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Abstract: In an earlier paper, the author employed the thésa baryons are Yang-Mills
magnetic monopoles and that proton and neutronibgdnergies are determined based on
their up and down current quark masses to predialationship among the electron and up and
down quark masses within experimental errors anobi@in a very accurate relationship for
nuclear binding energies generally and for the ligdof *°Fe in particular. The free proton

and neutron were understood to each contain inicibending energies which confine their
quarks, wherein some or most (never all) of thisrgn is released for binding when they are
fused into composite nuclides. The purpose ofpidyter is to further advance this thesis by
seeing whether it can explain the specific empirdizading energies of the 1s nuclides, namely,
’H, °H, *He and*He, with high precision. As the method to achiéi® we show how these 1s
binding energies are in fact the components ofriramel outer tensor products of Yang-Mills
matrices which are implicit in the expressionstfue free proton and neutron intrinsic binding
energies. The result is that the binding enerépeshe*He, *He and®*H nucleons are
respectively, independently, explained to less thanparts in one million, less than four parts
in 100,000, and less than seven parts in one mijlidl in AMU. Further, we are able to exactly
relate the neutron minus proton mass differenca fianction of the up and down quark masses,
which in turn enables us to explain th¢ binding energy most precisely of all, to justroge
parts in ten million. These energies have nevesredieen theoretically explained with such
accuracy, which leads to the conclusion that theeulying thesis provides the strongest
theoretical explanation to date of what baryons, amed of how protons and neutrons confine
their quarks and bind together into composite rdedi As is also reviewed in Section 9, these
results may lay the foundation for technologicaéiglizing the theoretical promise of nuclear
fusion.
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1. Introduction: Summary Review of the Thesis thaBaryons are Yang-Mill Magnetic
Monopoles with Binding Energies based on their Curent Quark Masses

In an earlier paper [1], the author developed tiesis that magnetic monopole densities
which come into existence in a non-Abelian Yangidigauge theory of non-commuting vector
gauge boson fields are synonymous with baryon tlegsiThat is, baryons, including the
protons and neutrons which form the vast prepomaeraf matter in the universe, are Yang-
Mills magnetic monopoles. Conversely, magnetic apmtes, long pursued since the time of
Maxwell, have always been hiding in plain sightYiang-Mills incarnation, as baryons, and
especially, as protons and neutrons.

Maxwell’'s equations themselves provide the theoatfioundation for this thesis,
because if one starts with the classical electrarge and magnetic monopole field equations
(respectively, [2.1] and [2.2] of [1]):

J'=9,F" =9,D¥G" =9,D*G’ -9,D'G* =(g"9,D° -9“D" )G, (1.1)
P =9 F" +d“F" +9"F* (1.2)

(D* =0# -iG*) and combines the magnetic charge equation (tith)the Yang-Mills (non-
Abelian) field strength tensor ([2.3] of [1]):

F™ =9“G" -9"G* -i|G*,G"|=D*G" -D'G* = DG, (1.3)
one immediately comes upon the non-zero magnetropae ([2.4] of [1]):
P =-i(07[G*,G' [+3"[ &, G |+3'[ @, @ ]). (1.4)

The question then becomes whether such magnetiopotes actually do exist in the material
universe, and if so, in what form. The thesis digwed in [1] is not only that these magnetic
monopoles do exist, but that they permeate thermahtmiverse in the form of the baryons,
particularly as the protons and neutrons observedy@shere and anywhere that matter exists.

Of course, t'Hooft [2] and Polyakov [3] discoverselveral decades ago that non-Abelian
gauge theories do lead to non-vanishing magnetimopales. But these monopoles have very
high energies that would not make them suitablé&ng baryons such as protons and neutrons.
Following t'Hooft, the author in [1] does make udehe t'Hooft monopole Lagrangian from
[2.1] of [2] to calculate the energies of these et monopoles (1.4). But whereas t'Hooft
introduces amnsatzabout the radial behavior of tgauge boson&* , the author instead makes
use of aGaussian ansataorrowed from equation [14] of Ohanian’s fd} the radial behavior
of fermions Moreover, the fermions for which thassatzs introduced enter into the theory on
the very solid foundation of taking the inveigg=1,,J° of Maxell's charge equation (1.1),

and then combining this with the relationshif = ¢/y*y that emerges from satisfying charge



conservation (continuityp , J* =0 in Dirac’s equation. Specifically, it was fourfeat in the
low-perturbation limit, these magnetic monopoled)tan be re-expressed as ([3.12] of [1]):

PU'UV — —Z(ag l//(l)a-//ul/ w(l) N a/l w(Z)JVDU w(z) + ay l//(3)0'05ﬂ l//(3) J . (15)
n p(l) —_ m(:L)II Ilp(z) — m(2)" n p(s) —_ m(3)"
Above, ¢,,;1=1,2,3 are three distinct Dirac spinor wavefunctions graerge following three

distinct substitutions o6, =1,,J° = Iwﬁy"l// — which captures the inverse of Maxwell's

charge equation (1.1) combined with Dirac’s coritynaquation — into the (1.4) magnetic
monopole which combines Maxwell's magnetic monopaation (1.2) with the Yang-Mills
field strength (1.3). The detailed derivation bf5) also makes use of sections 6.2 and 6.14 of
[5] pertaining to Compton scattering, and carefaltgounts for mass degrees of freedom as
between fermions and bosons. The quoted denomaigy —m;," and “quasi commutators”

a’ Ei—z[y*’DV’J in the above make use of a compact notation dpedland explained in section
3 of [1], see specifically [3.9] and [3.10] therein

Then, via Fermi-Dirac Exclusion, the author emptbttee QCD color group SU(3}o
require that each of the threg, must be in distinct quantum color states R, GyBich then

leads in [5.5] of [1] to the magnetic monopole:

1 UV " Voo P s
Trpow =9 9o Y89 Yr | gu é.l./Ga wf ror ¥ Yo, (1.6)
Pr — My Ps — Mg Ps — Mg

This is similar in form to (1.5) but for the intraction of the trace. Associating each color with
the spacetime index in the relatéd operator, i.e.g ~R, 1 ~G andv ~B, and keeping in mind

that TrP?" is antisymmetric in all spacetime indexes, we egpithis antisymmetry with wedge
productsaw C uCv~RLCGLCB . So the natural antisymmetry of a magnetic morop*"
leads straight to the required antisymmetric celoglet wavefunctiorRG, B]+G[B, R|+ R G]

for a baryon. Indeed, in hindsight, this antisynmpé&ogether with three vector indexes to
accommodate three vector current densities shaud heen a tip off that magnetic monopoles
would naturally make good baryon candidates. Furtlpon integration over a closed surface
via Gauss’ / Stokes’ law, monopole (1.6) is showehit singlets with the symmetric color
wavefunctionRR+ GG + BB expected of a meson. Th@CD itself emerges from the thesis that
baryons are Yang-Mills magnetic monopoelasd we began to associate monopole (1.6) above
with a baryon.

It was then shown in sections 6 through 8 of it these SU(3) monopoles may be
made topologically stable by symmetry breaking flanger SU(4) gauge groups which yield
the baryon and electric charge quantum numbersceeghef a proton and neutron. Specifically,
the topological stability of these magnetic monegoklas established in sections 6 and 8 of [1]
based on what is laid out by Cheng and Li [6] &-473 and Weinberg [7] at 442. The proton
and neutron are developed as particular types gheta& monopole in section 7 of [1] making
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use of SU(4) gauge groups for baryon minus leptonber B -L based on Volovok’s [8],
Section 12.2.2. The spontaneous symmetry breakitigese SU(4) gauge group is then
fashioned on Georgi-Glashow’s SU(5) GUT model Bjiewed in section 8 of [1].

By then employing the earlier-referenced “GausaiasatZ? borrowed from Ohanian’s
[4], namely ([9.9] of [1]):

3 _ 2
w(r) = u(p)(m*) s ex;{—;(r KZO) J (1.7)
for the radial behavior of the fermion wavefuncgptogether with the t'Hooft monopole
Lagrangian from [2.1] of [2] (see [9.2] of [1])hecame possible to actually calculate the
energies of these Yang-Mills magnetic monopole8)(fbllowing their development into stable
protons and neutrons.

Specifically, in sections 11 and 12 of [1], thehartapplied the pure gauge field terms
L.aue Of the tHooft monopole Lagrangian to specify theergy of the Yang-Mills magnetic

monopoles according to [11.7] of [1], part of whislreproduced below:
E = ~[[[ gued®>x = 4 Tr[[[F,, F#dx. (1.8)

We then made use in (1.8) of field strength tenmrgrotons and neutrons which were
developed via the Gauss’ / Stokes’ theorem fror®)(1n [11.3] and [11.4] of [1], respectively:

TrF ,uvP — _|[Zlf [nyyv]?lyd +247/IL|J [V”D}/]?‘UUJ , (19)
pd _mu lpu _mJ

TIE~y = _i(éﬂu[yyﬂl/]‘//u +2&d [yﬂDyv]l//d J' (110)
p—m” Py —my”

to deduce three relationships that yielded remagekatncurrence with empirical data:

First, we found in [11.22] of [1] that the massiud electron is related to the masses of
the up and down quarks according to:

m, =0510998928MieV = 3(m, - m, )/(27):, (1.11)

where the diviso(Zn)% results as a natural consequence of the threendioreal Gaussian
integration (1.8) when the fermi@msatzs specified as in (1.7).

Second and third, we found in [12.12] and [12.13[lp that if onepostulategshe mass of
the up quark to be equal to the deutefthr{ucleus) binding energy based on a) empirical
concurrence within experimental errors and b) réiggrthe nucleons or nuclei to be bound
resonant cavitiesvith binding energies determined in relation teittup and down current quark
masses, then the proton and neutron each possessian latent binding energies (that is,
intrinsic energieswvailable for nuclear bindingwhich, respectively, are:
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B, =2m, +m, —(md +4./m m, +4mu)/(277) =7.640679M& (1.12)
B, =2m, +m, —(mu +4,/m m, +4md)/(2ﬂ)§ =9.812358M¢/ . (1.13)

So for a nucleus with an equal number of protond maeutrons, the average binding
energy per nucleon is 8.726519 MeV. Not only diés explain why a typical nucleus beyond
the very lightest (which we shall be studying inailehere) has a binding energy in exactly this
vicinity, but when applied t8°Fe with 26 protons and 30 neutrons, which has théndtion of
using a higher percentage of this available bingingrgy than any other nuclide, we find that
themaximum availabl®inding energy ipredictedto be (see [12.14] of [1]):

B, FE®) = 26X 7.64067MeV +30x 9.812358/eV = 493.02839M4eV . (1.14)

This contrasts remarkably with the actuddserved®Fe binding energy 0f92.253892 MeV
That is, precisely 99.8429093% of tneailablebinding energyredictedby this model of
nucleons as Yang-Mills magnetic monopoles goeshirtding together théFe nucleus, with
the small 0.1570907% balance serving to confingtheks within each nucleon. This means
that while quarks are very much freer in the nucteof*°Fe (which also appears to explain the
“first EMC effect” [10]) than in free nucleons, itheonfinement is never fully overcome.
Quarks step back from the brink of becoming de-ceafin F&°% and remain confineih
principle no matter what the element. Iron-56 thus site@theoretical crossroads of fission,
fusion and confinement.

