
Polynomial Exact-3-SAT-Solving Algorithm

Matthias Michael Mueller
louis@louis-coder.com

Sat, 2018-04-14
Version DM-2.0

Abstract

This article describes a relatively simple algorithm which is capable of solving any instance of a 3-SAT
CNF in maximal O(n18), whereby n is the literal index range within the 3-SAT CNF to solve. To
explain the idea behind the polynomial solver, a special matrix, called clause table, is introduced.
The elements of this clause table are 3-SAT clauses, which do each get assigned a Boolean value that
depends on the occurrence of the corresponding 3-SAT clause in the 3-SAT CNF. It will be shown
that if and only if all clauses of at least one line of the clause table matrix get all assigned a true, the
related 3-SAT CNF is solvable. Although the clause table matrix has 2n many lines, the presented
algorithm can determine its expected evaluation result in polynomial time and space, without any
form of internal generation of the complete matrix. This is achieved by regarding maximal four
clauses from the imaginary clause table at once, whereby multiple occurrences need to be processed
much rarer than they would appear in the exponentially-sized clause table. On the supposition the
algorithm is correct, the P-NP-Problem would be solved with the result that the complexity classes
NP and P are equal.

1 Introduction

Problems denoted as ”NP-complete” are those algorithms which need an amount of computing time
or space which grows exponentially with the problem size n. If it should be accomplished to solve in
general at least one of those problems in polynomial time and space, all NP-complete problems out of the
complexity class NP could from then on be solvable much more efficiently. Finding the answer to the open
question if such a faster computation is possible at all is called the P versus NP problem.[6] The present
article describes and proves the correctness of an algorithm which is supposed by its author to solve
the NP-complete problem ”exact-3-SAT” in polynomial time and space. In case all crucial statements
made in this document are correct, the P versus NP problem would be solved with the conclusion that
NP-complete problems can be solved in polynomial time and space. In this case, NP-complete problems
would all lie in the complexity class P and thus P = NP was proven.

2 Definitions

The following definitions will be used to describe and analyze the polynomial algorithm. Their purpose
will become accessible in the course of the document.

1

2.1 3-SAT CNF

Given is a formula in conjunctive normal form:

CNF =

γ∧
i=1

(εi1xi1 ∨ εi2xi2 ∨ εi3xi3)

This 3-SAT CNF, synonymously called SAT CNF or just CNF, consists of γ many conjugated clauses.
Within each clause, xi1, xi2, xi3 | i1, i2, i3 ∈ {1, ..., n} are disjunctive Boolean variables called literals.
There are always exactly three literals in each clause. Each literal has assigned a second variable epsilon:
εi1, εi2, εi3 ∈ {0, 1}. If this εia | a ∈ {1, 2, 3} has the value 1, then the value of xia is negated when
evaluating the CNF. If εia | a ∈ {1, 2, 3} has the value 0, no negation is done. The literal indices are chosen
out of a set of natural numbers {1, ..., n}. The literal indices are pair-wise distinct: i2 6= i1, i3 6= i1, i3 6= i2.
n will be used as description of the problem size in the upcoming analysis of the solver’s complexity.

The task of the presented polynomial solver is to find out if there is an assignment of either true or false
to each literal so that a given 3-SAT CNF as a whole evaluates to true. Then we say this assignment,
synonymously called solution, satisfies the CNF. If the CNF evaluates to true, we say the 3-SAT CNF is
solvable. If it is not possible to satisfy the CNF, we say the 3-SAT CNF is unsatisfiable. The solvability
must be determined by the solver in polynomial time and space. The solver only says if there is a solution
or not, it does not output an assignment. This is still sufficient to solve the P versus NP problem.[6]

2.2 Notation Convention

Within this document, a fixed notation convention for 3-SAT clauses is used:

• The variables of the literal indices of any 3-SAT clause are noted in lowercase letters. For instance,
i1, i2 and i3 are the literal indices of the 3-SAT clause (εi1xi1 ∨ εi2xi2 ∨ εi3xi3). The literal indices
as a whole, i.e. letter (here: i) plus the numeration (1, 2, 3), contain a natural number, which is out
of the range {1, ..., n}. This means for the example: i1 ∈ {1, ..., n}, i2 ∈ {1, ..., n} and i3 ∈ {1, ..., n}.

• The related 3-SAT clause is identified by an uppercase letter. This letter does always match the
letter of the literal indices (except the case, as already pointed out). In the current example, it
would be I = (εi1xi1 ∨ εi2xi2 ∨ εi3xi3).

• This means that e.g. j1, j2, j3 belong to a clause J which is typically mentioned in the same context.
The same applies to e.g. k1, k2, k3, which belong to a clause K, and so on. Whenever there are, in
the nearby document section, some lowercase literal indices and an uppercase clause identifier, then
both relate to the same clause. This relationship will be of importance especially in the upcoming
proof of correctness.

2.3 Possible Clauses

The set PC of possible clauses is defined as:

PC = {(εi1xi1 ∨ εi2xi2 ∨ εi3xi3)}

with εi1, εi2, εi3 ∈ {0, 1}, i1, i2, i3 ∈ {1, ..., n}, i2 6= i1, i3 6= i1, i3 6= i2.

2

|PC| = (23 ×
(
n
3

)
), because there are 23 epsilon combinations and

(
n
3

)
possibilities to choose 3 distinct

literal indices out of {1, ..., n}. If a clause C ∈ PC appears in the 3-SAT CNF to solve we say C is an
initially false clause and write τ(C) = 0. If a clause C ∈ PC does not appear in the 3-SAT CNF to solve
we say C is an initially true clause and write τ(C) = 1. A clause C = (εc1xc1 ∨ εc2xc2 ∨ εc3xc3) ∈ PC
appears in the 3-SAT CNF if there’s a clause S = (εs1xs1 ∨ εs2xs2 ∨ εs3xs3) in the 3-SAT CNF so that
∀x ∈ {1, 2, 3} : (cx = sx ∧ εcx = εsx).

2.4 Underlying Solutions

The set of underlying solutions is the set of all 2n many producible 0, 1 progressions:

US = {U ∈ {0, 1}n}

USx is the x-th underlying solution in the set. Ux is the x-th element in the single underlying solution U .

2.5 In Conflict

Two clauses J,K ∈ PC are said to be ”in conflict” if they have at least one literal index in common and
the ε’s concerned are not equal:

(J 6≡ K)⇔ ∃(i ∈ {1, 2, 3} | ((εji = 0 ∧ εki = 1) ∨ (εji = 1 ∧ εki = 0)) ∧ (ji = ki))

Similar is defined for a clause J ∈ PC and an underlying solution U ∈ US:

(J 6≡ U)⇔ ∃(i ∈ {1, 2, 3} | ((εji = 0 ∧ Uji = 1) ∨ (εji = 1 ∧ Uji = 0)))

We define ”not in conflict” as (J ≡ K)⇔ ¬(J 6≡ K) resp. (J ≡ U)⇔ ¬(J 6≡ U).

Furthermore it is defined for a clause C ∈ PC and an underlying solution U ∈ US: C ∈ U ⇒ C ≡ U .

2.6 Clause Table

The clause table, abbreviated CT, is a matrix with 2n lines and
(
n
3

)
columns. A CT line index is to be

denoted with l, and a CT column index is to be denoted with c. Each CT line CTl contains all possible
clauses not in conflict with the l-th underlying solution out of the set US: CTl = {C ∈ PC | (C ≡ USl)}.

For better understanding, here an excerpt from the clause table for n = 4.

CT =

(0x1 ∨ 0x2 ∨ 0x3) (0x1 ∨ 0x2 ∨ 0x4) (0x1 ∨ 0x3 ∨ 0x4) (0x2 ∨ 0x3 ∨ 0x4)
(0x1 ∨ 0x2 ∨ 0x3) (0x1 ∨ 0x2 ∨ 1x4) (0x1 ∨ 0x3 ∨ 1x4) (0x2 ∨ 0x3 ∨ 1x4)
(0x1 ∨ 0x2 ∨ 1x3) (0x1 ∨ 0x2 ∨ 0x4) (0x1 ∨ 1x3 ∨ 0x4) (0x2 ∨ 1x3 ∨ 0x4)
(0x1 ∨ 0x2 ∨ 1x3) (0x1 ∨ 0x2 ∨ 1x4) (0x1 ∨ 1x3 ∨ 1x4) (0x2 ∨ 1x3 ∨ 1x4)

...

The underlying solution for CT line 1 is {0, 0, 0, 0}, for CT line 2 {0, 0, 0, 1}, for CT line 3 {0, 0, 1, 0}, for
CT line 4 {0, 0, 1, 1} and so on.

Claim 2.6.1 If and only if there is a CT line with clauses which are all absent from the 3-SAT CNF,
then this 3-SAT CNF is solvable:

∃(l | ∀c = {1, ...,
(
n

3

)
} : (Cc ≡ USl ∧ τ(Cc) = 1))⇔ SAT CNF is solvable.

3

Proof: We define for S, S′ ∈ US: ((S′ = neg(S)) := (∀x ∈ {1, ..., n} : S′x = ¬Sx 1)). Furthermore we
define that a clause C = (εc1xc1 ∨ εc2xc2 ∨ εc3xc3) is satisfied by an underlying solution U = {0, 1}n if
∃x ∈ {1, 2, 3} : εcx = Ucx. Notice that here merely one x is enough.

In case the SAT CNF is solvable: We know there is at least one solution S ∈ US which satisfies the SAT
CNF. The SAT CNF does not contain any clause from the CT line l with USl = neg(S) because such a
clause would not be satisfied by S and thus S would not satisfy all clauses of the SAT CNF. So at least
all clauses from the CT line l do not appear in the SAT CNF.

In case the SAT CNF is unsatisfiable: For each S ∈ US there must be at least one clause C in the SAT
CNF for which applies: ∀x ∈ {1, 2, 3} : εcx = ¬(Scx). Otherwise S would be a solution, as mentioned in the
previous paragraph, and the SAT CNF would be solvable, what is not the case by the basic assumption
of this proof. This means: ∀(neg(S) ∈ US)∃(C ≡ neg(S) ∧ τ(C) = 0). Because for absolutely every
underlying solution USx | x ∈ {1, ..., 2n} there’s at least one clause τ(C) = 0 not in conflict with USx, it
is for sure we can conclude: ∀(S ∈ US)∃(C ≡ S ∧ τ(C) = 0). This implies: ∀(USl | l ∈ {1, ..., 2n})∃(C ≡
USl ∧ τ(C) = 0). This does not fulfill ∃(l | ∀c = {1, ...,

(
n
3

)
} : (Cc ≡ USl ∧ τ(Cc) = 1)). This is the result

we need, because it was claimed the latter condition is only fulfilled if there is a CT line with only initially
true clauses.

2.7 Being Contained

We regard the clauses I = (εi1xi1∨εi2xi2∨εi3xi3), H = (εh1xh1∨εh2xh2∨εh3xh3), J = (εj1xj1∨εj2xj2∨
εj3xj3) and K = (εk1xk1 ∨ εk2xk2 ∨ εk3xk3).

We define the set D of tuples:

D = {{(ja, εja)} ∪ {(kb, εkb)} | a, b ∈ {1, 2, 3}}

We say I is contained within (J,K) if:

(I ≡ J ∧ I ≡ K ∧ J ≡ K)∧

(∀x ∈ {1, 2, 3} : (ix, εix) ∈ D)

This means that each literal of I appears with same literal index and ε value in J or K or both. Also the
three clauses are not in conflict pair-wise.

For instance, some I = (0x1∨0x2∨0x4) is contained within J = (0x1∨0x2∨1x5) and K = (0x2∨0x3∨0x4).
This is the case because all literal indices of I, which are 1, 2 and 4, match literal indices in J and K.
Also the ε values of I, which are three times 0, match the corresponding ε values in J and K. In contrast,
some I = (1x1 ∨ 0x2 ∨ 0x4) is not contained within J = (0x1 ∨ 0x2 ∨ 1x5) and K = (0x2 ∨ 0x3 ∨ 0x4),
because εi1, which is 1, does not match εj1, which is 0. Moreover, some I = (0x1 ∨ 0x2 ∨ 0x6) is not
contained within J = (0x1 ∨ 0x2 ∨ 1x5) and K = (0x2 ∨ 0x3 ∨ 0x4), because x6 from I appears in neither
J nor K.

A non-formal visualization shall illustrate ”I is contained within (J,K)”:

J = (A ∨B ∨ C)

K = (D ∨ E ∨ F)

I = ((A ∨B ∨ C ∨D ∨ E ∨ F) ∨ (A ∨B ∨ C ∨D ∨ E ∨ F) ∨ (A ∨B ∨ C ∨D ∨ E ∨ F))

Here A, B, C, D, E, F each represent a clause literal with preceded epsilon value. Exactly one letter must
be chosen from each ”(A∨B ∨C ∨D∨E ∨F)”. I is contained within (J,K) if all of I’s A, B, C, D, E or
F appear in J or K or both. I must not contain any A, B, C, D, E or F more than once. This is in the
visualization not explicitly defined to keep a simple notation. Please notice that this illustration is given

1¬0 = 1 and ¬1 = 0

4

only to improve the reader’s understanding of being contained, it’s of course not a correct mathematical
formulation.

We say I and H are contained within (J,K) if:

(I ≡ J ∧ I ≡ K ∧H ≡ J ∧H ≡ K ∧ J ≡ K)∧

(∀(a, b, c, d, e, f ∈ {1, 2, 3}, a 6= b, a 6= c, b 6= c, d 6= e, d 6= f, e 6= f, p ∈ {1, ..., n}) : (

((ia, εia) ∈ D) ∧ ((ib, εib) ∈ D) ∧ ((ic, εic) = (p, 0))∧
((hd, εhd) ∈ D) ∧ ((he, εhe) ∈ D) ∧ ((hf , εhf) = (p, 1))))

This means that two literals of each I and H appear each with the same index and ε value in J or K or
both. One literal index of I does not appear in J or K but is equal to some value p. The corresponding
εic is always 0. Similarly, one literal index of H does not appear in J or K but is equal to the value p,
the same p as in the I case. The corresponding εhf is always 1.

The literal index p is to be called the conflict literal index.

Any p out of {1, ..., n} is valid, as long as p is not equal to any literal index in J or K. Formally, it must
apply: p ∈ {1, ..., n} | (p 6∈ {j1, j2, j3} ∧ p 6∈ {k1, k2, k3}). During the rest of the document, many example
cases will be shown where two clauses are contained within another two clauses. Mostly only one choice of
p will be presented, although there might be several suitable p. This is done to save space and to simplify
the examples. Each example does work with the one stated p in any case, so that restriction is not fatal.
Usually the p containing the smallest possible number is chosen.

For instance, some I = (0x1∨0x2∨0x7) andH = (0x2∨0x3∨1x7) are contained within J = (0x1∨0x2∨1x5)
and K = (0x2 ∨ 0x3 ∨ 0x4). This is the case because all literal indices and corresponding ε values of I and
H appear in J or K or both. The only exception is the literal index p = 7, which does not appear in J
or K. The corresponding εi3 is 0 and the corresponding εh3 is 1 2. Therewith the conditions of I and H
being contained within (J,K) are fulfilled.

A non-formal visualization shall illustrate ”I and H are contained within (J,K)”:

J = (A ∨B ∨ C)

K = (D ∨ E ∨ F)

I = ((A ∨B ∨ C ∨D ∨ E ∨ F) ∨ (A ∨B ∨ C ∨D ∨ E ∨ F) ∨ 0xp)

H = ((A ∨B ∨ C ∨D ∨ E ∨ F) ∨ (A ∨B ∨ C ∨D ∨ E ∨ F) ∨ 1xp)

Again, A, B, C, D, E, F each represent a clause literal with preceded epsilon value. Exactly one letter
must be chosen from each ”(A ∨ B ∨ C ∨D ∨ E ∨ F)”. I and H are contained within (J,K) if all of I’s
A, B, C, D, E or F appear in J or K or both. The only exception is one literal whose epsilon value is 0
and whose literal index is p. The same applies for H, except that the one literal’s epsilon value is 1, but
the literal index is also p. I must not contain any A, B, C, D, E or F more than once. The same applies
to H. It is allowed that I contains other choices of A, B, C, D, E or F than H. It is also allowed that I
contains one or more letters which do also appear in H, as long as letters do not repeat within the very
same clause. The illustration suggests the p literal must be the third literal within the clause. This is
not required, the p literal can also be at second or first location within the clause. This is not explicitly
shown in the illustration to keep a simple notation.

