ, the set from which we can choose the initially false clauses’
literal indices is equal to {1, ..., n}. The result is that we can choose the literals for
each initially false clause in each CT line arbitrarily. In any case it is guaranteed
that (J,K) := 0 will occur. This means that if there’s at least one initially false
clause in each CT line, no matter which literal indices these initially false clauses
have, any (J,K) with J,K ∈ PC will get disabled. The polynomial solver will
output ’unsatisfiable’ because no (J,K) = 1 rests.

12

Further notes

In the λ ≥ 2 case the proof suggests it is not required to involve (Iλ,Kλ) or (Hλ,Kλ).
This has been tested by me using computer-aided verification. The result is that the Kλ

tuples were really not required in all tests done. But this does not apply for the λ = 1
case, what can be derived from the proof. There it is shown that one I or H literal will be
equal to one literal in either J or K. It is not known in advance if J or K will be required.
This depends on the SAT CNF to solve. I verified also this statement (that (I,K) and
(H,K) is mandatory) using a test program, with the observation the statement seems to
be correct.

5 Complexity

The size of the set PC is of great importance because the polynomial solver’s main
work consists substantially of looping through the set of possible clauses. There are
|PS| = O(n3) many possible clauses, because we can place the three indices of all possible
clauses using three nested loops, each having an iteration range not larger than 1 to n.
Furthermore there are 23 = 8 possibilities for each clause to choose the three ε values
out of {0, 1}. But because this is a constant complexity, it will not be observed in the O
notation. Regarding all possible combinations of x many possible clauses one time has
a complexity of O((n3)x). This is the case because we had to implement x many nested
loops, each having an iteration range of 1 to |PS|.

Next, we determine the complexity of all 3 solving steps. We regard the 3 steps indepen-
dently because they are executed sequentially.

INITIALIZATION Regard J,K ∈ PC ⇒ O((n3)× (n3)) = O(n6).

RULE 1 Regard I, J,K ∈ PC ⇒ O((n3)× (n3)× (n3)) = O(n9).

RULE 2 Regard I,H, J,K ∈ PC ⇒ O((n3)× (n3)× (n3)× (n3)) = O(n12).

We apply RULE 1 and RULE 2 at maximum up to the point all O((n3) × (n3)) many
clause tuples have been disabled. This means we apply RULE 1 and RULE 2 maximal
O(n6) times, whereby RULE 2 is the most comprehensive operation. So we get a total
complexity of O(n12 × n6) = O(n18). In this consideration it was assumed that checking
for containment is done in constant time. This can be achieved by pre-computing if I,H
is contained within (J,K). The pre-computing would require O((n3)4) = O(n12) for
examining all required clause combinations. Similarly, the solver can also pre-compute
for each possible clause if it appears in the SAT CNF. The pre-computing would require
O((n3) × (n3)) = O(n6) to loop through all possible clauses to check for appearance,
multiplied with the SAT CNF’s highest possible clause count. The pre-computing does
not increase the final overall complexity because it is independent from the work with
highest complexity.

6 Further Reading

The present document explains the polynomial exact-3-SAT solving algorithm using
mathematical notation. There’s an older document version online which has more pages
and uses more linguistic paraphrases. Furthermore there are C++ sample implementa-
tions of the algorithm available which run on Windows or Linux. All these items can be
downloaded from the author’s homepage www.louis-coder.com.

13

http://www.louis-coder.com/index.html

7 Acknowledgments

I thank Mr. Mihai Prunescu, Simion Stoilow Institute of Mathematics of the Romanian
Academy, for helpful tips and a reference to the polynomial algorithm in one of his articles
(see [8], resp. [9]).

References

[1] Michael R. Garey and David S. Johnson, Computers and intractability: A guide to
the theory of NP-completeness, W. H. Freeman & Co., 1979.

[2] Christos H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

[3] Uwe Schöning, Theoretische Informatik - kurz gefasst, Bibl. Institut Wis-
senschaftsverlag, 1992, ISBN 3-411-15641-4.

[4] Ingo Wegener, Theoretische Informatik - eine algorithmenorientierte Einführung (3.
Auflage), B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden 2005, ISBN
3-8351-0033-5.

[5] Volker Heun, Grundlegende Algorithmen (2. Auflage), Friedr. Vieweg & Sohn Verlag
/ GWV Fachverlage GmbH, Wiesbaden 2003, ISBN 3-528-13140-3.

[6] Daniel Grieser, Mathematisches Problemlösen und Beweisen, Springer Fachmedien
Wiesbaden 2013, ISBN 978-3-8348-2459-2.

[7] Bronstein, Semendjajew, Musiol, Mühlig, Taschenbuch der Mathematik, Verlag
Harri Deutsch, Thun und Frankfurt am Main 2000, ISBN 3-8171-2015-X.

[8] Prunescu, Mihai, About a surprizing computer program of Matthias Müller,
https://imar.academia.edu/MihaiPrunescu (link checked 2017-November-03).

[9] Prunescu, Mihai, About a Surprising Computer Program of Matthias Müller,
Convexity and Discrete Geometry Including Graph Theory: Mulhouse, France,
September 2014, Springer International Publishing, ISBN 978-3-319-28186-5 9,
http://dx.doi.org/10.1007/978-3-319-28186-5 9 (link checked 2017-November-03).

[10] Schöning, Torán, The Satisfiability Problem, Lehmanns Media Berlin 2013, ISBN
978-3-86541-527-1.

14

https://imar.academia.edu/MihaiPrunescu
http://dx.doi.org/10.1007/978-3-319-28186-5_9

	Introduction
	Definitions
	3-SAT CNF
	Possible Clauses
	Underlying Solutions
	In Conflict
	Clause Table
	Being Contained
	Enabled/Disabled Clause Tuple
	Possible Clause Locations in CT

	The Polynomial Exact-3-SAT Solving Algorithm
	Proof of Correctness
	Why Solvable Detection is Reliable
	Why Unsatisfiable Detection is Reliable

	Complexity
	Further Reading
	Acknowledgments