The thesis that the masses and binding energiéiseoproton and neutron are directly
reflective of the current quark masses which theytain, and are to be thought of as resonant
cavities that emit and absorb energies and haveesashich are direct manifestations of the
masses of their quarks, will be central to the tgaent of the present paper. The foregoing
(2.12) through (1.14) provide strong preliminaryntonation of this thesis, as well as of the
underlying thesis that baryons are Yang-Mills magnmonopoles. In this paper, we shall show
how the observed binding energies of the 1s nuglidemelyH, *H, *He and*He, as well as the
observed neutron minus proton mass difference, iggoeven further, quite compelling
confirmation of the thesis that baryons are YangdVimagnetic monopoles which bind at
energies which are direct functions of the curcprark masses they contain.

In simple summation, for a Yang-Mills field strehdil.3),these Yang Mills magnetic
monopole baryons result from simply combining Mdksvelassical electric (1.1) and magnetic
(1.2) charge equations together into a single emuimaking use of Dirac’s)” = ¢ y*“y
based on continuity, and imposing Fermi-Dirac Egin on the Fermions of the resulting three-
fermion monopole systenmNo further ingredients or assumptions are requiraak all of these
ingredients being so-combined in novel fashion la@eesamong the undisputed and non-
controversial bedrocks of modern physid$ie Gaussiaansatz(1.7) enables the energy (1.8) to
be analytically calculated, the mass relation (Lrigturally emerges, and the resulting energies
turn out to match up remarkably well with nuclearding energies.



In even simpler summatioMaxwell’s equations (1.1), (1.2) themselves, coeibin
together into one equation using non-Abelian gdiglds (1.3), taken together with Dirac
theory and Fermi-Dirac Exclusion, are the governaguations of nuclear physiassofar as
nuclear physics centers around the study of praodsneutrons and how they bind and interact,
and given that we were able to show in [1] thatgleons and neutrons are patrticular types of
Yang-Mills magnetic monopoles.

2. Structured Outline of the Contents of this Pape

In deriving the empirically-accurate binding energlationships (1.12) through (1.14)
there is an aspect of (1.8) which, when carefutlystdered, requires us to amend the usual
Yang-Mills magnetic monopole Lagrangian (1.8) islight but important way. This
amendment, which will be developed in section 3, ieveal that the binding energies (1.12)
and (1.13) employ the inner and outer tensor prisdoictwo 3x3 SU(3) matrices, one for
protons, and one for neutrons. These matricestradinner and outer products, will be critical
to the development thereafter.

In section 4 we lay the foundation for being ableerive the binding energies of the 1s
nuclides using the earlier-discussed postulatettigamass of the up quark is equal to the
deuteron {H nucleus) binding energy, and more generallythlesis extrapolated from this that
the masses and binding energies of the variousdascdormed out of protons and neutrons are
direct functions of the current quark masses whhey contain. Specifically, in (4.9) through
(4.11) below, we develop two tensor outer prodaats the components of these outer products,
which will be critical ingredients for expressirtetls binding energies as direct functions of the
current up and down quark masses.

Section 5 shows how this binding energy thesiddeeery directly to a theoretical
expression for théHe alpha binding energy which matches the empida# to less than less
than 3 parts in 1 million AMU. Exploring the meagiof this result, we start to see that this
binding energy — together with thd deuteron binding energy referenced just aboe, ar
actually the components of a (3x3)x(3x3) fourthkratang Mills tensor of which th&éH and’He
binding energies merely two samples. Thus, waiave motivated to think about binding
energies generally as themponents of Yang-Mills tensps® that the method for characterizing
binding energies is one of trying to match up thnelimg energies with various expressions
which emerge from, or are components of, these Y\illg tensors. In section 6, we similarly
obtain a theoretical expression for fi#e helion binding energy to just under 4 partsd0,000
AMU as well as its characterization in terms ofsthé&’ang-Mills tensors.

Developing a similar expression for th triton to what ends up being just over three
parts in one million AMU turns out to be less gjrgforward than for any dH, *He and*He,
and requires us to work with nuclide mass excaserahan binding energy. However, a bonus
is that in the process, we are also motivated tivel@an expression for the neutron minus proton
mass difference which is accurate to just overrspa ten million AMU. These results are
summarized in section 7, and their detailed dewat presented in the Appendix.



Section 8 simply aggregates the results of sexthotinrough 7, and couches them all in
terms of mass excess rather than in terms of bjneinergy. In this form, it becomes more
straightforward to study nuclear fusion processegslving these 1s nuclides.

Section 9 makes use of the aggregated mass exeseds from section 8, and shows how
these results can be combined together to the exjine approximately 26.73 MeV of energy
known to be released during the solar fusion cgokirely in terms of a theoretical combination
of the up, down and electron fermion masses. Higislights not only the accuracy of the results
for the®H, *H, *He and’He binding energies and the neutron minus protossrdéference, but it
establishes the approach that one would use thedsame for other types of nuclear fusion and
for fission reactions. And, it vividly confirmsethypothesis that fusion and fission and binding
energies are indeed directly based on the masgke gtiarks which are contained in the proton
and neutron, regarded as resonant cavities. Bhaps the most important consequence of the
development in section 9 is technological, becalisgossibility is developed, via this “resonant
cavity” analysis, that by bathing a store of hydnegn gamma radiation at certain specified,
discrete frequencies which are also defined funstiaf the up and down quark masses, one can
catalyze nuclear fusions and perhaps — subjeauwfe to experimentation in fusion labs —
develop more effective ways of practically expluitithe theoretical promise of nuclear fusion
energy release.

In section 10, we take a closer and more direxk &t the experimental errors that still do
reside in the results for results fibt, >He and*He binding and the neutron minus proton mass
difference, generally at one part in2.a0° or 10” in AMU, and explain why the original
postulate identifying the up quark masectlywith the®H deuteron binding energy should be
modified, such that the derived neutron minus prot@ass difference is now to be regarded as an
exact relationship and the relationship betweeruthquark mass and the deuteron binding
energy should now be taken as a very close appaiam rather than an exact relationship. We
then are required to adjust all of the prior numenass and energy calculations accordingly, by
less than one part per million. As a by-produdhid, the up and down quark masses then
become known with the same degree of experimengaigion as the electron rest mass and the
neutron minus proton mass difference.

Section 11 concludes by summarizing and consaligaihese results, laying out most
compactly, how the thesis that baryons are YangdsMilagnetic monopoles which fuse at
binding energies based on their current quark nsasme be used, for the proton and neutron, to
predict the binding energies of the algkie nucleus to less than four parts in one millfithe
*He helion nucleus to less than four parts in 100,@0d of théH triton nucleus to less than
seven parts in one million, all in AMU. And of sji&@ import, by exactly relating the neutron
minus proton mass difference — which pervadessaiéets of nuclear physics and beta decay — to
a function of the up quark, down quark, and electrasses, we are enabled to predict the
binding energy for théH deuteron nucleus most precisely of all, to justrd parts in ten
million. These very close differences betweendbgerved and predicted binding energies to be
derived here are consolidated and summarized ite Tl infra.

What renders this work novel is 1) that the 1stligirclide binding energies and the
neutron minus proton mass difference have neverédieen theoretically explained with such



accuracy, 2) the degree to which this accuracyicusfthat baryons are Yang-Mills magnetic
monopoles with binding energies which are companeha Yang-Mills tensor and which are
directly related to their current quark massesh8)finding that nuclear physics appears to be
governed by simply combining Maxwell’s two classiequations into one equation using Yang-
Mills gauge fields in view of Dirac theory and Fe+Dirac Exclusion for fermions, and 4) the
prospect of perhaps improving nuclear fusion tetdgoby applying suitably-chosen
resonances of gamma radiation to catalyze fusidheofaw materials that one wishes to fuse.

3. The Lagrangian of Nuclear Binding Energies

The t'Hooft magnetic monopole Lagrangian used iB)lbecause of suppression of the
Yang-Mills matrix indexes, actually has an ambigeaiauathematical meaning, and can be either
an ordinary matrix multiplication, or a tensor (@Qtproduct. The latter, outer product, is the

most general bilinear operation that can be peraronF, F*, while the former represents a

contraction which reduces the Yang-Mills rank byWZhen carefully considered, this provides
an opportunity for developing a nuclear Lagrandiased on the t'Hooft’s original development
[2] of Yang-Mills magnetic monopoles.

If we know that3 F; F/* =3 F F* as we do from the terms in [11.7] of [1] omitted

from (1.8) above, and also given thafl'T' =1 4", then with explicit indexe®\,B,C,D = 123
for the 3x3 Yang-Mills matrices of th8U(3).. isospin-modified color group developed in
section 8 of [1], an explicit appearance of Yandiindexes would cause (1.8) to be written as:

E= —jﬂsgauged3x = %Tr”_[ F,F*d®x= %Tr”f F P 07X

:%TI’J.‘U Fha [FBDdsx =%J.J Fre [FBAdBX , (31

where we suppress the spacetime indexes Usidg = F,,F* to focus attention on the
contractions of the Yang-Mills indexes. That rsthe fourth and fifth terms above, we perform
a contraction over theB” index, which means théaf,; [Fg, is aninner product formed with

ordinary matrix multiplication, and is a contractiover inner indexes of the most general
bilinear Yang Mills tensor, the fourth rank (3x3:&xF,, O F* = F,; [F,, which is arouter

product down to rank two. In the sixth, final term, weite the traceTrF,; [F;, = F, [Fg, Via
a second index contraction.

We point this out because (1.12) through (1.14ictvBuccessfully match the empirical
nuclear binding data, are in fact based not onl{3oh), but also taking thiensor outer product
of F,z F.p, that is, on taking (carefully contrast the Yangidindexes as between the final

terms in (3.1) and (3.2)):

E= —jﬂsgauged3x = %TrmFm 0 Fﬂ”d3x=%TrmFWABFWCDd3x

3.2
T Fan (e =3 [ o o™ o2



Here, in the final terms, we useF,; [(F., = F,,[Fy;, as opposed rF,; [Fy, = Fup [Fia,

which highlights the notational ambiguity in (1a3 well as the difference between the olter
and innerL matrix products.