Please notice ”being contained” is ambiguous, it can mean one clause I, or two clauses I and H are
contained within (J,K). The two ambiguous cases can be distinguished by the count of contained clauses
(one or two, as just mentioned).

Finally, please notice that the upcoming statement ”a clause table (CT) line contains one or more clauses”
just means the clauses appear in the clause table line. This has nothing to do with the property of being
contained as defined here in 2.7. So ”to contain” is in this document sometimes used also in its common
meaning. The reader should distinguish the meaning depending on the context.

2 Here the deepest literal index is 3 because the regarded epsilons belong to the third literal in the clauses I resp. H.

5

2.8 Enabled/Disabled Clause Tuple

We will make use of the terms ”enabled clause tuple(s)” and ”disabled clause tuple(s)”. An enabled tuple
of two possible clauses J and K is noted as π(J,K) = 1. A disabled tuple of two possible clauses J and
K is noted as π(J,K) = 0.

We say a tuple (J,K) is or gets disabled when the solver sets π(J,K) := 0. It is not important if the
tuple was enabled before, the crucial point is that it does (from then on) apply π(J,K) = 0.

The enabled state of any tuple is non-volatile, it keeps its recently set value during the whole solving
process of a SAT CNF.

2.9 Possible Clause Locations in CT

Claim 2.9.1 If I ∈ PC is contained within (J,K) | J,K ∈ PC, then I appears in every CT line l
containing (J,K).

Proof: From definition 2.6 we know all those possible clauses appear in a CT line l which are not in
conflict with USl. So I could only be in an other CT line than J and K if I was in conflict with
USl and J and K were not: I 6≡ USl ∧ J ≡ USl ∧ K ≡ USl. This is only possible if it applied:
∃x ∈ {1, 2, 3} : εix 6= USlix ∧ εjx = USljx ∧ εkx = USlkx . But from definition 2.7 we can derive that it
does always apply: ∀x ∈ {1, 2, 3}∃y ∈ {1, 2, 3} : (εix = εjy ∧ εjy = USljy) ∨ (εix = εky ∧ εky = USlky). So
we know each of I’s literal indices and the corresponding epsilon value is always equal to one in J or K.
We also know that J and K are not in conflict with USl. This means that I is never in conflict with USl
if I is contained within (J,K).

Claim 2.9.2 If I ∈ PC and H ∈ PC is contained within (J,K) | J,K ∈ PC, then either I or H, but
not both, appears in a CT line l containing (J,K).

Proof: The situation is similar as in the previous proof, with the difference that I and H are in conflict
at a literal index p, see definition 2.7. Because Up can either be 0 or 1, not both I and H can be within
the same CT line.

3 The Polynomial Exact-3-SAT Solving Algorithm

The polynomial solver decides in polynomial time and space if any given 3-SAT CNF is solvable or not.
The polynomial solving algorithm consists of an initialization phase, followed by the iterated application
of two rules. The algorithm is stated in C-like pseudo code. If several lines after an if () or while

statement are equally indented, these lines belong to one and the same block. In this case all equally
indented lines get executed if the prior condition is true. Two slashes // do always introduce a comment,
here in the pseudo-code and later also in mathematical formulas.

INITIALIZATION The solver regards the entire set of tuples {(J,K) | J,K ∈ PC}. Only those tuples (J,K) get
initially enabled whose J and K are not in conflict and if it does apply τ(J) = 1 and τ(K) = 1.

foreach J ∈ PC
foreach K ∈ PC
if ((τ(J) = 1) ∧ (τ(K) = 1) ∧ (J ≡ K))

π(J,K) := 1
if ((τ(J) = 0) ∨ (τ(K) = 0) ∨ (J 6≡ K))

π(J,K) := 0

6

RULE 1 Any tuple (J,K) gets disabled if there is some contained I and it does apply π(I, J) = 0∨π(I,K) = 0.

foreach J ∈ PC
foreach K ∈ PC
if (π(J,K) = 1)
foreach I ∈ PC
if (I is contained within (J,K))

if (π(I, J) = 0 ∨ π(I,K) = 0)
π(J,K) := 0
Changed := true

The solver finds a contained I by just testing every I ∈ PC. This is implemented in the way the
foreach loop iterates through all possible clauses. The second if () condition works as a kind
of ’filter’ which lets pass through only I being contained within (J,K). If also the third if ()

condition is fulfilled, the tuple (J,K) gets disabled and the Boolean flag Changed is set to true.
Only those tuples (J,K) are processed which are not yet disabled (first if () condition).

RULE 2 Any tuple (J,K) gets disabled if there is some contained I and H and it does apply (π(I, J) =
0 ∨ π(I,K) = 0) ∧ (π(H,J) = 0 ∨ π(H,K) = 0).

foreach J ∈ PC
foreach K ∈ PC
if (π(J,K) = 1)
foreach I ∈ PC
foreach H ∈ PC
if (I and H are contained within (J,K))

if ((π(I, J) = 0 ∨ π(I,K) = 0) ∧ (π(H,J) = 0 ∨ π(H,K) = 0))
π(J,K) := 0
Changed := true

This part of the solver works similar to the part which implements RULE 1. The main difference is
that two clauses I and H need to be contained within (J,K).

RULE 1 and RULE 2 are applied repeatedly until all I,H, J,K ∈ PC combinations have been regarded
once in RULE 1 and RULE 2 and no tuple (J,K) has been disabled any more:

while (true)

bool Changed := false // can be set to true by RULE 1 or RULE 2

do RULE 1

do RULE 2

if (Changed == false) exit while

If any tuple (J,K) got disabled by RULE 1 or RULE 2, Changed is set to true. If no tuple (J,K) has been
disabled by RULE 1 or RULE 2, Changed kept its initial state false 3. Then the while (true)-loop is
left and the final result of the solving process is determined as follows:

∃(J,K ∈ PC | π(J,K) = 1)⇒ SAT CNF is solvable.

¬∃(J,K ∈ PC | π(J,K) = 1)⇒ SAT CNF is unsatisfiable.

In words, if at least one enabled tuple rests, the SAT CNF is solvable. If all tuples were disabled, the
SAT CNF is unsatisfiable.

3Changed is re-initialized to false with each new iteration of the while (true)-loop.

7

4 Proof of Correctness

4.1 Why Solvable Detection is Reliable

Given: At least one CT line l containing only initially true clauses. This CT line l is to be called the
active CT line.

∃(l | ∀c = {1, ...,
(
n

3

)
} : (Cc ≡ USl ∧ τ(Cc) = 1))

From 2.6 we know in this case the SAT CNF is solvable.

It will now be shown: None of the 3 solver rules will disable a tuple (J,K) with J,K ∈ PC which appears
in the active CT line:

INITIALIZATION There is no (J,K) with (τ(J) = 0) ∨ (τ(K) = 0) ∨ (J 6≡ K) for any J , K out of the active CT line
l. Instead, it applies: ∀J,K ∈ USl : τ(J) = 1 ∧ τ(K) = 1 ∧ J ≡ K. So ∀J,K ∈ USl : π(J,K) := 1.

RULE 1 When I is contained within (J,K) then I appears in any CT line l containing (J,K). This has been
shown in 2.9. As it is assumed in this proof that τ(C) = 1 if C ∈ USl, it must apply: I contained
within (J,K) with J,K ∈ USl ⇒ I ∈ USl ⇒ τ(I) = 1. This means ∀I, J,K ∈ USl : (π(I, J) =
1 ∧ π(I,K) = 1). But this does not fulfill RULE 1 to disable (J,K), because RULE 1 demands
∃((π(I, J) = 0∨π(I,K) = 0) | I is contained within (J,K)). From this contradiction we can deduce
that (J,K) will stay enabled.

RULE 2 When I and H are contained within (J,K) then either I or H, but not both, appears in a CT line
l containing (J,K). This has been shown in 2.9. This means it applies: τ(I) = 1 ∨ τ(H) = 1 and
therewith (π(I, J) = 1∧π(I,K) = 1)∨(π(H,J) = 1∧π(H,K) = 1). But this does not fulfill RULE 2
to disable (J,K), because RULE 2 demands (π(I, J) = 0∨π(I,K) = 0)∧(π(H,J) = 0∨π(H,K) = 0).
We can again conclude that (J,K) will stay enabled.

Because (∀(J,K | J ≡ USl ∧K ≡ USl)) : π(J,K) = 1, the solver determines ”solvable”.

4.2 Why Unsatisfiable Detection is Reliable

4.2.1 Preliminary Considerations

4.2.1.1 Initially False Clause in each CT Line

The basic premise of this proof is that the 3-SAT CNF is not solvable. In the definition of the
clause table (2.6) it was shown that then there is not any clause table line whose clauses are all absent
from the 3-SAT CNF. This means in return that there is in every clause table line at least one clause
which does appear in the 3-SAT CNF. So it applies:

∀l : ∃c | (Cc ≡ USl ∧ τ(Cc) = 0)

Here Cc ≡ USl means the clause Cc appears in CT line l. This is the case because if some clause is not
in conflict with the underlying solution of some CT line, then the clause appears in that CT line. This
has been defined in 2.6. Furthermore τ(Cc) = 0 means the clause Cc is initially false because it appears
in the 3-SAT CNF. Please recall 2.3.

For the following considerations Cc is denoted by F . In addition, USl is denoted by U . This is done to
simplify the notation and improve understandability.

8

So far we know in each CT line l there is some clause F which does not appear in the 3-SAT CNF and
which is not in conflict with the CT line’s underlying solution U . So each of the three epsilon values
εf 1, εf 2, εf 3 of F = (εf 1xf 1 ∨ εf 2xf 2 ∨ εf 3xf 3) is equal to the value of the underlying solution U at the
position described by F ’s literal index:

∀x ∈ {1, 2, 3} : εf x = Uf x

Now comes an important observation: As derivable from the just shown formula, we do know for three
literal indices that the epsilon values match (in the way just described). But what we do not know
which value the literal indices have. This means, we do not know which natural number is inside fx,
∀x ∈ {1, 2, 3}. The definition of F is not in conflict with U only requests the epsilon values between F
and U match, but the definition of F is not in conflict with U does not make any restriction of the value
in the literal indices fx, ∀x ∈ {1, 2, 3}.

To clarify what this means in practice, an example: We assume n = 6. In addition, we assume U =
{0, 1, 0, 1, 0, 1}. ∀x ∈ {1, 2, 3} : εf x = Uf x is fulfilled for multiple clauses F . Here are three different,
suitable F :

Fexample1 = (0xf 1 ∨ 1xf 2 ∨ 0xf 3) with f1 = 1, f2 = 2, f3 = 3

Fexample2 = (0xf 1 ∨ 0xf 2 ∨ 0xf 3) with f1 = 1, f2 = 3, f3 = 5

Fexample3 = (1xf 1 ∨ 1xf 2 ∨ 1xf 3) with f1 = 2, f2 = 4, f3 = 6

Each of these F has the property that each of its three epsilon values match the corresponding one of U .
However, figuratively spoken, the locations of the matches in U vary.

For better understanding, the matched epsilons within U are underlined for all three example F :

Uexample1 = {0, 1, 0, 1, 0, 1}

Uexample2 = {0, 1, 0, 1, 0, 1}

Uexample3 = {0, 1, 0, 1, 0, 1}

The shown three F are only an incomplete example. There are
(
n
3

)
many F which fulfill the requirement

of F is not in conflict with U . This is the case because it is possible to choose the three distinct variable
indices f1, f2, f3 out of {1, ..., n}.

Summarized, it has been pointed out that the condition F is not in conflict with U is fulfilled for
(
n
3

)
many F . The basic premise in this proof is that for each CT line l there’s at least one clause which is not
in conflict with the CT line’s underlying solution USl. So the discovery of the past paragraphs applies to
all CT lines.

The polynomial solver must reliably detect that the 3-SAT CNF is unsatisfiable no matter which of the(
n
3

)
many clauses in each CT line is the initially false clause F | τ(F) = 0.

For better understanding, the kind of visualization used for Uexample1, Uexample2, Uexample3 is applied on
the first eight underlying solutions of the CT for n = 6. The following visualization is of course only an
incomplete example, but should contribute to the reader’s comprehension:

US1 = {0, 0, 0, 0, 0, 0}
US2 = {0, 0, 0, 0, 0, 1}
US3 = {0, 0, 0, 0, 1, 0}
US4 = {0, 0, 0, 0, 1, 1}
US5 = {0, 0, 0, 1, 0, 0}
US6 = {0, 0, 0, 1, 0, 1}
US7 = {0, 0, 0, 1, 1, 0}
US8 = {0, 0, 0, 1, 1, 1}
...

CNFunsatisfiable = (0x1 ∨ 0x3 ∨ 0x4) ∧ (0x3 ∨ 1x4 ∨ 0x5) ∧ (0x1 ∨ 1x4 ∨ 1x5) ∧ ...

9

Another example of how each CT line’s initially false clause F can be chosen is:

US1 = {0, 0, 0, 0, 0, 0}
US2 = {0, 0, 0, 0, 0, 1}
US3 = {0, 0, 0, 0, 1, 0}
US4 = {0, 0, 0, 0, 1, 1}
US5 = {0, 0, 0, 1, 0, 0}
US6 = {0, 0, 0, 1, 0, 1}
US7 = {0, 0, 0, 1, 1, 0}
US8 = {0, 0, 0, 1, 1, 1}
...

CNFunsatisfiable = (0x1 ∨ 0x2 ∨ 0x4) ∧ (0x1 ∨ 0x3 ∨ 1x4) ∧ ...

In both example cases, there is one clause of the 3-SAT CNF to solve which is not in conflict with each
CT line’s underlying solution. This means the polynomial solver must in both example cases output
’unsatisfiable’.

4.2.1.2 Idea of the Proof: Find Initially False Clauses Doing Recursion and Extension

We know there is at least one initially false clause F in every CT line.

Imagine we wanted to check if there’s at least one initially false clause in each CT line. We could do this
as follows:

Definition 4.2.1

function recursive F search(tuple set SF , int λ, int set p())

if λ >= |p()| // is λ larger than the count of elements in p()?

return FAILED // won’t happen as there’s an F in each CT line 4

SF 0 = (SF ∪ (p(λ), 0))
SF 1 = (SF ∪ (p(λ), 1))
if

((

there is any initially false clause F0 with τ(F0) = 0 and

((f01, εf01), (f02, εf02), (f03, εf03) ∈ SF 0)
∨
recursive F search(SF 0, λ+ 1, p()) == F IN EVERY CT LINE

)

∧
(

there is any initially false clause F1 with τ(F1) = 0 and

((f11, εf11), (f12, εf12), (f13, εf13) ∈ SF 1)
∨
recursive F search(SF 1, λ+ 1, p()) == F IN EVERY CT LINE

))

return F IN EVERY CT LINE

else

return FAILED

4This is a basic supposition of this proof.

10

recursive F search() is meant to be initially called with the parameters SF init = {}, λ = 0, p() =
{1, ..., n} 5. If there is at least one initially false clause in each CT line, then recursive F search() will
return F IN EVERY CT LINE.

This becomes obvious when examining which SF 0 and SF 1 sets recursive F search() does search for
initially false clauses:

At first, recursive F search() checks if there are two initially false clauses F0 and F1 within:

US1 = {0}
US2 = {1}

This is not yet useful because we need at least three Ux values in each CT line. Therefore
recursive F search() must do further recursions. This is the case because three SAT clauses with
three distinct literals must ’fit’ into the CT lines. Therefore the polynomial solver does in practice start
with a non-empty SF init, as it will be shown.