Now, in general, the trace of a product of two sgumatrices isotthe product of traces.
The only circumstance in which the “trace of a prct equals the “product of traces” is when
one forms a tensor outer product using the mostrgébilinear operation:

Tr(AOB)=Tr(A)Tr(B). (3.3)

Specifically, to obtain the term®, +4,/m,m, +4m, andm, +4,/m,m, +4m, in (1.12) and
(1.13), we are must use (3.2), while to obtam, + m, and2m, +m, in the same expressions,

we instead must use (3.1%0 (1.12) and (1.13) are formed by a linear comtiamaof both inner
and outer productsAnd because (1.12) and (1.13) predict bindinggiee per nucleon in the
range of 8.7 MeV and yield an extremely close made®®Fe binding energies, nature herself
appears to be telling us that we need to combineriand outer products in this way in order to
match up with empirical data. This, in turn, giwssimportant feedback for how to construct our
Lagrangian to match the empirical data.

To see this all most vividly, we start with [11a8}d [11.9] from [1] as reproduced below:

J’II(I// [y uyv]t//d +2l// [y uyv]l// j [Z?[yﬂmyl/]ﬁ,”d +24?f[y”DyV]lf/”Jd3x, (3.4)
pu _rTL pd _rnd pu - rTL

m{w ey ]wu +zwd[y oy ]wdj [wf[ymyv]éffu wd[ymyv]wd} (3.5)
"Pg — My P, —m, Py — My

Using these in (3.2) following the developmentéctson 11 and [12.12] and [12.13]

of [1], we rewritem, +4,/m,m, +4m, andm, +4,/m,m, +4m,, respectively, also via (3.3), as
the traces of Yang-Mills matriguter products

E, 1Trj”FPWDF‘”d x—lTrmFPAB oo x-l”jFPAAEFPBde

NI

Jme 0 0 ) (Jm 0
1
=—=—Tr|| 0 ym, O |Of O m, O : (3.6)
(27): o o0 Jm 0o 0 Jm

=1 (m, +4/mm, +4m,)=171569Mev
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Ey =3Tr[[[Fu, OFd°x=3Tr[[[Fy e TFucod®x =3 [ Fy an Ty ged

Jm, 0

(3.7)

OOE‘

The above connect the energy and Lagran@ian- j J.J“’@gauge X to a very-transparent matrix

format, and in turn, to the energy numbers thaewepart responsible for empirically-matching
the F&° binding energies.

Further, in this form, we also see that the sinspiasZm, = 2m, + m, and

Zm, =2m, +m, of the quark masses in a profoar neutrom are similarly given by the Yang-
Mills matrix inner products

=42 Tr[[[Fo, Fo " dx = 4 (272 Tr [[[ Fp g TFogp0°x = £ (272)7 [ [ [ o g TFp a0

P BA

\/_ 0 0 Yym 0 o0 . (3.8)
0 0 0 Jm 0 [|=2m, +m, =9.356376MeV
0 Jm L o 0 m

SE, = 2n) TrJJ[Fu P 0P = 2 T o Pt =300 ][ o Fud®

Jm, o o })YJym, o o0 (3.9)
=Tr{| o Jm, 0 | 0 Jm, 0 ||=2m,+m, =12.03905MeV

o 0 ym) o o Jm

These expressions use the ordinary matrix prodhathnappear in (3.1), and differ from (3.6)

and (3.7) only insofar as how the indexes are ectd¢d. The factor o(on)% as was mentioned
earlier, originates from the three-dimensional Garsintegration.

This means that we can reproduce equations (ari)1.13) for the latent binding

energy of a proton and neutron by combining (3.8 {8.8), and (3.7) with (3.9), ilnear
combinations of inner and outer Yang-Mills matrmogucts as follows:
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B, = 3, - E, =3 T [[[{(2n) Fo, " - Ry, OF JoPx= 370 []{(27) o P = oo oo o

Puy

:%JIJ((ZH)%FPABEFPBA FeanlF PBB)d3x 2m, +m = (271r)§( 4\/7+4”L)

(3.10)
Jmp 0 o )J/m, 0o o0 Jm 0 o) (ymy 0 o0
=T 0 Jym 0| 0 ym o |-—2lo Jm oo o Jym o
o o ymjo o ym) o o ym)lo o ym
=935637¢ MeV-171569'MeV =7.640679M&/
B, =E, - 2E, =1 Tr[[[(2nf Fy Fy ~ Fu,, DR a3 =3 Te [[[ (27 Fiy o e = Fu e o A7
:%”j((m)% Fuae Frvea— Fuaa EIFNBB)d3x: 2m, +m, ——— (mh +4./mm, +4md)
(27) (3.11)
Jm 0 oYym o o fm 0 o) (ym o o
=1l o ym, o | o0 Jm o0 |—-1]o0o Jym o0 |00 Jm O
o o ymjo o ym) @0 o ym)lo o Jm

=1203905: MeV -2.22669(MeV = 9.812358M¢&/

This now provides a fully-covariant, Yang-Mills matexpression for the intrinsic, latent

binding energies of the proton and neutron, coteéchdown to the scalar numbers which specify
these binding energies. And it is from these, #atre now clued into how we can amend the
Lagrangian in (1.8) to provide a foundation for siolering nuclear binding energies in general.

Contrasting (3.10) and (3.11) with (3.1) and (3v23 see that the general form of a
Lagrangian for théatentnuclear binding energy of a nucleon (which maylpeoton or neutron
or any other baryon), which is needed to match itlp the empirical data, is:

"gbinding % ( ) F - F,uv O FW):%-I-"((ZT[)g Fae Fep — Fag EFCD).

(3.12)
%( FAB EFBA - FAA EFBB)

Using this, we now start to amend the t'Hooft Lamgian [9.2] of [1], reproduced below:
v 2
£=-;F,FR" -1D,p D"y -%ﬂz%(ﬂa—%/l( a(ﬂa) : (3.13)

First, we applyTrT'T! =14 together withF*’ =T'F* and ® =T?g, to rewrite (3.13)
in the Yang-Mills matrix form:
¢ =-1T1(F, F*)-Tr(D,0D*®)- £2Tr(®D) -1 A(Tr(®d))*
_iTr(F/IVABFHVBD)_Tr((D,UcD)AB(D/JcD)BD) 2-I-r(cDABcDBD) %A(-I-r(q)ABcDBD))2 ’ (314)
1 F F WBA - (Dqu)AB (DHCD)BA - IUZCDABCDBA 3 (CDAB BA)2

MV AB
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with [9.4] of [1] also written in the compacted matform:
(DHCD)AB :a,uq)AB _i(l.Gﬂ’cDJ)AB' (315)

Now, we compare (3.14) closely with (3.12), esaligicomparing the term
-1F,, F*_, in (3.14) with1(271): F, OF,, in (3.12). Based on this, weenstructa
Lagrangian such that the leading (pure gauge) tepasify the latent nuclear binding energies,
that is, we choose to maIée((Zn)% F s (s — F.u [Fy | the leading Lagrangian term, because we

know from (12.10) and (12.11) that this yields tatkinding energies very much in accord with
what is empirically observed in nuclear physicéug, we take (3.14), introduce a factor of

- (271)% in front of all the ordinary matrix products, stduit off a termF,, [Fg;, introduce
similarly-contracted terms everywhere else, anthsbion the Lagrangian

e=(2nhtF, F*_ +(D,9) (D@ 170 o p, +A(®,00,, )]

PRITON:
_% F FA (DﬂcD)AA(DHCD)BB _IUZCDAACDBB _%/‘(CDAACDBB)Z

HY pAA BB

, (3.16)

It is readily seen that the pure gauge teffps=*" in the above are identical to (3.12), which
means that these terms now represent the empyrigladlerved latent nuclear binding energies.
However, in constructing this Lagrangian, we cdng same index structure a(lﬂﬂ)%

coefficients forward to all the remaining terms dhds extend this understanding to the vacuum
terms as well.

The benefit of all of this can be seen from (3.48) (3.11). For a nucleus wifhprotons
andN neutrons, which therefore hAsZ+N nucleons, we may write tlavailable intrinsic,

latent binding energy'B as:

2B =3Z q”((Z”)g N e N 3X+% N q”(@”)g Fuae (Pnea = Froan (Pues 3X. (3.17)
=Z [7.640679Mé&/ + N [0.812358M¢&/

This simply restates in more formal terms, the ltsfound in sections 11 and 12 of [1]. But, it
ties the formal, invariant, theoretical expressibased on the general form - Tr(F [F)

with energiesk = —I”sd3x, to a very practical formula for deriving real,meric, empirically-
accurate nuclear binding energies.

On the foregoing basis, we now show how to demiveonly theavailablebinding
energies (designatd®) via (3.17), but thebservedinding energies (which will be designated
throughout asB, with a “0” subscript) for several basic nuclideSpecifically, we now derive

3B, for the®H triton, B, for the®He helion, and most importantly given that it isiadamental
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building block of the larger nuclei and many depagcess,, B, for the*He alpha, all extremely
closely to the empirical data. We also lay a fatmh for doing the same with larger nuclei.

4. Foundation for Deriving Observed Binding Energes of the 1s Nuclides

Now, it is our goal to derive thebserved, empiricadbinging energies for all nuclides
with Z <2; N <2, on atotally theoreticalbasis. Using a nuclear shell model similar to wwha
used for electron structure, all of these nucliti@ge nucleons in the 1s shell and so we refer to
them as the 1s nuclides. We thereby embark oarttlertaking set forth at the end of [1], to
understand in detail, hoeollectionsof Yang-Mills magnetic monopoles — which monopole
collections we now understand to be nuclei whemtbaopoles are protons and neutrons —
organize and structure themselves.

The nuclear weights (massgM ) of the nuclides of immediate interest are sethfor
below in Table 1 (agaid=Z+N). Because we wish to do very precise calculatiand because
nuclide masses are known much more precisely atam(ic mass units, AMU) than in MeV due
to the “relatively poorly known electronic chardé], we shall work in AMU. When helpful
for illustration, we shall convert over to MeV viau = 931.494 061(21) MeVicbut only after a
calculation is complete. The data for these neglichnd the electron mass below) is from [11]
and / or [12], and is generally known to ten-dmicision in AMU with experimental errors
specified at the eleventh and twelfth digits. &threr nuclides not listed at these sources, we
make use of a very helpful online compilation afraic weights and isotopes at [13]. Vertical
columns list isotopes, horizontal rows list isoten@nd diagonal lines link isobars of likRe-The

nuclides with border frames are ttablenuclides. M(n)=;M =100866491600u is the mass
of the neutron, and/(p)=;M =100727646682u is the mass of the proton.

M sNuclide ;
N

0

1 1.0086649T6000|[ 2,0135532177
2 pet il

L . pge

Table 1: Nuclear Weights ¢ M) of 1s Nuclides (AMU)

Theobservedinding energie8, are readily calculated from the above using tloeqor
and neutron masseéd(p)=M and M(n)=;M via 2B, = ZGM + N[JM--M , and are given by
(again, theobservedinding energies will be denoted throughoutBswith a “0” subscrip?):
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B, sNuclide on H ,He

Table 2: Empirical Binding Energies (§B,) of 1s Nuclides (AMU)

Now let’s get down to business. We already showgdl2.9] of [1], and discussed in the
introduction here, that by identifying the masshef up quark with the deuteron binding energy
by definingvia hypothesis that, = B, = 2.224566MeV , we can not only establish very precise

masses for the up and down quarks but also camiexple confluence of confinement and

fission and fusion afFe in a very profound way, wherein 99.8429093%hefvailablebinding
energy predicted by this model of nucleons as YMiitg magnetic monopoles goes into binding
the F&° nucleus and only the remaining 0.1570907% is ts@dnfine the quarks. And, we
extrapolated this to the thesis to be further coréd here, that nucleons are best thought of as
some form of “resonant cavities” which will fuseeatergies based on their quark masses. So we

now write this identification of the up massg, with theobservedieuteron binding energg,,
in the notations to be employed here, in AMU, as:

m, EfBO =By fH) =0.002388170100u.. 4.1)
In AMU, the electron mass, which we shall also nésd
m, = 0.00054857999u. (4.2)

We then use (1.11) (see also [12.10] of [1]) watHL} and (4.2) to obtain the down quark mass:
_(2n) _
my = Tme +m, = 0005268143299 u . (4.3)

It will also be helpful in the discussion follovgrio use the mass construct:
4Jm,m, =000354700186u, (4.4)

because this expression appears frequently inatierediscussion, starting with (1.12) and
(1.13).

We then use the foregoing in (1.12) and (1.13)aoulate in AMU, theatent, available

binding energy of each of the proton and neutresjghated by without the “0” subscript
(because these are theoretical, not observed esgrgi
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B(p)=;B =2m, +m, - (md +4,/mm, +4m, )/ (27): =000820260732u (4.5)
B(n)=;B=2m, +m, - (mu +4./m,m, +4m, )/ (2): =001053400082u. (4.6)

Via (3.17), (4.5) and (4.6) are used to calculaeegally, thdatent, availablebinding energy:

m, +4,/mm, +4mJ]+N E§2md o - Mt A/mm, +4m,

"B=2zZ[12m,+m, - . .
z [é (271)E (271)E 4.7)
=7 [0.00820260732u+ N [0.01053400082u

in AMU, for anynuclideZ, N. For the nuclides in Tables 1 and 2, thisoretically-available,
latentbinding energyB, is predictedto be:

sNuclide on H ,He

w N P O 2 W

Table 3: Theoretically Available Binding Energies ¢ B) of 1s Nuclides (AMU)

Taking theratio of theempirical values in Table 2 over thkeoreticalvalues in Table 3 yields:

B,/B(%) zNuclide on H ,He
N

c | .0.0006600000%|| .- it S AT

1 30.7566598954%| .. Aty
2 81.0623286777%

3

Table 4: Used-to-Available Binding Energies {B,/4B(%)) of 1s Nuclides (%)

So we see, for example, that fite alpha nucleus uses about 81.06% of its total
available binding energy to bind itself togetheitjmthe remaining 18.94% retained to confine
the quarks inside each nucleon. The deuteronseteabout 12.74% of what is available to bind,
while the isobars witi=3 use about 31% of what is available for bindinthwhe balance
reserved for quark confinement. Tinee proton and neutron, of course, retain 100% of this
latent energy to bind their quarks and releaseimgthBut as soon as they start to fuse together,
they release some of this energy and the negatitresoenergy goes into the mass loss and binds
together the nuclei. That is why protons and reeghave the largest excess mass when they
are free and not bound into composite nuclides.
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As a point of comparison, f6fFe, which has the highest percentage of used-titaale
binding energy, the nuclear weiglfiM =55920674421 (cf. Table 1), the empirical binding

energy is>B, =05284611% (cf. Table 2), the available binding energyi8 = 052928781

(cf. Table 3), and the used-to-available perceniageB,/ 5. B(%)= 9984382846 (cf. Table 4).

No nuclide has a higher such percentage tfam While®*Ni has a larger empirical binding
energyper nucleonits used-to-available percentage is lower, bex#us calculation in (4.7)
literally and figurativelyweights the neutrons more heavily than the protmna ratio of:

B(n) _ B _ 0.010534000@2u
B(p) !B 000820260732u

=128422588025 (4.8)

The above ratio also explains, at least in pary mdavier nuclides tend to have a greater
number of neutrons than protons: As a nucleon giavger, because the neutrons carry an
energy available for binding which is about 28.42%er than that of the proton, neutrons will
in general find it easier to bind into a large rwd by a factor of 28.42%. Simply put: neutrons
bring more available binding energy to the tabntprotons and so are more welcome at the
table. The nuclides running froffGa to*®Cd tend to have stable isotopes with neutron-to-
proton number ratio$\(Z) roughly in the range of (4.8). Additionally, ahkkely for the same
reason, this is the range in which, beginning Wittb and**Mo, and as the N/Z ratio grows
even larger than (4.8), one begins to see nuclidiesh become theoretically unstable with
regard to spontaneous fission.

Next, we subtract Table 2 from table 3, to obthmunusedy) binding energy;U for
each nuclide. Of course, for the proton and neytat of this energy is unused; it is fully
channeled into confining the quarks. One may tlohthis as sort of a nuclear “see-saw”
between using latent binding energy to confine kgiand releasing some of the latent binding
energy tarealizethe binding together of nucleons. These unusediitg energies are:

U sNuclide on H ,He

Table 5: Unused Latent Binding Energies § U of 1s Nuclides (AMU)

Again, these are the latent binding energetained for and channeled into quark confinement
Finally, to lay the groundwork for predicting theserved binding energi®&y in Table 2,

let us return to (3.6) and (3.7), remove the traog, specify two (3x3)x(3x3) tensor (outer)
product matrices, one for the protoa(,;., ) and one for the neutrork( ,,., ), according to:
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Jmg 0 0 (Jym; 0 0
27" Ep rncy =2(270) [[[Fo o Fogd®x=| O Jm, 0 |0/ 0 Jm, 0 | (4.9)
ABCD 2 AB CD
o o0 Jm, o o0 .Jm,

(4.10)

From the above, one can readily deduce the eigmee+zero diagonal outer product
componentgnine for the proton and nine for the neutronhvi, ,; ., = Eyascp=0 Otherwise):

3
EN 1 - EP 222 = EP 3333 — EP 2233 = EP3322 =m, /(277-)2
_ _ _ _ _ 3 . 411
EPllll - EN 2222 EN 3333 EN 2233 EN 3322 T my /(277)2 ( )
3
EP1122 = EP1133 = EP 211 = EP3311 = EN 122 — EN 1133 — EN 2211~ EN 3311 — /MMy /(277)2

This is why (4.1), (4.3and (4.4) will be of special interest in the developrmmllowing.
With the foregoing, we now have all the ingrediemtsneed to closely deduce the empirical
binding energies in Table 2 on totally theoretigalunds. We start with the alpl&ie.

5. Prediction of the Alpha Nuclide Binding Energyto 3 parts in One Million

The alpha particle is tH&le nucleus. It is highly stable, with fully satted 1s shells for
protons and neutrons, and is central to many aséctuclear physics insofar as many other
nuclei will decay into more stable states by ralggasalpha particles via so-called alpha decay.
In this way, it is a bedrock building block of naal physics. Thenusedbinding energy for the

alpha particle isU = 0.007096629@9u, as derived in Table 5. Looking over the mass
numbers developed in section 3, we see that thsriscloseo being twice the value m
in (4.4), that is, thaB,/m ,m, =0.00709400332u. In fact, these energies are equal to about
2.26 partper million! Might this be an indication that the alpha pé#etigses all of its available

binding energy, les&,/m,m, , for nuclear binding, with the balance ajm,m, retained on the

other side of the “see saw” to confine the quanissdie each of its four nucleons? First, let's
look at the numbers, then let's examine the thealeteasons why this might make sense.

If in fact this numerical coincidence is not jastoincidence but has real physical
meaning, then this would mean that the empiricadlinig energy; B, of the alpha ipredictedto

be (4.7) for;B, less2,/mm, , that is:

m, +4,/m,m, +4m, m, +4,/m,m, +4m
;BOPredicted :2EE2mu + md - ! (2 )gd J+2EE2md + mu - (2 )gd : _2Vmumd y (51)
T )? )2

=0.03037922155u
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where we have calculated usingg and m, from (4.1) and (4.3), and also used (4.4). In
contrast, as we see from Table 2, the empif&3l= 0.03037658499u! The difference:

;B -.B, = 003037921255 u-0.03037658649 u = 0.0000026 5656 u (5.2)

OPredicted 2

is extremely small, with these two values, as nqustiabove, differing from one another by less
than 3 parts in 1 million AMU! So, let us regdEdl) to be a correct prediction of the alpha
binding energy, at least to first, dominant ordsiow, let’s discuss the theoretical reasons why
this makes sense.

In [1], a key hypothesis was to identify the makthe down quark with the deuteron
binding energy, see (4.1) here in which we agaimereed that identification. Beyond the
numerical concurrence, a theoretical explanationhis, is that in some fashion the nucleons are
resonant cavitiesand so the energies that they will tend to reldas retain) during fusion will
be very closely tied to the masses / wavelengthiseo€ontents of these cavities. But, of course,
these “cavities” contain up quarks and down quaaks, their masses are given in (4.1) and (4.3)

together with,ym,m, in (4.4), and so these will specify preferred thanics” to determine the
precise energies which are released for nuclealirgnor retained for quark confinement.

We also see thabmponentsf the outer product&, ., =+ [[[ Fe s Frcpd x and
En asco :%m Fy s Fropd X in (4.9) and (4.10), imef27)? which is naturally supplied by

Gaussian integration, take on one of three non-zalges:m,, m,, ,/mm, , see (4.11). So, in
trying to make a theoretical fit to empirical bindidata, and to not stray from the restraints
imposed by the outer produdis,; ., = %” F.s (Fopd®x, werequirethat empirical binding

energies be calculatehly from the outer productg .z, = %” F.s [(Fpd*x for the proton

and neutron, usingnly some combination of a) tlttemponentsf this outer product and b)
index contraction®f this outer product, see again the discussi@eation 2. So the ingredients
that we shall use to do this numerical fitting, I restricted to a) tHatent, availablenuclide

binding energies as calculated from (4.7), b) tiied energiesn,, m,, /m,m, and quantized

multiples thereof, c) any of the foregoing witrﬂzﬂ)g coefficient or divisor, as suitable, and d)
the rest mass of the electram . This fitting involves essentially poring oveethumerical

nuclear binding data, and seeing if it can be adiat closely usingnly the foregoing
ingredients. In the case of the alpha, (5.1) makets these criteria. In fact, rewritten using
(3.6) through (3.9) and (4.11), we find that (5c&h be expresseamhtirelyin terms of the outer

tensor produck ,; ., :%” Fas (Fepd®x, as:
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;BOPredicted =2 [Q(ZIT)% EP ABBA EP AABB)+ 2 [((2”)% EN ABBA EP AABB)_ (2”)% (EP1122 + EN 1122)

e TNyt

(5.3)

(o) 2x) j—zm

This totally theoretical expression yields the alfinding energy to 2.26 parts per million.