After one recursion, recursive F search() checks if there is an initially false clause in each of the CT
lines belonging to these underlying solutions US1 to US4:

US1 = {0, 0}
US2 = {0, 1}
US3 = {1, 0}
US4 = {1, 1}

After two recursions the same check is done for:

US1 = {0, 0, 0}
US2 = {0, 0, 1}
US3 = {0, 1, 0}
US4 = {0, 1, 1}
US5 = {1, 0, 0}
US6 = {1, 0, 1}
US7 = {1, 1, 0}
US8 = {1, 1, 1}

After three recursions:

US1 = {0, 0, 0, 0}
US2 = {0, 0, 0, 1}
US3 = {0, 0, 1, 0}
US4 = {0, 0, 1, 1}
US5 = {0, 1, 0, 0}
US6 = {0, 1, 0, 1}
US7 = {0, 1, 1, 0}
US8 = {0, 1, 1, 1}
US9 = {1, 0, 0, 0}
US10 = {1, 0, 0, 1}
US11 = {1, 0, 1, 0}
US12 = {1, 0, 1, 1}
US13 = {1, 1, 0, 0}
US14 = {1, 1, 0, 1}
US15 = {1, 1, 1, 0}
US16 = {1, 1, 1, 1}

5The index of p() is 0-based. This means the first element of p() is accessed via the index 0: p(0) = 1. This is done for
compatibility with an upcoming, later definition of p() used by the polynomial solver. Furthermore, n is the 3-SAT CNF’s
literal index range, as defined in 2.1.

11

After four recursions:

US1 = {0, 0, 0, 0, 0}
US2 = {0, 0, 0, 0, 1}
US3 = {0, 0, 0, 1, 0}
US4 = {0, 0, 0, 1, 1}
US5 = {0, 0, 1, 0, 0}
US6 = {0, 0, 1, 0, 1}
US7 = {0, 0, 1, 1, 0}
US8 = {0, 0, 1, 1, 1}
US9 = {0, 1, 0, 0, 0}
US10 = {0, 1, 0, 0, 1}
US11 = {0, 1, 0, 1, 0}
US12 = {0, 1, 0, 1, 1}
US13 = {0, 1, 1, 0, 0}
US14 = {0, 1, 1, 0, 1}
US15 = {0, 1, 1, 1, 0}
US16 = {0, 1, 1, 1, 1}
US17 = {1, 0, 0, 0, 0}
US18 = {1, 0, 0, 0, 1}
US19 = {1, 0, 0, 1, 0}
US20 = {1, 0, 0, 1, 1}
...

And so on.

It is recognizable that at maximal recursion depth, the SF 0’s and SF 1’s in all sub calls of
recursive F search() contain taken together all 2n underlying solutions. At the latest then an ini-
tially false F0 and F1 will be found in each recursive sub call. Each recursive sub call will re-
turn F IN EVERY CT LINE and finally, when all recursive sub calls returned, the initial, first call of
recursive F search() will return F IN EVERY CT LINE.

The upcoming proof has to show that the polynomial solver, as defined in 3, has the following crucial
properties of recursive F search():

recursion) If F0 was not found, recursive F search() performs one recursive call of itself. Similarly, if F1
was not found, recursive F search() performs one recursive call of itself. This working mechanism
of recursive F search() is to be called the recursion.

extension) In the recursive calls, SF has become SF 0 respectively SF 1. SF 0 has been built out of SF by
adding a 0. SF 1 has been built out of SF by adding a 1. This means F0 must be out of SF 0 =
SF ∪ (p(λ), 0). Similarly, F1 must be out of SF 1 = SF ∪ (p(λ), 1). This working mechanism of
recursive F search() is to be called the extension. It means the set SF is extended for each
recursion.

Beyond that, the polynomial solver needs an additional feature: It was presented that
recursive F search() starts with SF init = {} and p() = {1, ..., n}. The polynomial solver starts with
SF init = {(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)} and some special p() which
will be defined in the upcoming passage 4.2.2.2.

Here two conventions are important. First, j0x and k0y with x, y ∈ {1, 2, 3} designate the literals of the
such called basis tuple (J0,K0). The basis tuple is the currently regarded tuple the polynomial solver
must disable in this proof (see also next paragraph). The clauses and their literals of the basis tuple do
always get the (top-level) index 0, as just shown. The two clauses of the basis tuple are called the basis
J and the basis K, or just the basis clauses.

Secondly, the polynomial solver starts with SF init = {(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01),
(k02, εk02), (k03, εk03)} because only the CT lines containing the basis J and K will be searched for
initially false clauses. This is the case because the polynomial solver finally determines ”solvable” or
”unsatisfiable” by checking the enabled state of tuples. This has been defined in 3. Therefore this proof

12

will show the polynomial solver will disable any basis tuple (J0,K0) if there is at least one initially false
clause in each CT line containing J0 and K0. It will be observable that this is no fatal restriction, the
polynomial solver will disable any (J0,K0) also when using the stated non-empty SF init.

An example involving SF init: We assume J0 = (0x1 ∨ 0x2 ∨ 1x4) and K0 = (0x1 ∨ 0x2 ∨ 1x4) and n = 5.
Then SF init = {(1, 0), (2, 0), (4, 1), (1, 0), (2, 0), (4, 1)}. The CT lines related to the following underlying
solutions USx must be searched for initially false clauses F :

US3 = {0, 0, 0, 1, 0}
US4 = {0, 0, 0, 1, 1}
US7 = {0, 0, 1, 1, 0}
US8 = {0, 0, 1, 1, 1}

In this example, the polynomial solver has to use an SF init which contains doubled elements, which are
(1, 0), (2, 0), (4, 1). In practice this does not cause any problems because the count of elements in SF init
is never checked by the polynomial solver, only if some literal index- and epsilon tuple is in SF init or not
will be of importance.

The goal of the following proof is to show that the polynomial solver, as defined in 3, implements the
functionality of recursive F search(). In particular, it must be shown that if there is no initially false
F , then the polynomial solver seeks recursively for F0 in SF 0 and F1 in SF 1. SF 0 must here contain
all literal index- and epsilon tuples of SF , plus (p(λ), 0). SF 1 must here contain all literal index- and
epsilon tuples of SF , plus (p(λ), 1).

Because we know recursive F search() reliably detects that there is at least one initially false clause
in each CT line, we can then derive that also the polynomial solver has this ability. This means the
polynomial solver reliably detects that there is at least one initially false clause in each CT line containing
the basis tuple (J0,K0). So recursive F search() is here in this proof used as a preferably simple
auxiliary function to prove the correctness of the polynomial solver.

4.2.1.3 How the Polynomial Solver Implements Recursion and Extension in General

In this topic an overview is given how the polynomial solver does implement the recursion and
the extension in general. By now, merely the basic concepts will be explained. A detailed analysis and
especially a comparison between recursive F search() and the polynomial solver will follow later on.

The basic mechanisms of the polynomial solver to implement the recursion and the extension are the
following ones:

recursion) It has been defined in the prior topic 4.2.1.2 that recursive F search() implements the recursion
by this means: ”If F0 was not found, recursive F search() performs one recursive call of itself.
Similarly, if F1 was not found, recursive F search() performs one recursive call of itself. This
working mechanism of recursive F search() is to be called the recursion.”

While the polynomial solver does not use recursive procedure calls, it can disable tuples recursively.
This means, it disables any tuple (J,K) if there are at least two further disabled tuples, of which each
could have been disabled by further disabled tuples, and so on. How this recursive tuple disabling
is implemented will now be explained.

We suppose RULE 1 cannot disable (J,K) as there’s no single initially false I being contained within
(J,K). Furthermore we suppose also RULE 2 cannot disable (J,K) as there are no initially false
I and H being contained within (J,K). Even in this case π(J,K) := 0 is possible, even though
all possibilities of RULE 1 and RULE 2 were exhausted. The reason is that one or more of the
tuples (I, J), (I,K), (H,J), (H,K) regarded by RULE 2 might get disabled in the same way as
(J,K). So we must take into consideration a recursive usage of RULE 2. Is is very important
to notice that the recursion is not purposely implemented but happens in practice because clause
tuples depend on each other in what concerns their enabled state. Within this proof, merely a

13

recursive examination of tuple dependencies will be performed. The polynomial solver itself does
not use recursive procedure calling in its source code. Therefore this ’recursion’ supported by the
polynomial solver is here called the practical recursion.

The recursive dependencies of tuple enabled states can be derived from the third if () condition
of RULE 2. This condition requests that (π(I, J) = 0∨π(I,K) = 0)∧ (π(H,J) = 0∨π(H,K) = 0).
The disabling of each of these four tuples (I, J), (I,K), (H,J), (H,K) needs further initially false
clauses. In the following consideration, these further initially false clauses are called I1, H1, I2,
H2, I3, H3, I4, H4. The disabling operations can be performed on the following conditions:

π(I, J) := 0 if (π(I1, I) = 0 ∨ π(I1, J) = 0) ∧ (π(H1, I) = 0 ∨ π(H1, J) = 0)
π(I, K) := 0 if (π(I2, I) = 0 ∨ π(I2, K) = 0) ∧ (π(H2, I) = 0 ∨ π(H2, K) = 0)
π(H, J) := 0 if (π(I3, H) = 0 ∨ π(I3, J) = 0) ∧ (π(H3, H) = 0 ∨ π(H3, J) = 0)
π(H, K) := 0 if (π(I4, H) = 0 ∨ π(I4, K) = 0) ∧ (π(H4, H) = 0 ∨ π(H4, K) = 0)

These conditions were gained just by replacing the variable names in RULE 2’s pseudo code line ”if
((π(I, J) = 0 ∨ π(I,K) = 0) ∧ (π(H,J) = 0 ∨ π(H,K) = 0)) [then] (J,K) := 0” and placing
the consequent before the if keyword.

The dependencies, i.e. which tuple gets disable by which further tuples, can be visualized as follows:

(J,K) can be disabled by

(I,J) [with I and H being contained within (J,K)] can be disabled by

(I1,I) [with I1 and H1 being contained within (I,J)]

and

(H1,I) [with I1 and H1 being contained within (I,J)]

or

(I,K) [with I and H being contained within (J,K)] can be disabled by

(I2,I) [with I2 and H2 being contained within (I,K)]

and

(H2,I) [with I2 and H2 being contained within (I,K)]

and

(H,J) [with I and H being contained within (J,K)] can be disabled by

(I3,H) [with I3 and H3 being contained within (H,J)]

and

(H3,H) [with I3 and H3 being contained within (H,J)]

or

(H,K) [with I and H being contained within (J,K)] can be disabled by

(I4,H) [with I4 and H4 being contained within (H,K)]

and

(H4,H) [with I4 and H4 being contained within (H,K)]

This recursion can of course be continued, it does in practice not have to end after one practical
recursion step like just shown in the visualization.

Figuratively, it can be determined: While recursive F search() checks if the return values of its
two recursive procedure calls are both F IN EVERY CT LINE, the polynomial solver’s analog is to
check if tuples out of (I, J), (I,K), (H,J), (H,K) have been disabled.

The depth of the practical recursion will be denoted as λ. This λ grows by one each time one clause
tuple out of (π(I, J) = 0 ∨ π(I,K) = 0) ∧ (π(H,J) = 0 ∨ π(H,K) = 0) is turned into the tuple to
be disabled in the next deeper practical recursion layer 6.

A tuple to be disabled by RULE 2 in a practical recursion depth λ will often be called (Jλ,Kλ).
So clauses can have an index showing in which practical recursion depth the clauses are valid resp.
examined. Details on clause index-ing will follow.

6In this proof, counting the practical recursion depth is the only meaning of λ, regardless of how λ is used in common
mathematical literature.

14

extension) The extension requests that SF 0 gets extended by (p(λ), 0). Similarly, the extension requests that
SF 1 gets extended by (p(λ), 1). This is the formal description of the extension given in 4.2.1.2.

In the upcoming passage ”Formulas Describing Procedures within Polynomial Solver” (4.2.3), it
will be shown that the set the literal index values of F0λ and F1λ (which are the F0 and F1 at
some recursion depth λ) can be chosen from is the corresponding set provided in λ − 1, extended
by p(λ). This comes from the fact that RULE 2 turns each of the Iλ and Hλ into the new Jλ+1, as
described in the prior topic ”recursion)”. Because Iλ and Hλ are contained within (Jλ,Kλ), they
may have an additional literal index at some position p. This is allowed by the definition of being
contained, please see 2.7. This position p will, figuratively spoken, be ’built-in’ into the set the literal
index values of the initially false F0λ+1 and F1λ+1 can be chosen from. So the literal with index p
requested by RULE 2 does finally implement the extension. Again, the exact working mechanism
will become clear in the proof passage ”Formulas Describing Procedures within Polynomial Solver”,
which is soon to follow.

4.2.2 Artifacts for the Proof

At next, some definitions and observations are presented which will be used in the actual proof.

4.2.2.1 Literal Indices a, b, c, d, e, f

Definition 4.2.2 The literal indices a, b, c, d, e, f are defined as follows:

a, b, c, d, e, f ∈ {1, 2, 3} | (a 6= b) ∧ (a 6= c) ∧ (b 6= c) ∧ (d 6= e) ∧ (d 6= f) ∧ (e 6= f)

In the course of the proof, clauses will be characterized by defining sets the clauses’ literal index- and
epsilon values can be selected from. Sometimes two of a clause’s literal index- and epsilon values are to
be selected from an other set than the third literal’s values. The variables a, b, c, d, e, f do here allow a
flexible definition. With their use it is possible to allow all three possible assignments of one of the three
clause literals to the one set, and the resting two literals to the other set. For instance:

I1 | ((i1a, εi1a), (i1b, εi1b) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0))}∧
(i1c, εi1c) = (p(1), 0))

This means exactly one of these situations applies: i11 = p(1) ∨ i12 = p(1) ∨ i13 = p(1). The resting two
i1... are chosen out of {j01, j02, j03, k01, k02, k03, p(0)}. The epsilons are chosen accordingly.

The scope of the values of a, b, c, d, e, f is the current clause only. In the following proof, large formulas
will be introduced which contain a, b, c and d, e, f repetitively within several clauses. Each assignment
to the six variables can be re-chosen for each clause. Mostly a, b, c is assigned to I or F0 and d, e, f is
assigned to H or F1, which appear nearby. The six variables are just repeated and reused to avoid a
confusingly excessive variable count.

4.2.2.2 p(Lambda)

Definition 4.2.3 p() is defined as set which contains the values of all literal indices which do not appear
in the basis J0 and do not appear in the basis K0:

p = {l ∈ {1, ..., n} | (l 6= j01 ∧ l 6= j02 ∧ l 6= j03 ∧ l 6= k01 ∧ l 6= k02 ∧ l 6= k03)}

There are m = |p| many elements in p().

Example: We suppose J0 = (0x2 ∨ 0x3 ∨ 0x5) and K0 = (0x3 ∨ 0x5 ∨ 1x7) and n = 10. Then p =
{1, 4, 6, 8, 9, 10} and m = 6.

15

p(x) shall represent the (x+1)-th element from the set p(). This means the index of p() is 0-based. Like
this, the practical recursion depth λ can directly be used as index, because λ is also 0-based.

p() has the purpose to avoid that the polynomial solver tries, in the context of the extension, to add literal
index- and epsilon values which are already part of the basis J0 or K0.

4.2.2.3 Clauses, Literals and their Indices

During the proof, letters are used to denote clauses. These clause variables are mostly of the
form C#λ. Here C is a placeholder for the clause name, e.g. I, H, J , K, F . Clause names are typically
noted in capital letters and # is occasionally used as a numeration. That # numeration can be 0 or 1,
e.g. in F0 and F1. This means F0 has been extended by an epsilon value of 0. Similarly, F1 has been
extended by an epsilon value of 1. Else the # numeration is just a serial number, like in I1, I2, I3, I4,
which have been used in the definition of the practical recursion. λ is the practical recursion depth the
clause is used in. λ can be 0 for the basis clauses, or 1, or 2, or it is just ”λ” for some practical recursion
depth not specified.

As mentioned in 2.1, each clause consists of literals with related epsilons. Literals as a whole are index-ed
”x” variables. In this document, also the term literal indices is used. A literal index embraces all indices
attaches to a literal’s ”x”, but without the ”x”. The literal indices belonging to the literals of a clause
C are typically of the form cy or cλy. These literal indices are noted in non-capital letters and they can
also have a practical recursion depth index λ, like the related clause. λ = 0 does here denote the index
of a literal of a basis clause. In any case literal indices have a sub-index y out of {1, 2, 3, a, b, c, d, e, f}.
This sub-index is either the location of the literal in the clause (1, 2 or 3) or it is an index as introduced
in 4.2.2.1. This means the literal indices of C = (0x1 ∨ 0x3 ∨ 1x5) are 1, 3, 5 and the literals of C are x1,
x3, x5. It is important to not confuse the literal as a whole with its literal index, which does not include
the ”x”. Each clause literal may be combined with its corresponding epsilon value. For instance, εjλy is

the epsilon value (0 or 1) which stands, within the clause Jλ, in front of the literal xjλy.