In this light, (5.3) tells us that the alpha binglienergy is actually the 11 2mponent
of a (3x3)x(3x3) outer produdk ,;,, in linear combination with invariant traces Bf; -

That is, this binding energy is a component of ag¢Mills tensor! This is reminiscent, for
example, of the Maxwell tensedsT * = F*“'F'q —ip"F% F.s, which provides a suitable

analogy. The on-diagonal components of the Maxteelsor contain both a component term
and a trace term just like (5.3). For example,fdrfl ° = F*F° -1 F“F_,, we analogize

F®F°% to E,,,, and FF,; t0 (277)° E xggn — E sags in (5.3). And the off-diagonal
components of this tensor dotinclude the trace term. For example, consider

— 47 * = F%FY -n®iF¥F,, = F“F%, wherep® filters out the trace. This latter analogy
allows us to represent (4.1) for the deuteron @en@ponentvithouta trace term, thus:

’B =m, =0+ (277):E, ,,,. (5.4)

0 Predicted

So we now start to think about the individual, @fved nuclear binding energies as
components of a (3x3)x(3x3) fourth rank Yang Mdrssorof which (5.3) and (5.4) are two
samples. Thus, as we proceed to examine manyatitfauclides, we will want to see what
patterns may be discerned as to how each nuctglafo this tensor.

Physically, the alpha particle of course cont&ms protons and two neutrons, and at the
quark level, six up quarks and six down quarkgs #een that in (5.1), the up quarks enter in a
completely symmetric fashion relative to the dowsads, i.e., that (5.1) is invariant under the

interchangem, ~ m,. The factor of 2 in front of/m,m, of course means that two components
of the outer product are also involved. The deuteper (5.4), uses only one member of the

my, ymm, “component toolkit” from (4.11), i.em,, while (5.4) uses two members of this

toolkit, i.e., 2ym,m, . Further, while each componentmf, m,, ,/m,m, in the (4.11) toolkit is
associated with several different components obtiter product, we have as a preliminary

matter hypothesized an associaﬁq/m_n my = Ep,.5, + Enypys SO that the neutron pair and the

P1122
proton pair each contributie/m,m, to (5.3), and (5.3) thereby remains absolutetgragtric
underp - n andu -~ d interchange. The choice of tlig,,, elements appears to be

somewhat arbitrary given (4.11), and should besi®d once we study other nuclides not yet
considered and seek to understand the more geremglMills tensor structure of which the
individual nuclide energies are components.
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One other physical observation is also particyladteworthy: Below in Figure 1, we
have included the well-known “per-nucleon” bindigigph to facilitate discussion. One of the
great mysteries of nuclear physics, is how, exattlaccount for the great “chasm” between the
°H, ®*H and®He nuclides, and the alpha nuclitiée for which we have now predicted the binding
energy to within a fraction of a percent. Coniras(5.1) for*He with (5.4) for’H, we see that
for the latter deuteron, we “start at the bottonithw'B, =0 for *H, and then “add®B, = 0+m,
worth of energy to bind the proton and the neutomether intdH. But for the alpha, we “start

at the top,” with the total latent binding enerf = 0.03747321508u, and then subtract off

2,/m,m, , to obtain the empirical resu}B, =0.03747321508u - 2,/m,m, . But as we learned

in section 12 of [1], any time we dmtuse some of the latent energy for nuclear bindimay,
unused energy remains behind to confine the quarkswuclear see-saw. So what we learn is

that for the alpha particle, a total B{/m,m, =0.007094004u is held in reserveo confine the
guarks, while the balancerisleasedo bind the nucleons to one another.

Average binding energy per nucleon (MeV)

0 | 1 1 | | l | 1 1 I 1
0 20 40 60 80 100 120 140 160 180 200 220 240

Mumber of nucleons in nucleus, A

Figure 1

Now to the point: for some nuclides, (e.g. the deart) the question is: how much energy
is releasedrom quark confinement to bind the nucleons? T “bottom to top” approach.
For other nuclides (e.g., the alpha), the questiohow much energy ieservedout of the
theoretical maximum available, to confine the qsarkhis is a “top to bottom” approach. For
“top to bottom” nuclides, there is an invariantcgan the tensors. For “bottom to top” nuclides
there is not. Using the Maxwell tensor analogy gliscussed, one might suppose that
somewhere there is a Kronecker dedta and / oro*°co which filters out the trace from some
“off-diagonal”’ terms and leaves the trace intactdther “on-diagonal” terms. In this way, the
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“bottom to top” nuclides are “off-diagonal” elemsenand the “top to bottom” nuclides are “on
diagonal.” In either case, however, the “resonafmenuclear binding is established by the

components of th&,, .., , which arem,, m,, /mm, in some combination and / or integer

multiple. And, as regards Figure 1 below, the oh&sading up tdHe, is explained on the basis
that each ofH, *H and®He are “bottom to top” “off-diagonal” nuclides, Wai*He, which
happens to fill the 1s shells, is the lightest “tofbottom” “on-diagonal” nuclide®H, *H and

®He start at the bottom of a see-saw and workdp;starts at the top of the see-saw and works
down.

Let us now peek ahead at some higher energy msclicthmely;Li and ;Be with Z=3
and Z=4, because they deepen the lessons learoed v the alpha. Using a nuclear shell
model similar to what is used for electron struetwd! the nucleons in tHele alpha are in 1s
shells. The two protons are spin up and down eaithls, and as are the two neutrons. As
soon as we add one more nucleon, by Exclusion, wst jamp up to the 2s shell, which admits

four more nucleons and so can reach upBe before we must make a first incursion into the 2p
shell. The four additional nuclides we shall wislbriefly examine are shown in Table 6 below:

B, sNuclide on .Be

1 0,000006000000( 0
2 AT A=2 A=g
A=3 004036'5'106

Table 6: Empirical Binding Energies (;B,) of Selected 1s and 2s Nuclides (AMU)

We note immediately from the above — which has besited by others before — that the
binding energy’B, = 0.0606547521 of ®Be is almost twice as large as that of the alptg,
to just under one part in ten thousand AMU. Spextiy:

2B, —2B, = 2[0.03037658689u —0.0606547521 = 0.00009842u . (5.5)

This is part of the explanation as to why ¥Be is unstable and invariably decays almost
immediately into two alpha particles #e. ( It is°Be which is the stable Be isotope.) But what

is of particular interest here, is to subtracttb# alpha, B, = 0.03037658689u from each of

the Li and Be isotopes shown in the above, and epeniinem side by side with the non-zero
binding energies from H and He. The result of &xercise is shown in Table 7 below.
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B sNuclide H ,He By-Bo(alpha)  ;Nuclide 5Li .Be

1 .0.002388170T60_0,008285602834. 3 _0.003970507 __Q.009988519
2 ~A=27" 0,009205585412 0.030376586459 4 e A=6""" 0011753668 _0.030278165
N — PR 5 - A

Table 7: Comparison of Alpha-subtracted 2s Bindindg=nergies, with 1s Binding Energies
(AMU)

Equation (5.5) is represented above by the fattiBg—,B,;B,. The chart on the left

is a “1s square” and the chart on the right issasQuare.” But they are both “s-squares.” What
is of interest is that the remaining three nucliskethe Li, Be “square” are not dissimilar either
from the pattern shown for the other three nuclidegbe H, He “square.” This means that three
of the four nuclides in the 2s square start “atitbegom” “off-diagonal” just as in 1s, and the
fourth, ®Be starts “on diagonal” “at the top.” But, in tAe square, the “bottom” is

5B, =0.03037658699u from the alpha particle. So the complete 1s siwtw the 2s shell

provides a “platform,” a non-zero minimum energy égamining binding in the 2s square. And
it appears that the nuclides with full shells dre ‘tdiagonal” tensor components. The see-saw
for the 2s square is elevated so that its bottoat ike top of the 1s see-saw.

It is also important to note that when we moveh®rmuch heavier nuclides — atteie
already discussed is a good example — even mdhe @nergy that binds quarks together in all
the nucleons is released. PfFe, calculating from the discussion prior to (4tBg unused
latent binding energy contributed Bif 56 nucleons is only .00082662 u. But in Table/g,
saw that .00709663 u of thlde binding energy was unused. So much of the bindnergy that
is unused and retained for quark confinement feritghter nuclides, becomes used on the other
end of the see-saw to bind together the heavididmsc with peak utilization &Fe. For
nuclides heavier thatiFe, the used-to-available percentage, cf. Tabtedins to tack
downwards once again, and more energy is chanimgleduark confinement and less into
nuclear binding.

Finally, before turning tdHe in the next section, let us comment briefly @pegimental
errors and the precision of the foregoing. Theligteon of the alpha in (5.1) to be
3 Bopregiceg = 0.030379212%5u , in contrast to the empiricgdIB, = 0.03037658689u, is an
exact match, in AMU, through the fifth decimal pgabut is stillnot within experimental errors.
Specifically, the alpha mass listed in [12] andvehan Table 1 is 4.001506179125(62) u, which
is accurate teendecimal places in AMU. Similarly, the proton mds807276466812(90) u and
the neutron mass 1.00866491600(43) u used to esdciB, = 0.03037658689u are accurate

to ten and nine decimal places respectively. Sorthtch betweefiB, and the empirical

Predicted
B, beyond five decimals to under 3 parts per mili@still not within the experimental errors,

which are known to at least nine decimal placesSNU. Consequently, (5.1) must be regarded
as a very close, but stdpproximaterelationship for the observed alpha binding energy
Additionally, because (5.1) is based on (4.1), whethe mass of the up quark is identified with
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the deuteron binding energy, =B, = By(:H) = 0.002388170D0u , the question must be
considered whether this identification (4.1), whitzy close, is also still approximate.