The literal indices of the clauses of the basis tuple (J0,K0) are of great importance for the proof. These
literal indices have the form j0y resp. k0y, with y ∈ {1, 2, 3, a, b, c, d, e, f}. Recall the basis tuple is
the tuple the polynomial solver needs to disable throughout this proof. The basis J0 is written-out:
J0 = (εj01xj01 ∨ εj02xj02 ∨ εj03xj03). It contains the epsilon values εj01, εj02, εj03 and the literal indices
j01, j02, j03. Similarly, the basis K0 is written-out: K0 = (εk01xk01 ∨ εk02xk02 ∨ εk03xk03). It contains
the epsilon values εk01, εk02, εk03 and the literal indices k01, k02, k03.

4.2.2.4 Being Contained

The following two sub proofs will be utilized in the actual proof.

Please notice the denotation convention used exclusively in this ”Being Contained” passage: The mere
expression ”literal” is used for the entirety of literal index and epsilon value. So ”one literal of I1 is equal
to one literal of J1” means ∃x, y ∈ {1, 2, 3} : i1x = j1y ∧ εi1x = εj1y.

16

Claim 4.2.4

Any

I1 | ((i1a, εi1a), (i1b, εi1b) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0))}∧
(i1c, εi1c) = (p(1), 0))
and

H1 | ((h1d, εh1d), (h1e, εh1e) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0))}∧
(h1f, εh1f) = (p(1), 1))
are contained within

either at least one

J1 | (j11, εj11), (j12, εj12), (j13, εj13) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0))}
and

K11 | (k111, εk111), (k112, εk112), (k113, εk113) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)}

or at least one

J1 | (j11, εj11), (j12, εj12), (j13, εj13) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0))}
and

K21 | (k211, εk211), (k212, εk212), (k213, εk213) ∈
{(k01, εk01), (k02, εk02), (k03, εk03)}

Proof:

• First, it is important to recognize i1a, i1b, i1c and h1d, h1e, h1f will not all be out of
{j01, j02, j03, k01, k02, k03, p(0)}. This is the case because it is explicitly assumed i1c = p(1)
and h1f = p(1). Therefore it is not required to assign i1c or h1f a literal index out of
{j01, j02, j03, k01, k02, k03, p(0)}. So there are only two literal indices of I1 and two literal indices of
H1 which must be equal to literal indices out of J1 and (K11 or K21).

• The polynomial solver will detect I1 and H1 being contained within J1 and (K11 or K21) if:

– two literals of I1 are equal to two literals of J1.

– one literal of H1 is equal to one literal of J1.

– one literal of H1 is equal to one literal of either K11 or K21.

This is an excerpt of the possible cases. The same situation with I1 and H1 swapped would be
accepted as being contained as well. However, it suffices to take into consideration the described
sub case.

The crucial point is that it has been shown it is not required that both K11 and K21 need to have
literals equal to I1 or H1. This frugal property will be of importance in upcoming proof passages.

17

Claim 4.2.5 At any practical recursion depth λ ≥ 2 it applies:

Any

Iλ | ((iλa, εiλa), (iλb, εiλb) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0)), ..., (p(λ− 1), εp(λ−1))}∧
(iλc, εiλc) = (p(λ), 0))
and

Hλ | ((hλd, εhλd), (hλe, εhλe) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0)), ..., (p(λ− 1), εp(λ−1))}∧
(hλf, εhλf) = (p(λ), 1))
are contained within at least one

Jλ | (jλ1, εjλ1), (jλ2, εjλ2), (jλ3, εjλ3) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0)), ..., (p(λ− 1), εp(λ−1))}
and

Kλ | (kλ1, εkλ1), (kλ2, εkλ2), (kλ3, εkλ3) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), εp(0)), ..., (p(λ− 2), εp(λ−2))}

The dots ”...” represent a succession of (p(x), εp(x)) with 0<x<[λ− 1 resp. λ− 2].

Proof: The goal of this proof is to show that it is for any of the stated Iλ and Hλ possible to choose at
least one Jλ and Kλ with literal indices and epsilon values from the sets stated in the claim, whereby Jλ
and Kλ contain Iλ and Hλ. To do so, first it must be heeded we cannot assign more than summarized
three literals of Iλ and Hλ to each Jλ and Kλ. This is because all clauses are exact-3-SAT clauses and
thus have exactly 3 literals. So it is important to regard the count of Iλ and Hλ literals being assigned.
Additionally it must be recognized Kλ cannot contain any literal index equal to p(λ− 1). So a literal of
Jλ must be used therefore. Kλ’s literal index range goes up to p(λ − 2) only, as visible in the formula
above. Finally it must be noted that one literal index of Iλ must be p(λ). The same applies to one literal
index of Hλ, which must be p(λ).

Keeping this in mind it can be gathered that Jλ and Kλ must be chosen as follows to contain Iλ and Hλ:

• If one Iλ literal and one Hλ literal has index p(λ− 1)

– Those Iλ and Hλ literals (because non-distinct, effectively one) must be equal to some literal
in Jλ.

– The resting one Iλ literal must be equal to some literal in Jλ and

– the resting one Hλ literal must be equal to some literal in Kλ.

• If one Iλ literal and no Hλ literal has index p(λ− 1)

– This one Iλ literal must be equal to to some literal in Jλ.

– The resting one Iλ literal must be equal to some literal in Jλ and

– the resting two Hλ literals must be equal to some literals in Kλ.

• If no Iλ literal and one Hλ literal has index p(λ− 1)

– This one Hλ literal must be equal to some literal in Jλ.

– The resting one Hλ literal must be equal to some literal in Jλ and

– the resting two Iλ literals must be equal to some literals in Kλ.

• If no Iλ literal and no Hλ literal has index p(λ− 1)

– The resting two Iλ literals must be equal to some literals in Jλ and

– the resting two Hλ literals must be equal to some literals in Kλ.

This is an excerpt of the situations in which the polynomial solver accepts Iλ and Hλ being contained
within Jλ and Kλ. However, the just stated situations are in practice sufficient to make the polynomial
solver work. This is forecasted by theory and I could also not find any errors by computer-aided verification
using self-written computer programs.

18

4.2.3 Formulas Describing Procedures within Polynomial Solver

Hereafter several ”formulas” will be presented. These formulas consist of tuple sets noted using mathe-
matical notation. These tuple sets describe literal index- and epsilon values which specific possible clauses
may contain. The superior idea is to describe precisely which initially false clauses or which disabled
tuples are accepted by the polynomial solver to disable further tuples.

The formulas are categorized by the practical recursion depth (see 4.2.1.3) in which they are valid.

At first sight it might seem to the reader that the formulas are hard to understand. But they are the
easiest way I found to analyze in detail how the polynomial solver internally works. Besides, the formulas
are all similar. When having understood one of them, the sense of all will be accessible. After the formulas
have been presented, detailed instructions will follow on how to interpret the formulas and how they are
used to prove the correctness of the polynomial solver.

4.2.3.1 Lambda = 0

Claim 4.2.6 The polynomial solver disables at least one tuple (J0,K0) with J0 and K0 having their literal
index- and epsilon values out of the stated sets if the conditions stated in the following formula are fulfilled.

Notice that (I0, J0) at practical recursion depth λ = 0 is equal to (J1,K1) at practical recursion depth
λ = 1. This is just a naming convention, because the tuple being disabled by RULE 1 or RULE 2 is
always named (J,K). Please see 3. When one step of the practical recursion is done, in this next deeper
practical recursion layer the tuple which gets disabled shall again be named using the clause names J and
K. The same applies to (I0,K0), which is equal to another (J1,K1). To be able to distinguish (I0, J0) and
(I0,K0), those tuples are here always noted together with (J1,K1). This holds true for greater λ as well.
Also the comments introduced by // apply to the corresponding locations in the formulas for greater λ,
too. They will just not be re-added there to save page space.

// === At least one of these tuples gets disabled: ===

π(
J0 | ((j01, εj01), (j02, εj02), (j03, εj03)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)},
K0 | ((k01, εk01), (k02, εk02), (k03, εk03)) ∈
{(k01, εk01), (k02, εk02), (k03, εk03)}
) := 0
if

(

// === if there is at least one of the following initially false clauses: ===

// "case F":

(∃F0 | (τ(F0) = 0 ∧ (((f01, εf01), (f02, εf02), (f03, εf03)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)})))
// F0 is equal to I0 of "case I"

∨
// === or/and at least one of the following disabled tuples: ===

// "case I":

π(// some of these tuples can be used as (I, J) in RULE 1

I0 = J1 | ((j1a, εj1a), (j1b, εj1b), (j1c, εj1c)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)},
J0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)} // this is the J0 from the tuple (J0,K0) which gets disabled

) = 0

19

∨
// "case I":

π(// some of these tuples can be used as (I,K) in RULE 1

I0 = J1 | ((j1a, εj1a), (j1b, εj1b), (j1c, εj1c)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)},
K0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(k01, εk01), (k02, εk02), (k03, εk03)} // this is the K0 from the tuple (J0,K0) which gets disabled

) = 0
∨
// === or if there is one of these disabled tuples ===

// === or initially false clauses: ===

((

// "case I+H":

π(// RECURSION λ = 0, SF 0; some of these tuples can be used as (I, J) in RULE 2

I0 = J1 | (((j1a, εj1a), (j1b, εj1b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}∧
(j1c, εj1c) = (p(0), 0)), // EXTENSION λ = 0, SF 0

J0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)} // this is the J0 from the tuple (J0,K0) which gets disabled

) = 0
∨
// "case I+H":

π(// RECURSION λ = 0, SF 0; some of these tuples can be used as (I,K) in RULE 2

I0 = J1 | (((j1a, εj1a), (j1b, εj1b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}∧
(j1c, εj1c) = (p(0), 0)), // EXTENSION λ = 0, SF 0

K0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(k01, εk01), (k02, εk02), (k03, εk03)} // this is the K0 from the tuple (J0,K0) which gets disabled

) = 0
∨
// "case F0/F1":

(∃F00 | (τ(F00) = 0 ∧ (((f00a, εf00a), (f00b, εf00b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}∧
(f00c, εf00c) = (p(0), 0)))) // equal to I0 of "case I+H"

)

∧
// === and additionally one of these disabled tuples ===

// === or initially false clauses: ===

(

// "case I+H":

π(// RECURSION λ = 0, SF 1; some of these tuples can be used as (H, J) in RULE 2

H0 = J1 | (((j1d, εj1d), (j1e, εj1e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}∧
(j1f , εj1f) = (p(0), 1)), // EXTENSION λ = 0, SF 1

J0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)} // this is the J0 from the tuple (J0,K0) which gets disabled

) = 0
∨
// "case I+H":

π(// RECURSION λ = 0, SF 1; some of these tuples can be used as (H,K) in RULE 2

H0 = J1 | (((j1d, εj1d), (j1e, εj1e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}∧
(j1f , εj1f) = (p(0), 1)), // EXTENSION λ = 0, SF 1

K0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(k01, εk01), (k02, εk02), (k03, εk03)} // this is the K0 from the tuple (J0,K0) which gets disabled

) = 0

20

∨
// "case F0/F1":

(∃F10 | (τ(F10) = 0 ∧ (((f10d, εf10d), (f10e, εf10e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}∧
(f10f , εf10f) = (p(0), 1)))) // equal to H0 of "case I+H"

))

)

Proof:

”case I+H”) Disabled tuple(s) contribute to setting π(J0,K0) := 0

It is supposed that π(J0,K0) = 1, that means the basis tuple has not been disabled yet. Otherwise
the whole proof consideration here would be irrelevant.

The stated I0 and H0 are contained within (J0,K0), as defined in 2.7. The reason is that all literal
index- and epsilon value tuples of I0 and H0 appear in J0 or K0 or both, except (p(0), 0) resp.
(p(0), 1). These two literal indices p(0) are the position p as defined in 2.7 7.

Furthermore the formula from this proof’s claim defines for ”case I+H” that it is given: (π(I0, J0) =
0 ∧ π(H0, J0) = 0) ∨ (π(I0,K0) = 0 ∧ π(H0,K0) = 0).

This fulfills the three if () conditions of RULE 2. Therefore RULE 2 will disable (J0,K0).

How RULE 2 does this in practice is now explained.

We look at the exact definition of RULE 2, as given in 3:

foreach J ∈ PC
foreach K ∈ PC
if (π(J,K) = 1)
foreach I ∈ PC
foreach H ∈ PC
if (I and H are contained within (J,K))

if ((π(I, J) = 0 ∨ π(I,K) = 0) ∧ (π(H,J) = 0 ∨ π(H,K) = 0))
π(J,K) := 0
Changed := true

The four foreach loops each iterate through absolutely all possible clauses. Therefore it will happen
at least once that all four loops point to the J0, K0, I0, H0 regarded in this proof. As already
mentioned, then the three if () conditions are fulfilled and the tuple (J,K), which is (J0,K0) in
this consideration 8, gets disabled.

The reader might have noticed the pseudo code of the polynomial solver does not contain any p(λ).
The formulas whereas do. This is no contradiction, for the following reason: the p(λ)’s shown in
this document are always a part of some clauses defined in the formulas of 4.2.6, 4.2.7, 4.2.8, 4.2.9.
These clauses are, even when containing any p(λ), all out of the set of possible clauses. This means
that each of the foreach loops of the polynomial solver will ’sooner or later’ point to the ’right’
clause which does contain the stated p(λ). For clarification, an example: The formula of 4.2.6 states
that some F00 and F10 is accepted to disable (J0,K0). The formula also states F00 and F10 might
contain a literal with index p(0). When the foreach I ∈ PC and foreach H ∈ PC loops of
RULE 2 point to these F00 and F10, then the three if () conditions are fulfilled and the code line
π(J,K) := 0 will be executed.

Please notice that it must apply (j1c, εj1c) = (p(0), 0) and (j1f , εj1f) = (p(0), 1). So one literal index

of I0 and one literal index of H0 must be equal to p(0). The corresponding epsilon value of I0 must
be 0 and the corresponding epsilon value of H0 must be 1. This is requested in the definition of
”being contained”, please see 2.7. Because I0 and H0 are the two clauses being contained within
(J0,K0), the described situation must apply.

7The p(0) is an other variable than the p used in the definition of being contained. Please do not get confused about this
random accordance.

8Clause names can be replaced as long as their content is the same, like for any mathematical variable in general.

21

But what if there is an ”asynchrony”, meaning either I0 or H0 contains (p(0), 0) resp. (p(0), 1),
but not both? This does also not cause problems, because then ”case I” (see below) applies. If
the literal indices and epsilon values of e.g. I0 (or H0) do not contain (p(0), 0) (resp. (p(0), 1)),
then they are all out of {(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}. These
requirements fulfill ”case I”. If only I0 contains (p(0), 0), then I0 can in practice be seen as surplus,
because H0 fulfills ”case I”. The same applies for the opposite case where only H0 contains (p(0), 1),
then H0 can be seen as surplus. An initially false I0 is then ’enough’ to disable (J0,K0).

”case I”) Disabled tuple(s) contribute to setting π(J0,K0) := 0

”Case I” is similar to ”case I+H”.

It is supposed that π(J0,K0) = 1, that means the basis tuple has not been disabled yet. Otherwise
the whole proof consideration here would be irrelevant.

The stated I0 is contained within the stated (J0,K0), as defined in 2.7. The reason is that all literal
index- and epsilon value tuples of I0 appear in J0 or K0 or both.

Furthermore the formula 4.2.6 defines for ”case I” that it is given: π(I0, J0) = 0 or/and π(I0,K0) = 0.

This fulfills the three if () conditions of RULE 1. Therefore RULE 1 will disable (J0,K0).

How RULE 1 does this in practice is now explained.

We look at the exact definition of RULE 1, as given in 3:

foreach J ∈ PC
foreach K ∈ PC
if (π(J,K) = 1)
foreach I ∈ PC
if (I is contained within (J,K))

if (π(I, J) = 0 ∨ π(I,K) = 0)
π(J,K) := 0
Changed := true

The three foreach loops each iterate through absolutely all possible clauses. Therefore it will
happen at least once that all three loops point to the J0, K0, I0 regarded in this proof. As already
mentioned, then the three if () conditions are fulfilled and the tuple (J,K), which is (J0,K0) in
this consideration (clause names can be substituted), gets disabled.

The reason why here in ”case I” of this λ = 0 formula it is checked for two disabled tuples π(I0, J0) =
0 or/and π(I0,K0) = 0 is that at λ = 1 only one of both could have gotten disabled. Further notes
will be given as part of the upcoming formulas for λ = 1 (4.2.7 and 4.2.8).

”case F0/F1”) Initially false clause(s) contribute to setting π(J0,K0) := 0

For ”case F0/F1” it is assumed that there are initially false clauses F00 or/and F10 instead of
disabled tuples.

Because F00 is initially false, it applies τ(F00) = 0. Similarly, because F10 is initially false, it
applies τ(F10) = 0.

Then the INITIALIZATION rule has disabled any tuple which holds the clause F00. This means:
∀X ∈ PC : π(F00, X) = 0. Similarly, the INITIALIZATION rule has disabled any tuple which
holds the clause F10. This means: ∀X ∈ PC : π(F10, X) = 0.

How the INITIALIZATION rule does this in practice is now explained.

We look at the exact definition of the INITIALIZATION rule, as given in 3:

foreach J ∈ PC
foreach K ∈ PC
if ((τ(J) = 1) ∧ (τ(K) = 1) ∧ (J ≡ K))

π(J,K) := 1
if ((τ(J) = 0) ∨ (τ(K) = 0) ∨ (J 6≡ K))

π(J,K) := 0

22

The two foreach loops each iterate through absolutely all possible clauses. Therefore it will happen
at least once that both loops point to the (F00 or F10) and X regarded in this proof. Then
the second if () condition is fulfilled and the tuple (J,K), which is (F00, X) or (F10, X) in this
consideration, gets disabled.

When regarding carefully how the literal index- and epsilon values of F00 can be chosen (see formula
of claim 4.2.6), one can determine this allows the very same selection as for I0 in ”case I+H”.
Similarly, when regarding carefully how the literal index- and epsilon values of F10 can be chosen
(again see formula), one can determine this allows the very same selection as for H0 in ”case I+H”.

This means there is always some I0 from ”case I+H” which is equal to F00. Also, there is always
some H0 from ”case I+H” which is equal to F10.

Because we already found out ∀X ∈ PC : π(F00, X) = 0, we can conclude: ∀X ∈ PC : π(I0, X) = 0
and finally π(I0, J0) = 0, because there is one X equal to J0. Similarly, because we already know
∀X ∈ PC : π(F10, X) = 0, we can conclude: ∀X ∈ PC : π(H0, X) = 0 and finally π(H0, J0) = 0,
because there is one X equal to J0.

Now there is the same situation as in ”case I+H”. There are I0 and H0 being contained within
(J0,K0) and it applies π(I0, J0) = 0∧π(H0, J0) = 0. Then the same procedure as explained in ”case
I+H” is performed to disable the tuple (J0,K0).

But what if there is an ”asynchrony”, meaning either F00 or F10 contains (p(0), 0) resp. (p(0), 1),
but not both? This does also not cause problems, because then ”case F” (see below) applies. If
the literal indices and epsilon values of e.g. F00 (or F10) do not contain (p(0), 0) (resp. (p(0), 1)),
then they are all out of {(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}. These
requirements fulfill ”case I”.

”case F”) Initially false clause(s) contribute to setting π(J0,K0) := 0

”Case F” is similar to ”case F0/F1”.

Any of the F0 stated by the formula matches some of the I0 of ”case I”. Any such I0 is then
contained within (J0,K0), as pointed out in the previous ”case I” text passage.

Because τ(F0) = 0 and thus τ(I0) = 0, the INITIALIZATION rule will have set π(I0, J0) = 0.
Please compare to the prior proof of ”case F0/F1”.

Finally the same procedure as explained in ”case I” is performed to disable the tuple (J0,K0).

Please notice that this ”case F” disables (J0,K0) if the initially false clause of each CT line is
completely contained within (J0,K0). This means ”case F” covers the single case where no recursion
and extension is to be done at all. Please keep this in mind, because the rest of the proof examines
exclusively cases which require recursion and extension.

4.2.3.2 Lambda = 1

Claim 4.2.7 The polynomial solver disables at least one tuple (I0, J0) or (I0,K0) with I0 and J0 and K0

having their literal index- and epsilon values out of the stated sets if the conditions stated in the following
formula are fulfilled.

It is not predictable if it is (I0, J0) or (I0,K0) which gets disabled, but it is for sure that at least one of
both gets disabled.

π(
I0 = J1 | ((j11, εj11), (j12, εj12), (j13, εj13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)},
J0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)}
) := 0

23

∨
π(
I0 = J1 | ((j11, εj11), (j12, εj12), (j13, εj13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)},
K0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(k01, εk01), (k02, εk02), (k03, εk03)}
) := 0
if

(

// "case F":

(∃F1 | (τ(F1) = 0 ∧ (((f11, εf11), (f12, εf12), (f13, εf13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)})))
∨
// "case I":

π(
I1 = J2 | ((j2a, εj2a), (j2b, εj2b), (j2c, εj2c)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)},
J1 = K2 | ((k21, εk21), (k22, εk22), (k23, εk23)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)}
) = 0
∨
((

// "case I+H":

π(// RECURSION λ = 1, SF 0

I1 = J2 | (((j2a, εj2a), (j2b, εj2b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)}∧
(j2c, εj2c) = (p(1), 0)), // EXTENSION λ = 1, SF 0

J1 = K2 | ((k21, εk21), (k22, εk22), (k23, εk23)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)}
) = 0
∨
// "case F0/F1":

(∃F01 | (τ(F01) = 0 ∧ (((f01a, εf01a), (f01b, εf01b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)}∧
(f01c, εf01c) = (p(1), 0))))

)

∧
(

// "case I+H":

π(// RECURSION λ = 1, SF 1

H1 = J2 | (((j2d, εj2d), (j2e, εj2e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)}∧
(j2f , εj2f) = (p(1), 1)), // EXTENSION λ = 1, SF 1

J1 = K2 | ((k21, εk21), (k22, εk22), (k23, εk23)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)}
) = 0
∨
// "case F0/F1":

(∃F11 | (τ(F11) = 0 ∧ (((f11d, εf11d), (f11e, εf11e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)}∧
(f11f , εf11f) = (p(1), 1))))

))

)

24

Proof: The four cases can be proven just like done in the λ = 0 case. Please see 4.2.6. There is only one
difference concerning ”case I+H”: To show that I1 and H1 are contained within (J1,K1) now 4.2.4 is to
be used. Please notice that 4.2.4 cannot forecast if I1 and H1 are contained within (J1,K1)=(I0, J0) or
if I1 and H1 are contained within (J1,K1)=(I0,K0). For this reason, this formula 4.2.7 leaves open if
(I0, J0) or if (I0,K0) is the tuple which gets disabled.

Claim 4.2.8 The polynomial solver disables at least one tuple (H0, J0) or (H0,K0) with H0 and J0 and
K0 having their literal index- and epsilon values out of the stated sets if the conditions stated in the
following formula are fulfilled.

It is not predictable if it is (H0, J0) or (H0,K0) which gets disabled, but it is for sure that at least one of
both gets disabled.

π(
H0 = J1 | ((j11, εj11), (j12, εj12), (j13, εj13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)},
J0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)}
) := 0
∨
π(
H0 = J1 | ((j11, εj11), (j12, εj12), (j13, εj13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)},
K0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(k01, εk01), (k02, εk02), (k03, εk03)}
) := 0
if

(

// "case F":

(∃F1 | (τ(F1) = 0 ∧ (((f11, εf11), (f12, εf12), (f13, εf13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)})))
∨
// "case I":

π(
I1 = J2 | ((j2a, εj2a), (j2b, εj2b), (j2c, εj2c)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)},
J1 = K2 | ((k21, εk21), (k22, εk22), (k23, εk23)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)}
) = 0
∨
((

// "case I+H":

π(// RECURSION λ = 1, SF 0

I1 = J2 | (((j2a, εj2a), (j2b, εj2b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)}∧
(j2c, εj2c) = (p(1), 0)), // EXTENSION λ = 1, SF 0

J1 = K2 | ((k21, εk21), (k22, εk22), (k23, εk23)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)}
) = 0
∨
// "case F0/F1":

(∃F01 | (τ(F01) = 0 ∧ (((f01a, εf01a), (f01b, εf01b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)}∧
(f01c, εf01c) = (p(1), 0))))

)

25

∧
(

// "case I+H":

π(// RECURSION λ = 1, SF 1

H1 = J2 | (((j2d, εj2d), (j2e, εj2e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)}∧
(j2f , εj2f) = (p(1), 1)), // EXTENSION λ = 1, SF 1

J1 = K2 | ((k21, εk21), (k22, εk22), (k23, εk23)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)}
) = 0
∨
// "case F0/F1":

(∃F11 | (τ(F11) = 0 ∧ (((f11d, εf11d), (f11e, εf11e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)}∧
(f11f , εf11f) = (p(1), 1))))

))

)

Proof: The four cases can be proven just like done in the λ = 0 case. Please see 4.2.6. There is only one
difference concerning ”case I+H”: To show that I1 and H1 are contained within (J1,K1) now 4.2.4 is to
be used. Please notice that 4.2.4 cannot forecast if I1 and H1 are contained within (J1,K1)=(H0, J0) or
if I1 and H1 are contained within (J1,K1)=(H0,K0). For this reason, this formula 4.2.8 leaves open if
(H0, J0) or if (H0,K0) is the tuple which gets disabled.

4.2.3.3 Lambda >= 2

Claim 4.2.9 The polynomial solver disables at least one tuple (Jλ,Kλ) with Jλ and Kλ having their
literal index- and epsilon values out of the stated sets if the conditions stated in the following formula are
fulfilled.

The dots ”...” stand for a succession of tuples (p(λ), εp(λ)) | 0 ≤ λ ≤ x, where x is the smallest λ not
written out in the corresponding formula line. This means x = λ− 3 within Kλ, else x = λ− 2. If λ
is smaller than 3, the dots in Kλ are actually surplus and are to be ignored. I just didn’t make a case
analysis here to keep the formula notation simple.

π(
Jλ | ((jλ1, εjλ1), (jλ2, εjλ2), (jλ3, εjλ3)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))},
Kλ | ((kλ1, εkλ1), (kλ2, εkλ2), (kλ3, εkλ3)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 2), εp(λ−2))}
) := 0
if

(

// "case F":

(∃Fλ | (τ(Fλ) = 0 ∧ (((fλ1, εfλ1), (fλ2, εfλ2), (fλ3, εfλ3)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))})))

26

∨
// "case I":

π(
Iλ = Jλ+1 | ((jλ+1a, εjλ+1a

), (jλ+1b, εjλ+1b
), (jλ+1c, εjλ+1c

)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))},
Jλ = Kλ+1 | ((kλ+11, εkλ+11

), (kλ+12, εkλ+12
), (kλ+13, εkλ+13

)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}
) = 0
∨
((

// "case I+H":

π(// RECURSION λ ≥ 2, SF 0

Iλ = Jλ+1 | (((jλ+1a, εjλ+1a
), (jλ+1b, εjλ+1b

)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}∧
(jλ+1c, εjλ+1c

) = (p(λ), 0)), // EXTENSION λ ≥ 2, SF 0

Jλ = Kλ+1 | ((kλ+11, εkλ+11
), (kλ+12, εkλ+12

), (kλ+13, εkλ+13
)) ∈

{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}
) = 0
∨
// "case F0/F1":

(∃F0λ | (τ(F0λ) = 0 ∧ (((f0λa, εf0λa), (f0λb, εf0λb)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}∧
(f0λc, εf0λc) = (p(λ), 0))))

)

∧
(

// "case I+H":

π(// RECURSION λ ≥ 2, SF 1

Hλ = Jλ+1 | (((jλ+1d, εjλ+1d
), (jλ+1e, εjλ+1e

)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}∧
(jλ+1f , εjλ+1f

) = (p(λ), 1)), // EXTENSION λ ≥ 2, SF 1

Jλ = Kλ+1 | ((kλ+11, εkλ+11
), (kλ+12, εkλ+12

), (kλ+13, εkλ+13
)) ∈

{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}
) = 0
∨
// "case F0/F1":

(∃F1λ | (τ(F1λ) = 0 ∧ (((f1λd, εf1λd), (f1λe, εf1λe)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}∧
(f1λf , εf1λf) = (p(λ), 1))))

))

)

Proof: The four cases can be proven just like done in the λ = 0 case. Please see 4.2.6. There is only one
difference concerning ”case I+H”: To show that Iλ and Hλ are contained within (Jλ,Kλ) now 4.2.5 is to
be used.

4.2.4 Interpretation of the Formulas

In the previous passage 4.2.3 four huge formulas were presented. It will now be explained in detail what
these formulas express and how they help to prove the correctness of the polynomial solver.

27

The formulas all have the same structure: The formulas tell which tuples must be disabled or which
initially false clauses must exist to disable some tuple (J0,K0) resp. (J1,K1) resp. (Kλ, Jλ). The tuple
which gets disabled does in each formula always stand before the if keyword. The required disabled
tuples and initially false clauses do in each formula stand behind the if keyword.

Generally, there is no statement of single suitable tuples and clauses but it is stated from which sets the
involved clauses’ literal index- and epsilon values can be chosen from. Hereto an excerpt taken from 4.2.9:

π(
Jλ | ((jλ1, εjλ1), (jλ2, εjλ2), (jλ3, εjλ3)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))},
Kλ | ((kλ1, εkλ1), (kλ2, εkλ2), (kλ3, εkλ3)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 2), εp(λ−2))}
) := 0
if

(

...

((

// "case I+H":

π(
Iλ = Jλ+1 | (((jλ+1a, εjλ+1a

), (jλ+1b, εjλ+1b
)) ∈

{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}∧
(jλ+1c, εjλ+1c

) = (p(λ), 0)),
Jλ = Kλ+1 | ((kλ+11, εkλ+11

), (kλ+12, εkλ+12
), (kλ+13, εkλ+13

)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}
) = 0
∨
// "case F0/F1":

(∃F0λ | (τ(F0λ) = 0 ∧ (((f0λa, εf0λa), (f0λb, εf0λb)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))}∧
(f0λc, εf0λc) = (p(λ), 0))))

)

...

This formula states that at least one (Jλ,Kλ) gets disabled if there is, among others not shown in this
example, some disabled tuple (Iλ, Jλ) or, among others, some initially false clause F0λ.

As already mentioned, the formula does not state one exact tuple (Jλ,Kλ) which could get disabled.
Instead, the formula describes a set of tuples (Jλ,Kλ). This tuple set is defined via the statement of
which literal index- and epsilon values the tuples’ clauses might consist. At least one tuple (Jλ,Kλ) will
get disabled if the conditions behind the if keyword are fulfilled. Similar applies to the required initially
false clauses and required disabled tuples behind the if keyword. They are not exactly described but any
clause(s) out of the stated sets will fulfill the if () condition. The reason why clauses are not exactly
specified here is that it is (of course) not known in advance which initially false clauses the 3-SAT CNF to
solve will contain. With other initially false clauses, also different tuples might be disabled in any depth
of the practical recursion.

What is important to recognize is that at some practical recursion depth λ + 1, any tuple (Jλ+1,Kλ+1)
which gets disabled is accepted in ”case I” or ”case I+H” in the next lower practical recursion depth λ.
Put another way, this means that at some practical recursion depth λ+ 1, any tuple (Jλ+1,Kλ+1) which
gets disabled is also accepted by RULE 1 or/and RULE 2 as (I, J) or (I,K) or (H,J) or (H,K) (that’s
how the tuples are named in the definition of RULE 1 and RULE 2, see 3) in the next lower practical
recursion depth λ.