Specifically, it ispossibleto make (5.1) for the alpha into eractrelationship, within
experimental errors, if we reduce the up quark rhgssxactlye=0.000000351251415 u (in the
seventh decimal place), such that:

m, =0.00238781889u [ 2B, = B,(:H) =0.002388170D0u . (5.6)

That is, we can make (5.1) for the alpha inteaactrelationship if we make (4.1) for the up
qguark into arapproximaterelationship, or vice versa, but not both. Sotdwawe do? A

further clue is provided by (5.5), whereby #rapirical B,/;B, 02 is a close, but still

approximate relationship. This seems to suggesina adds more nucleons to a system and
makes empirical predictions such as (5.1) baseti@np and down quark masses, that higher
order corrections (at the sixth decimal place inlAldr alpha and the fifth decimal place in
AMU for ?B,) will still be needed. So because two body systeath as the deuteron can

generally be modeled nearly-exactly, and becausiteron will suffer less from “larg&=Z+N
corrections” than any other nuclide, it makes sefsent evidence to the contrary to regard
(4.1) identifying the up quark mass with the denrelbinding energy to be axactrelationship,
and to regard (5.1) for the alpha to beagproximaterelationship that still requires some
correctione in the sixth decimal place. Similarly, as we depeother relationships which, in

light of experimental errors, are also close hilitagpproximate, we shall take the view that these
relationships too, will require higher order cotress based on factors such as the complexities
of a multi-body system, growing nuclide size, ane fact that the nuclear interaction drops off
rapidly as between nucleons not immediately adjaiweane another in a nucleus. Thus, for the
moment, we leave (4.1) intact as an exact reldtipns

In section 10, however, we shall show why (4.13agially not an exact relationship but
is only approximate to about 8 parts par millionAMU. But this will be due not to the
closeness of the alpha particle predicted versasrabd energies, but due to our being able to
develop a theoretical expression for the different@) — M (p) between the observed masses

of the free neutron and the free protométter than one part per millioAMU.

6. Prediction of the Helion Nuclide Binding Energyto 4 parts in 100,000

Now, we turn to the’He nucleus, sometimes referred to as the heliorcoirrast with

the alpha and the deuteron already examined whehgeger-spin bosons, this nucleon is a
half-integer spin fermion. Knowing that our ingieuts for constructing binding energy

predictions arem,, m,, /m,m, , knowing as pointed out after (5.4) that we waltdrt at the
bottom” of the see-saw for this nuclide, and knayafready that the “components” in the (4.11)
toolbox we have used so far arg for 2B, and2,/m,m, for /B, it turns out after some

exercises strictly with this toolbox of energidgttwe can make a fairly close prediction by
setting:
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BO(EHe)DredictedzngO Predicted DZ”L + and = 000832332076'*] . (61)
The empirical energy from Table 2, in comparissn;B, = 0.0082856@824u, so that:

3B ypredioeq =B, = 000832334206 u - 000828560284 u = 0.00003779252u . (6.2)

While not quite as close as (5.2) for the alphaigar this is still a very close match to just end
4 parts in 100,000 AMU. But does this make sendgit of the outer products (4.9), (4.10)?

If we wish to write (6.1) in the manner of (5.3)da(5.4) in terms of the components of an
outer producte .., , then referring to (4.9), we find that:

2Bypresced= (277)" Epgann = 2, +fmym, =/m, [ymy +2/m, ). (6.3)

So the expressio@m, +,/m,m, in (6.1) in fact has a very natural formulatiohigh utilizes the

trace,m, +2,/m, (AA index summation) of one of the matrices irBj4times aﬁtaken

from the third (or possibly second) diagonal congrarof the other matrix in (4.9). The use in
(6.3) of E, from (4.9) rather than of, from (4.10), draws from the fact that we needtthee

to be,/m, +2,/m, , and noty/m, +2,/m, as would otherwise occur if we used (3.7). Seher
the empirical data clearly causes us to choose onergs fromE, rather than fronk, .

7. Prediction of the Triton Nuclide Binding Energyto 3 parts in One Million, and the
Neutron Minus Proton Mass Difference to 7 Parts infen Million

Now we turn to thH triton nuclide, which as shown in Table 2, hasraling energy
’B, =000910558542u . As with the alpha and the helion, we use thegies from
components of the outer produdis,, of section 2, see again, (4.11). However, follayvi
careful consideration of all possible combinatighsye is no readily apparent combination of
m,, m,, /mm, together withm, and factors of277): which yield a close match to well under

1 percent, to the observed binding ene}gy = 000910558542 .

But all is not lost, and much more is found: Wis&ndying nuclear data, there are two
interrelated ways to formulate that data. Fisstpilook at binding energies as we have done so
far. Second, is to lookrauclear weight lossconversely known as “mass excess.” This
formulation, mass excess, is very helpful whenyanglinuclear fusion and fission processes,
and as we shall now see, it is this approach thables us to match up the empirical binding data

for the triton to them,, m,, ym,m, , m, and factors 0(271)% that we have already successfully
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employed for the deuteron, alpha, and helion. &smendous bonus, we will be able to derive
astrictly theoreticalexpression for thebserved, empiricalifference:

M (n) =M (p)=IM M =0.00138844988 u (7.1)

between the free, unbound neutron milKs)=1008664916800u and the free, unbound proton
massM(p)=1007276466B2u, see Table 1.

The derivation of thHe binding energy and the neutron minus proton rdéfeence is
somewhat involved, and so is detailed in the AppenBut the results are as follows: For the
neutron minus proton mass difference, in (A15)obin:

3m, +2 -3
M)~ Mg =, =, — 2 (m” ;n —m, - (”‘32“‘* ™~ 0.00138916099u (7.2)
2r )? 2r)?

which differs from the empirical (7.1) by a meded00000716911. And for the®He binding
energy in (A17), we use the above to help obtain:

J/mm
By (*H) precicted™: Boredicea = 4M, — 2 ( ");’ =0.00910226308u, (7.3)
21 )?
which differs from the empirical value in Table 2 & mere0.000003329104.

With the foregoing, we have now reached our gbdeducing precise theoretical
expressions for all of the 1s binding energieslgas a function of elementary fermion masses.
In the process, we have also deduced a like-expre&s the neutron-proton mass difference!

8. Excess Mass Predictions
Let us now aggregate some of the results so$anedl as those in the Appendix. First of

all, let us draw on (A4), and use (A14) and thetrmuminus proton mass difference (7.2) to
rewrite (A4) as:

™ =M (p) +2M(n)-4m, +2 VM . (8.1)

Predicted — 3
(2r)

Specifically, we have refashioned (A4) to include @roton mass and two neutron masses,
because thigH triton nuclide in fact contains one proton and tvemtrons. Thus, the additional

terms—4m, +2,/m m, /(27:)% represent a theoretical value of the mass exegpsessed as a

mass loss (negative number). We see this is eguadgnitude and opposite in sign to binding
energy (7.3).

Let us do a similar thing for the helium nuclé&irst we use (A5) to write:
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3B, = 20M +,M —3M =2M (p) + M (n)—>M (8.2)

We then placeM on the left side and use (6.1) to write:

M =2M (p) +M(n) -2m, - /mm, . (8.3)

Here, —2m, —m is helion mass loss, also equal and oppositetting energy (6.1).
Next, we again use (A5) to write:

4B, = 2IM +2[3M =M = 20M (p) + 2IM (n)—2M (8.4)

Combining this with (5.1) then yields:

M = 2M (p) +2M () —6m,  6m, + - ”“(““ ;mmm" r2/mm, ©.5)
2r )2

The mass loss for the alpha — much larger than foottier nuclides we have examined —is
given by the lengthier terms aft@M (p) + 2M (n). Again, this is equal and opposite to the
alpha binding energy in (5.11), with terms consoédan (8.5) above.

Finally, from (4.1), via (Ab), it is easy to deduce floe deuteron, that:
M =M (p)+M(n)-m,, (8.6)
with a mass loss represented simply-by, , again, equal and opposite the binding energy (4.1).

9. A Theoretical Review of the Solar Fusion Cyclegnd a Possible Approach to Catalyzing
Fusion Energy Release

As a practical exercise, let us now use all of thegoireg results to examine the solar
fusion cycle. The first step in this cycle is (A10); foe fusion of two protons into a deuteron.
It is from (A10) that we determine that an energy (Ai$Ieleased in this fusion, which energy,
in light of (A13), now becomes:

Jm,m
Energ)(llH +Ho2H+e +v+ Energ)) =2 ( ”)3d =0.00045114103u. (9.1)
2 )?

This equates to the well-known 0.420235 MeV asdhotehe Appendix. The positron
annihilates with an electroe” +e~ -~ y+y to produce an addition@m, worth of energy as
well.
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The second step in the solar fusion cycle is thetren:
*H+H - JHe+ Energy (9.2)

wherein the deuterons produced in (9.1) fuse withgms to produce helions. We write this
reaction in terms of the masses as:

Energy="M +:M —3M (9.3)

The proton mass idM , and these other two masses have already beed, fiegpectively, in
(8.6) and (8.3). Thus, (9.3) may be reduced to:

EnergﬁH +H - JHe+ Energ)): m, +/m,m, =000593517186u, (9.4)

which equates to 5.528577 MeV, also a well-knowmber in the study of solar fusion.

The final step in this cycle fuses helions togetbgrroduce alpha particles plus protons,
which themselves are available to repeat the stelding at (9.1), according to:

SHe+>He- JHe+H +H + Energy (9.5)

The mass equivalent of this relationship is a®od:

Energy=;M +>M =M =M =M (9.6)

Here we again make use B¥l =M p (, tbgether with (8.3) and (8.5) to write:
Energ)(jHe+23He_. JHe+H+H + Energ;)

=2m, +6m, —4,/mm, _10m, +10m, +16,/mm, =001373252808u’ ®-7)

(2x)

This equates t62.791768 MeV also a well-known number from solar fusion stsdie

Now, as is well known (see, e.g. [14]), the reac(i®.4) must occur twice to produce the
two JHe which are input to (9.7), and the reaction (9aljst occur twice to produce the two

*H which are in turn the input to (9.4). So pullihgs all together from (9.1), (9.4), (9.7) and
e’ +e - y+y,we may express the entire solar fusion cycle as:
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Energ4lH +2e” . 2He+y (1279MeV) + 2 (552MeV) + 2/ (42MeV) +4y(e) + 2v)

e om -, - ISI g o 232 o ) ©9

(2} (2

=4m, +6m, +4m, —2,/mm, _1om, +108:r;1 VIV _ 56733389MeV

Above, in the top line, we show in detail each ggeelease from largest to smallest, followed
by the electron and neutrino emissions. In thedieitine, we have segregated in separate
parenthesis, each contribution that is shown indpdine, including the neutrino mass presumed
to be virtually zero. In the bottom line, we haansolidated terms.

The above shows at least two things. First,dked energy of approximately 26.73 MeV
known to be released during solar fusion is exgeesntirely in terms of a theoretical
combination of the up, down and electron massds, nathing else added! Consequently, this is
anentirely theoreticakalculation of the known solar fusion energy reteaxpressed totally as
a function of elementary fermion massad it portends the ability to do the same ftweot
types of fusion as well, as the analysis of thiggras extended to larger nuclides Z>2, N>2.

Secondly, because the results throughout thisrfsgsen to validate modeling nucleons
as resonant cavities with energies released dnegtdased on the masses of their quark
contents, this tells us how to catalyze “resonasioin” in a more practical manner, because (9.8)
tells us the precise resonances that go into rielg#se total26.73 MeV of energy in the above.

In particular, if one wished as a technologicalterato facilitate fusion by creating an artificial
“sun in a box,” one would be inclined to amassaaiesbf hydrogen, and subject that hydrogen
store to gamma radiatiat or near the specified discrete energies thategppn (9.8) so as to
facilitate resonant cavity vibrations at or nea #imergies required for fusion to occur.
Specifically, one would bathe the hydrogen witltoenbination of gamma radiation at the

following energies / frequencies, some without, aahe with, the Gaussie(ﬁn)% divisor (we
convert to wavelengths viege =1/(197MeV)):

6m, = 2944MeV = 669F

m, = 222MeV = 8856F

2m, (harmoni¢ = 445MeV = 44.28F

4m,(harmonig¢ = 890MeV = 2214F . (9.9)

m,m, = 330MeV =5962F
2,/m,m, (harmonig = 661MeV = 2981F
4,/m,m, (harmoni¢ =1322MeV =1491F
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10m,/(2z): = 312MeV = 6323F
10m,/(2z): = 141MeV =139.4F

2/m,m,/(27): = 0.42MeV = 46953F

)
3 9.10
4 /mm,/(2x): (9:10)

12/m,m,/

16,/mm,/

In the above, we have explicitly shown each basiguency / energy which appears in the
middle and bottom lines of (9.8) as well as harrostihat play a role in those equations. Also,
one should consider frequencies based on the etestass and its wavelength.

(harmoni¢ = 84MeV =234.7F '
:(harmonig = 252MeV = 7826F
(harmoni¢ = 336MeV =58.6%F

2

—_~ o~

)
)%

2

So, what do we learn? If the nucleons are treasa@sonant cavities and the energies at
which they fuse depend on the masses of their itoest quarks as is made very evident by
(9.8), and given the particular energies and harosshown above which appear to play roles in
solar fusion, the idea for harmonic fusion is tbjeat a hydrogen store to high-frequency
gamma radiation proximate at least one of the ®aqies (9.10), with the view that these
harmonic oscillations will catalyze fusion by pgsBaeducing the amount of heat that is
required. In present-day approaches, fusion r@astre triggered using heat generated from a
fission reaction, and one goal would be to reducgiminate this need for such high heat and
especially the need for any fissile trigger. Tisatve at least wish to posit the possibility that
providing the proper harmonics in (9.9) and (9.tb0& hydrogen store can catalyze fusion better
than known methods are able to do, with less hadideally little or no fission trigger required.

Of course, these energies in (9.9) and (9.10) ang high, and aside from the need to
produce this radiation via known methods such asnbt limited to, Compton backscattering
and any other methods which are known at presemiagrbecome known in the future for
producing gamma radiation, it would also be neagssaprovide substantial shielding against
the health effects of such radiation. The higleesrgy componentm, =2944MeV = G69F ,
is extremely high and would be very difficult taeld (and to produce), but this resonance arises
from (9.8) which is for the finafHe+;He- ;He+/H +;H + Energportion of the solar fusion
cycle. If one were to forego this portion of tlusibn cycle and focus only on fusing protons into
deuterons according tH+H - H +e" +v+ Energy (9.1), then the only resonance needed

is 2,/m,m,/(27)? =0.42MeV = 46953F . Not only is this easiest to produce becauseriesgy

is the lowest of all the harmonics in (9.9) and.(), but it is the easiest to shield and the least
harmful to humans.

Certainly, a safe, reliable and effective method associated hardware for producing
energy via the fusion of protons into deuteronstiereaction (9.1), and perhaps further fusing
protons and deuterons into helions as in (9.4)ntvgducing at least one of the harmonics in
(9.9) and / or (9.10) into a hydrogen store perhag®mbination with other known methods,
while insufficient to create the “artificial sun”adeled above if one foregoes the final alpha
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production in (9.7), would nonetheless represemel@ome, practical addition to the sources of
energy available for all forms of peaceful humadeavor.

10. Recalibration of Masses and Binding Energiesavan Exact Relationship for the
Neutron — Proton Mass Difference

At the end of section 5, we briefly commented opezimental errors, and as between the
alpha particle and the deuteron, we determinedishahs more sensible to associate the binding
energy of the deutergureciselywith the mass of the up quark, thus making theretecally-
predicted alpha binding energy a close approxirbataot exact match to its empirically
observed value, rather than vice versa. But thdiption in (7.2) for the neutron minus proton
mass difference to just over 7 parts in ten mili®a very different matter. This is even more
precise by half an order of magnitude than thealplass prediction, and given the fundamental
and pervasive nature of the relationship k&) - M(p) anywhere and everywhere that beta-
decay takes place, we now argue why (g®uldbe taken as aexactrelationship with all other
relationships recalibrated accordingly, so that mlegvup quark mass will still be very close to
the deuteron binding energy, but will no longeractlyequal to this energy.

First of all, as just noted, thigl(n)— M(p) mass difference is the most precisely predicted

relationship of all the relationships developedwaydo under one part per million AMU.
Second, we have seen that all the other nucledirtgrenergies we have predicted are close
approximations, but not exact, and would expedtttiia inexactitude will grow larger as we
consider larger nuclides. So, rhetorically spegkmhat should make the deuteron “special,” as
opposed to any other nuclide, that it gets to lsavéexact” relation to some combination of
elementary fermion masses while all the other deslido not? Yes, the deuteron should come
closestto the theoretical prediction (namely the up mas$s)ll the nuclides, because it is the
smallest composite nuclide. Closer than all othalidesbut still not exact After all, even the
A=2 deuteron should suffer from the effects of “BAgZ+N,” even if only to the very slightest
degree of parts per ten million. Surely it shosudfer these effects more than #el proton or
neutron.

Third, if this is so, then we gain a new footingomable to consider how the larger
nuclides differ from the theoretical ideal, becaagen for this simple#t=2 deuteron nuclide,
we will already have a precisely-known deviationathwe may perhaps be able to extrapolate
to larger nuclides for which this deviation certgibecomes enhanced. Fourth, in a basic sense,
the deuteron, which is one proton fused to onernauhas a mass which is a measure of
“neutronplus proton,” while M(n)— M(p) is a measure of “neutraninusproton.” So we are
really faced with a choice between who gets toXaetand who must be only approximate:
n+p, or n-p. Seen in this lighkl(n)— M(p) measures an energy feature of neutrons and protons
in their native, unbound states, as separate atithcti entities, and thus is a function of these
elemental nucleons in their purest form. In thetden, by contrast, we have a two-body
system which is less-pure, so if we are to choeseden one or the other, we should choose
M(n)—M(p) to be arexactrelationship, with the chips then falling whereytmay for all other
relationships, including the deuteron binding egeryow, the deuteron is relegated to the same
“approximate” status as all other compound polyhades, and only the proton and neutron as
distinct mono-nuclides get to enjoy an “exact” g$at
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Let us therefore do exactly that. Specifically, tlee reasons given above, we now
abandon our original hypothesis that the up quaaksmsexactlyequal to the deuteron binding
energy, and in its place we substitute the hypadhbat (7.2) is aexactrelationship, period.
That is, we now define, by hypothesis, thatéRactrelationship which drives all the others, is:

3m, + m,m, -3

(2a)

m,
[M(n) = M(D)]opeereq= 0-00138848188u = m, - = [M(N) = M(P)oeere (10.1)

Then, we modify all the other relationships accogtiy.
The simplest way make this adjustment is to mattiéyoriginal hypothesis (4.1) to read:
m,=2B, + £ = By(H) + £ = 0.002388170D0u + £, (10.2)

and to then substitute this into (10.1) wittaken as the unknown. This is most easily sob/abl
numerically, and it turns out that=-0.00000083073 u, which is just over 8 parts in ten
million u. That is, substituting = —-0.00000083073 u into (10.2), then using (1.11) to derive
the down quark mass, then substituting all of thiat (10.1), will make (10.1) exattrough all
twelve decimal place@oting that experimental errors are in the lagt places).

As a consequence, the following critical energiegeloped earlier, become nominally
adjusted starting at the sixth decimal place in AMbd now become (contrast (4.1), (4.3), (4.4),
(4.5) and (4.6) respectively):

m, = 000238733927 U, (10.3)
m, = 0005267312526 U , (10.4)
Jmm, =000354610526u, (10.5)
B, =2m, +m, - (m, +4/mm, +4m, )/ (2z) =000820060681u (10.6)
B, =2m, +m, - (m, +4/mm, +4m, )/ (2z)! =001053199971u. (10.7)

Additionally, this will slightly alter the bindingnergies that were predicted earlier. The
new results are as follows (contrast (5.1), (6ri) &.3) respectively):

B, (‘He)=2B =0.03037300232u, (10.8)

OPredicted

By( HE)eineq = 000832078380 . (10.9)
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By H)pyegicieg = 000909904708 U . (10.10)
and, via (10.3) and this adjustment of masses,

Bo (*H) predicted =2 Bopregiceg = My = 000238733927 u. (10.11)

In (10.11), we continue to regard the predictedei®mn binding energ, (*H ) p.qieq @S b€ING
equal to the mass of the up quark, but because#iss of the up quark has now changed
slightly, the observed energy (whichBg(*H) =.002388170100) will no longer beexactly

equal to the predicted energy, but rather, wendi haveB, (*H) # B, (*H) pregicies With @

difference of less than one part per one millionlAMThe precise, theoretical exactitude now
belongs to theM(n)— M(p) difference specified in (10.1). As a bont& up and down masses

now have a ten-digit precision in AMWith experimental errors in the"1and 12" digits.

One other point is worth noting. With an entirddgoretical expression now developed
for the neutron minus proton mass difference viaX)l, we start to assault the full, dressed
proton and neutron masses themselves. Specifidallypuld be extremely desirable to be able
to specify the proton and neutron masses solelyeanlisively as a function of the elementary
up, down, and electron fermion masses. Fundantgnbglelementary algebraic principles,
taking each of the proton and neutron masses aslarown, we can deduce these masses if we
have can findwo independent equations, one of which contains anteexpression related to
thesumof these masses, and the other which containgat expression related to the
differenceof these masses. Equation (10.1) achieves stehfalf of this objective: for the first
time, we now have a theoretical expression fordifferencebetween these masses. But we still
lack an independent expression related to their. sum

Every effort should now be undertaken to find arotielationship related to the sum of
these masses. In all likelihood, that relationsiipich must inherently explain the natural ratio
just shy of 1840 between the masses of the nuclaoashe electron, and / or similar ratios of
about 420 and 190 involving the up and down masgégsj)eed to emerge from an examination
of Lagrangian terms in (3.14) which we have notepgilored, and / or the perturbations which
as explained in section 11 of [1], have been seeto throughout the course of this
development. While analyzing binding energies exxkss mass and nuclear reactions as we
have done here is a very valuable exercise, therémit limitation is that all of these analyses
involve differences What is needed to obtain the “second” of therdddwo independent
equations, are sums, not differences.