For instance: At practical recursion depth λ = 0, among others, the following tuple can contribute to the
disabling of (J0,K0):

28

// At λ = 0, one of the following tuples (J0,K0) gets disabled

π(
J0 | ((j01, εj01), (j02, εj02), (j03, εj03)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)},
K0 | ((k01, εk01), (k02, εk02), (k03, εk03)) ∈
{(k01, εk01), (k02, εk02), (k03, εk03)}
) := 0
if

(

...

// "case I":

π(// by one of these tuples (I0, J0)
I0 = J1 | ((j1a, εj1a), (j1b, εj1b), (j1c, εj1c)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)},
J0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)}
) = 0
∨
...

((

// "case I+H":

π(// or one of these tuples (I0, J0)
I0 = J1 | (((j1a, εj1a), (j1b, εj1b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)}∧
(j1c, εj1c) = (p(0), 0)),
J0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)}
) = 0
...

This is an excerpt from 4.2.6.

At the next deeper practical recursion depth λ = 1, some (J1,K1) whose literal index- and epsilon values
can be selected as follows gets disabled:

π(// At the next greater λ = 1, at least one of those (I0, J0) gets disabled

I0 = J1 | ((j11, εj11), (j12, εj12), (j13, εj13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)},
J0 = K1 | ((k11, εk11), (k12, εk12), (k13, εk13)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03)}
) := 0
if

...

This is an excerpt from 4.2.7.

It can be realized that for every (J1,K1) which gets disabled there is the same (J1,K1) accepted to disable
(J0,K0). This is the case for the following reasons:

• We compare the formulas for λ = 1 and λ = 0 (see above). We assume the tuple (I0, J0)=(J1,K1)
being disabled at λ = 1 contains some literal index- and epsilon value tuple (p(0), 0). Then this
tuple (I0, J0)=(J1,K1) being disabled at λ = 1 is accepted at λ = 0 in ”case I+H”.

• We assume the tuple (I0, J0)=(J1,K1) being disabled at λ = 1 does not contain some literal index-
and epsilon value tuple (p(0), 0). Then this tuple (I0, J0)=(J1,K1) being disabled at λ = 1 is
accepted at λ = 0 in ”case I”.

29

The analog observations can be done for any λ + 1 and λ. This is an additional evidence that the
polynomial solver implements the recursion right. It does namely not happen that possibilities to select
the initially false clauses ’get lost’ among the steps of the practical recursion.

One might wonder where the tuples and clauses in the formulas of 4.2.6, 4.2.7, 4.2.8, 4.2.9 come from.
In other words, why are the clauses choosable as stated? The answer is that the clause tuples (Iλ, Jλ),
(Iλ,Kλ), (Hλ, Jλ), (Hλ,Kλ) with λ ≥ 0 of ”case I+H” and ”case I” are exactly those tuples which are
accepted in RULE 2 (case I+H) and RULE 1 (case I) to disable some (Jλ,Kλ). The initially false clauses
F0λ, F1λ of ”case F0/F1” and Fλ of ”case F” are those clauses which disable at least one tuple of ”case
I+H” and ”case I”. Finally the one or more tuples which get disabled (i.e. the (Jλ,Kλ) at formula top)
are exactly those tuples which can be disabled by RULE 1 or/and RULE 2. It is very important for
this proof to know how the tuples (Iλ, Jλ), (Iλ,Kλ), (Hλ, Jλ), (Hλ,Kλ) being accepted by RULE 2 look
like, because RULE 2 is the feature of the polynomial solver which does finally implement the recursion
and the extension. And the goal of this proof is to show that the polynomial solver does implement the
recursion and extension right. Please recall 4.2.1.2. This was the hidden agenda by me when having set
up the formulas.

The order of the formulas has been presented ’bottom-up’. This means first it was shown how the basis
tuple (J0,K0) gets disabled by further tuples which must already have been disabled. In practice, the
polynomial solver does the tuple disabling ’top-down’ in the opposite order. This means the basis tuple
(J0,K0) is the last one to be disabled. Through the polynomial solver’s while (true)-loop in combination
with the Changed flag check (see 3) it does not matter in which order tuples get disabled. The solver
will operate until there is no more possibility to disable at least one tuple. So this proof works without
regarding the chronology of the tuple disabling. The bottom up order has been chosen for this proof
because also recursive F search() works some kind of bottom up, as it begins with an empty SF init.

4.2.5 Formulas Prove the Polynomial Solver does Recursion and Extension

We take for granted the formulas shown in ”Formulas” (4.2.3) do correctly and completely describe the
working mechanisms of the polynomial solver. This has been proven for each formula, in the ”Proof: ...”
passages which followed on each formula. Then we can apply the following proof schema: If it can be
shown the formulas implement the recursion and the extension (as defined in 4.2.1.2), then we do also
know the polynomial solver implements the recursion and the extension. This will now be examined.

recursion) It can be recognized the formulas of 4.2.6 and 4.2.7 and 4.2.8 and 4.2.9 implement the recursion.

In the passage ”Idea of the Proof” (4.2.1.2) the recursion has been defined as follows: ”If F0 was
not found, recursive F search() performs one recursive call of itself. Similarly, if F1 was not
found, recursive F search() performs one recursive call of itself. This working mechanism of
recursive F search() is to be called the recursion.”

Please regard again the formulas presented in 4.2.6, 4.2.7, 4.2.8, 4.2.9. It can be recognized that
in each formula, the existence of an initially false F0λ and an initially false F1λ disables the tuple
(Jλ,Kλ). This is implemented for λ = 0 by the formula lines (∃F00 | (τ(F00) = 0 ∧ ... and
(∃F10 | (τ(F10) = 0 ∧ For higher λ’s the same applies.

It is important to realize that if no such initially false F00 exists, a disabled tuple (I0, J0) or (I0,K0)
can ’compensate’ F00. ’Compensate’ does here mean the disabled tuple has the same effect as the
initially false F00 (in view of disabling the basis (J0,K0)). This is implemented by the formula lines
marked with the comment // RECURSION λ = 0, SF 0. The formula lines (∃F00 | (τ(F00) = 0 ∧ ...
and the request for a disabled tuple (I0, J0) or (I0,K0) are linked by an ∨, so one of these three
requirements is sufficient to contribute to the disabling of (J0,K0). Similarly, a disabled tuple
(H0, J0) or (H0,K0) can ’compensate’ F10. Again the related the formula lines are marked with the
comment // RECURSION λ = 0, SF 1. For higher λ’s the same applies, except that it is not required
for higher λ’s to accept a disabled (Iλ,Kλ) resp. (Hλ,Kλ). For λ ≥ 1 it is sufficient to check for
π(Iλ, Jλ) = 0 resp. π(Hλ, Jλ) = 0 only (the reason therefore will be given later on).

Here are the parallels between recursive F search() and the formulas describing the working of
the polynomial solver:

30

If recursive F search() finds no F0, it checks if the return value of a recursive sub call to itself is
F IN EVERY CT LINE. If the polynomial solver finds no F0λ (λ ≥ 0), it checks if the specified tuples
are disabled. These tuples could have been disabled in a recursive manner, as explained in 4.2.1.3.
The same applies for F1.

So, figuratively spoken, the analog to recursive F search()’s return value checks are the polyno-
mial solver’s π(clause1, clause2) = 0 checks.

extension) It can be recognized the formulas of 4.2.6 and 4.2.7 and 4.2.8 and 4.2.9 implement the extension.

In the passage ”Idea of the Proof” (4.2.1.2) the recursion has been defined as follows: ”In the
recursive calls, SF has become SF 0 respectively SF 1. SF 0 has been built out of SF by adding a 0. SF 1

has been built out of SF by adding a 1. This means F0 must be out of SF 0 = SF∪(p(λ), 0). Similarly,
F1 must be out of SF 1 = SF ∪ (p(λ), 1). This working mechanism of recursive F search() is to
be called the extension.”

Instead of arguing here how the polynomial solver implements this extension, we just regard the
formulas, as described at the outset of this document section.

The following mathematical formulas are partially 1-to-1 excerpts from the formulas presented in
4.2.6, 4.2.7, 4.2.8, 4.2.9. The reader might refer to these previously given formulas and compare
them to the excerpts and citations given in the following.

The following formula parts were taken from 4.2.6, 4.2.7, 4.2.8, 4.2.9:

1) The parts that define which tuple gets disabled;

2) The parts that define which two initially false clauses F0λ and F1λ (for any λ ≥ 0) must exist
to disable this tuple;

3) The parts that tell which disabled tuples (Iλ, Jλ), (Hλ, Jλ), (Iλ,Kλ), (Hλ,Kλ) (for any λ ≥ 0)
are accepted as replacement for non-existing F0λ or/and F1λ.

The practical recursion has been ’unrolled’ once for 0 ≤ λ ≤ 2 and once for the general case
λ → λ + 1. This means for instance, if there is no initially false F00 at practical recursion depth
λ = 0, then a disabled (I0, J0) or a disabled (I0,K0) is accepted as well. It is explicitly shown how
these (I0, J0) or (I0,K0) can get disabled in return at λ = 1. This λ = 1 layer has been inserted into
the formula at the appropriate position so that the reader has a good overview of the dependencies.
Please compare to the dependency visualization shown in the definition of the practical recursion
(4.2.1.3).

The overall motivation is to summarize which initially false clauses F0λ and F1λ (for any λ ≥ 0) are
required to disable the basis tuple (J0,K0). In particular, it is to be shown that the sets the literal
index- and epsilon values of these initially false clauses can be chosen from is recursively extended
as requested in 4.2.1.2.

Case λ = 0→ λ = 1→ λ = 2

The formula locations where the extension becomes visible are underlined.

// === taken from 4.2.6, top of formula: ===

π(J0,K0) := 0 if:

// === taken from 4.2.6, "case F0/F1": ===

(∃F00 | (τ(F00) = 0 ∧ (((f00a, εf00a), (f00b, εf00 b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)} ∧ (f00c, εf00c) = (p(0), 0))))
// === taken from 4.2.6, "case I+H": ===

If no such initially false F00 exists, π(I0, J0) = 0 ∨ π(I0,K0) = 0 is accepted.

// === taken from 4.2.7, top of formula: ===

Either π(I0, J0) := 0 or π(I0,K0) := 0 if:

// === taken from 4.2.7, "case F0/F1": ===

(∃F01 | (τ(F01) = 0 ∧ (((f01a, εf01a), (f01b, εf01 b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)} ∧ (f01c, εf01c) = (p(1), 0))))

31

// === taken from 4.2.7, "case I+H": ===

If no such initially false F01 exists, π(I1, J1) = 0 is accepted.

// === taken from 4.2.9, top of formula: ===

π(I1, J1) := 0 if:

// === taken from 4.2.9, "case F0/F1": ===

(∃F02 | (τ(F02) = 0 ∧ (((f02a, εf02a), (f02b, εf02 b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(2− 1), εp(2−1))} ∧

(f02c, εf02c) = (p(2), 0))))

// === taken from 4.2.9, "case I+H": ===

If no such initially false F02 exists, π(I2, J2) = 0 is accepted.

∧
(∃F12 | (τ(F12) = 0 ∧ (((f12d, εf12d), (f12e, εf12e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(2− 1), εp(2−1))} ∧

(f12f , εf12f) = (p(2), 1))))

If no such initially false F12 exists, π(H2, J2) = 0 is accepted.

∧
(∃F11 | (τ(F11) = 0 ∧ (((f11d, εf11d)(f11e, εf11e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 0)} ∧ (f11f , εf11f) = (p(1), 1))))

If no such initially false F11 exists, π(H1, J1) = 0 is accepted.

π(H1, J1) := 0 if:

(∃F02 | (τ(F02) = 0 ∧ (((f02a, εf02a), (f02b, εf02 b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(2− 1), εp(2−1))} ∧

(f02c, εf02c) = (p(2), 0))))

If no such initially false F02 exists, π(I2, J2) = 0 is accepted.

∧
(∃F12 | (τ(F12) = 0 ∧ (((f12d, εf12d), (f12e, εf12e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(2− 1), εp(2−1))} ∧

(f12f , εf12f) = (p(2), 1))))

If no such initially false F12 exists, π(H2, J2) = 0 is accepted.

∧
// === taken from 4.2.6, "case F0/F1": ===

(∃F10 | (τ(F10) = 0 ∧ (((f10d, εf10d), (f10e, εf10e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03)} ∧ (f10f , εf10f) = (p(0), 1))))

// === taken from 4.2.6, "case I+H": ===

If no such initially false F10 exists, π(H0, J0) = 0 ∨ π(H0,K0) = 0 is accepted.

// === taken from 4.2.8, top of formula: ===

Either π(H0, J0) := 0 or π(H0,K0) := 0 if:

// === taken from 4.2.8, "case F0/F1": ===

(∃F01 | (τ(F01) = 0 ∧ (((f01a, εf01a), (f01b, εf01 b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)} ∧ (f01c, εf01c) = (p(1), 0))))

// === taken from 4.2.8, "case I+H": ===

If no such initially false F01 exists, π(I1, J1) = 0 is accepted.

π(I1, J1) := 0 if:

(∃F02 | (τ(F02) = 0 ∧ (((f02a, εf02a), (f02b, εf02 b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(2− 1), εp(2−1))} ∧

(f02c, εf02c) = (p(2), 0))))

If no such initially false F02 exists, π(I2, J2) = 0 is accepted.

∧
(∃F12 | (τ(F12) = 0 ∧ (((f12d, εf12d), (f12e, εf12e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(2− 1), εp(2−1))} ∧

(f12f , εf12f) = (p(2), 1))))

If no such initially false F12 exists, π(H2, J2) = 0 is accepted.

∧
(∃F11 | (τ(F11) = 0 ∧ (((f11d, εf11d), (f11e, εf11e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), (p(0), 1)} ∧ (f11f , εf11f) = (p(1), 1))))

If no such initially false F11 exists, π(H1, J1) = 0 is accepted.

32

π(H1, J1) := 0 if:

(∃F02 | (τ(F02) = 0 ∧ (((f02a, εf02a), (f02b, εf02 b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(2− 1), εp(2−1))} ∧

(f02c, εf02c) = (p(2), 0))))

If no such initially false F02 exists, π(I2, J2) = 0 is accepted.

∧
(∃F12 | (τ(F12) = 0 ∧ (((f12d, εf12d), (f12e, εf12e)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(2− 1), εp(2−1))} ∧

(f12f , εf12f) = (p(2), 1))))

If no such initially false F12 exists, π(H2, J2) = 0 is accepted.

From the just shown formula, the following information can be derived:

– If no initially false F00 exists, an initially false F01 and an initially false F11 can take over its
task to disable (J0,K0).

The sets the literal index values of F01 can be chosen from is equal to the set the literal index
values of F00 can be chosen from, extended by p(1). Equally, the corresponding epsilon value
set was extended by a 0.

The sets the literal index values of F11 can be chosen from is equal to the set the literal index
values of F00 can be chosen from, extended by p(1). Equally, the corresponding epsilon value
set was extended by a 1.

If no initially false F10 exists, an initially false F01 and an an initially false F11 can take over
its task. The sets the literal index- and epsilon values of F01 and F11 can be chosen from have
again been extended as required.

So we see one initially false F00 can be compensated by the two initially false clauses F01 and
F11. Similarly, one initially false F10 can be compensated by another two initially false clauses
F01 and F11. This fulfills the requirements of the extension.

– The analog is true for F01, which can be compensated by F02 and F12. Furthermore, F11 can
be compensated by another F02 and F12.

Please notice that the formula excerpts which contain indices representing λ = 2 have been
taken from the formula for λ ≥ 2 presented in 4.2.9. The ”λ” symbols have here been replaced
by the number ”2” for better understandability.

– In the original formulas (4.2.6, 4.2.7, 4.2.8, 4.2.9), the locations where the just described ex-
tension is done are marked with the comments // EXTENSION λ = ..., SF 0 (if the extension
creates the set SF 0) resp. // EXTENSION λ = ..., SF 1 (if the extension creates the set SF 1).

Case λ→ λ+ 1

It was just shown which initially false clauses must exist to disable the basis (J0,K0) for 0 ≤ λ ≤ 2.
Now the general case for λ ≥ 2 is regarded. This general case can be examined just as in the prior
passage, except that all excerpts were taken from 4.2.9 only. In the nested, recursive parts all ”λ”
symbols from 4.2.9 have been replaced by ”λ + 1”. Like this, it becomes visible how the extension
is done for any transition λ→ λ+ 1.