11. Summary and Conclusion

Summarizing the results developed here, we now trev&llowing theoretical
predictions for the binding energies shown in Taylwith isobar lines indicated:

33



Table 8: Binding Energies (B,) of 1s Nuclides (Theoretical, AMU)

Above, we have also referenced the equations ichwthiese predictions are derived. The mass
losses (excess masses) discussed in section 8 whretvery helpful to the exercise of
examining the solar fusion cycle in section 9,sanmaply the negative (positive) of the above.
Having just considered thil(n)— M(p) mass difference, it is useful to also look atdterence
between théH and®He isobarsA=3 in the above. Given th#tle is the stable nuclide and that

®H undergoesB™ decay into’H, we may calculate the difference in binding efego be:

B(°He) - B(H) = —2m, +| 1+ Jmm, =-000077826389u. (11.1)

(277)%

Similar calculations may be carried out as betwberisotopes and isotones in Table 8, and it is
helpful to contrast the above to (the negativg b 1) which represents the most elementéry
decay of a neutron into a proton.

The numerical values of these theoretical bindimgrgies in Table 8, in AMU, using the
updated (10.8) through (10.11), are predicted tadillows:

Bpredicted sNuclide B : ;
0 000000000000tz peg
1 0.000066000000( 0.002387339337) 0,008326783800] _...A=t—
2 ---"""“"“‘AET"“"“"'”‘ “-n“““.‘“‘AE‘Z""“““““ “g:g qum47b"7.8 0.: 9303?.3%263 2

Table 9: Binding Energies (B,) of 1s Nuclides (Predicted, AMU)

These theoretical predictions should be carefutlnpared to the empirical values in
Table 2. Indeed, subtracting each entry in Table 2 frosheantry in Table 9, we find:
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Bpredicted-observed ZN uclide

N

0
1
2
3

Table 10: Predicted Minus Observed Binding Energie$; B,) of 1s Nuclides (AMU)

This shows us how much eagtedictedbinding energy (mass excess) differs fromdhserved
empiricalenergies, in AMU.

As has been reviewed, every one of these predgtgaccurate to under four parts in
100,000 AMU {He has this largest difference). Specifically: vee now used the thesis that
Baryons are Yang-Mills magnetic monopoles to prieitie binding energies of the alpt4e
nucleus to undefour parts in one millionof the*He helion nucleus to undéur parts in
100,000 and of thé'H triton nucleus to undeseven parts in one millionAnd of special import,
we have exactly related the neutron minus protossndiference — which pervades all aspects
of nuclear physics and beta decay — to the up amthdjuark masses, which in turn enables us to
predict the binding energy for tAl deuteron nucleus most precisely of all, to jusr® parts
in ten million

These energies have never before been theoretegilgined with such accuracy, and
each of the foregoing energy predictionsistually-independeritom all the others. This leads
to the conclusion that the underlying thesis tlzatbns are Yang-Mills magnetic monopoles
with binding energies determined by their currammry masses provides the strongest theoretical
explanation to date of what baryons are, and of patons and neutrons confine their quarks
and bind together into composite nuclides. Thialdshes a basis for finally “decoding” the
abundance of known data regarding nuclear masselsiading energies, and by viewing the
proton and neutron as resonant cavities, may kyahndation for technologically realizing the
theoretical promise of nuclear fusion.

Appendix — Detailed Derivation of the Triton Nuclide Binding Energy and the Neutron
Minus Proton Mass Difference

To begin with, let us consider a hypothetical dusprocess to fuse &1 nucleus (proton)
with a 2H nucleus (deuteron) to produc€ld nucleus (triton), plus whatever by-products
emerge from the fusion. Because the ingtitsand ’H each have a charge of +1, and the

output®H also has a charge of +1, a positron will be ne¢dearry off the additional electric
charge, and this will need to be balanced withwnme. Of course, there will be some fusion
energy released. So in short, the fusion reasti®mow wish to study is:

H+2H - H +e" +v + Energy (A1)
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The question: how much energy is released?

As we can see, this process includg8’adecay. If we neglect the neutrino mass, i.e., if
we takem, [0 Q and sincem. =m,, we can reformulate (A1) using the nuclide magsdable
1, as theempirical relationship:

Energy=;M +M —>M —m, = 0.00478038215u (A2)
If we then return to our “toolbox” (4.11), we sé@t2m, = 0.00477638200u . The difference:
Energy-2m, =0.00478038625u —0.00477634020u = —0.00000408015u, (A3)

is four parts per million! So, we now regashergyl]2m, to be very close relationship to the

empirical data for the reaction (Al). For the @eah, alpha and helion, our toolbox matched up
to abinding energy But for the triton, in contrast, our toolbox teéad matched up tofasion-
releaseenergy. A new player in this mix, which has netdiofore become directly involved in
predicting binding energies, is the electron reassnwhich appears in (A2). So, based on (A3),

we setEnergy=2m,, and then rewrite (A2), usinfM =M p(, &s:

fM PredictedzllM +fM - 2mu - me = M (p)+iM - 2mu - me " (A4)
Now let's reduce. To translate between Table 1Tatule 2, we of course used:

2B, =ZGM + NGZM -/ M (A5)

which relates observed binding energy in general, to nuclear makbin general. So let us
now use (A5) specifically fofB, with Z=1 andN=2, and combine this with (A4) using

oM =M (n), to write:

fBOPredicted =1M + 20M =M =2M (n)—3M +2m, +m, (AB)

Then, to take care of the remaining deuteron nmkksn the above, we use (A5) a second time,
now for 2B, with Z=1 andN=1, to write:

]Z.BOPredicted:J:}M +(;LM _]2_M = M (p) + M (n)_]z_M (A7)

We then combine (A7) rewritten in terms i , with (A6) to obtain:

fBOPredicted =M (n) -M (p)+]2.BOPredicted + 2mu + me (A8)
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Now all that is left iS? By, .ier
found in (5.4), namely.B
discussion at the end of section 5. So final switisin of B

But this is just the deuteron binding energy tha have already
oprediced — My » @Nd which we take to be aractrelationship, see the

= m,into (A8) yields:

OPredicted

fBOPredicted =M (n) -M (p) + 3mu +m,. (A9)

So now, we do have a prediction for the tritordioig energy, and it does include the
electron rest mass, but it also includesdifference(7.1) between the free (unbound) neutron
and proton masses. It would be highly desirabierfany reasons beyond simply the present
exercise, to express this relationship as wellh completely theoretical basis.

To do this, we repeat the analysis just condudtatinow, we fuse twgH nuclei
(protons) into a singléH nucleus (deuteron). Analogously to (A1), we thwie:

H+H - 2H +e" +v + Energy, (A10)

and we again ask, how much energy? This fusiasalso noted, is the first step of the process
by which the sun and stars produce their energyjsathe simplest of all fusions, and so is
interesting from a wide variety of viewpoints.

As in (A2), we first reformulate (A10) using thaealide masses in Table 1, as the
empirical:

Energy=M +M —2M —m, = 2M(p)~’M —m, =0.00045114003u, (A11)

As a point of reference, this is equivalent to 0225 MeV, which will be familiar to anybody to
who has studied hydrogen fusion. As before, we peer the “toolbox” in (4.11), including

3
2

(271)% divisors, to discover tha,/m, m, /(27r) =0.00045042092u . Once again, we see a
very close match, specifically:

Energy-2./m,m,/(2z): =000045114103u - 0.00045042492u = 0.00000076911u. (A12)

Here, the match is foist over 7 parts in ten milliorThis is a mere 0.000667798 MeV, which is
a scant 0.1306848742% of the electron mass, asdhié closest match yet! So we take this to
be a significant relationship as well, and use thisewrite (A11) as:

3
2

2,/m,m,/(2z)* = 2M(p)-iM -m,, (A13)
Now we need to reduce this expression. First,gughil), namely;B, = m,, we write (A7) as:

2M =M (p)+M(n)-m,. (A14)
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Then we combine (A14) with (A13) and rearrange, aisd use (1.11), to write:

J 3m, +2 -3
[M(N) = M(D)]p-egiureg = M, =M, = 2 (m";?" =m, - i (m") Zn" ™ 0.00138916099u .(A15)
2r)? 2 )?

Thisisan extremely important relationship, as it relates the difference (7.1) between the
neutron and proton mass solely to the up, down(aptionally) electron masses. This is useful
in a wide array of circumstances, including alhfierof beta decay and the relationships between
nuclear isobars (along the diagonal lines of kkesich are shown in the Tables here) wHigh
definitionconvert one into the other via a beta decay whiahanges a neutron with a proton.
Comparing (A15) with (7.1), we see that:

[M(n)_ M(p)]Predicted_ [M (n) - M ( p)]observed

. Al6
=0.00138916609u-0.00138844988 u=0.00000076911u (A10)

This is the exact same degree of accuracy, tmpest7 parts in ten milliomPAMU, which we
saw in (A12). So this is yet another relationghigitched very closely by empirical data.

Because of this, now taking (A15) as a given retetip, we use this in (A9) to write:

A/mm
By (*H) predicted=: Bopregieg = 4M, = 2 (2" )3" =0.00910226308u. (AL17)
T

N

As a result, we finally have a theoretical exprasdor the binding energy of the triton, totally in
terms of the up and down quark masses. The erapiradue’B, = 0.00910558412u is shown
in Table 2, and doing the comparison, we have:

B, °B, = 0.00910225688u —0.00910558542u = -0.00000332104u. (A18)

Predicted 1

We see that this result is accurate to just oweetiparts in one million AMU!

As to the theoretical expression for (A17) usioghponents of an outer produ€t,g;,
as in (5.3), (5.4) and (6.3), one way to write (Al/

,/mﬂmd

3
fBOPredicted: (277)2 (EP 2222 ¥ Bpoozst Epga * EP3333)_ Epi ~EBpip =4m, -2 (277:); : (A19)

N

As earlier noted, there will be some ambiguity insthéensor component assignments until we
have developed a wider swathe of binding energiesrizbthe “1s square,” and begun to discern
the wider patterns. But we have now reached ourafa#ducing precise theoretical
expressions for all of the 1s binding energies, s@slg function of elementary fermion masses.
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In the process, we have also deduced a like-expregs the neutron minus proton mass
difference!
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