The formula locations where the extension becomes visible are underlined.

π(Jλ,Kλ) := 0 if:

(∃F0λ | (τ(F0λ) = 0 ∧ (((f0λa, εf0λa), (f0λb, εf0λ b)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))} ∧

(f0λc, εf0λc) = (p(λ), 0))))

If no such initially false F0λ exists, π(Iλ, Jλ) = 0 is accepted.

π(Iλ, Jλ) := 0 if:

(∃F0λ+1 | (τ(F0λ+1) = 0 ∧ (((f0λ+1a, εf0λ+1a
), (f0λ+1b, εf0λ+1 b

)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ+ 1− 1), εp(λ+1−1))} ∧

(f0λ+1c, εf0λ+1c
) = (p(λ+ 1), 0))))

If no such initially false F0λ+1 exists, π(Iλ+1, Jλ+1) = 0 is accepted.

33

∧
(∃F1λ+1 | (τ(F1λ+1) = 0 ∧ (((f1λ+1d, εf1λ+1d

), (f1λ+1e, εf1λ+1e
)) ∈

{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ+ 1− 1), εp(λ+1−1))} ∧
(f1λ+1f , εf1λ+1f

) = (p(λ+ 1), 1))))

If no such initially false F1λ+1 exists, π(Hλ+1, Jλ+1) = 0 is accepted.

∧
(∃F1λ | (τ(F1λ) = 0 ∧ (((f1λd, εf1λd), (f1λe, εf1λe)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ− 1), εp(λ−1))} ∧

(f1λf , εf1λf) = (p(λ), 1))))

If no such initially false F1λ exists, π(Hλ, Jλ) = 0 is accepted.

π(Hλ, Jλ) := 0 if:

(∃F0λ+1 | (τ(F0λ+1) = 0 ∧ (((f0λ+1a, εf0λ+1a
), (f0λ+1b, εf0λ+1 b

)) ∈
{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ+ 1− 1), εp(λ+1−1))} ∧

(f0λ+1c, εf0λ+1c
) = (p(λ+ 1), 0))))

If no such initially false F0λ+1 exists, π(Iλ+1, Jλ+1) = 0 is accepted.

∧
(∃F1λ+1 | (τ(F1λ+1) = 0 ∧ (((f1λ+1d, εf1λ+1d

), (f1λ+1e, εf1λ+1e
)) ∈

{(j01, εj01), (j02, εj02), (j03, εj03), (k01, εk01), (k02, εk02), (k03, εk03), ..., (p(λ+ 1− 1), εp(λ+1−1))} ∧
(f1λ+1f , εf1λ+1f

) = (p(λ+ 1), 1))))

If no such initially false F1λ+1 exists, π(Hλ+1, Jλ+1) = 0 is accepted.

It is easy to see that any F0λ can be replaced by two initially false clauses F0λ+1 and F1λ+1. These
two clauses each have their set the literal index values can be chosen from extended by one further
index p(λ+ 1). Also the two clauses’ epsilon value set has been extended by 0 (for F0λ+1) resp. 1
(for F1λ+1). The same applies to F1λ. This is exactly what we want, because this kind of extension
fulfills the requirements of the extension as defined in 4.2.1.2.

Conclusion

After having examined all λ cases, it is now clear the polynomial solver implements the extension
as desired, i.e. as requested in 4.2.1.2. Formally, the presented cases for λ = 0, λ = 1, λ = 2 and
λ→ λ+ 1 can be seen as parts of an induction proof. λ = 0, λ = 1, λ = 2 are the base case of the
induction proof. λ→ λ+ 1 represents the inductive step of the induction proof. This inductive step
is valid for any λ ≥ 2. Thus, for all base cases and any inductive step it was shown the polynomial
solver implements the extension as desired.

4.2.6 Final Conclusion and Summary

As basic premise of this proof it is given that there is at least one initially false clause in each CT
line. The helper function recursive F search() has been introduced and it was explained why this
function reliably detects any initially false clause in the CT lines. It has been observed that important
key components of recursive F search() are the abilities to do ”the recursion” and ”the extension”. To
check if the polynomial solver does this work analog to recursive F search(), the polynomial solver’s
tuple disabling mechanisms have been described by ”formulas”. It was shown the formulas do describe the
recursion and the extension. From this it can finally be concluded that the polynomial solver does work
like recursive F search() and it does thus detect any initially false clause in each CT line. Therewith
the correctness of the polynomial solver has been proven.

4.2.7 Further Notes

In the λ ≥ 2 case the proof suggests it is not required to involve (Iλ,Kλ) or (Hλ,Kλ). This has been
tested by me using computer-aided verification. The result is that the Kλ tuples were really not required
in all tests done. But this does not apply for the λ = 1 case, what can be derived from the proof. There
it is shown that one I1 or H1 literal will be equal to one literal in either J0 or K0 (J0 is also called K11

34

and K0 is also called K21 in 4.2.4). It is not known in advance if J0 or K0 will be required. This depends
on the SAT CNF to solve. I verified also this statement (that (Iλ,Kλ) and (Hλ,Kλ) is mandatory) using
a test program, with the observation the statement seems to be correct. An extensive test run series with
missing (Iλ,Kλ) and (Hλ,Kλ) checks occasionally lead to wrong results of the polynomial solver.

The proof was presented assuming there is one initially false clause in each CT line. If the 3-SAT CNF to
solve should contain clauses in a way there would be two or more initially false clauses in each CT line,
then this does not change the way to prove the correctness. The proof shows any basis tuple (J0,K0)
gets disabled if there’s one initially false clause in each CT line. If there are more initially false clauses,
all the better. Because the basis tuple (J0,K0) gets disabled as soon as ”enough” initially false clauses
have been found, more initially false clauses will likely even lead to a quicker disabling of the basis tuple
(J0,K0).

Please notice that RULE 1 can not be replaced by the INITIALIZATION or RULE 2 9. This can easily
be understood by regarding a suitable example: We assume n = 6 and J = (0x2 ∨ 0x3 ∨ 0x4) and
K = (0x2 ∨ 0x4 ∨ 1x5). J and K are assumed to be no initially false clauses. If there is some initially
false clause I = (0x2 ∨ 0x3 ∨ 1x5) | τ(I) = 0, then only RULE 1 sets π(J,K) := 0. The reason is that I is
initially false and contained within (J,K). The INITIALIZATION won’t disable (J,K) because J or K
had to be initially false. Please see 3. Also RULE 2 won’t disable (J,K) because RULE 2 would need two
initially false clauses I and H, each with one literal index not in J or K. Hence RULE 1 is irreplaceable.

It might (often) be the case that not all clauses of the SAT CNF are required to disable a basis tuple
(J0,K0). Mostly a sub set of all SAT CNF clauses is sufficient. But the set of finally effective SAT CNF
clauses might differ from basis tuple to basis tuple.

4.2.8 Examples

In this ”Why Unsatisfiable Detection is Reliable” proof the formulas 4.2.6, 4.2.7, 4.2.8, 4.2.9 were pre-
sented. They describe which initially false clauses or disabled tuples the polynomial solver accepts at
some practical recursion depth λ to disable some tuple(s) (Jλ,Kλ).

Four scenarios to disable (Jλ,Kλ) were distinguished:

• ”Case I” accepts one or two disabled tuples ((Iλ, Jλ) ∨ (Iλ,Kλ)) with Iλ being contained within
(Jλ,Kλ).

• ”Case I+H” accepts two, three or four disabled tuples ((Iλ, Jλ) ∨ (Iλ,Kλ)) ∧ ((Hλ, Jλ) ∨ (Hλ,Kλ))
with Iλ and Hλ being contained within (Jλ,Kλ).

• ”Case F” accepts one initially false clause Fλ which disables one tuple (Iλ, Jλ) of ”case I”. Then
”case I” is applied to disable (Jλ,Kλ).

• ”Case F0/F1” accepts two initially false clauses F0λ and F1λ which disable two tuples (Iλ, Jλ) and
(Hλ, Jλ) of ”case I+H”. Then ”case I+H” is applied to disable (Jλ,Kλ).

To make the reader understand better how these cases work in practice, two example usages will be shown.

In each of the both examples a basis tuple (J0,K0) is given. Additionally some initially false clauses are
defined. It will be shown that first those initially false clauses disable tuples in some practical recursion
depth λ. Here the actual ’top-down’ disabling order is displayed, as it would be applied in practice.
Please recall the paragraph at end of 4.2.4. This means the highest λ is shown first. After the initially
false clauses disabled tuples, it will be shown for each λ how the already disabled tuples disable further
tuple(s) (Jλ,Kλ). The applied case (”case I”, ”case I+H” etc.) is always stated. Additionally it is always
stated which rule of the polynomial solver (INITIALIZATION rule, RULE 1 or RULE 2) implements the
tuple disabling. It will be reasoned why the presented rule can be applied. In the first example, excerpts
from the original pseudo-code definition (see 3) are cited. These excerpts are not repeated in the second

9This is addressed here as I got reader feedback about this topic.

35

example to save page space, but they could be placed there in the exact same manner as in the first
example. At the very end of each example, the basis tuple will have gotten disabled: π(J0,K0) := 0, as
desired.

The literal index- and epsilon values of all involved clauses are given in the classical mathematical notation
or/and in tuple notation. This means any 3-SAT clause C ∈ PC can be noted like this:

C = (εc1xc1 ∨ εc2xc2 ∨ εc3xc3) = ((c1, εc1), (c2, εc2), (c3, εc3))

The tuple notation is used as parallel to the formulas 4.2.6, 4.2.7, 4.2.8, 4.2.9, where this notation is used
as well. Like this, the reader can compare the generalized tuples in the formulas with examples how the
content of these tuples can look in practice.

As already mentioned, it is shown consistently in the following two examples how disabled tuples in some
practical recursion depth λ disable tuple(s) (Jλ,Kλ) subsequently used in some practical recursion depth
λ − 1. In reality, the polynomial solver might skip practical recursion layers. This would be the case
e.g. in the first example, λ = 1. Instead of ”passing on” the disabled tuple to λ = 0 (as described in
the example), the polynomial solver might instantly use (J2,K2) as (I0, J0) (again see example). The
polynomial solver can do this because it does not have to use p(Lambda) (see 4.2.2.2) in a descendant
order as presented in the past ”Why Unsatisfiable Detection is Reliable” proof. However, nevertheless the
polynomial solver would in practice also work if it would be extended by code to use p(Lambda) in the
strictly descending order as shown. The proof contains this and some additional restrictions to keep it as
simple as possible and thus still understandable for me and the reader. I strongly assume this does not
impact the correctness of the proof.

Please notice that in the pseudo-code excerpts, e.g. ”foreach J2 ∈ PC” shall just mean the foreach

loop does currently point to the clause J2.

Some clauses have several clause variables assigned, like ”I0=((1,0),(2,0),(3,0))=J1”. This is the case
because the same clauses, i.e. the same three literal index- and epsilon value tuples, are named differently
in each practical recursion depth. For instance, J1 in practical recursion depth λ = 1 is the very same
clause as J0 in practical recursion depth λ = 0. This renaming is just done to demonstrate where a
clause is used within RULE 1 and RULE 2. For instance, the tuple being disabled by RULE 1 or RULE
2 is to be called (J,K). This is the naming convention used in the definitions of RULE 1 and RULE 2,
see 3. In the first example at λ = 1, the tuple which gets disabled is (J1,K1). In the next examined
practical recursion layer λ = 0, this (J1,K1) is involved in RULE 1. (J1,K1) is used within RULE 1 at a
pseudo-code location where the definition of RULE 1 would call the tuple (I, J). For this reason (J1,K1)
from practical recursion depth λ = 1 is named (I0, J0) at practical recursion depth λ = 0. Please notice
the polynomial solver differentiates clauses only by their content (i.e. literal index- and epsilon values),
so there can not be two instances of the same clause which are treated differently (in any way).

4.2.8.1 First Example

The following literal index range n, the following basis tuple (J0,K0) and the following initially false
clauses are given:

n = 6, p = {4, 5, 6}

J0 = (0x1 ∨ 0x2 ∨ 0x3) = ((1, 0), (2, 0), (3, 0))

K0 = (0x1 ∨ 0x2 ∨ 0x3) = ((1, 0), (2, 0), (3, 0))

F1 = (0x1 ∨ 0x3 ∨ 0x6) = ((1, 0), (3, 0), (6, 0)) | τ(F1) = 0

F2 = (0x2 ∨ 0x3 ∨ 1x6) = ((2, 0), (3, 0), (6, 1)) | τ(F2) = 0

p() contains {4, 5, 6} because these literal indices appear neither in the basis J0 nor in the basis K0.

36

The solver does the following steps to disable the basis tuple:

INITIALIZATION:
case F0: the INITIALIZATION has disabled (among others) a tuple (F1, J1) with 10

F1=((1,0),(3,0),(6,0)),

J1=((1,0),(2,0),(3,0))

case F1: the INITIALIZATION has disabled (among others) a tuple (F2, J2) with

F2=((2,0),(3,0),(6,1)),

J2=((1,0),(2,0),(3,0))

Because it applies τ(F1) = 0 and τ(F2) = 0, any tuple holding F1 or F2 will be initialized to a
disabled tuple.

The original pseudo-code definition of the responsible INITIALIZATION rule with clause variables
of this consideration inserted reads as follows:

foreach F1 ∈ PC
foreach J1 ∈ PC
if ((τ(F1) = 1) ∧ (τ(J1) = 1) ∧ (F1 ≡ J1))
π(F1, J1) := 1

if ((τ(F1) = 0) ∨ (τ(J1) = 0) ∨ (F1 6≡ J1)) // this applies

π(F1, J1) := 0 // this applies

foreach F2 ∈ PC
foreach J2 ∈ PC
if ((τ(F2) = 1) ∧ (τ(J2) = 1) ∧ (F2 ≡ J2))
π(F2, J2) := 1

if ((τ(F2) = 0) ∨ (τ(J2) = 0) ∨ (F2 6≡ J2)) // this applies

π(F2, J2) := 0 // this applies

λ = 2:
case I+H:

I2=((1,0),(3,0),(6,0))=F1,
J2=((1,0),(2,0),(3,0))=J1
and

H2=((2,0),(3,0),(6,1))=F2,
J2=((1,0),(2,0),(3,0))=J2
disable 11

J2=((1,0),(2,0),(3,0))=J1=J2,
K2=((1,0),(2,0),(3,0))

At the beginning it applies π(J2,K2) = 1, because the tuple (J2,K2) has not been initialized to
disabled.

I2 and H2 are contained within (J2,K2) because all literal index- and epsilon tuples of I2 and H2

appear in J2 or K2 or both. The only exception is the tuple (6, 0) in I2 and (6, 1) in H2. This is the
conflict literal corresponding to p = 6 which is ’dropped’ in (J2,K2).

It applies π(F1, J1) = 0 (from INITIALIZATION), which is identical to π(I2, J2) = 0. It applies
π(F2, J2) = 0 (from INITIALIZATION), which is identical to π(H2, J2) = 0.

10In both examples 4.2.8.1 and 4.2.8.2 only those disabled tuples are shown which are of relevance in respect of disabling
the basis tuple (J0,K0).

11This kind of notation is here used as short form for ((π(I2, J2) = 0 and π(H2, J2) = 0) leads to π(J2,K2) := 0). The
same applies to any equal notation in the space of this examples section. The clause names at left are the clause names used
in the current practical recursion depth λ. The clause names at right are the clause names used in the previous practical
recursion depth λ+ 1 resp. in the initialization.

37

This fulfills the three if () conditions of RULE 2, so that RULE 2 will set π(J2,K2) := 0.

The original pseudo-code definition of RULE 2 with clause variables of this consideration inserted
reads as follows:

foreach J2 ∈ PC
foreach K2 ∈ PC
if (π(J2,K2) = 1)
foreach I2 ∈ PC
foreach H2 ∈ PC
if (I2 and H2 are contained within (J2,K2))

if ((π(I2, J2) = 0 ∨ π(I2,K2) = 0) ∧ (π(H2, J2) = 0 ∨ π(H2,K2) = 0))
π(J2,K2) := 0
Changed := true

λ = 1:
case I:

I1=((1,0),(2,0),(3,0))=J2,
J1=((1,0),(2,0),(3,0))=K2

disables 12

J1=((1,0),(2,0),(3,0)),

K1=((1,0),(2,0),(3,0))

At the beginning it applies π(J1,K1) = 1, because the tuple (J1,K1) has not been initialized to
disabled.

I1 is contained within (J1,K1) because all literal index- and epsilon tuples of I1 appear in J1 or K1

or both.

It applies π(J2,K2) = 0 (from λ = 2), which is identical to π(I1, J1) = 0.

This fulfills the three if () conditions of RULE 1, so that RULE 1 will set π(J1,K1) := 0.

Figuratively spoken, the disabled tuple is passed on (or ”forwarded”) unchanged to the next lower
λ = 0. The main work in this case is just to decrease λ. This is required as the formulas (4.2.3)
describe a recursion where λ is increased (resp. decreased in ’top-down’ disabling order) gradually.

The original pseudo-code definition of RULE 1 with clause variables of this consideration inserted
reads as follows:

foreach J1 ∈ PC
foreach K1 ∈ PC
if (π(J1,K1) = 1)
foreach I1 ∈ PC
if (I1 is contained within (J1,K1))

if (π(I1, J1) = 0 ∨ π(I1,K1) = 0)
π(J1,K1) := 0
Changed := true

λ = 0:
case I:

I0=((1,0),(2,0),(3,0))=J1,
J0=((1,0),(2,0),(3,0))=K1

disables

J0=((1,0),(2,0),(3,0)),

K0=((1,0),(2,0),(3,0))

12This kind of notation is here used as short form for (π(I1, J1) = 0 leads to π(J1,K1) := 0). Else the same rules apply
as described in the previous footnote for case I+H.

38

At the beginning it applies π(J0,K0) = 1, because the tuple (J0,K0) has not been initialized to
disabled.

I0 is contained within (J0,K0) because all literal index- and epsilon tuples of I0 appear in J0 or K0

or both.

It applies π(J1,K1) = 0 (from λ = 1), which is identical to π(I0, J0) = 0.

This fulfills the three if () conditions of RULE 1, so that RULE 1 will set π(J0,K0) := 0.

The original pseudo-code definition of RULE 1 with clause variables of this consideration inserted
reads as follows:

foreach J0 ∈ PC
foreach K0 ∈ PC
if (π(J0,K0) = 1)
foreach I0 ∈ PC
if (I0 is contained within (J0,K0))

if (π(I0, J0) = 0 ∨ π(I0,K0) = 0)
π(J0,K0) := 0
Changed := true

4.2.8.2 Second Example

The following literal index range n, the following basis tuple (J0,K0) and the following initially false
clauses are given:

n = 6, p = {4, 5, 6}

J0 = (0x1 ∨ 0x2 ∨ 0x3) = ((1, 0), (2, 0), (3, 0))

K0 = (0x1 ∨ 0x2 ∨ 0x3) = ((1, 0), (2, 0), (3, 0))

F1 = (0x1 ∨ 0x3 ∨ 0x6) = ((1, 0), (3, 0), (6, 0)) | τ(F1) = 0

F2 = (0x2 ∨ 0x5 ∨ 1x6) = ((2, 0), (5, 0), (6, 1)) | τ(F2) = 0

F3 = (0x1 ∨ 0x2 ∨ 1x5) = ((1, 0), (2, 0), (5, 1)) | τ(F3) = 0

p() contains {4, 5, 6} because these literal indices appear neither in the basis J0 nor in the basis K0.

The solver does the following steps to disable the basis tuple:

INITIALIZATION:
case F0: the INITIALIZATION has disabled (among others) a tuple (F1, J1) with

F1=((1,0),(3,0),(6,0)),

J1=((1,0),(2,0),(5,0))

case F1: the INITIALIZATION has disabled (among others) a tuple (F2, J2) with

F2=((2,0),(5,0),(6,1)),

J2=((1,0),(2,0),(5,0))

case F : the INITIALIZATION has disabled (among others) a tuple (F3, J3) with

F3=((1,0),(2,0),(5,1)),

J3=((1,0),(2,0),(3,0))

Because it applies τ(F1) = 0 and τ(F2) = 0 and τ(F3) = 0, any tuple holding F1 or F2 or F3 will
be initialized to a disabled tuple.

39

λ = 2:
case I+H:

I2=((1,0),(3,0),(6,0))=F1,
J2=((1,0),(2,0),(5,0))=J1
and

H2=((2,0),(5,0),(6,1))=F2,
J2=((1,0),(2,0),(5,0))=J2
disable

J2=((1,0),(2,0),(5,0))=J1=J2,
K2=((1,0),(2,0),(3,0))

At the beginning it applies π(J2,K2) = 1, because the tuple (J2,K2) has not been initialized to
disabled.

I2 and H2 are contained within (J2,K2) because all literal index- and epsilon tuples of I2 and H2

appear in J2 or K2 or both. The only exception is the tuple (6, 0) in I2 and (6, 1) in H2. This is the
conflict literal with p = 6 which is ’dropped’ in (J2,K2).

It applies π(F1, J1) = 0 (from INITIALIZATION), which is identical to π(I2, J2) = 0. It applies
π(F2, J2) = 0 (from INITIALIZATION), which is identical to π(H2, J2) = 0.

This fulfills the three if () conditions of RULE 2, so that RULE 2 will set π(J2,K2) := 0.

λ = 1:
case I+H:

I1=((1,0),(2,0),(5,0))=J2,
J1=((1,0),(2,0),(3,0))=K2

and

H1=((1,0),(2,0),(5,1))=F3,
J1=((1,0),(2,0),(3,0))=J3
disable

J1=((1,0),(2,0),(3,0))=K2=J3,
K1=((1,0),(2,0),(3,0))

At the beginning it applies π(J1,K1) = 1, because the tuple (J1,K1) has not been initialized to
disabled.

I1 and H1 are contained within (J1,K1) because all literal index- and epsilon tuples of I1 and H1

appear in J1 or K1 or both. The only exception is the tuple (5, 0) in I1 and (5, 1) in H1. This is the
conflict literal with p = 5 which is ’dropped’ in (J1,K1).

It applies π(J2,K2) = 0 (from λ = 2), which is identical to π(I1, J1) = 0. It applies π(F3, J3) = 0
(from INITIALIZATION), which is identical to π(H1, J1) = 0.

This fulfills the three if () conditions of RULE 2, so that RULE 2 will set π(J1,K1) := 0.

λ = 0:
case I:

I0=((1,0),(2,0),(3,0))=J1,
J0=((1,0),(2,0),(3,0))=K1

disables

J0=((1,0),(2,0),(3,0)),

K0=((1,0),(2,0),(3,0))

At the beginning it applies π(J0,K0) = 1, because the tuple (J0,K0) has not been initialized to
disabled.

40

I0 is contained within (J0,K0) because all literal index- and epsilon tuples of I0 appear in J0 or K0

or both.

It applies π(J1,K1) = 0 (from λ = 1), which is identical to π(I0, J0) = 0.

This fulfills the three if () conditions of RULE 1, so that RULE 1 will set π(J0,K0) := 0.

5 Complexity Analysis

5.1 Polynomial Solver has Complexity O(nˆ18)

The size of the set PC is of great importance because the polynomial solver’s main work consists sub-
stantially of looping through the set of possible clauses. There are |PS| = O(n3) many possible clauses,
because we can place the three indices of all possible clauses using three nested loops, each having an
iteration range not larger than 1 to n. Furthermore there are 23 = 8 possibilities for each clause to choose
the three ε values out of {0, 1}. But because this is a constant complexity, it will not be observed in the
O notation. Regarding all possible combinations of x many possible clauses one time has a complexity of
O((n3)x). This is the case because we had to implement x many nested loops, each having an iteration
range of 1 to |PS|.

Next, we determine the complexity of all 3 solving steps. We regard the 3 steps independently because
they are executed sequentially.

INITIALIZATION Regard J,K ∈ PC ⇒ O((n3)× (n3)) = O(n6).

RULE 1 Regard I, J,K ∈ PC ⇒ O((n3)× (n3)× (n3)) = O(n9).

RULE 2 Regard I,H, J,K ∈ PC ⇒ O((n3)× (n3)× (n3)× (n3)) = O(n12).

We apply RULE 1 and RULE 2 at maximum up to the point all O((n3) × (n3)) many clause tuples
have been disabled. This means we apply RULE 1 and RULE 2 maximal O(n6) times, whereby RULE
2 is the most comprehensive operation. So we get a total complexity of O(n12 × n6) = O(n18). In this
consideration it was assumed that checking for containment is done in constant time. This can be achieved
by pre-computing if I,H is contained within (J,K). The pre-computing would require O((n3)4) = O(n12)
for examining all required clause combinations. Similarly, the solver can also pre-compute for each possible
clause if it appears in the SAT CNF. The pre-computing would require O((n3) × (n3)) = O(n6) to loop
through all possible clauses to check for appearance, multiplied with the SAT CNF’s highest possible
clause count. The pre-computing does not increase the final overall complexity because it is independent
from the work with highest complexity.

There are several additional measures thinkable to speed up the polynomial solver. For instance, in
RULE 1 and RULE 2 the I and H foreach-loops could be left instantly as soon as π(J,K) := 0 and
Changed := true has been set. It does namely not make sense to stay in those loops because it would
happen nothing new except trying to set π(J,K) := 0 and Changed := true again, what is surplus.
The interested reader might think out and implement even more pre-computations and speed-ups. The
polynomial solver’s algorithm has been presented in 3 in a very non-optimized form only to keep it scarce
and therefore easy to understand and prove.

5.2 Why the Polynomial Solver has a Polynomial Complexity

It is important to notice that each time RULE 2 is examined recursively in this proof, the count of required
I (resp. I1, I2 and so on) and H (resp. H1, H2 and so on) doubles. Although there’s this theoretical
doubling and thus a supposed exponential growth of complexity, this is in practice not the case for the
presented polynomial solver. The reason is that even in the most comprehensive RULE 2, not more than
quadruples of possible clauses are regarded. As the count of possible clauses grows polynomially with

41

the problem size n, it is impossible to get an exponential complexity. If the practical recursion of RULE
2 would be implemented using recursive procedure calls, quadruples, respectively contained sub tuples,
would be regarded by RULE 2 multiple times in the recursive sub calls. If a tuple has already been
disabled, it is surplus work to regard it multiple times in recursive sub calls. If a tuple can not be disabled
because other tuples it depends on have not yet been disabled, it is again surplus work to regard this
tuple multiple times in recursive sub calls.

Example: We assume:
J = (0x1 ∨ 0x2 ∨ 0x3)

K = (0x1 ∨ 0x2 ∨ 0x4)

I = (0x1 ∨ 0x2 ∨ 0x5)

H = (0x1 ∨ 0x2 ∨ 1x5)

I1 = (0x1 ∨ 0x5 ∨ 0x6)

H1 = (0x1 ∨ 0x5 ∨ 1x6)

I3 = (0x1 ∨ 1x5 ∨ 0x6)

H3 = (0x1 ∨ 1x5 ∨ 1x6)

(J,K) is here the basis tuple which is to be disabled. I1, H1, I3, H3 are initially false clauses. This
means the INITIALIZATION rule has set π(I1, I) = 0, π(H1, I) = 0, π(I3, H) = 0, π(H3, H) = 0. This
means in return RULE 2 does at next set π(I, J) := 0 and another usage of RULE 2 sets π(H,J) := 0.
This happens because I1 and H1 are contained within (I, J). All literal indices and corresponding epsilon
values (0x1, 0x5) appear in I or J or both. The only exception is p = 6, because x6 does not appear in I
or J , and the epsilon value related to x6 is 0 for I1 and 1 for H1. Please recall 2.7 and also 4.2.1.3, where
the practical recursion is introduced. Similarly, I3 and H3 are regarded by RULE 2 to set π(H,J) = 0.
Finally a third usage of RULE 2 sets π(J,K) = 0, because I and H are contained within (J,K) and it
applies π(I, J) = 0 and π(H,J) = 0.

Now comes the crucial point: We assume in the same run of the polynomial solver it is next to be decided
if

J ′ = (0x1 ∨ 0x2 ∨ 0x4)

K ′ = (0x1 ∨ 0x2 ∨ 0x3)

is to be disabled. These J ′ and K ′ are just J and K, but swapped.

The polynomial solver, as defined in 3, will still have internally saved π(I1, I) = 0, π(H1, I) = 0,
π(I3, H) = 0, π(H3, H) = 0 and π(I, J) = 0 and π(H,J) = 0. So the polynomial solver can disable
also (J ′,K ′) by merely one usage of RULE 2. This is possible because I and H are contained within
(J ′,K ′) and π(I, J) = 0 and π(H,J) = 0 are still saved since the disabling of (J,K). In contrast, an
explicitly programmed recursive implementation of the polynomial solver would need to set π(I1, I) = 0,
π(H1, I) = 0, π(I3, H) = 0, π(H3, H) = 0 and π(I, J) = 0 and π(H,J) = 0 again before (J ′,K ′) gets
disabled.

Because of this waiver of re-doing recursive tuple disabling operations for each basis tuple (J,K), the
polynomial complexity of the polynomial solver is achieved. We are likely lucky that the inner state of
the polynomial solver can be saved in not more than clause tuples.

6 Further Reading

The present document explains the polynomial exact-3-SAT solving algorithm using mathematical nota-
tion. There’s an older document version online which has more pages and uses more linguistic paraphrases.
Furthermore there are C++ sample implementations of the algorithm available which run on Windows
or Linux. Besides the solver implementations, several applications for testing selected suppositions used
in this document’s proofs have been deployed. All these items can be downloaded from the author’s
homepage www.louis-coder.com.

42

http://www.louis-coder.com/index.html

7 Acknowledgments

I thank Mr. Mihai Prunescu, Simion Stoilow Institute of Mathematics of the Romanian Academy, for
helpful tips and a reference to the polynomial algorithm in one of his articles (see [4], resp. [5]).

References

[1] Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness, W. H. Freeman & Co., 1979.

[2] Christos H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

[3] Bronstein, Semendjajew, Musiol, Mühlig, Taschenbuch der Mathematik, Verlag Harri Deutsch,
Thun und Frankfurt am Main 2000, ISBN 3-8171-2015-X.

[4] Prunescu, Mihai, About a surprizing computer program of Matthias Müller,
https://imar.academia.edu/MihaiPrunescu (link checked 2018-April-01).

[5] Prunescu, Mihai, About a Surprising Computer Program of Matthias Müller, Convexity and Dis-
crete Geometry Including Graph Theory: Mulhouse, France, September 2014, Springer Interna-
tional Publishing, ISBN 978-3-319-28186-5 9, http://dx.doi.org/10.1007/978-3-319-28186-5 9 (link
checked 2018-April-01).

[6] Schöning, Torán, The Satisfiability Problem, Lehmanns Media Berlin 2013, ISBN 978-3-86541-527-1.

43

https://imar.academia.edu/MihaiPrunescu
http://dx.doi.org/10.1007/978-3-319-28186-5_9

	Introduction
	Definitions
	3-SAT CNF
	Notation Convention
	Possible Clauses
	Underlying Solutions
	In Conflict
	Clause Table
	Being Contained
	Enabled/Disabled Clause Tuple
	Possible Clause Locations in CT

	The Polynomial Exact-3-SAT Solving Algorithm
	Proof of Correctness
	Why Solvable Detection is Reliable
	Why Unsatisfiable Detection is Reliable
	Preliminary Considerations
	Initially False Clause in each CT Line
	Idea of the Proof: Find Initially False Clauses Doing Recursion and Extension
	How the Polynomial Solver Implements Recursion and Extension in General

	Artifacts for the Proof
	Literal Indices a, b, c, d, e, f
	p(Lambda)
	Clauses, Literals and their Indices
	Being Contained

	Formulas Describing Procedures within Polynomial Solver
	Lambda = 0
	Lambda = 1
	Lambda >= 2

	Interpretation of the Formulas
	Formulas Prove the Polynomial Solver does Recursion and Extension
	Final Conclusion and Summary
	Further Notes
	Examples
	First Example
	Second Example

	Complexity Analysis
	Polynomial Solver has Complexity O(n^18)
	Why the Polynomial Solver has a Polynomial Complexity

	Further Reading
	Acknowledgments

